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Deterministic Hybrid Systems UCSB

-

continuous
dynamics

.T)—)(,O?,

“(juard
conditions

reset-map"s
z(t) e R" = continuous state by convention

q(t) € 9={1,2,...} = discrete state } right-continuous

we assume here a deterministic system so the invariant
sets would be the exact complements of the guards
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Stochastic Hybrid Systems UCSB
A ()t el
continuous
dynamics. ~ .
\ Aa ( J]!H ........ ]
T p3(7) z c,oi(m) ..... ...... ransition intensities

(instantaneous rates at

;F - 992( ) which transitions occur)

/\;g f J]!H

- reset- maps

N,(t) € N= transition counter, which is incremented by one right-continuous
each time the /th reset-map ¢,(X) is “activated” by convention

P<Ng(t+dt)>Ng(t)) — E[Ag(x(t))dt]

—
. proportional to
at least one transition “elementary” interval length d
on (¢, t+dt]

and transition intensity A ,(X)




Stochastic Hybrid Systems UCSB

M (z)dt z i)
continuous /\
dynamics M(z)dt
\ Aa(x)dt .
T p3(x) re "94,2‘(5”) _ transition intensities

(mstantaneous rates at
which transitions occur)

/\;g f !]{’JJIf

. reset-maps

N,(t) € N = transition counter, which is incremented by one right-continuous
each time the ¢th reset-map ¢,(x) is “activated” by convention

E [Ng(tg) - Ng(tl)] =E {/t /\g(ar(t))dt}

t1
H—/
number of transitions equal to integral of
on (¢,, t,] transition intensity

7\'@(x) on (ty, t,]

Stochastic Hybrid Systems UCSB
Az ]rH © (@
continupus
dynamics /\1f T ]rh’
/\ )f r ]!H ........

T — ;C N
Pl 994_ ) transmon intensities

(mstantaneous rates at

;F N 992( ) which transitions occur)

/\;{[.J'J!H k
- reset- maps

Special case: When all A, are constant, transitions are controlled by a
continuous-time Markov process

— >
Ay specifies g
(independently of z)




Formal model—Summary UCSB

State space: q(t) € 9={1,2,...} = discrete state

x(t) e R" = continuous state
Continuous dynamics:
%= flg,x,t) f:OxR*x[0,00) — R
Transition intensities:
/\[(Q7$7t) /\Z;QXRRX[O’OO)H[(),OO) ée{l,...,m}
Reset-maps (one per transition intensity): # of transitions
(g,2) — ¢plg, z,t) ¢dr: QxR x[0,00) - QX R" f¢ {1,...,'m}

AI,(@],J?.t)dt (q J‘) = of:(ql-x'. t) —//_ ———————— -

q=3q2
= f(QQ7x>t)

q=aq
i‘:f(QL.x,t)
q=as

)\;._,(ql._a:,t)g\%
’/ x = f(Q37x>t)

(g, %) — dp.(q1. 2, 1) SRt

Formal model—Summary UCsS

=

State space: q(t) € 9={1,2,...} = discrete state

X(t) € R" = continuous state
Continuous dynamics:
%= flg,x,t) f:OxR*x[0,00) — R
Transition intensities:
Aelg, ;1) At QxR x [0,00) — [0,00) £€{1,...,m}
Reset-maps (one per transition intensity): # of transitions =

(@,2) = dela,2 1) Gr: QxR x [0,00) = QxR* fe{l,.. ,m}

Results:

1. [existence] Under appropriate regularity (Lipschitz) assumptions, there exists a
measure “consistent” with the desired SHS behavior

2. [simulation] The procedure used to construct the measure is constructive and
allows for efficient generation of Monte Carlo sample paths

3. [Markov]  The pair (q(t), x(t) ) € Qx R is a (Piecewise-deterministic) Markov
Process (in the sense of M. Davis, 1993)

Hespanha. Stochastic Hybrid Systems: Applications to Communication Networks. HSCC'04




Transmission Control Protocol

transmits receives
data packets data packets

=L\ network D o= @
;

packets dropped
with probability Pyyq,

congestion control = selection of the rate r at which the server transmits packets
feedback mechanism = packets are dropped by the network to indicate congestion

