

	Talk outline	UCSB
1.	A (simple) model for stochastic hybrid systems (SHSs)	
2.	SHSs models for network traffic under TCP	
3.	Analysis tools for SHSs	
4.	Dynamics of TCP	
	Collaboratore	
	Stephan Bohacek, Junsoo Lee, Katia Obraczka, Abhyudai Singh, Yonggang	xu
	Acknowledgements:	
	Mustafa Khammash, John Lygeros	

Formal	model—Summary	UCSB				
State space: $q(t) \in \mathcal{Q} = \{1, 2, x(t) \in \mathbb{R}^n \}$	…} ≡ discrete state ≡ continuous state					
Continuous dynamics: $\dot{x} = f(q, x, t)$	$f: \mathcal{Q} \times \mathbb{R}^n \times [0, \infty) \to \mathbb{R}^n$					
Transition intensities:						
$\lambda_\ell(q,x,t)$	$\lambda_{\ell} : \mathcal{Q} \times \mathbb{R}^n \times [0, \infty) \to [0, \infty) \ell \in \{1, \dots, \infty\}$	$\ldots, m\}$				
Reset-maps (one per transition intensity): # of transitions						
$(q,x)\mapsto \phi_\ell(q,x,t)$	$\phi_{\ell}: \mathcal{Q} \times \mathbb{R}^n \times [0, \infty) \to \mathcal{Q} \times \mathbb{R}^n \ell \in \{$	$1,\ldots,m\}$				
Results:						
1. [<i>existence</i>] Under appropriate regularity (Lipschitz) assumptions, there exists a						
[simulation] The procedure used to construct the measure is constructive and						
allows for efficient generation of <i>Monte Carlo sample paths</i>						
3. [<i>Markov</i>] The pair $(q(t), x(t)) \in \mathcal{Q} \times \mathbb{R}^n$ is a (Piecewise-deterministic) Markov						
Process (in the sense of M. Davis, 1993)						
Hespanha. Stoch	astic Hybrid Systems: Applications to Communication Ne	tworks. HSCC'04				

$$\begin{split} \hat{x} &= f(q,x,t) \qquad \lambda_{\ell}(q,x,t) \qquad (q,x) = \phi_{\ell}(q^{-},x^{-},t) \\ \text{continuous dynamics} \qquad \text{transition intensities} \qquad \text{reset-maps} \end{split}$$
Given function $\psi : \mathcal{Q} \times \mathbb{R}^{n} \times [0,\infty) \to \mathbb{R}$

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{E}[\psi(q,x,t)] &= \mathrm{E}\left[(L\psi)(q,x,t)\right] \\ \text{Dynkin's formula} \\ (\text{in differential form)} \end{aligned}$$
where
$$(L\psi)(q,x,t) := \frac{\partial \psi}{\partial x} f(q,x,t) + \frac{\partial \psi}{\partial t} + \sum_{\ell=1}^{m} \left(\psi(\phi_{\ell}(q,x,t),t) - \psi(q,x,t)\right) \lambda_{\ell}(q,x,t)$$
A SHS is called a *polynomial SHS* (pSHS) if its generator maps finite-order polynomial on x into finite-order polynomials on x Typically, when
$$x \mapsto f(q,x,t) \quad x \mapsto \lambda_{\ell}(q,x,t) \quad x \mapsto \phi_{\ell}(q,x,t) \\ are all polynomials \forall q, t \end{split}$$

For polynomial SHS...

$$\dot{\mu}_{\bar{q}}^{(m)} = \frac{d}{dt} E[\psi_{\bar{q}}^{(m)}(q,x)] = E\left[(L\psi_{\bar{q}}^{(m)})(q,x)\right] = \sum_{i=1}^{k} \alpha_{i} \mu_{q_{i}}^{(m_{i})}$$
linear moment dynamics
Stacking all moments into an (infinite) vector μ_{∞}
 $\dot{\mu}_{\infty} = A_{\infty} \mu_{\infty}$
infinite-dimensional linear ODE
In TCP analysis...

$$\mu_{\infty} = \begin{cases} \mu_{ss}^{(0)} \\ \mu_{cs}^{(0)} \\ \mu_{ss}^{(0)} \\ \vdots \\ \mu_{ss}^{(3)} \\ \vdots \\ \vdots \end{cases} \right\} \mu$$
lower order
moments of interest
 $\mu_{\infty} = A\mu + B\bar{\mu}$
approximated by
nonlinear function of μ

1	Truncation by derivative matching UCSB				
$\dot{\mu}_{\infty} = A_{\infty} \mu_{\infty}$ infinite-dimensional linear ODE					
(noi	$\dot{\mu} = A\mu + B\bar{\mu}$ $\dot{\nu} = A\nu + B\varphi(\nu)$ truncated linear ODE nonlinear approximate nautonomous, not nec. stable) moment dynamics				
Assumption: 1) μ and ν remain bounded along solutions to $\dot{\mu}_{\infty} = A_{\infty}\mu_{\infty}$ and $\dot{\nu} = A\nu + B\varphi(\nu)$					
	2) $\dot{\mu}_{\infty} = A_{\infty} \mu_{\infty}$ is asymptotically stable				
Theorem:	$\forall \ \delta > 0 \ \exists \ N \ \text{s.t. if} \qquad rac{\mathrm{d}^k \mu}{\mathrm{d}t^k} = rac{\mathrm{d}^k u}{\mathrm{d}t^k}, \qquad \forall k \in \{1, \dots, N\}$				
	then $\ \mu(t) - \nu(t)\ \le \beta(\ \mu(t_0) - \nu(t_0)\ , t - t_0) + \delta, \forall t \ge t_0 \ge 0$ class \mathcal{KL} function				
	Hespanha. Polynomial Stochastic Hybrid Systems. HSCC'05				

