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L ogic-based switched systems
discrete modes
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L ogic-based switched systems

Bool; (x)? r:=pi(z7)
hybrid automaton - .
representation = hilz) &= fa(x)

z = pa(x7) Bools (x)?
switching times

o( #) = switching signal
21 -— —
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i=file) d=flz) i=file) &= flx)

. &= fr(z) differential equation
dynamical system o : .
. (o" x) — ¢(g X ) discrete transition
representation (2 m()) 51, Booh(2)
#(s,2) = (17 Pz(Z)) s =2, Boola(z)
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Congestion control in data networks

5 7
sources &EEsr> 1

destinations

Congestion control problem:
How to adjust the sending rates of the data sourcesto make sure
that the bandwidth B of the bottleneck link is not exceeded?

B is unknown to the data sources and possibly time-varying

Congestion control in data networ ks

= queue (temporary
A=24-\ T, bps storage for data)

q(t) = queuesize

When 2, r;, exceeds B the queue fills and data s lost (drops)
. {Zm—B 0< ¢ < fmax
g=19 i

0 otherwise

4 = qmax, Z r; > B = drop (discrete event)

k3

Event-based control:
The sources adjust their rates based on the detection of drops




Window-based rate adjustment

w; (window size) = number of packetsthat can remain
unacknowledged for by the destination

eg.,w =3 source i destination i
.0., W,
1¢ packet sent Wflo round-trip
2nd packet sent St time (RTT)
3 packet sent e tc¢ 1% packet received & ack. sent
1% ack ived 1 2nd packet received & ack. sent

ack, recav S de 3 packet received & ack. sent
4th packet can be sent g/« pac

<
Vt Wt

w; effectively determines the sending rater; :

(0 = o)
= RTT(t) round-trip time

Window-based rate adjustment

w; (window size) = number of packetsthat can remain
unacknowledged for by the destination

per-packet

wi(t) — sendlng rate transmission time

i) = Rrra

RTT(t) =1, L t

round-trip )
time propagation time in queue
delay until transmission
queue longer rate queue
gets full —> RTT — decreases — gets empty

This mechanismis still not sufficient to prevent a catastrophic
collapse of the network if the sources set the w; too large




TCP Reno congestion contr ol

1. While there are no drops, increase w, by 1 on each RTT

2. When adrop occurs, divide w; by 2

(congestion contraller constantly probe the network for more bandwidth)

Network/queue dynamics

I Ziri_B OSQS(]max
1= 0 otherwise

q

RTT=T,+ =

14 + B

4 = qmax

U

drop occurs

Reno controllers

, 1
Y= RTT
w;
r; =
RTT

drop detected

(one RTT after occurred)

U

wi s

disclaimer: thisis asimplified version of Reno that ignores several interesting phenomena...

Switched system model for TCP

gueue-not-full

= BT, + 4
. B
YT BT g
(1) = V) ’
Wy =
2
thimer =07 queue'fU”
(drop detected) i=0
. B
W = ———
"7 BT, +q¢

t.timer =-1

transition enabling
condition

g = qmax |
(drop occurs)

q
tiimer == RTT = Tp + E

state reset




Switched system model for TCP

B

tiimer = 0 7
(drop detected)

alternatively...

gueue-not-full
. B wi
=BT, 14
_ B

h BT, +q¢

9 = ¢max *
(drop occurs)
queue-full tiimer := RITT =1, + %
¢g=0

_ B

BT, 44

-1

w;

ttimer =

r = [q Wy Wy -« Wy ttimer]/ { &= fo(x) continuous dynamics
= Tz discrete dynamics
oe 2] (0,0) = $loa7)
| mpact maps
ch T > Xz
t() tl tZ t3 t4 t5 t()
T T T T T T T >
queue-not-full queue queue-not-full queue queue-not-full queue
full full full
x = z(t2x) = KM time the system enters the queue-not-full mode

rr1 = T(xg)

impact map

state space




| mpact maps

X T %o
t() tl tZ t3 t4 t5 t()
T T T T T T T >
queue-not-full queue queue-not-full queue queue-not-full queue
full full full

x = z(tx) = KM time the system enters the queue-not-full mode

Theorem [1]: Thefunction T isa contraction. In particular,
17 (a) = T®)|l« < glla—blls, Va,b