TCP window-based control

w (window size) = number of packets that can remain unacknowledged for
by the destination

eg., w=3 source f destination f

15t packet sent
2" packet sent
3 packet sent

y

ﬁi 1 /ﬁ/p _

> 1t packet received & ack. sent

. 2" packet received & ack. sent
> 3" packet received & ack. sent

15t ack. received =
4™ packet can be sent

Built-in negative feedback:

w effectively determines the sending rate 7:

o A
() = w(t) r increases congestion
" RTT(1)

E
RTT increases
S (queuing delays)

. r decreases
* round-trip time P,




TCP Reno congestion avoidance

1. While there are no drops, increase w by 1 on each RTT (additive increase)
2. When a drop occurs, divide w by 2 (multiplicative decrease)
(congestion controller constantly probes the network for more bandwidth)
per-packet _ pckts sent _ pckts dropped

dropprob. ~ persec ~  persec
” e Darop Tt
laddmve q = cong-avoid
increase..
total # of pé{bkets w
already sent weg

multiplicative decrease

Three feedback mechanisms: As rate r increases = ...

a) congestion = RTT increases (queuing delays) = r decreases
b) congestion = py,,, increases (active queuing) =- r decreases
¢) multiplicative decrease more likely = r decreases

Delay in drop detection

3. Ingeneral there is some delay between drop occurrence and detection
(assumed exponentially distributed with mean tg,,)

drop occurred
Pdrop T dt

Tdelay
multiplicative decrease drop detected




TCP Reno slow start

3. Until adrop occurs double w on each RTT
4. When a drop occurs divide w by 2 and transition to congestion avoidance

(get to full bandwidth utilization fast)

w>—>1\\

s—0

7 = cong-avoid

q = slow-start
. log 2

w = w
RIT

# 6f packets . . N
already sent : —r=
Ddrop T M»—»

for simplicity this diagram ignores delay

TCP has several other modes that can be modeled by hybrid systems
[Bohacek, Hespanha, Lee, Obraczka. A Hybrid Systems Modeling Framework for Fast and Accurate
Simulation of Data Communication Networks. In SIGMETRICS'03]

On-off TCP model

« Between transfers, server remains off for an exponentially distributed time
with mean t4
« Transfer-size is a random variable with cumulative distribution F(s)
determines duration of on-periods

dt w0

Toff

s—0

Pdrop T dt

w1

s— 0




On-off TCP model

» Between transfers, server remains off for an exponentially distributed time
with mean T
« Transfer-size is exponentially distributed with average & (packets)
simple but not very realistic...

dt w0

Toff

s—0

Pdrop T dt

w1

s—0

SHS models for TCP

long-lived TCP flows on-off TCP flows
(no delays) (no delays)
Ddrop 1AL
4 = cong-avoid &
- 1 Toff, w7 (s)dt
©= RTT i
R w
§=7r:= m
w
w — 5
on-off TCP
» flows with delay
long-lived TCP
flows with delay




Analysis—Lie Derivative

&= f(xz,t) zeR"
Given function ¢ : R" x [0,00) — R

1/) oy

. 0
bla,t) = Sofla ) + 5
derivative H—/

along solution

to ODE Ly
Lie derivative of 1)

One can view L as an operator

space of scalar space of scalar
functions on RN functions on
x [0,00) R” x [0,00)
Y(z, t) — L(x, t)

L completely defines the system dynamics

= f(Q»x»t) )\Z(anat) (an) = ¢Z(q7amivt)

continuous dynamics

transition intensities reset-maps

Given function ¢ : @ x R? x [0,00) =+ R
e geNEIator for the SHS

d .
5 Blv(@.@. 0] = E | (Ly)(q.2,1)

Dynkin’s formula
(in differential form)

where
o L G
(L) .t) = o flaant) 4 g+ 3 (¥(0elg..8),8) — (g, 2.8) ) Melg, 2.
%/—/ s ~ - intensity
Ly reset instantaneous
Lie derivative of 1 variation

