Stochastic Modeling of Chemical Reactions (and more ...)

João P. Hespanha
University of California
Santa Barbara

UCSB

Outline

1. Basics behind stochastic modeling of chemical reactions (elementary probability \rightarrow stochastic model)
2. BE derivation of Dynkin's formula for Markov processes (stochastic model \rightarrow ODEs)
3. Moment dynamics
4. Examples (unconstrained birth-death, African bees, the RPC Island)

BE \equiv back-of-the-envelop
RPC \equiv Rock-paper-scissors

h seconds
into future
now ;
Prob(X reacts with Y in interval of time $[0, h]$)
$=\operatorname{Prob}(X$ collides with $Y) \times \operatorname{Prob}(X \& Y$ react once they collide)

Probability of collision (one-on-one)

UCSB

$v \equiv$ velocity of X with respect to Y
$v h \equiv$ motion of X with respect to Y in interval [0, h]

possible positions for center of
Y so that collision will occur
Y so that collision will occur

$$
\begin{array}{ll}
\text { volume }=c h & \begin{array}{l}
c \text { depends on the velocity \& } \\
\text { geometry of the molecules }
\end{array}
\end{array}
$$

$\operatorname{Prob}($ collision $)=\frac{c h}{V}$
assumes well-mixed solution
(Y equally likely to be everywhere)

$$
\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}
$$

Prob(X reacts with Y in interval of time $[0, h])$
$=$ Prob (X collides with Y) \times Prob (X \& Y react once they collide)
$=c \operatorname{Prob}\left(X \& Y\right.$ react once they collide) $\frac{h}{V}$
generally determined experimentally

Probability of reaction (many-on-many) UCSB

x molecules of X y molecules of Y

Prob (at least one X reacts with one Y)

1. Assumes small time interval $[0, h]$ so that 2 reactions are unlikely (otherwise double counting)
2. Each term

Prob (X_{i} reacts with Y_{j})
is the probability of one-on-one reaction computed before
$\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}$

Prob(at least one X reacts with one Y in interval of time $[0, h]$)
$=\operatorname{Prob}\left(X_{i}\right.$ collides with $\left.Y_{j}\right) x y$
$=c \operatorname{Prob}\left(\mathrm{X} \& \mathrm{Y}\right.$ react once they collide) $\frac{x y h}{V}$
generally determined experimentally

Probability of reaction (many-on-many) UCSB

Prob (at least one X reacts with one X)

total \# terms $=x \times(x-1) / 2$
x molecules of X y molecules of Y

Questions

UCSB

$X+Y \rightarrow Z$

If we leave system to itself for a while...
Q1: How many molecules of X and Y can we expect to have after some time $\mathrm{T}(\gg)$?

$$
\begin{aligned}
& \mu_{x}=\mathrm{E}[x]=? \\
& \mu_{y}=\mathrm{E}[y]=?
\end{aligned}
$$

Q2: How much variability can we expect around the average ?

$$
\begin{aligned}
& \sigma_{x}{ }^{2}=\mathrm{E}\left[\left(x-\mu_{x}\right)^{2}\right]=\mathrm{E}\left[x^{2}\right]-\mu_{x}{ }^{2} ? \\
& \sigma_{y}{ }^{2}=\mathrm{E}\left[\left(y-\mu_{y}\right)^{2}\right]=\mathrm{E}\left[y^{2}\right]-\mu_{y}{ }^{2} ?
\end{aligned}
$$

Q3: How much correlation between the two variables ?

$$
\mathrm{C}_{x y}=\mathrm{E}\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=\mathrm{E}[x y]-\mu_{x} \mu_{y} ?
$$

(e.g., positive correlation $\equiv x$ below mean is generally consistent with y below mean)

