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Stochastic Modeling of 
Chemical Reactions (and more …)

João P. Hespanha

University of California
Santa Barbara

Outline

1. Basics behind stochastic modeling of chemical reactions
(elementary probability → stochastic model)

2. BE derivation of Dynkin’s formula for Markov processes
(stochastic model → ODEs)

3. Moment dynamics 
4. Examples (unconstrained birth-death, African bees, the RPC Island)

BE ≡ back-of-the-envelop
RPC ≡ Rock-paper-scissors
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A simple chemical reaction

X + Y → Z volume V

X

Y

single molecule of X
single molecule of Y

now

h seconds 
into future

Probability of collision (one-on-one)

X
Y

v ≡ velocity of X with respect to Y
v h ≡ motion of X with respect to Y in 

interval [0, h]

v h

volume where collision can occur
X

Y

v h

possible positions for center of 
Y so that collision will occur

Y
volume = c h c depends on the velocity & 

geometry of the molecules

assumes well-mixed solution
(Y equally likely to be everywhere)

volume V

X
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Probability of reaction (one-on-one)

X + Y → Z volume V

X

Y

single molecule of X
single molecule of Y

generally determined experimentally

Probability of reaction (many-on-many)

X + Y → Z

volume V

X1

Y3

X3

X2

Y2
Y1

Prob ( at least one X reacts with one Y )
= Prob (X1 reacts with Y1)
+ Prob (X1 reacts with Y2)

M

+ Prob (X2 reacts with Y1)
+ Prob (X2 reacts with Y2)

M

x molecules of X
y molecules of Y

# terms =
# Y molec.

# terms =
# Y molec.

total # terms = 
# X molec. × # Y molecules = x × y

1. Assumes small time interval [0,h] so that 2 
reactions are unlikely 
(otherwise double counting)

2. Each term 
Prob (Xi reacts with Yj)

is the probability of one-on-one reaction 
computed before
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Probability of reaction (many-on-many)

X + Y → Z volume V

generally determined experimentally

X1

Y3

X3

X2

Y2
Y1

Probability of reaction (many-on-many)

X + X → Z

volume V

X1

X6

X3

X2

X5
X4

Prob ( at least one X reacts with one X )
= Prob (X1 reacts with X2)
+ Prob (X1 reacts with X3)

M

+ Prob (X1 reacts with Xx)
+ Prob (X2 reacts with X3)
+ Prob (X2 reacts with X4)

M

M

+ Prob (Xx–1 reacts with Xx)

x molecules of X
y molecules of Y

# terms =
x – 1

total # terms = x × ( x – 1 ) / 2

# terms =
x – 2
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Probability of reaction (many-on-many)

X + Y → ?

determined 
experimentally

volume V

X1

Y3

X3

X2

Y2
Y1

volume V

X1

X6

X3

X2

X5
X4

2 X → ?

1. Covers all “elementary reactions”
2. Only valid when h is small

propensity
functions

(recall Brian’s talk!)

Questions

volume V

X1

Y3

X3

X2

Y2
Y1

If we leave system to itself for a while…

Q1: How many molecules of X and Y can we 
expect to have after some time T ( À h) ?

μx = E[x] = ?
μy = E[y] = ?

Q2: How much variability can we expect around 
the average ?

σx
2 = E[(x – μx)2] = E[x2] – μx2 ?

σy
2 = E[(y – μy)2] = E[y2] – μy2?

Q3: How much correlation between the two 
variables ?

Cx y = E[(x – μx) (y – μy)] = E[xy] – μxμy?

X + Y → Z

(e.g., positive correlation ≡ x below mean 
is generally consistent with y below mean)
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Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

time = h x1 = xinit–1
y1 = yinit–1

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

(one reaction) (no reaction) (no reaction)

…

…

time = 2 h x1 = xinit–2
y1 = yinit–2

x2 = xinit
y2 = yinit

(one reaction) (no reaction) (one reaction)

…x3 = xinit–1
y3 = yinit–1

time = 3 h x1 = xinit–3
y1 = yinit–3

(no reaction) (one reaction) (one reaction)

…x3 = xinit–2
y3 = yinit–2

x2 = xinit–1
y2 = yinit–1

X + Y → Z

Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

time = h x1 = xinit–1
y1 = yinit–1

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

(one reaction) (no reaction) (no reaction)

…

…

X + Y → Z
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Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

time = h x1 = xinit–1
y1 = yinit–1

(one reaction) (no reaction) (no reaction)

…

…

initial # of 
molecules stoichiometry

(change in # 
molecules due to 

reaction)

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

X + Y → Z

Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

time = h x1 = xinit–1
y1 = yinit–1

(one reaction) (no reaction) (no reaction)

…

…

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

X + Y → Z
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Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

time = h x1 = xinit–1
y1 = yinit–1

(one reaction) (no reaction) (no reaction)

…

…

probability of one 
reactionderivative of average at 

t = h/2 ≈ 0
(recall that h is very small)

stoichiometry
(change in # X

molecules due to 
reaction)

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

X + Y → Z

Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

time = t x1 = ?
y1 = ?