L completely defines the SHS dynamics

Disclaimer: see following paper for technical assumptions
Hespanha. Stochastic Hybrid Systems: Applications to Communication Networks. HSCC'04




long-lived
TCP flows

Pdrop T dt

.- SO 1 W ow -'
E)w ) = 5w o 1L 0 pdrep

w
RTT

Long-lived TCP flows

long-lived TCP flows
(with slow start)
congestion

slow-start i
avoidance

w— 1
8§ = O ,'I." i
v ;R_/“ ‘ i
2
i log 2 My ' [ )
Lw ‘u.‘r = . - I I )
e P
dw RT'T ot

PdropWW

RTT

q =88
q = ca
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Analysis—PDF for SHS state

&= f(g,z,t) Ae(g, z,t) (g,7) = delq 2 ,1)
continuous dynamics o »
transition intensities reset-maps

Let p( - ; t) be the probability density function (PDF) for the state (z,q) at time ¢ :

EW@@Ldﬂin}j/

(g, 2, t)plg, w5 t)dw
qeQ’R"

When p( - ; t) is smooth, one can deduce from the generator that

Ip(q,x;t) Of(q,z, t)p(q, ;)

m
ot - Dz ‘I‘Z(*/\Z(q’xvt)p(%x;t)+

=1

g o Ay (G, x,t)

+ > Al &g (@, . 1), )p(q. &y “(d )3 1) Fdi

_ geQ: ~
@y (a0, "(d.x.t))=q

inverse of functional PDE
T = 5 (g, 1) very difficult to solve

Analysis—Moments for SHS state UCSB

e

= flq,z,t) Mg, x,t) (g,2) = delq , 2z ,t)
continuous dynamics o -
transition intensities reset-maps

often a few low-order moments suffice to study a SHS...

z (scalar) random variable with mean p and variance 2

P(z>e|z>0)<

o=
]

Pla—pl>e) <5

n 2
Ellz —a]"] ¢

P(z—a|>¢) < pm

Markov inequality

Tchebychev inequality
(Ve>0)

Bienaymé inequality
(Ve>0,acR , neN)

11



Polynomial SHSs

& = f(q,z,t) Me(q,z,t) (g, 2) = de(q ,z,t)

continuous dynamics o »
transition intensities reset-maps

Given function ¢ : @ x R" x [0,00) — R
- generator for the SHS

Bl .1) = B [(L9) g, 1)

Dynkin’s formula
(in differential form)
where

oY

31/)
ox 521t ot

(91': +Z< ¢Z q, T, t ) w(qvxvt)))‘ﬁ(%xvt)

=1

(L) (g, 1) :=

A SHS is called a polynomial SHS (pSHS) if its generator maps
finite-order polynomial on z into finite-order polynomials on x
Typically, when

= f(g,2,t) @ Nelg,z,t) 7 delq,7,t)

are all polynomials V ¢, ¢

Moment dynamics for pSHS

X(t) e R qt) e 9={1,2,...}

continuous state discrete state

Test function: Given ge Q

- {

Uncentered moment:

12



Moment dynamics for pSHS

X(@) € R"
continuous state

Test function: Given g€ Q

Mg z) = {

Uncentered moment:

For polynomial SHS...

¥ (g, )
monomial on z

q(t) € 9={1,2,...}

L™ (q.)
polynomial on z

discrete state

Ly (g,)
linear comb. of
test functions

oy d o m - L
i = < Bl N(a.2)] = B[(Lo{™)(@,2)] = Y au™)
i=1

linear moment dynamics

Moment dynamics for TCP

long-lived
TCP flows
Ddrop 1AL
4 = cong-avoid
e 1
w = ﬁ
§=r:= RIT
w — %
k
W =B =B [ |
1
A (1) — _Pm

T R 2
@ =203

W= Rrre"
@ 3 @ TP
o= Rrr2t %N

13



Moment dynamics for TCP

on-off TCP flows

long-lived (exp. distr. files)
TCP flows
Ddrop 1AL
4 = cong-avoid
e 1
© = 7rT
ri= m
, u
w — 3
(k) k wk k
~El* =B } wh
7 "] BT 1 Bk ]~ F [quzca}
M. (07 B — 0 1 1
NE RS S 0 [ Tt g + e + )
W= jrre ~ ¥ g ot Hoff - ( )
IO B C BN g e e »
RTT2 4 #S;) T}’%&f;«“# f + }lé)qgw;/—’fss - (% “l’p)ﬂss
N R Y i T e .}Z._;O:E-f? + 20— (1 4+ 2y
= 2 -y (2 roiwi (0 . 2 N (
RITE 8 i) |+ R - G
ftca 7z Hea + T‘ZI”_“ - (% + ‘—_F),H\-1