	Truncation by de	rivative matching	UCSB		
$\dot{\mu}_{\infty} = A_{\infty} \mu_{\infty}$ infinite-dimensional linear ODE					
(nor	$\dot{\mu} = A\mu + B\bar{\mu}$ truncated linear ODE nautonomous, not nec. stable)	$\dot{ u} = A u + Barphi(u)$ nonlinear approximate moment dynamics			
Assumption	1) μ and ν remain bounded $\dot{\mu}_{\infty} = A_{\infty}\mu_{\infty}$ and	along solutions to d $\dot{ u} = A u + Barphi(u)$			
	2) $\dot{\mu}_{\infty} = A_{\infty} \mu_{\infty}$ is asymp	ptotically stable			
Theorem:	$\forall \ \delta > 0 \ \exists N \text{ s.t. if} \qquad \frac{\mathrm{d}^{k} \mu}{\mathrm{d}t^{k}} =$ then $\ \mu(t) - \nu(t)\ \leq \beta(\ \mu(t_{0}) - t_{0})\ \leq \beta(\ \mu(t_{0}) - t_{0})$	$=rac{\mathrm{d}^k u}{\mathrm{d}t^k}, \qquad orall k \in \{1, \dots, N\}$ $= u(t_0) \ , t - t_0) + \delta, \qquad orall t \ge t_0 \ge 0$	≥ 0		
Proof idea: 1) N deriva 2) stability o	tive matches $\Rightarrow \mu \& \nu$ match of $A_{\infty} \Rightarrow$ matching can	on compact interval of length T be extended to $[0,\infty)$			

Moment dynamics for DDR	UCSB					
Decaying-dimerizing molecular reactions (DDR):						
$\mathbf{S}_1 \xrightarrow{c_1} 0 \qquad \mathbf{S}_2 \xrightarrow{c_2} 0 \qquad 2 \mathbf{S}_1 \stackrel{c_3}{\underset{c_4}{\longleftrightarrow}} \mathbf{S}_2$						
$ \begin{bmatrix} \dot{\mu}^{(1,0)} \\ \dot{\mu}^{(0,1)} \\ \dot{\mu}^{(2,0)} \\ \dot{\mu}^{(0,2)} \\ \dot{\mu}^{(1,1)} \end{bmatrix} = \begin{bmatrix} -c_1 + c_3 & 2c_4 & -c_3 & 0 & 0 \\ -\frac{c_3}{2} & -c_4 - c_2 & \frac{c_3}{2} & 0 & 0 \\ 0 & c_2 & 0 & 0 & 0 \\ c_1 - 2c_3 & 4c_4 & -2c_1 + 4c_3 & 0 & 4c_4 \\ -\frac{c_3}{2} & c_4 + c_2 & \frac{c_3}{2} & -2c_4 - 2c_2 & -c_3 \\ c_3 & -2c_4 & -\frac{3c_3}{2} & 2c_4 & -c_1 + c_3 - c_4 - 4 \\ + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -2c_3 & 0 \\ 0 & c_3 \\ \frac{c_3}{2} & -c_3 \end{bmatrix} \begin{bmatrix} \mu^{(3,0)} \\ \mu^{(2,1)} \end{bmatrix} $	$ \begin{array}{c} \mu^{(1,0)} \\ \mu^{(0,1)} \\ \mu^{(2,0)} \\ \mu^{(0,2)} \\ \mu^{(1,1)} \end{array} \\ \end{array} \\ \begin{array}{c} e^{(3,0)} := \mathbf{E}[x_1^3] \\ e^{(2,1)} \\ \mathbf{E}[x_2^2] \end{array} $					
$\mu^{(1,1)} := \mathbb{E}[x_2] \mu^{(1,1)} := \mathbb{E}[x_1x_2] \mu^{(1,1)} := \mathbb{E}[x_1x_2]$	$\mathbb{E}[x_1x_2]$					

Bibliography

- M. Davis. Markov Models & Optimization. Chapman & Hall/CRC, 1993
- S. Bohacek, J. Hespanha, J. Lee, K. Obraczka. Analysis of a TCP hybrid model. In *Proc. of the 39th Annual Allerton Conf. on Comm., Contr., and Computing*, Oct. 2001.
- S. Bohacek, J. Hespanha, J. Lee, K. Obraczka. A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. In *Proc. of the ACM Int. Conf. on Measurements and Modeling of Computer Systems* (SIGMETRICS), June 2003.
- J. Hespanha. Stochastic Hybrid Systems: Applications to Communication Networks. In Rajeev Alur, George J. Pappas, *Hybrid Systems: Computation and Control*, number 2993 in Lect. Notes in Comput. Science, pages 387-401, Mar. 2004.
- Hespanha. Polynomial Stochastic Hybrid Systems. To be presented at the HSCC'05.
- J. Hespanha, A. Singh. Stochastic Models for Chemically Reacting Systems Using Polynomial Stochastic Hybrid Systems. Submitted to the *Int. J. on Robust Control Special Issue on Control at Small Scales*, Nov. 2004.

All papers (and some ppt presentations) available at http://www.ece.ucsb.edu/~hespanha