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Network Security vs. Fault-Tolerance
The basic principle behind the design of the Internet was to utilize

massive redundancy to achieve fault-tolerance

but this does not necessarily result in security against malicious attacks

Fault tolerance ≡ robustness with respect to random failures
(game against chance)

Network security ≡ robustness with respect to attacks
(game against an adversary)

An adversary can explore weaknesses that chance will not easily find
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Security vs. Fault-Tolerance in Routing
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Which routing strategy results in higher probability
that a packet will reach destination?
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Both routing schemes result in exactly the same probability (50%)…

Suppose all links are equally likely to fail, and one of them does fail…

link labels refer to probability of forwarding a packet

destination
source

Suppose all links are equally likely to fail, and one of them does fail…

Security vs. Fault-Tolerance in Routing

single-path routing

Which routing strategy results in higher probability
that a packet will reach destination?

Assume that fail was caused by an attacker that selects the link

Attacker can learn routing policy
and prevent all communication by

compromising a single link

Compromising a single link,
probability of intercepting 

packet is only 50%
(assuming stochastic multi-path)

later we will find other reasons why multi-path may be advantageous…
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Outline

1. How to compute stochastic multi-path routing tables for general networks?
Noncooperative game—explore redundancy in an adversarial context

2. Multi-path routing for multi-agent & networked control systems

Stochastic routing policies

e.g., Rú { .3, .7, 1, .5, .5, 1, 1}
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set of (unidirectional) links
stochastic routing policy ≡ Rú { rl ≥ 0 : l ∈ L }

probability that a packet arriving 
at the node where l starts will be 

routed though link l

for every node n
summation over links 

that exit node n

Rstoch ≡ set of all routing policies
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Stochastic routing policies

Rstoch ≡ set of all routing policies
Rno-cycle ≡ set of all cycle-free policies, 

i.e., for which there is no closed sequence of links all with positive 
routing probability
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for every node n
summation over links 

that exit node n

destination
source

set of (unidirectional) links
stochastic routing policy ≡ Rú { rl ≥ 0 : l ∈ L }

probability that a packet arriving 
at the node where l starts will be 

routed though link l

Attack space

pure attack ≡ Pú { pl : l ∈ L }

probability that packets in 
link l are compromised

e.g., pure attack at link 3 with 10% probability of success:
P3 ú { 0, 0, .1, 0, 0, 0, 0 }

pure attack at node with 20% probability of success:
Pf ú { 0, 0, .2, 0, 0, .2, .2 }

P ≡ set of all (pure) attacks available to attacker
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attacker has available a pool
of “pure attacks” and will select 

the one that is more likely to 
prevent communication
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Mixed attacks

mixed attack policy ≡Mú { m P : P ∈ P } ∈ [0,1]P

probability that the 
attacker select the 

pure attack P

P ≡ set of all pure attacks available to attacker
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(pure) attack ≡ Pú { pl : l ∈ L }

probability that the 
attacker will intercept a 
packet traveling in link l

set of links

e

attacker is allowed to randomize 
between pure attacks with 
appropriate probabilities

Example
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stochastic routing policy ≡ Rú { .3, .7, 1, .5, .5, 1, 1}

pure attacks available to attacker ≡ P ú { {.1,0,0,0,0,0,0},{0,.1,0,0,0,0,0}, …
…,{0,0,0,0,0,.1,0}, {0,0,0,0,0,0,.1} }

10% effective link attacks (7 attacks)
(attacker can target any link, it will 
succeed in compromising packet 

delivery with 10% probability)
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Example
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stochastic routing policy ≡ Rú { .3, .7, 1, .5, .5, 1, 1}

pure attacks available to attacker ≡ P ú { {.1,0,0,0,0,0,0},{0,.1,0,0,0,0,0}, …
…,{0,0,0,0,0,.1,0}, {0,0,0,0,0,0,.1} }

mixed attack policy ≡Mú { 0, 0, .33, .33, .33, 0, 0 }

33%
33%

33%

but not really rational…

probability that packet is 
captured for routing policy R
and mixed attack policy M