Experimental evidence indicates that the sending rate
is well approximated by a Log-Normal distribution

0.07

PDF of the congestion
window size w

0 10 20 30 40 50

E[Z2]3
E[z?

zLog-Normal = E}z’]=

_Er?la=qP  #i2He0

r Log-Normal ~ {tg0 =
Elrfq=q*"" Mo

= tg3 =Elr’ [ a=dlpgo
(on each mode) ! !

Data from: Bohacek, A stochastic model for TCP and fair video transmission. INFOCOM'03




Moment dynamics for TCP

on-off TCP flows

long-lived (exp. distr. files)

TCP flows .
Ddrop 1AL Tolt
4 = cong-avoid

(k) ._ k] w } k
pHi= B = F [RTTk 1) = B[k, o] = E [%Iﬂa}
) = o~ B i s+ )+ bl
9 3p 3 ks Tc;fluoﬁ(l: (%1+(Zl7))llss
i = S — —(—l) s Phss’ = glica
RTT 4ty (1| _ T w0 ﬁ - log2 8 — (L 4+ p)pld
Hes e Rchzl P IE
o . Wﬂca(]'ﬁ‘ ,:12} ](,\, + 2).-':(-.:?,,-: )
finite-dimensional | {2 Hr ey + F}&T“_f" ~ (&P ()
nonlinear ODEs || | mremes + 5 (“55)° = (1 + Fhued) (U )7

long-lived TCP
flows with delay
(one RTT average)

Monte-Carlo & theoretical
steady-state distribution

Rate Mean (vs. drop probability)
| total (tec)
10007, c-mveid (leo) Aite Standard Devistion
N diy~ca (tec)
00 513 total (me) 480+ total {tec)
. A p-gvoid (me) L c=mveid (lea)
800 N dly—ca (mc) sool dly-ca (tec)
AN tatal (me)
00 N & 5 g-gvoid (me)
“ |/WOr - N, dly—ca (mc)
600 " 3
300
500 ”
200+ 250
300 i 200
200 150
100/ 100
ploa i
107 10 S0t
Faimp
ok

Faimp




Long-lived TCP flows

moment dynamics in response to abrupt change in drop probability
T T T T T
0.1~
: Pdrop :
0.02 -
1 1 | 1 I | | | |
0 1 2 3 4 5 6 7 8 9 10
20 ) § R— T T T T T
sending rate mean
100~ -
| | 1 | | 1 | 1 1
0 1 2 3 4 5 6 7 8 9 10
10 T T T T T T T T
S \\ sending rate std. deviation
50~ -
1 1 | 1 1 | 1 | |
0 1 2 3 4 5 6 7 8 9 10
— Monte Carlo (with 99% conf. int.) — reduced model

On-off TCP flows

SHS for on-off
TCP flows

wdt
ERIT

Transfer-sizes exponentially distributed with mean £ = 30.6KB (Unix’93 files)
Off-time exponentially distributed with mean t = 1 sec
Round-trip-time RTT = 50msec

16



On-off TCP flows

i Pdrop
0.02- ‘
probabilities
Ouli: o S ) ss
0.051- S ca
| | l | | |
o sending rate mean P total
T
o o S Ss
~ | | 47 | | | ca
total
so- sending rate std. dev. S
- ss
20 — T ca
| | l | | |
—— Monte Carlo (solid) ~ -----— reduced model (dashed)
- UCSB
On-off TCP flows UCSB
SHS for on-off
w0 TCP flows
s—=0
wF'(s)dt
RTT(1 - F(s))
Ddvop 7" dE
wF'(s)dt
—  |RTT(1 - F(s)) b
Mixture of exponential distribution for transfer-sizes:

m exp. distr. with mean m probabilities ZP .
{kll k2! ""km} {pl’pZ""’pm} i=1 '
transfer-sizes are extracted from an exponential distribution with mean &, w.p. p;

can approximate well distributions found in the literature ...

