Internet Routing Games

João P. Hespanha

Center for Control Dynamical Systems and Computation

University of California Santa Barbara

In collaboration with: S. Bohacek (Univ. Delaware), K. Obraczka (UC Santa Cruz)
J. Lee (Postdoc, UC Santa Barbara), C. Lim (PhD candidate, USC)

Security vs. Fault-Tolerance in Routing UCSB single-path routing stochastic multi-path routing destination source source

50%

Suppose all links are equally likely to fail, and one of them does fail...

100%

0%

Which routing strategy results in higher probability that a packet will reach destination?

link labels refer to probability of forwarding a packet

100%

Both routing schemes result in exactly the same probability (50%)...

later we will find other reasons why multi-path may be advantageous.

- 1. How to compute stochastic multi-path routing tables for general networks? Noncooperative game—explore redundancy in an adversarial context
- 2. Multi-path routing for multi-agent & networked control systems

Routing game

Compute saddle-point equilibrium policies:

$$R^* \in \mathcal{R}_{\text{no-cycle}}$$
 (cycle-free stochastic routing policy) $M^* \in [0,1]^{\mathcal{P}}$ (mixed attack policy)

for which

$$\begin{split} \mathbf{P}_{R^*,M^*}(\text{capture}) &= \min_{R \in \mathcal{R}_{\text{no-cycle}}} \max_{M \in [0,1]^{\mathcal{P}}} \mathbf{P}_{R,M}(\text{capture}) \\ &= \max_{M \in [0,1]^{\mathcal{P}}} \min_{R \in \mathcal{R}_{\text{no-cycle}}} \mathbf{P}_{R,M}(\text{capture}) \end{split}$$

Existence? Computation?

policies chosen by intelligent opponents to minimize their worst-case losses (no player will improve its outcome by deviating from equilibrium)

Probability of capture

Given

$$\begin{array}{ll} R \in \mathcal{R}_{\text{no-cycle}} & \text{(cycle-free stochastic routing policy)} \\ M \coloneqq \{ \ m_{\text{P}} : P \in \mathcal{P} \ \} \in [0,1]^{\mathcal{P}} & \text{(mixed attack policy)} \end{array}$$

 $\mathbf{P}_{R,M}(\mathrm{capture}) = \sum_{P \in \mathcal{P}} \Big(m_P \operatorname{row}[P] \, x_P \Big) \qquad \text{diagonal matrix with all the elements of } \mathcal{R}$

row vector with all the unique solution to $x_P = \mathrm{diag}[R]A(I-\mathrm{diag}[P])x_P + \mathrm{diag}[R]c$ (matrix A and vector a poly depend on the graph)

(matrix \boldsymbol{A} and vector \boldsymbol{c} only depend on the graph)

Linear (thus concave) in M (maximizer) but not convex with respect to the routing policy R (minimizer) so mini-max existence theorems do not apply...

Probability of capture

Under mild assumptions (*) on pure attacks

Given
$$R \in \mathcal{R}_{\text{no-cycle}}, M \coloneqq \{ m_P : P \in \mathcal{P} \} \in [0,1]^{\mathcal{P}}$$

$$P_{R,M}(\text{capture}) = \left(\sum_{P \in \mathcal{P}} m_P \text{ row}[P]\right) x$$

row vector with all the flow vector \equiv unique solution to pure policies p_ℓ $x = \mathrm{diag}[R]Ax + \mathrm{diag}[R]c$

(matrix A and vector c only depend on the graph)

(*) the same pure attack does not simultaneously targets two links in the same path (true for every single-link or single-node attacks)

Probability of capture

Under mild assumptions (*) on pure attacks

$$\text{Given} \quad R \in \mathcal{R}_{\text{no-cycle}}, \, M \coloneqq \{ \ m_{\text{P}} : P \in \mathcal{P} \ \} \in [0,1]^{\mathcal{P}}$$

$$P_{R,M}(\text{capture}) = \left(\sum_{P \in \mathcal{P}} m_P \text{ row}[P]\right) x.$$

row vector with all the pure policies $oldsymbol{p}_\ell$

flow vector \equiv unique solution to

 $x = \mathrm{diag}[R]Ax + \mathrm{diag}[R]c$

(matrix A and vector c only depend on the graph)

Not convex with respect to the routing policy R but linear (convex!) with respect to the vector x...

