

	Empirical i	nterpretat	tion of avera	iges	UCSB
$X+Y \rightarrow Z$	universe #1	universe #2	universe #3		
time = 0	$x_1 = x_{ m init}$ $y_1 = y_{ m init}$ (one reaction)	$x_2 = x_{ m init}$ $y_2 = y_{ m init}$ (no reaction)	$x_3 = x_{ m init}$ $y_3 = y_{ m init}$ (no reaction)		
time = h	$x_1 = x_{init} - 1$ $y_1 = y_{init} - 1$ (one reaction)	$x_2 = x_{ ext{init}}$ $y_2 = y_{ ext{init}}$ (no reaction)	$x_3 = x_{ m init}$ $y_3 = y_{ m init}$ (one reaction)		
time = $2 h$	$x_{1} = x_{\text{init}} - 2$ $y_{1} = y_{\text{init}} - 2$ (no reaction)	$x_2 = x_{ m init}$ $y_2 = y_{ m init}$ (one reaction)	$x_{3} = x_{\text{init}} - 1$ $y_{3} = y_{\text{init}} - 1$ (one reaction)		
time = $3 h$	$x_1 = x_{\text{init}} - 3$ $y_1 = y_{\text{init}} - 3$	$x_2 = x_{\text{init}} - 1$	$x_3 = x_{\text{init}} - 2$ $y_3 = y_{\text{init}} - 2$		
E[a		x _i (T) rece	$\mathbf{E}[\boldsymbol{y}(T)] = \frac{\text{all univ}}{\# \mathbf{u}}$	$y_i(T)$	

]	Empirical i	nterpretati	on of avera	iges	UCSB
$X + Y \rightarrow Z$	universe #1	universe #2	universe #3		
time = 0	$x_1 = x_{\text{init}}$ $y_1 = y_{\text{init}}$	$x_2 = x_{init}$ $y_2 = y_{init}$ (no reaction)	$y_3 = y_{\text{init}}$		
time $= h$	$x_1 = x_{\text{init}} - 1$	$x_2 = x_{\text{init}}$	$\begin{aligned} x_3 &= x_{\text{init}} \\ y_3 &= y_{\text{init}} \end{aligned}$		
$\mathrm{E}[x(h)] = rac{\mathrm{all}}{4}$	$\frac{\sum_{\text{universes}} x_i(h)}{\text{# universes}}$ $\min_{\text{nit}} - 1) \times \text{# universes}$	v with one react	$x + x_{\text{init}} \times \#$ uni	v with n	o react
$= \frac{1}{1 \text{ total } \# \text{ of universes}}$ $= \frac{x_{\text{init}} \times \text{total } \# \text{ of universes} - 1 \times \# \text{ univ with one react}}{1 \text{ total } \# \text{ of universes}}$					
= total # of universes					

Empirical interpretation of averages UCSB $X + Y \rightarrow Z$ universe #1 universe #2 universe #3 . . . $x_1 = x_{\text{init}}$ $x_2 = x_{\text{init}}$ $x_3 = x_{\text{init}}$ time = 0. . . $y_3 = y_{\text{init}}$ $y_1 = y_{\text{init}}$ $y_2 = y_{\text{init}}$ (one reaction) (no reaction) (no reaction) $x_1 = x_{\text{init}} - 1$ $x_2 = x_{\text{init}}$ $x_3 = x_{\text{init}}$ time = h... $y_1 = y_{\text{init}} - 1$ $y_2 = y_{\text{init}}$ $y_3 = y_{\text{init}}$ $E[x(h)] = \frac{x_{init} \times total \# of universes - 1 \times \# univ}{univ}$ with one react total # of universes $= x_{\text{init}} - 1 \times \frac{\# \text{ univ with one react}}{\text{total } \# \text{ of universes}}$ $\operatorname{E}[\boldsymbol{x}(h)] - \boldsymbol{x}(0) = -1 \times \alpha \frac{\boldsymbol{x}(0) \, \boldsymbol{y}(0) \, h}{V}$