17



On-off TCP flows: Case |

Transfer-size approximating the distribution of file sizes in the UNIX file system
p, = 88.87% k, = 3.5KB (“mice” files)
p, =11.13% k, = 246KB (“elephant” files, but not heavy tail)

Probability
0.09{—any active mode

— slow-start
0.081 ——_congestion-avoidance|

Rate Standard Deviation

— total

o
\i —— slow-start

& — congestion-avoidance

K

o

~—— small “mice" transfers
mid-size "elephant’ transfers

5@
Pl
+
3
3 2 )
0 10 0 Rate Mean
Poen . £
¢ — total
— slow-start
~—— congestion-avoidance 1
—— small "mice" transfers
9 mid-size "elephant” transfer - - B
10° 10° 10°
Pdrop

Monte-Carlo & theoretical
steady-state distribution
(vs. drop probability)

On-off TCP flows: Case Il

Transfer-size distribution at an ISP’s www proxy [Arlitt et al.]
D, = 98% k, = 6KB (“mice” files)
p, = 1.7% k, = 400KB (“elephant” files)
p3=.02% k;=10MB (*mammoth” files)

Rate Mean Rate Standard Deviation
— total 9 — total
25 — slow-start — slow-start
—— congestion-avoidance o — congestion-avoidance
~ small ‘mice” transfers ~ small “mice” transfers
—— mid-size "elephant” transfers —— mid-size "elephant” transfers
A large ‘mammoth” transfers 7 large "mammoth” transfers
—
1
1
o
——
10 10

P sop Paop

Theoretical
steady-state distribution
(vs. drop probability)
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Truncated moment dynamics (revisited)y UCSB

e

For polynomial SHS...

oy d o m - L
i = < Bl N(a.2)] = B[(Lo{™)(@,2)] = Y au™)
=1

linear moment dynamics
Stacking all moments into an (infinite) vector g

infinite-dimensional linear ODE
In TCP analysis...

)
) y lower order . )
iy moments of interest fr=Ap+ Bp-.,

Hoo =
4@ _ moments of interest N O:I?npergr :‘Tr?ézgnbzf
u®| [ # thataffect 4 dynamics #

Truncation by derivative matching UCSB

e
infinite-dimensional linear ODE
floo = Acolloo
L= Ap+ Bl v=Av + Bp(v)
truncated linear ODE nonlinear approximate
(nonautonomous, not nec. stable) moment dynamics

Assumption: 1) u and v remain bounded along solutions to
lloo = Aooﬂoo and v=Av+ B@(V>

2) fleo = Acolico IS asymptotically stable

. . dk dky
Theorem: Vo6>0 INsitif ap 4w
F T Qe vk e {l,...,N}

then
[u(t) — vl < B(ulto) —vto)|,t —to) +5, V>t >0
class KL function

Hespanha. Polynomial Stochastic Hybrid Systems. HSCC'05
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Truncation by derivative matching

infinite-dimensional linear ODE

o= Ap+ Bi v=Av + Bp(v)
truncated linear ODE nonlinear approximate
(nonautonomous, not nec. stable) moment dynamics

Assumption: 1) p and v remain bounded along solutions to

ﬂoo = Aoo/ioo and v=Av+ B@(”)

2) fleo = Acolico IS asymptotically stable

Theorem: Vo&>0 INstif 4% _dw

T Vke{l,...,N}
then
u(t) — vl < B(Jlulto) — v(to)[l,t —to) +0, Yt >t >0
Proof idea:
1) N derivative matches = u & v match on compact interval of length T'
2) stability of A =- matching can be extended to [0,00)

UCSB

=

Truncation by derivative matching UCSB

infinite-dimensional linear ODE

=

® Given Sfinding N is very difficult

© In practice, small values of N (e.g., N=2) already yield good results
© Canuse

dbpy  dku

— = k 1,...,.N

k= qre Vkefl... N}
Assu to determine @(-): =1 — boundary condition on ¢

k=2 — PDEono

yTptottdiry stduic

Theorem: V¥ o&>0 INstif 4w _dw

FCRRrTT Vke{l,...,N}
then
() = v®l < B(l|ulto) — v(to)|, t —to) +6,  Vt=to>0
Proof idea:
1) N derivative matches = p & v match on compact interval of length T’
2) stability of A_, = matching can be extended to [0,00)