Key idea: solve game for x & then compute R

Routing policies & Flow vectors

Theorem: i) There is a one-to-one correspondence between routing policies R in $\mathcal{R}_{\text{stoch}}$ & flow vectors x in a convex set $\mathcal{X} \subset \mathbb{R}^{\mathcal{L}}$

ii) For cycle-free $R \in \mathcal{R}_{\text{no-cycle}}$, the corresponding flow vector x satisfies

$$x = \operatorname{diag}[R]Ax + \operatorname{diag}[R]c$$

Therefore

$$P_{R,M}(\text{capture}) = \sum_{P \in \mathcal{P}} m_P \operatorname{row}[P]x$$

Routing policies & Flow vectors

Theorem: i) There is a one-to-one correspondence between routing policies R in $\mathcal{R}_{\text{stoch}}$ & flow vectors x in a convex set $\mathcal{X} \subset \mathbb{R}^{\mathcal{L}}$

ii) For cycle-free $R \in \mathcal{R}_{\text{no-cycle}}$, the corresponding flow vector x satisfies x = diag[R]Ax + diag[R]c

stochastic routing policy

flow vector

stochastic routing policy $R := \{ .3, .7, 1, .5, .5, 1, 1 \}$

flow vector $x := \{ .3, .7, .3, .35, .35, .35, .35 \}$

the vectors $x \in \mathcal{X}$ obey a "flow conservation law" at every node, with total unit flow exiting the source node

Flow game

flow vector

Compute saddle-point:

$$x^* \in \mathcal{X}$$
 (flow vector)
 $M^* \in [0,1]^p$ (mixed attack policy)

for which

$$\begin{split} \sum_{P \in \mathcal{P}} m_P^* \operatorname{row}[P] x^* &= \min_{x \in \mathcal{X}} \max_{M \in [0,1]^{\mathcal{P}}} \sum_{P \in \mathcal{P}} m_P \operatorname{row}[P] x \\ &= \max_{M \in [0,1]^{\mathcal{P}}} \min_{x \in \mathcal{X}} \sum_{P \in \mathcal{P}} m_P \operatorname{row}[P] x. \end{split}$$

Theorem: Every flow game has a saddle-point (x^*, M^*) with x^* cycle-free

by bilinearity of the criterion and

convexity and (almost) compactness of \mathcal{X} & $[0,1]^\mathcal{P}$

Back to routing game...

flow vector

stochastic routing policy

Theorem: The routing game has saddle-point policies.

Moreover, for every saddle-point (x^*, M^*) of the flow game with x^* cycle-free, the pair (R^*, M^*) is a saddle-point of the routing game, with R^* constructed from x^* :

$$r_\ell^* := rac{x_\ell^*}{\sum_{\ell' \in \mathcal{L}[\ell]} x_{\ell'}^*} \qquad orall \ell \in \mathcal{L}$$

summation over all links that exit from the same node as ℓ

Solving the flow game actually solves the routing game...

Solution to the flow & routing games

UCS

flow vector

stochastic routing policy

Theorem: The value V^* of the flow game is given by

$$V^* = \min_{\substack{x \in \mathcal{X} \\ \text{row}[P]x < \mu, \ \forall P}}$$

max-flow problem solvable by linear programming

and the saddle-point x^* is any x at which the minimum is attained.