Therefore
* X — X, as K—o00 X, = constant
° X(#) = X, (t)ast— o0 X,.(#) = periodic limit cycle

Window and Queue Size (packets)

NS-2 ssmulation results

TCP Sinks

window size w;

8 window size w,
a window size w;
400 = . window size w;
L e window size w
e window size wg
- window size w;,
300 - T e window size wg
i —— (queuesizeq
200
100

time (seconds)




Random early detection (RED)

Performance could be improved if the congestion controllers
were notified of congestion before a drop occured

N; > NZ_ ?
queue-not-full (notification of
. B Zz w; congestion)
1= BT, +q
. B
Wi = S =
BT, +q —wi®

N; = notification counter (incremented whenever a notification of
congestion arrives)

function to

In RED, N isarandom variable with be adjusted
Wj _
p PN = Nift—di)=n) [ mmmy(e) =1
dtlo dt 0 n>1

Stochastic switched system

| mpact maps

“\‘ queue-notfull
i rr1 = T(xg)

impact map

E—

state space

Impact maps are difficult to compute because their computation requires:

Solving the differential Intersecting the continuous
equations on each mode trajectories with a surface
(in general only possible (often transcendental equations)

for linear dynamics)

It is often possible to prove that T isa contraction without an explicit formula for T...
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Vision-based control of a flexible manipulator

flexible manipul ator Mip , b&mnp

very lightly
damped

u \/ | bece u !

Ibase

tip

4 dimensional small-bending approximation

mtipzzétip = Ekﬂex(gbase - gtip) + gbﬂex(ébase - étip)
Ibaseébase = _bbaseébase + ékﬂex(etip - ebase) + Ebﬂex(étip - ébase) + kmotoru
Control objective: drive 6,
6. — encoder at the base
6,, — machine vision (essential to increase the damping
of the flexible modes in the presence of noise)

to zero, using feedback from

ip
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Vision-based control of a flexible manipulator
mtip

To achieve high accuracy
in the measurement of gy,
b /7 O the camera must have a
" O B small field of view

Uﬁ
\/ Ibase

/
0 ase 0 i 0 ipl < gmax
feedback output: y = { b tp} [Ouipl <
gbase |6tip| > gmax

Control objective: drive g, to zero, using feedback from

6. — encoder at the base

base

O — machine vision (essential to increase the damping
of the flexible modes in the presence of noise)

Switched process

[gbase gtip]/

|6tip| S gmax

— y

—| manipulator —e—
—e

gbasé
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Switched process

[gbase gtip]/
|€tip| S gmax

»| controller 1 —e / /
N ——

N » manipulator 7 \o—y

»| controller 2 |—e
/\ gbase

\

controller 1 optimized for feedback from 6., and 6,
and
controller 2 optimized for feedback only from 4,

E.g., LQG controllers that minimize limy_,. 7E [IOT 02, + 02 + pu’dt

Switched system
|9tip| > emax?
i‘ = All‘ l‘ = Azx
|9tip| S emax?
feedback connection .
with controller 1 feedback connection
(Bhee @d 6, available) with controller 2

(only 6, available)

How does one check if the overall system is stable and that

. . /
L /
xr = [gtjp atip gbase gbase xC]

eventually converges to zero ?

controller’ s state

12



Common Lyapunov functions

A

V(x) = common Lyapunov function

V(x)
;c:Alsc x‘ZAgx $:A1$ x‘ZAgx
Suppose that there exists a cont. diff. function V(x) such that
V(x) providesa V(x) decreases along
measure of the size of x: trajectories of both systems:
* positive definite AN ,
« radially unbounded g iw <0 ie{l,2}e#£0
— e

—~

switched system isstableand x — 0O ast — oo
independently of how switching takes place

Common Lyapunov functions
A
How to find a common

Lyapunov function V(x) ?
V(x) yap (x)

b= Ar &= A a=Aww &= Aw
Algebraic conditions for the existence of a common Lyapunov function
* The matricescommute, i.e., A; A, = A, A, [S1.52]
» TheLie Algebra generated by {A,, A} is solvable

* For dl A €[0,1] the matrices A A;+(1-A) A, and LA +(1-L) A, L are
asymptotically stable (only for 2x2 matrices)

But, all these conditions fail for the problem at hand ...