Empirical interpretation of averages
 UCSB

Empirical interpretation of averages

UCSB

$X+Y \rightarrow Z$
universe \#
universe \#2
universe \#3
$x_{1}=x_{\text {init }}$
$y_{1}=y_{\text {in }}$
$x_{2}=x_{\text {init }}$
$x_{3}=x_{\text {init }}$
$y_{3}=y_{\text {init }}$
(one reaction)
(no reaction)
(no reaction)
time $=h$
$x_{1}=x_{\text {init }}-1$
$x_{2}=x_{\text {init }}$
$x_{3}=x_{\text {init }}$
$y_{1}=y_{\text {init }^{-1}}-1$
$y_{2}=y_{\text {init }}$
$y_{3}=y_{\text {init }}$
$\mathrm{E}[x(h)]=\frac{\sum_{\text {all unverees }} x_{i}(h)}{\#}$
\# universes
$=\frac{\left(x_{\text {init }}-1\right) \times \text { \# univ with one react }+x_{\text {init }} \times \# \text { univ with no react }}{\text { total \# of universes }}$
$=\frac{x_{\text {init }} \times \text { total \# of universes }-1 \times \text { \# univ with one react }}{\text { total \# of universes }}$

Empirical interpretation of averages
 UCSB

$\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}$	universe \#1	universe \#2	universe \#3
	$x_{1}=x_{\text {init }}$	$x_{2}=x_{\text {init }}$	$x_{3}=x_{\text {init }}$
time $=0$	$y_{1}=y_{\text {init }}$	$y_{2}=y_{\text {init }}$	$y_{3}=y_{\text {init }}$
	(one reaction)	(no reaction)	(no reaction)
	$x_{1}=x_{\text {init }}-1$	$x_{2}=x_{\text {init }}$	$x_{3}=x_{\text {init }}$
time $=h$	$y_{1}=y_{\text {init }}-1$	$y_{2}=y_{\text {init }}$	$y_{3}=y_{\text {init }}$

stoichiometry (change in \# molecules due to reaction)

Empirical interpretation of averages

UCSB

$X+Y \rightarrow Z$
universe \#
universe \#2
universe \#3
$x_{1}=x_{\text {init }}$
$y_{1}=y_{\text {init }}$
$x_{2}=x_{\text {init }}$
$x_{3}=x_{\text {init }}$
$y_{3}=y_{\text {init }}$
(one reaction)
(no reaction)
(no reaction)
time $=h$
$x_{1}=x_{\text {init }}-1$
$y_{1}=y_{\text {init }}-1$
$x_{2}=x_{\text {init }}$
$x_{3}=x_{\text {init }}$
$y_{2}=y_{\text {init }}$
$y_{3}=y_{\text {init }}$

$$
\begin{aligned}
\mathrm{E}[x(h)] & =\frac{x_{\text {init }} \times \text { total \# of universes }-1 \times \text { \# univ with one react }}{\text { total \# of universes }} \\
& =x_{\text {lint }}-1 \times \frac{\text { \# univ with one react }}{\text { total \# of universes }}
\end{aligned}
$$

Empirical interpretation of averages

$\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}$	universe \#1	universe \#2	universe \#3	\ldots
	$x_{1}=x_{\text {init }}$	$x_{2}=x_{\text {init }}$	$x_{3}=x_{\text {init }}$	\ldots
time $=0$	$y_{1}=y_{\text {init }}$	$y_{2}=y_{\text {init }}$	$y_{3}=y_{\text {init }}$	\ldots
	(one reaction)	(no reaction)	(no reaction)	
	$x_{1}=x_{\text {init }}-1$	$x_{2}=x_{\text {init }}$	$x_{3}=x_{\text {init }}$	\ldots
time $=h$	$y_{1}=y_{\text {init }}-1$	$y_{2}=y_{\text {init }}$	$y_{3}=y_{\text {init }}$	\ldots

derivative of average at $t=h / 2 \approx 0$
(recall that h is very small)
stoichiometry (change in \# X molecules due to reaction)