	Empirical i	nterpretati	on of avera	ages	UCSB
$X + Y \rightarrow Z$	universe #1	universe #2	universe #3		
time = 0	$\begin{array}{l} x_1 = x_{\mathrm{init}} \\ y_1 = y_{\mathrm{init}} \end{array}$	$\begin{array}{l} x_2 = x_{\mathrm{init}} \\ y_2 = y_{\mathrm{init}} \end{array}$	$x_3 = x_{ ext{init}}$ $y_3 = y_{ ext{init}}$		
time = t	$x_1 = ?$ $y_1 = ?$: $x_2 = ?$ $y_2 = ?$	$x_3 = ?$ $y_3 = ?$		
deriva	$\frac{\mathbf{d}}{\mathbf{dt}}\mathbf{E}[\boldsymbol{x}(t)]$	$\mathbf{J} = \mathbf{E} \left[-1 \times \boldsymbol{\alpha}^{\mathbf{Z}} \right]$ stoichiometry (change in # X molecules due to reaction)	(t) v(t) v probability of or reaction	ne	

]	Empirical i	nterpretati	on of avera	ages UCSB	
$X+Y \to Z$	universe #1	universe #2	universe #3		
time = 0	$x_1 = x_{ m init}$ $y_1 = y_{ m init}$ (one reaction)	$x_2 = x_{ m init}$ $y_2 = y_{ m init}$ (no reaction)	$x_3=x_{ m init}$ $y_3=y_{ m init}$ (no reaction)		
time $= h$	$\begin{array}{l} x_1 = x_{\mathrm{init}} {-}1 \\ y_1 = y_{\mathrm{init}} {-}1 \end{array}$	$\begin{array}{l} x_2 = x_{\rm init} \\ y_2 = y_{\rm init} \end{array}$	$x_3 = x_{ m init}$ $y_3 = y_{ m init}$		
$\begin{split} \mathrm{E}[x(h)^2] &= \frac{\sum_{\text{all universes}} x_i(h)^2}{\# \text{ universes}} \\ &= \frac{(x_{\text{init}} - 1)^2 \times \# \text{ univ with one react} + x_{\text{init}}^2 \times \# \text{ univ with no react}}{2} \end{split}$					
- total # of universes $= x_{\text{init}}^2 + \left((x_{\text{init}} - 1)^2 - x_{\text{init}}^2 \right) imes rac{\# ext{ univ with one react}}{ ext{total $\#$ of universes}}$					
initial value	change du single re		one reaction in [$ 0,h] angle = lpha rac{x_{ ext{init}} y_{ ext{init}} h}{V}$	

]	Empirical i	nterpretati	on of avera	iges UCS	BB
$X + Y \rightarrow Z$	universe #1	universe #2	universe #3		
time = 0	$x_1 = x_{init}$ $y_1 = y_{init}$ (one reaction)	$x_2 = x_{ ext{init}}$ $y_2 = y_{ ext{init}}$ (no reaction)	$x_3 = x_{ m init}$ $y_3 = y_{ m init}$ (no reaction)		
time $= h$	$x_1 = x_{\text{init}} - 1$ $y_1 = y_{\text{init}} - 1$	$\begin{aligned} x_2 &= x_{\text{init}} \\ y_2 &= y_{\text{init}} \end{aligned}$	$\begin{aligned} x_3 &= x_{\text{init}} \\ y_3 &= y_{\text{init}} \end{aligned}$		
$\mathrm{E}[x(h)^2] = x_{\mathrm{init}}^2 + \left((x_{\mathrm{init}}-1)^2 - x_{\mathrm{init}}^2 ight) imes lpha rac{x_{\mathrm{init}} y_{\mathrm{init}} h}{V}$					
$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{E}[x(t)^2]_{t=0} \approx \left((x(0)-1)^2 - x(0)^2 \right) \times \alpha \frac{x(0) y(0)}{V}$					
		U	due to a reaction	probability of one reaction	
cf. with $\frac{\mathbf{d}}{\mathbf{d}t} \mathbf{E}[\mathbf{x}(t)] = \mathbf{E}\left[-1 \times \alpha \frac{\mathbf{x}(t) \mathbf{y}(t)}{V}\right]$					(t)]