Optimal routing policy R^* can be computed using:

$$r_{\ell}^* := \frac{x_{\ell}^*}{\sum_{\ell' \in \mathcal{L}[\ell]} x_{\ell'}^*} \qquad \forall \ell \in \mathcal{L}$$

Max-flow interpretations

for pure attacks at individual links

for pure attacks at individual nodes

- Optimal routing minimizes the maximum link flow (subject to constraints that depend on the link reliability)
- In practice, maximizes throughput subject to link bandwidth constraints
- Optimal routing minimizes the maximum node load (subject to constraints that depend on node reliability)
- In practice, balances the load between nodes (useful for energy-starved nodes)

Several reasons to use multi-path routing UCSB

increase security

- · Hespanha, Bohacek. Preliminary Results in Routing Games, 2001.
- · Bohacek, Hespanha, Lee, Obraczka, Lim, Enhancing security via stochastic routing, 2002
- · Papadimitratos, Haas, Secure message transmission in mobile ad hoc networks, 2003
- · Lee, Misra, Rubenstein, Distributed Algorithms for Secure Multipath Routing, 2005

improve robustness

- Ganesan, Govindan, Shenker, Estrin, Highly Resilient, Energy Efficient Multipath Routing in Wireless Sensor Networks, 2002
- · Wei, Zakhor, Robust Multipath Source Routing Protocol (RMPSR) for Video Communication over Wireless Ad Hoc Networks, 2004
- · Tang, McKinley, A distributed multipath computation framework for overlay network applications, 2004

increase throughput

• Chen, Chan, Li, Multipath routing for video delivery over bandwidthlimited networks, 2004

maximize network utilization

- Elwalid, Jin, Low, Widjaja, MATE: MPLS adaptive traffic engineering,
- Lee, Gerla, Split multipath routing with maximally disjoint paths in ad hoc networks, 2001
- · Mirrokni, Thottan, Uzunalioglu, Paul, Simple polynomial time frameworks for reduced-path decomposition in multi-path routing, 2004

Estimation through network

Optimal remote state estimator:

· full-state available

remote state-estimator

· no measurement noise

· no quantization

$$\hat{x}_{k+1} = \begin{cases} Ax_k & \text{succ. transmission at time } k \\ A\hat{x}_k & \text{unsucc. transmission at time } k \end{cases}$$

Remote state estimation error: $e_k := x_k - \hat{x}_k$

$$e_{k+1} = \begin{cases} Bw_k & \text{succ. transmission at time } k \\ Ae_k + Bw_k & \text{unsucc. transmission at time } k \end{cases}$$

• multi-path routing \equiv probability of failed transmissions $= p_{\text{att}}/2$ $e_{k+1} = \begin{cases} Bw_k & \text{w.p. } 1 - \frac{p_{\text{att}}}{2} \\ Ae_k + Bw_k & \text{w.p. } \frac{p_{\text{att}}}{2} \end{cases} \quad \text{mean-square stable iff } p_{\text{att}} < \frac{2}{|\lambda_i[A]|^2}$

Estimation through network

process

Consider random failures:

 $p_{\mathrm{fail}} \equiv \mathrm{probability}$ that a link will fail

 $T_{\rm ttr} \equiv$ mean time-to-recover (exponentially distributed)

For: 1-dimensional quasi-stable process $A = 1 + \epsilon$, $\epsilon \ll 1$ low fail probability $p_{fail} \ll 1$

- mean-square stable iff $T_{\rm ttr} \leq \frac{1}{2\epsilon}$ • single-path routing
- mean-square stable iff $T_{\rm ttr} \leq \frac{1}{\epsilon}$ twice as large admissible • multi-path routing

in this networked estimation problem, the maximum spread of packets is optimal even "against" random failures

Conclusions

mean time-to-recover

- Communication networks are extremely vulnerable components to critical systems
 - multitude of individual components, spatially distributed, difficult to protect
 - especially true for wireless networks (jamming, eavesdropping, battery drainage due to overuse, etc.)
- Game theory is a natural framework to study robustness
 - redundancy, by itself, does not guarantee robustness
 - attacks are not random events: very unlikely events can be prompted by an attacker
- Determined routing polices that exploit multi-path routing
 - formulation as a zero-sum game between router and attacker
 - saddle-point solutions found by reducing problem to a flow-game
 - policies found also have applications to
 - throughput maximization
 - load balancing
 - improve robustness of NCSs (even against random failures)

Observation: traditional measures of QoS such as probability of drop, expected delay are not sufficient to predict performance in NCSs]