Empirical interpretation of averages

UCSB

Empirical interpretation of averages
 UCSB

$$
\begin{aligned}
& \mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z} \quad \text { universe \#1 universe \#2 universe \#3 ... } \\
& \text { time }=0 \\
& x_{1}=x_{\text {init }} \\
& x_{2}=x_{\text {init }} \\
& y_{1}=y_{\text {init }} \\
& \text { (one reaction) } \\
& \text { (no reaction) } \\
& x_{3}=x_{\text {init }} \\
& y_{3}=y_{\text {init }} \\
& \text { (no reaction) } \\
& \text { time }=h \\
& \begin{array}{l}
x_{1}=x_{\text {init }}-1 \\
y_{1}=y_{\text {init }}-1
\end{array} \\
& x_{2}=x_{\text {init }} \\
& x_{3}=x_{\text {init }} \\
& y_{3}=y_{\text {init }} \\
& \mathrm{E}\left[x(h)^{2}\right]=\frac{\sum_{\text {all universes }} x_{i}(h)^{2}}{\# \text { universes }} \\
& =\frac{\left(x_{\text {init }}-1\right)^{2} \times \text { \# univ with one react }+x_{\text {init }}^{2} \times \text { \# univ with no react }}{\text { total \# of universes }} \\
& =x_{\text {init }}^{2}+\left(\left(x_{\text {init }}-1\right)^{2}-x_{\text {init }}^{2}\right) \times \frac{\# \text { univ with one react }}{\text { total \# of universes }} \\
& \text { change due to a } \\
& \text { single reaction } \\
& \operatorname{Prob}(\text { one reaction in }[0, h])=\alpha \frac{x_{\text {finit }} \partial_{\text {inft }} h}{V}
\end{aligned}
$$

Empirical interpretation of averages

UCSB

$X+Y \rightarrow Z$
universe \#
universe \#2
universe \#3
$x_{2}=x_{\text {init }}$
$x_{3}=x_{\text {init }}$
$y_{3}=y_{\text {in }}$
$y_{1}=y_{\text {init }}$
$y_{2}=y_{\text {ini }}$
(no reaction)
time $=h$

$$
\begin{aligned}
& x_{1}=x_{\text {init }}-1 \\
& y_{1}=y_{\text {init }}-1
\end{aligned}
$$

(no reaction)
$x_{3}=x_{\text {init }}$
$x_{2}=x_{\text {init }}$
$y_{3}=y_{\text {init }}$
$\mathrm{E}\left[x(h)^{2}\right]=x_{\text {init }}^{2}+\left(\left(x_{\text {imit }}-1\right)^{2}-x_{\text {init }}^{2}\right) \times \alpha \frac{x_{\text {init }} \beta_{\text {init }} h}{V}$
$\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{E}\left[x(t)^{2}\right]_{t=0} \approx\left((x(0)-1)^{2}-x(0)^{2}\right) \times \alpha \frac{x(0) y(0)}{V}$
change due to a
single reaction
probability of one reaction
cf. with $\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{E}[x(t)]=\mathrm{E}\left[-1 \times \alpha \frac{x(t) y(t)}{V}\right]$

Dynkin's formula for Markov processes UCSB

$$
\begin{gathered}
\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z} \xrightarrow{\rightarrow} \rightarrow \operatorname{Prob}(\mathrm{X} \& \mathrm{Y} \text { react in }[0, h])=\alpha \frac{x y h}{V} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{E}[\psi(x, y)]=\mathrm{E}\left[(\psi(x-1, y-1)-\psi(x, y)) \times \alpha \frac{x y}{V}\right] \\
\text { derivative of average } \quad \begin{array}{c}
\text { change due to a } \\
\text { single reaction }
\end{array} \\
\begin{array}{c}
\text { probability of } \\
\text { one reaction }
\end{array} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E}[x(t)]=\mathrm{E}\left[-1 \times \alpha \frac{x y}{V}\right]=-\frac{\alpha}{V} \mathrm{E}[x y] \\
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E}\left[x(t)^{2}\right]=\mathrm{E}\left[\left((x-1)^{2}-x^{2}\right) \times \alpha \frac{x y}{V}\right]=-\frac{\alpha}{V} \mathrm{E}[(2 x-1) x y] \\
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E}[x(t) y(t)]=\mathrm{E}\left[((x-1)(y-1)-x y) \times \alpha \frac{x y}{V}\right]=-\frac{\alpha}{V} \mathrm{E}[(x+y-1) x y] \\
\frac{\mathrm{d} \sigma_{x}^{2}(t)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{E}\left[x(t)^{2}\right]-\mathrm{E}[x(t)]^{2}\right)=-\frac{\alpha}{V} \mathrm{E}[(2 x-1) x y]+\frac{2 \alpha}{V} \mathrm{E}[x] \mathrm{E}[x y]
\end{gathered}
$$