13



Multiple Lyapunov functions

1 Common Lyapunov function...

same L yapunov
V(x) function must decrease
for every controller

>

;c:Alsc CCZAQSE I:All’ QEIAQQL‘
A .
Multiple Lyapunov functions... one Lyapunov function
for each controller
V,(x) (more flexibility)
V, (X
Vo(x) ) vy
x = Alx r = AQQE xr = A1£L‘ r = AQQE [2,3, GIC.]

Multiple Lyapunov functions

Common Lyapunov function...

same L yapunov
V(x) function must decrease
for every controller

>

;c:Alsc CCZAQSE I:All’ QEIAQQL‘

Multiple Lyapunov functions... one Lyapunov function
for each controller

L V(X) %%(more flexibility)
Vi(x) Vi (x) Vy(X)

>

= Az r = Asx r= A T = Ay [2,3, etc]
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Multiple Lyapunov functions

1 Common Lyapunov function...

same L yapunov
V(x) function must decrease
for every controller

>

;c:Alsc CCZAQSE I:All’ QEIAQQL‘

A .
Multiple Lyapunov functions... one Lyapunov function
for each controller
V,(X) (more flexibility)
V, (X
Vo(x) SOVASS
;c:Alsc CCZAQSE SCZAlilE‘ CCZAQSE

[2,3, etc]

t  Multiple Lyapunov functions

Vi(x)
Vi(x)

Vy(X)

Vy(X)

>

CCZAlilE‘ x‘ZAgx $:A1$ x‘ZAgx

Suppose that exist positive definite, radially unbounded cont. diff.
functions V,(x), V,(x) such that

V;(x) decreases along V;(x) does not increase
o1 trajectories of A: during trangtions.
6—;Aix<0 ie{1,2} Vi(z) > Vj(z)

at points z where a switching

fromi toj can occur

— _/
~

switched system isstableand x — 0 ast — oo

LaSalle-like versions of this results that only require %4,1‘ < 0,1 € {1,2} are also available [4]

15



t Multiple Lyapunov functions

Vi(x) .
Multiple Lyapunov
V() functions can be found
for the problem at hand !'!!
Ci? = A1£L‘ Z‘ = Agx Z‘

Suppose that exist positive definite, radially unbounded cont. diff.
functions V,(x), V,(x) such that

V;(x) decreasesalong V;(x) does not increase
o1 trajectories of A: during trangtions.
6—;Aix<0 ie{1,2} Vi(z) > Vj(z)

at points z where a switching
fromi toj can occur

N— _/
~
switched system isstableand x — O ast — oo
[S2]
Closed-loop response
5 T
no switching
/\ /\ /\ (feedback only from 4,,..)
° \/ \/ /\m/\/\u =
\/ etip(t)
-50 10 20 30 40 50 60
5 T
with switching
/\ (close to O feedback also from 6,)
0 \ /\\/
J \/ etip(t)
| O = 1
-50 10 20 30 40 50 60
[$2]
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Robusthess

When will a small perturbation in the dynamicsresult in a
small perturbation in the switched system’ strajectory?

For purely continuous systems (difference or differential equations)
Lyapunov stability automatically provides some degree of robustness

Thisis not necessarily true for switched systems:
When isthis a problem?
Isthere a notion of stability that automatically provides robustness?

Important for ...