Dynkin's formula for Markov processes

$$X + Y \rightarrow Z \longrightarrow \operatorname{Prob}(X \& Y \operatorname{react} \operatorname{in} [0, h]) = \alpha \frac{x y h}{V}$$

$$\frac{d}{dt} E[\psi(x, y)] = E\left[\left(\psi(x - 1, y - 1) - \psi(x, y)\right) \times \alpha \frac{x y}{V}\right]$$
derivative of average
$$\operatorname{change due to a}_{\operatorname{single reaction}} \operatorname{probability of}_{\operatorname{one reaction}}$$

$$\frac{d}{dt} E[x(t)] = E\left[-1 \times \alpha \frac{x y}{V}\right] = -\frac{\alpha}{V} E[xy]$$

$$\frac{d}{dt} E[x(t)^2] = E\left[\left((x - 1)^2 - x^2\right) \times \alpha \frac{x y}{V}\right] = -\frac{\alpha}{V} E\left[(2x - 1)xy\right]$$

$$\frac{d}{dt} E[x(t)y(t)] = E\left[\left((x - 1)(y - 1) - xy\right) \times \alpha \frac{x y}{V}\right] = -\frac{\alpha}{V} E\left[(x + y - 1)xy\right]$$

$$\frac{d\sigma_x^2(t)}{dt} = \frac{d}{dt}\left(E[x(t)^2] - E[x(t)]^2\right) = -\frac{\alpha}{V} E\left[(2x - 1)xy\right] + \frac{2\alpha}{V} E[x] E[xy]$$

TI	ne Rock-Paper-Scisso	ors island UCSB				
For a well-mixed po	For a well-mixed population, this can be modeled by					
Scenario I: offsprin	g always has same gene as parent	t				
$\begin{array}{c} \mathrm{R} + \mathrm{P} \rightarrow \mathrm{2} \ \mathrm{P} \\ \mathrm{R} + \mathrm{S} \rightarrow \mathrm{2} \ \mathrm{R} \\ \mathrm{P} + \mathrm{S} \rightarrow \mathrm{2} \ \mathrm{S} \end{array}$	with rate prop. to $r \cdot s$ p	= # of = # of = # of				
Scenario II: with low	w probability, offspring suffers a	mutation (different gene)				
$\begin{array}{c} \mathbf{R} + \mathbf{P} \rightarrow \mathbf{P} + \mathbf{S} \\ \mathbf{R} + \mathbf{S} \rightarrow \mathbf{R} + \mathbf{P} \\ \mathbf{P} + \mathbf{S} \rightarrow \mathbf{S} + \mathbf{R} \\ 2 \ \mathbf{R} \rightarrow \mathbf{R} + \mathbf{P} \\ 2 \ \mathbf{R} \rightarrow \mathbf{R} + \mathbf{S} \\ 2 \ \mathbf{P} \rightarrow \mathbf{P} + \mathbf{R} \\ 2 \ \mathbf{P} \rightarrow \mathbf{P} + \mathbf{S} \\ 2 \ \mathbf{S} \rightarrow \mathbf{S} + \mathbf{R} \\ 2 \ \mathbf{S} \rightarrow \mathbf{S} + \mathbf{P} \end{array}$	with rate prop. to $r \cdot p$ with rate prop. to $r \cdot s$ with rate prop. to $p \cdot s$ with rate prop. to $r \cdot (r-1)/2$ with rate prop. to $r \cdot (r-1)/2$ with rate prop. to $p \cdot (p-1)/2$ with rate prop. to $p \cdot (p-1)/2$ with rate prop. to $s \cdot (s-1)/2$ with rate prop. to $s \cdot (s-1)/2$	Q: What will happen in the island?				

	What next?	UCSB				
Gene regulation:	$X \rightarrow \emptyset$	natural decay of X				
	$Gene_on \rightarrow Gene_on + X$	protein X produced when gene is on				
	$Gene_on + X \rightarrow Gene_off$	X binds to gene and inhibits further production of protein X				
	$Gene_off \rightarrow Gene_on + X$	X detaches from gene and activates production of protein X				
(bir	(binary nature of gene allows for very effective truncations)					
 Times to extinction/Probability of extinction: Sometimes truncations are poorly behaved at times scales for which extinctions are likely (predict negative populations, lead to division by zero, etc.) Temporal correlations: Sustained oscillations are often hard to detected solely from steady-state distributions. 						