Dynkin's formula for Markov processes UCSB

Multiple reactions: $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z} \longrightarrow \operatorname{Prob}(\mathrm{X} \& \mathrm{Y}$ react in $[0, h])=\alpha_{1} \frac{\boldsymbol{x} \boldsymbol{y} h}{\boldsymbol{V}}$
$2 \mathrm{X} \rightarrow \mathrm{Z}+\mathrm{Y} \rightarrow \operatorname{Prob}($ two X react in $[0, h])=\alpha_{2} \frac{x(x-1) h}{2 V}$
$\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{E}[\psi(x, y, z)]=\mathrm{E}\left[(\psi(x-1, y-1, z+1)-\psi(x, y, z)) \times \alpha_{1} \frac{x y}{V}\right.$
derivative of average $\left.\quad+(\psi(x-2, y+1, z+1)-\psi(x, y, z)) \times \alpha_{2} \frac{x(x-1)}{2 V}\right]$
change due to one reaction
probability of one reaction
sum over all reactions

A birth-death example
 UCSB

$$
\begin{aligned}
\frac{\mathrm{dE}[x]}{\mathrm{d} t} & =-\left(\frac{b}{2}+d\right) \mathrm{E}[x]+\frac{b}{2} \mathrm{E}\left[x^{2}\right] \\
\frac{\mathrm{dE}\left[x^{2}\right]}{\mathrm{d} t}= & -\left(\frac{b}{2}-d\right) \mathrm{E}[x]-\left(\frac{b}{2}+2 d\right) \mathrm{E}\left[x^{2}\right]+b \mathrm{E}\left[x^{3}\right] \\
\frac{\mathrm{dE}\left[x^{3}\right]}{\mathrm{d} t}= & -\left(\frac{b}{2}+d\right) \mathrm{E}[x]-(b-3 d) \mathrm{E}\left[x^{2}\right]-3 d \mathrm{E}\left[x^{3}\right]+\frac{3 b}{2} \mathrm{E}\left[x^{4}\right] \\
& \vdots
\end{aligned}
$$

(does not capture finiteness of resources in a natural environment

1. when x too large reproduction-rate should decrease
2. when x too large death-rate should increase)

African honey bee

UCSB

Stochastic Logistic model (different rates than in a chemical reactions,

but Dynkin's formula still applies)

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{E}[\psi(x)]=\mathrm{E}\left[(\psi(x+1)-\psi(x)) \times\left(a_{1}-b_{1} x\right) x\right. \\
\\
\left.+(\psi(x-1)-\psi(x)) \times\left(a_{2}+b_{2} x\right) x\right]
\end{array}
$$

$$
\frac{\mathrm{dE}[x]}{\mathrm{d} t}=\left(a_{1}-a_{2}\right) \mathrm{E}[x]-\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right]
$$

$$
\frac{\mathrm{dE}\left[x^{2}\right]}{\mathrm{d} t}=\left(a_{1}+a_{2}\right) \mathrm{E}[x]+\left(2 a_{1}-2 a_{2}-b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right]-2\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{3}\right]
$$

$$
\vdots
$$

For African honey bees: $\mathrm{a}_{1}=.3, \mathrm{a}_{2}=.02, \mathrm{~b}_{1}=.015, \mathrm{~b}_{2}=.001$ [Matis et al 1998]

$$
\begin{aligned}
& 2 X \rightarrow 3 X \quad \begin{array}{c}
2 \text { molecules meet } \\
\text { and reproduce }
\end{array} \quad \longrightarrow \operatorname{Prob}(\text { two } X \text { react in }[0, \boldsymbol{h}])=\boldsymbol{b} \frac{\boldsymbol{x (x - 1)}}{2} \boldsymbol{h} \\
& \mathrm{X} \rightarrow \varnothing \quad \begin{array}{c}
1 \text { molecule } \\
\text { spontaneously die }
\end{array} \quad \cdots \operatorname{Prob}(\mathrm{X} \text { decsys }[\mathbf{0}, \boldsymbol{h}])=\boldsymbol{d} \boldsymbol{x} \boldsymbol{h}
\end{aligned}
$$