Example

stochastic routing policy
Rú { .3, .7, 1, .5, .5, 1, 1}
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for this attack policy M
router cannot do better

neither of the above policies is an “equilibrium” since 
at least one player can improve its outcome by changing its policy

mixed attack policy
M ú { 0, 0, .33, .33, .33, 0, 0 }
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but attacker could do better against R with
M ú { 0, 1, 0, 0, 0, 0, 0 }

but then …
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Routing game

Compute saddle-point equilibrium policies:
R* ∈ Rno-cycle (cycle-free stochastic routing policy)
M* ∈ [0,1]P (mixed attack policy)

for which

policies chosen by intelligent opponents to minimize their worst-case losses
(no player will improve its outcome by deviating from equilibrium)
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Existence?
Computation?

Probability of capture

Given
R ∈ Rno-cycle (cycle-free stochastic routing policy)
M ú { m P : P ∈ P } ∈ [0,1]P (mixed attack policy)

row vector with all the 
pure policies pl

unique solution to

(matrix A and vector c only depend on the graph)

Linear (thus concave) in M (maximizer)
but not convex with respect to the routing policy R (minimizer) 

so mini-max existence theorems do not apply…
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diagonal matrix with all 
the elements of  R
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Probability of capture

Under mild assumptions (*) on pure attacks

Given R ∈ Rno-cycle, M ú { m P : P ∈ P } ∈ [0,1]P

(*) the same pure attack does not simultaneously targets two links in the same path
(true for every single-link or single-node attacks)
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row vector with all the 
pure policies pl

(matrix A and vector c only depend on the graph)

flow vector ≡ unique solution to

Probability of capture

Under mild assumptions (*) on pure attacks

Given R ∈ Rno-cycle, M ú { m P : P ∈ P } ∈ [0,1]P
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Not convex with respect to the routing policy R but 
linear (convex!) with respect to the vector x…
Key idea: solve game for x & then compute R

row vector with all the 
pure policies pl

flow vector ≡ unique solution to

(matrix A and vector c only depend on the graph)
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Theorem: i) There is a one-to-one correspondence between routing policies 
R in Rstoch & flow vectors x in a convex set X ⊂ RL

ii) For cycle-free R ∈ Rno-cycle, the corresponding flow vector x satisfies

Routing policies & Flow vectors

Therefore

Routing policies & Flow vectors

flow vector

s
d

.30

.70

.35

.35

.30

.35

.35

stochastic routing policy
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stochastic routing policy
Rú { .3, .7, 1, .5, .5, 1, 1}

flow vector
xú { .3, .7, .3, .35, .35, .35, .35}

1.0

the vectors x ∈ X obey a “flow conservation law” at every 
node, with total unit flow exiting the source node

Theorem: i) There is a one-to-one correspondence between routing policies 
R in Rstoch & flow vectors x in a convex set X ⊂ RL

ii) For cycle-free R ∈ Rno-cycle, the corresponding flow vector x satisfies
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Flow game

Theorem: Every flow game has a saddle-point (x*,M*) with x* cycle-free
by bilinearity of the criterion and 

convexity and (almost) compactness of X & [0,1]P

Compute saddle-point:
x* ∈ X (flow vector)
M* ∈ [0,1]P (mixed attack policy)

for which

flow vector
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Back to routing game…

Theorem: The routing game has saddle-point policies.