1. numerical simulation of switched systems

2. digital implementation of switched controllers
3. analysis and design based on numerical methods

Outline

application areas
S|00] [eanAeue
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Prototype adaptive control problem

process can either be:

P: x=Ax+bu, y=cx
or
P,: X=AX+bu, y=c,x

yd

—»| process |—

Control objective: Stabilize process (keep state of the process bounded)

Prototype adaptive control problem

process can either be:

P: x=Ax+bu, y=cX
or
P,: x=AX+bu, y=c,x

yd

—»| process
u y
controller 2 —e
A

controller 1 stabilizes P,
and
controller 2 stabilizes P,

controller 1 —e

18



Prototype adaptive control problem

How to choose online which
controller to use?

controller 1 —e

~e—>»| process

controller 2 —e

o = switching signal taking values on the set { 1,2}
A (o}
2 —

\/

Estimator -based architecture

output estimation errors

&

. PR —
logic-based P, observer
supervisor e A A

P, observer

Gy 1 ]

controller 1 —e
\e »| process |—
u y

»| controller 2 |—e

A

“likelihood” of should use
e small prgcish?g'hng = controller 1
1

Certainty equivalence inspired

19



Estimator-based ar chitecture

output estimation errors

logic-based
supervisor

oy

Scale-independent hyster esis switching

t
=1 Tp = wp—l—ng e_)‘(t_T)eng—l—g
0
s 2
tp = Ayt 6 e>0,A>0, pe {12}
m™ >
Ty > 7T2(1 + h)7
m(1+ h)"a .y performance s‘_gnals
, ) (measure the “size” of
iy = —Awy, + € the estimation errors)
switching A hysteresis constant (positive)
signal O l estimation
errors
T = A,x
€] — C’le el
€y — 0227 ez

switched system

20



Scale-independent hysteresis switching

=1 ) How does one verify if x remains
wp = —Awp tey . bounded along solutions to the
T 2 )
. (1 + h)? hybrid system?
7T1(1 —|— h)7
o =
b, = —\ 2 . .
N wrt e Analyzing the system as awhole is
L A too difficult. We need to:
switching .
signal O l 1. abstract the complex behavior of
- each subsystem (supervisor &
&= A,z e switched) to asmall set of
er — Chzx properties
o = Coz 2. infer properties of the 0\_/erall
& system from the properties of the
switched system interconnected subsystems
One-diagram analysis outline
H1 hysteresis -
switching logic
switching signal [61]
(discrete) €2
estimation errors
(continuous signals)
H2 switched system —

One can show [S3] that...
H1 hasthe property that

finite “L,-induced gain”

t t
AT 2 . AT 2 from smallest error to
/0 e egdr < 7(%IHA € epdT) the switched error

H2 has the property that
t

t .
min/ e“e;dr <eco+ (5/ eAeldr vice-versa
P Jo B 0 (“detectability”
(with & = 0 when thereis no unmodeled dynamics) through e)

21



One-diagram analysis outline

H1 hysteresis -
switching logic
switching signal [61]
(discrete) €2
_ The systemis
H2 switched system — stable provided that

y.0<1
One can show [S3] that...

H1 hasthe property that

finite “L,-induced gain”

t t
AT 2 . AT 2 from smallest error to
/0 e egdr < 7(%IHA € epdT) the switched error

H2 has the property that

t t .
min/ e“e;dr <cp+ (5/ eAeldr | vice-versa
r Jo - 0 (“detectability

(with 6= 0 when thereis no unmodeled dynamics) through e)

| nter connections of switched system

H1 —> HL = H2 > Hl

1 H2 He
For interconnections through continuous signals, existing tools can be extended to
hybrid systems (small gain, passivity, integral quadratic constrains, ISS, etc.) [6,7]

H1 H1 —
|>—>H1—>H2—>{¢ —
\ /

e 4

H2

For mixed interconnections new tools need to be devel oped...

—>»  continuous signal —»  discrete signal

22



Conclusion

( Congestion I mpact )
control in data maps

8 networks 2
@ o
S S
=) < Vision-based Lyapunov > Q
IS control tools =
2 S
T Adaptive I nterconnection ?

\ control of systems )
Switched systems are A unified theory of

ubiquitous and of significant switched systemsis barely
practical application starting to become available
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