Predicting bee populations

UCSB

Predicting bee populations

UCSB

$\varnothing \rightarrow \mathrm{X} \quad$| 1 honey bee is born |
| :---: |
| $\left(\boldsymbol{a}_{\mathbf{1}}-\boldsymbol{b}_{\mathbf{1}} \boldsymbol{x}\right) \boldsymbol{x}$ |$\quad \mathrm{X} \rightarrow \varnothing \quad$| 1 honey bee dies |
| :---: |
| $\left(\boldsymbol{a}_{\mathbf{2}}+\boldsymbol{b}_{\mathbf{2}} \boldsymbol{x}\right) \boldsymbol{x}$ |

$$
\frac{\mathrm{dE}[x]}{\mathrm{d} t}=\left(a_{1}-a_{2}\right) \mathrm{E}[x]-\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right]
$$

$$
\frac{\mathrm{dE}\left[x^{2}\right]}{\mathrm{d} t}=\left(a_{1}+a_{2}\right) \mathrm{E}[x]+\left(2 a_{1}-2 a_{2}-b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right]-2\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{3}\right]
$$

$$
\vdots
$$

$$
\begin{array}{lll}
x(0)=x_{\text {init }} & \mathrm{E}[x(h)] & \mathrm{E}[x(2 h)] \\
x(0)^{2}=x_{\text {indt }}^{2} & \mathrm{E}\left[x(h)^{2}\right] & \\
x(0)^{3}=x_{\text {init }}^{\mathbf{3}} &
\end{array}
$$

$$
\begin{aligned}
& \varnothing \rightarrow \mathrm{X} \quad \begin{array}{c}
1 \text { honey bee is born } \\
\left(\boldsymbol{a}_{1}-\boldsymbol{b}_{\mathbf{1} \boldsymbol{x} \boldsymbol{x}) \boldsymbol{x}}\right.
\end{array} \quad \mathrm{X} \rightarrow \varnothing \quad \begin{array}{c}
1 \text { honey bee dies } \\
\left(\boldsymbol{a}_{\mathbf{2}}+\boldsymbol{b}_{\mathbf{2}} \boldsymbol{x}\right) \boldsymbol{x}
\end{array} \\
& \frac{\mathrm{dE}[x]}{\mathrm{d} t}=\left(a_{1}-a_{2}\right) \mathrm{E}[x]-\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right] \\
& \frac{\mathrm{dE}\left[x^{2}\right]}{\mathrm{d} t}=\left(a_{1}+a_{2}\right) \mathrm{E}[x]+\left(2 a_{1}-2 a_{2}-b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right]-2\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{3}\right] \\
& \vdots \\
& x(0)=x_{\text {init }} \quad \mathrm{E}[x(h)] \quad \mathrm{E}[x(2 h)] \\
& x(0)^{2}=x_{\operatorname{mint}}^{2} \\
& \text { (needs } \mathrm{E}[x(0)] \quad \text { (needs } \mathrm{E}[x(h)] \\
& \text { \& } \left.\left.\mathrm{E}\left[x(0)^{2}\right]\right) \quad \& \mathrm{E}\left[x(h)^{2}\right]\right)
\end{aligned}
$$

Predicting bee populations

Moment truncation

UCSB

$$
\varnothing \rightarrow \mathrm{X} \quad \begin{gathered}
1 \text { honey bee is born } \\
\left(\boldsymbol{a}_{1}-\boldsymbol{b}_{\mathbf{1}} \boldsymbol{x}\right) \boldsymbol{x}
\end{gathered} \quad \mathrm{X} \rightarrow \varnothing \quad \begin{gathered}
1 \text { honey bee dies } \\
\left(\boldsymbol{a}_{\mathbf{2}}+\boldsymbol{b}_{\mathbf{2}} \boldsymbol{x}\right) \boldsymbol{x}
\end{gathered}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]=\left[\begin{array}{cc}
a_{1}-a_{2} & -b_{1}-b_{2} \\
a_{1}+a_{2} & 2\left(a_{1}-a_{2}\right)-b_{1}+b_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]-\left[\begin{array}{c}
0 \\
2\left(b_{1}+b_{2}\right)
\end{array}\right] \mathrm{E}\left[x^{3}\right]
$$