20



and now something completely different... UCSB

e

Decaying-dimerizing molecular reactions (DDR):

C
Cl c 3
S, — 0 S, >0 25, = S,
G4
pSHS model azdt csz1(wy — Lt population of
- species S;
1 — :1:1 -2
r1— a1 —1 To > o+ 1

To 29— 1
r1— T+ 2

To > o — 1

"population of
Coodt Caodt species S,

reaction rates

Decaying-dimerizing molecular reactions (DDR):
Cq C: g
S, — 0 S, —=> 0 28, =2°S,
Ca
/1(1’0) —c1 +c3 2¢cy —Cs3 0 0 H(l,o)
FACRY -3 —C4 — C2 S 0 0 RCRY
. (2 0 C2 0 0 0
N(“’O) — M(Z’O)
- 0.2) c1 — 2c3 dey —2c¢1 + 4cs 0 dey ©.2)
S -2 cs+ e Cg" —2¢4 — 2¢ —c3 B
ﬂ<1’1) c3 —2¢4 7% 2¢y —Cc1+c3—cq4—Co M<1’1)
0 0
0 0 “H%.U:-"
+[—2c5 0O { (2.1 ‘
0 (& H
£3 —
00 =Bl =Bl a0 = Bl
pOV = Efs] 40P :=Efe] 4 = Elales
p Y = Elz 2]

21



Truncated DDR model

Decaying-dimerizing molecular reactions (DDR):
€1 C g
S, — 0 S, > 0 25, 2 'S,
=
JAS —cq +c3 2¢4 —c3 0 0 TS
ﬂ(O,l) -3 —C4 — Co 2 0 0 M(O,l)
- (2,0) 0 Co 0 0 0 (2,0)
AN 20N
- 0.2) c1 — 2c3 dey —2c¢1 + 4cs 0 dey ©.2)
S -2 cs+ e Cg" —2¢4 — 2¢ —c3 B
ﬂ<1’1) c3 —2¢4 7% 2¢y —Cc1+c3—cq4—Co M<1’1)
0 0
0 0 [,l.l:l"" } 3
+ | =2¢5 0 |ﬁ r;'{*x'i / })} by matching
0 ¢ | Luom\mo dfy dFu
£ —c P Vk e {1,2}
for deterministic distributions
Hespanha. Polynomial Stochastic Hybrid Systems. HSCC'05

Monte Carlo vs

populations means
il Elz,] ]
20 -
q E[z,] il
o o5 1 15 2 25 5 85 4 45 .
<16° Fast time-scale
transient
populations standard deviations
L R | ]
+ 1
3 Std[z,] 1
o o5 1 15 2 25 5 35 4 a5 s
x10%
populations correlation coefficient
-0.9 ' i i " i i i =
098 [2,.2,] 1 (lines essentially
PLT2: T2 - undistinguishable
104 1 at this scale)
) (;5 ‘1 1‘5 ‘2 2‘5 ‘3 3‘5 ‘4 4‘5 5
x10°
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Monte Carlo vs. truncated model UCSB

e

populations means

Nl
ol Elz] i
10- 7
E[z,] i
— . . ‘ ‘ : . ) Slow time-scale

evolution

populations standard deviations

En 4

Std[,]

I I L I L
0 0.5 1 15 2 25 3 35 4 45 5

populations correlation coefficient

only noticeable error

[ ]'" when populations
05 Lo, T b

PLT2:T2 become very small
-1

o o5 f 15 3 75 B s 7 Pram— (a couple of molecules)
- =
Conclusions UCSB

1. Asimple SHS model (inspired by piecewise deterministic Markov Processes)
can go a long way in modeling network traffic

2. The analysis of SHSs is generally difficult but there are tools available
(generator, Dynkin’s equation, moment dynamics, truncations)

3. This type of SHSs (and tools) finds use in several areas
(traffic modeling, networked control systems, molecular biology)
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