Moreover, for every saddle-point (x*, M*) of the flow game with x* cycle-free, the 
pair (R*, M*) is a saddle-point of the routing game, with R* constructed from x*:

summation over all links that exit 
from the same node as l

Solving the flow game actually solves the routing game…

stochastic routing policy
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Solution to the flow & routing games

Theorem: The value V* of the flow game is given by

and the saddle-point x* is any x at which the minimum is attained.

max-flow problem solvable 
by linear programming

Optimal routing policy R* can be computed using:

stochastic routing policy
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Max-flow interpretations

for pure attacks at 
individual links

for pure attacks at 
individual nodes

• Optimal routing
minimizes the maximum link flow
(subject to constraints that depend 
on the link reliability)

• In practice, maximizes throughput 
subject to link bandwidth constraints

• Optimal routing
minimizes the maximum node load
(subject to constraints that depend 
on node reliability)

• In practice, balances the load 
between nodes
(useful for energy-starved nodes) 
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Several reasons to use multi-path routing

increase
throughput

• Chen, Chan, Li, Multipath routing for video delivery over bandwidth-
limited networks, 2004

• Elwalid, Jin, Low, Widjaja, MATE: MPLS adaptive traffic engineering, 
2001

• Lee, Gerla, Split multipath routing with maximally disjoint paths in ad hoc 
networks, 2001

• Mirrokni, Thottan, Uzunalioglu, Paul, Simple polynomial time frameworks 
for reduced-path decomposition in multi-path routing, 2004

maximize
network

utilization

increase
security

improve
robustness

• Hespanha, Bohacek. Preliminary Results in Routing Games, 2001.
• Bohacek, Hespanha, Lee, Obraczka, Lim, Enhancing security via 

stochastic routing, 2002
• Papadimitratos, Haas, Secure message transmission in mobile ad hoc 

networks, 2003
• Lee, Misra, Rubenstein, Distributed Algorithms for Secure Multipath 

Routing, 2005
• Ganesan, Govindan, Shenker, Estrin, Highly Resilient, Energy Efficient 

Multipath Routing in Wireless Sensor Networks, 2002 
• Wei, Zakhor, Robust Multipath Source Routing Protocol (RMPSR) for 

Video Communication over Wireless Ad Hoc Networks, 2004
• Tang, McKinley, A distributed multipath computation framework for 

overlay network applications, 2004

Estimation through network
zero-mean stochastic

disturbance

xk+1
xk

process remote state-estimator

for simplicity:
• full-state available
• no measurement noise
• no quantization

s d

Optimal remote state estimator:

Remote state estimation error:
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Estimation through network

xk+1
xk

process remote state-estimator

s d

Failures caused by an attacker that succeeds with probability patt

• single-path routing ≡ probability of failed transmission = patt

• multi-path routing ≡ probability of failed transmissions = patt/2

zero-mean stochastic
disturbance

Estimation through network

stochastic
disturbance

xk+1
xk

process remote state-estimator

s d

Consider random failures:
pfail ≡ probability that a link will fail
Tttr ≡ mean time-to-recover (exponentially distributed)

• single-path routing

• multi-path routing

At steady state:

but drops are not i.i.d. …
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Estimation through network

stochastic
disturbance

xk+1
xk

process remote state-estimator

s d

• single-path routing

• multi-path routing

For: 1-dimensional quasi-stable process A = 1 + e, e ¿ 1
low fail probability pfail ¿ 1

twice as large admissible
mean time-to-recover

in this networked estimation problem, the maximum spread 
of packets is optimal even “against” random failures

Consider random failures:
pfail ≡ probability that a link will fail
Tttr ≡ mean time-to-recover (exponentially distributed)

Conclusions
• Communication networks are extremely vulnerable components to critical systems

– multitude of individual components, spatially distributed, difficult to protect
– especially true for wireless networks (jamming, eavesdropping, battery drainage due to 

overuse, etc.)
• Game theory is a natural framework to study robustness

– redundancy, by itself, does not guarantee robustness
– attacks are not random events: very unlikely events can be prompted by an attacker

• Determined routing polices that exploit multi-path routing
– formulation as a zero-sum game between router and attacker
– saddle-point solutions found by reducing problem to a flow-game
– policies found also have applications to

- throughput maximization
- load balancing
- improve robustness of NCSs (even against random failures)

[ Observation: traditional measures of QoS such as probability of drop, expected delay
are not sufficient to predict performance in NCSs ]