Moment truncation \equiv Substitute $\mathrm{E}\left[x^{3}\right]$ by a function φ of both $\mathrm{E}[x]$ \& $\mathrm{E}\left[x^{2}\right]$

$$
\begin{gathered}
\mathrm{E}\left[x^{3}\right] \approx \varphi\left(\mathrm{E}[x], \mathrm{E}\left[x^{2}\right]\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right] \approx\left[\begin{array}{cc}
a_{1}-a_{2} & -b_{1}-b_{2} \\
a_{1}+a_{2} & 2\left(a_{1}-a_{2}\right)-b_{1}+b_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]-\left[\begin{array}{c}
0 \\
2\left(b_{1}+b_{2}\right)
\end{array}\right] \varphi\left(\mathrm{E}[x], \mathrm{E}\left[x^{2}\right]\right)
\end{gathered}
$$

$$
\begin{aligned}
& \varnothing \rightarrow \mathrm{X} \quad \begin{array}{c}
1 \text { honey bee is born } \\
\left(\boldsymbol{a}_{1}-\boldsymbol{b}_{\mathbf{1}} \boldsymbol{x}\right) \boldsymbol{x}
\end{array} \quad \mathrm{X} \rightarrow \varnothing \quad \begin{array}{c}
1 \text { honey bee dies } \\
\left(\boldsymbol{a}_{\mathbf{2}}+\boldsymbol{b}_{\mathbf{2}} \boldsymbol{x}\right) \boldsymbol{x} \boldsymbol{x}
\end{array} \\
& \frac{\mathrm{dE}[x]}{\mathrm{d} t}=\left(a_{1}-a_{2}\right) \mathrm{E}[x]-\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right] \\
& \frac{\mathrm{dE}\left[x^{2}\right]}{\mathrm{d} t}=\left(a_{1}+a_{2}\right) \mathrm{E}[x]+\left(2 a_{1}-2 a_{2}-b_{1}+b_{2}\right) \mathrm{E}\left[x^{2}\right]-2\left(b_{1}+b_{2}\right) \mathrm{E}\left[x^{3}\right] \\
& \text { ! } \\
& x(0)=x_{\text {intt }} \quad \mathrm{E}[x(h)] \quad \mathrm{E}[x(2 h)] \quad \mathrm{E}[x(3 h)] \\
& x(0)^{2}=x_{\text {imlt }}^{2} \quad \mathrm{E}\left[x(h)^{2}\right] \quad \mathrm{E}\left[x(2 h)^{2}\right] \\
& x(0)^{3}=x_{\text {mit }}^{5} \quad \mathrm{E}\left[x(h)^{3}\right] \\
& x(0)^{3}=x_{\text {imit }}^{4}
\end{aligned}
$$

Option I - Distribution-based truncations UCSB

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]=\left[\begin{array}{cc}
a_{1}-a_{2} & -b_{1}-b_{2} \\
a_{1}+a_{2} & 2\left(a_{1}-a_{2}\right)-b_{1}+b_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]-\left[\begin{array}{c}
0 \\
2\left(b_{1}+b_{2}\right)
\end{array}\right] E\left[x^{3}\right] \\
E\left[x^{3}\right] \approx \varphi\left(\mathrm{E}[x], \mathrm{E}\left[x^{2}\right]\right)
\end{array}
$$

Suppose we knew the distribution was \{BLANK\}, then we could guess $\mathrm{E}\left[x^{3}\right]$ from $\mathrm{E}[x]$ and $\mathrm{E}\left[x^{2}\right]$, e.g.:

$$
\begin{aligned}
\text { Normal } & E\left[x^{3}\right]=3 E\left[x^{2}\right] E[x]-2 \mathrm{E}[x]^{3} \\
\text { Log Normal } & E\left[x^{3}\right]=\left(\frac{E\left[x^{2}\right]}{E[x]}\right)^{3} \\
\text { Binomial } & E\left[x^{3}\right]=2 \frac{\left(E\left[x^{2}\right]-E[x]^{2}\right)^{2}}{\mathrm{E}[x]}-E\left[x^{2}\right]+E[x]^{2}+3 E\left[x^{2}\right] E[x]-2 E[x]^{3} \\
\text { Poisson } & E\left[x^{3}\right]=E[x]+3 E\left[x^{2}\right] E[x]-2 \mathrm{E}[x]^{3} \\
\text { or } E\left[x^{3}\right] & =E\left[x^{2}\right]-E[x]^{2}+3 E\left[x^{2}\right] E[x]-2 \mathrm{E}[x]^{3}
\end{aligned}
$$

Option II - Derivative-matching truncation UCSB

Exact dynamics

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]=\left[\begin{array}{cc}
a_{1}-a_{2} & -b_{1}-b_{2} \\
a_{1}+a_{2} & 2\left(a_{1}-a_{2}\right)-b_{1}+b_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]-\left[\begin{array}{c}
0 \\
2\left(b_{1}+b_{2}\right)
\end{array}\right] \mathrm{E}\left[x^{9}\right]
$$

Truncated dynamics

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right] \approx\left[\begin{array}{cc}
a_{1}-a_{2} & -b_{1}-b_{2} \\
a_{1}+a_{2} & 2\left(a_{1}-a_{2}\right)-b_{1}+b_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]-\left[\begin{array}{c}
0 \\
2\left(b_{1}+b_{2}\right)
\end{array}\right] \varphi\left(\mathrm{E}[x], \mathrm{E}\left[x^{2}\right]\right)
$$

Select φ to minimize derivative errors

$$
\begin{aligned}
& \left.\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]\right|_{\text {exact }}-\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]\right|_{\text {truncated }} \\
& \left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]\right|_{\text {exact }}-\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left[\begin{array}{c}
\mathrm{E}[x] \\
\mathrm{E}\left[x^{2}\right]
\end{array}\right]\right|_{\text {truncated }}
\end{aligned}
$$

Option II - Derivative-matching truncation UCSB

It is possible to find a function φ such that for every initial population $x_{\text {init }}$

There are a few "universal" φ, e.g.,

$$
E\left[x^{3}\right]=\left(\frac{E\left[x^{2}\right]}{E[x]}\right)^{3}
$$

the above property holds
for every set of chemical reactions (and also for every stochastic logistic model)

We like Option II

UCSB

1. Approach does not start with an arbitrary assumption of the population distribution. Distribution should be discovered from the model.
2. Generalizes for high-order truncations:

It is possible to find a function φ such that for every initial population $x_{\text {init }}$

but two options not incompatible (on the contrary!)

Back to African honey bees

$\varnothing \rightarrow X$
1 honey bee is born
$\left(a_{1}-b_{1} x\right) x$

$$
X \rightarrow \varnothing
$$

1 honey bee dies
$\left(a_{2}+b_{2} x\right) x$

Errors in the mean for an initial population of 20 bees

For African honey bees: $\mathrm{a}_{1}=.3, \mathrm{a}_{2}=.02, \mathrm{~b}_{1}=.015, \mathrm{~b}_{2}=.001$ [Matis et al 1998]

Back to African honey bees

UCSB

$$
\begin{array}{ccc}
\mathrm{X} \rightarrow 2 \mathrm{X} & \begin{array}{c}
1 \text { honey bee is born } \\
\left(\boldsymbol{a}_{\mathbf{1}}-\boldsymbol{b}_{\mathbf{1}} \boldsymbol{x}\right) \boldsymbol{x}
\end{array} & \mathrm{X} \rightarrow \varnothing
\end{array} \begin{gathered}
1 \text { honey bee dies } \\
\left(\boldsymbol{a}_{\mathbf{2}}+\boldsymbol{b}_{\mathbf{2}} \boldsymbol{x}\right) \boldsymbol{x}
\end{gathered}
$$

Errors in the variance for an initial population of 20 bees

For African honey bees: $\mathrm{a}_{1}=.3, \mathrm{a}_{2}=.02, \mathrm{~b}_{1}=.015, \mathrm{~b}_{2}=.001$ [Matis et al 1998]

The Rock-Paper-Scissors island

Each person in the Island has one of three genes This gene only affects the way they play RPS

Periodically, each person seeks an adversary and plays RPS
Winner gets to have exactly one offspring, loser dies (high-stakes RPS!)
(total population constant)

Scenario I: offspring always has same gene as parent
Scenario II: with low probability, offspring suffers a mutation (different gene)

The Rock-Paper-Scissors island

UCSB

For a well-mixed population, this can be modeled by...
Scenario I: offspring always has same gene as parent
$\mathrm{R}+\mathrm{P} \rightarrow 2 \mathrm{P} \quad$ with rate prop. to $r . p \quad r \equiv \#$ of
$\mathrm{R}+\mathrm{S} \rightarrow 2 \mathrm{R} \quad$ with rate prop. to $r . s \quad p \equiv$ \# of
$\mathrm{P}+\mathrm{S} \rightarrow 2 \mathrm{~S}$ with rate prop. to $p . s \quad s \equiv \#$ of

Scenario II: with low probability, offspring suffers a mutation (different gene)
$\mathrm{R}+\mathrm{P} \rightarrow \mathrm{P}+\mathrm{S}$
with rate prop. to r. p
$\mathrm{R}+\mathrm{S} \rightarrow \mathrm{R}+\mathrm{P}$
with rate prop. to $r . s$
$\mathrm{P}+\mathrm{S} \rightarrow \mathrm{S}+\mathrm{R} \quad$ with rate prop. to $p . s$
$2 \mathrm{R} \rightarrow \mathrm{R}+\mathrm{P} \quad$ with rate prop. to $r .(r-1) / 2$
$2 \mathrm{R} \rightarrow \mathrm{R}+\mathrm{S} \quad$ with rate prop. to $r .(r-1) / 2$
$2 \mathrm{P} \rightarrow \mathrm{P}+\mathrm{R} \quad$ with rate prop. to $p \cdot(p-1) / 2$
$2 \mathrm{P} \rightarrow \mathrm{P}+\mathrm{S} \quad$ with rate prop. to $p \cdot(p-1) / 2$
$2 \mathrm{~S} \rightarrow \mathrm{~S}+\mathrm{R} \quad$ with rate prop. to $s .(s-1) / 2$
$2 \mathrm{~S} \rightarrow \mathrm{~S}+\mathrm{P} \quad$ with rate prop. to $s .(s-1) / 2$
Q: What will happen in the island?

The Rock-Paper-Scissors island

Q: What will happen in the island?
Answer given by a deterministic formulation
(chemical rate equation/Lotka-Volterra-like model)
Scenario I: offspring always has same gene as parent

Scenario II: with low probability, offspring suffers a mutation (1/50 mutations)

The Rock-Paper-Scissors island

Q: What will happen in the island?
$r(0)=100, p(0)=200, s(0)=300$
Answer given by a stochastic formulation (2 $2^{\text {nd }}$ order truncation)

Scenario II: with low probability, offspring suffers a mutation (1/50 mutations)

Even at steady state, the populations oscillate significantly with negative coefficient of correlation

The Rock-Paper-Scissors island

Q: What will happen in the island?
$r(0)=100, p(0)=200, s(0)=300$
Answer given by a stochastic formulation (2nd order truncation)

Scenario II: with low probability, offspring suffers a mutation (1/50 mutations)

Even at steady state, the populations oscillate significantly with negative coefficient of correlation

What next?

UCSB ,

Gene regulation: $\quad \mathrm{X} \rightarrow \varnothing$
natural decay of X

$$
\begin{array}{ll}
\text { Gene_on } \rightarrow \text { Gene_on }+X & \begin{array}{l}
\text { protein } X \text { produced when gene is on } \\
\\
\text { Gene_on }+X \rightarrow \text { bends to gene and inhibits } \\
\text { further production of protein } X
\end{array} \\
\text { Gene_off } \rightarrow \text { Gene_on + X } & \begin{array}{l}
X \text { detaches from gene and activates } \\
\text { production of protein } X
\end{array}
\end{array}
$$

(binary nature of gene allows for very effective truncations)

Times to extinction/Probability of extinction:
Sometimes truncations are poorly behaved at times scales for which extinctions are likely
(predict negative populations, lead to division by zero, etc.)

Temporal correlations:
Sustained oscillations are often hard to detected solely from steady-state distributions.