…

…

stoichiometry
(change in # X

molecules due to 
reaction)

probability of one 
reactionderivative of average

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

x2 = ?
y2 = ?

x3 = ?
y3 = ?

M

X + Y → Z
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Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

time = h x1 = xinit–1
y1 = yinit–1

(one reaction) (no reaction) (no reaction)

…

…

initial 
value

change due to a 
single  reaction

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

X + Y → Z

Empirical interpretation of averages

time = 0

universe #1 universe #2 universe #3 …

x1 = xinit
y1 = yinit

time = h x1 = xinit–1
y1 = yinit–1

(one reaction) (no reaction) (no reaction)

…

…

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

x2 = xinit
y2 = yinit

x3 = xinit
y3 = yinit

probability of 
one reaction

change due to a 
single  reaction

X + Y → Z

cf. with
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Dynkin’s formula for Markov processes

probability of 
one reaction

derivative of average change due to a 
single  reaction

X + Y → Z

Dynkin’s formula for Markov processes

probability of 
one reaction

derivative of average

change due to one reaction

Multiple reactions: X + Y → Z

2 X → Z + Y

sum over all reactions
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A birth-death example

2 X → 3 X

X → ∅

2 molecules meet 
and reproduce

1 molecule 
spontaneously die

(does not capture finiteness of resources in a natural environment
1. when x too large reproduction-rate should decrease
2. when x too large death-rate should increase)

African honey bee

∅→ X

X → ∅

1 honey bee is born

1 honey bee dies

Stochastic Logistic model
(different rates than in a chemical reactions, 

but Dynkin’s formula still applies)

For African honey bees: a1 = .3, a2 = .02, b1 = .015, b2 = .001 [Matis et al 1998]
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Predicting bee populations

∅→ X 1 honey bee is born 1 honey bee diesX → ∅

t=0 t=Tt=h t=2h

(needs E[x(0)] 
& E[x(0)2])

(needs E[x(h)] 
& E[x(h)2])

Predicting bee populations

∅→ X 1 honey bee is born 1 honey bee diesX → ∅

t=0 t=Tt=h t=2h
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Predicting bee populations

∅→ X 1 honey bee is born 1 honey bee diesX → ∅

t=0 t=Tt=h t=2h t=3h

not sustainable if TÀ h

Moment truncation

Moment truncation ≡ Substitute E[x3] by a function ϕ of both E[x] & E[x2]

How to choose ϕ(·) ?

∅→ X 1 honey bee is born 1 honey bee diesX → ∅
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Option I – Distribution-based truncations

Suppose we knew the distribution was {BLANK}, then we could guess E[x3]
from E[x] and E[x2], e.g.:

Normal E[x3] = 3E[x2] E[x]− 2 E[x]3

Log Normal E[x3] =
³E[x2 ]
E[x]

3́

Binomial E[x3] = 2
(E[x2]− E[x]2)2

E[x]
− E[x2 ] + E[x]2+ 3E[x2]E[x]− 2E[x]3

Poisson E[x3] = E[x] + 3E[x2 ]E[x]−2 E[x]3

or E[x3] = E[x2]− E[x]2+ 3E[x2]E[x]− 2E[x]3

these equalities hold for every distribution of the given type

Option II – Derivative-matching truncation
Exact dynamics

Truncated dynamics

Select ϕ to minimize derivative errors

M
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Option II – Derivative-matching truncation

It is possible to find a function ϕ such that for every initial population xinit

There are a few “universal” ϕ, e.g.,
the above property holds

for every set of chemical reactions
(and also for every

stochastic logistic model)

We like Option II …

1. Approach does not start with an arbitrary assumption of the population 
distribution. Distribution should be discovered from the model.

2. Generalizes for high-order truncations:

It is possible to find a function ϕ such that for every initial population xinit

smaller and smaller 
error as n increases

but two options not incompatible (on the contrary!)
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Back to African honey bees

1 honey bee diesX → ∅

For African honey bees: a1 = .3, a2 = .02, b1 = .015, b2 = .001 [Matis et al 1998]

Errors in the mean for an initial population of 20 bees

2nd order truncations
(errors ≈ .01) 3nd order truncations

(errors \approx .001)

derivative-matching truncations
all derivative-matching truncations

non-derivative-matching truncation

∅→ X 1 honey bee is born

Back to African honey bees

X → 2 X 1 honey bee is born 1 honey bee diesX → ∅

For African honey bees: a1 = .3, a2 = .02, b1 = .015, b2 = .001 [Matis et al 1998]

Errors in the variance for an initial population of 20 bees

2nd order truncations
(errors ≈ .2) 3nd order truncations

(errors \approx .02)

derivative-matching truncations

all derivative-matching truncationsnon-derivative-matching truncation
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The Rock-Paper-Scissors island

Each person in the Island has one of three genes
This gene only affects the way they play RPS

Periodically, each person seeks an adversary and plays RPS
Winner gets to have exactly one offspring, loser dies (high-stakes RPS!)

Scenario I: offspring always has same gene as parent
Scenario II: with low probability, offspring suffers a mutation (different gene)

(total population constant)

The Rock-Paper-Scissors island

For a well-mixed population, this can be modeled by…

Scenario I: offspring always has same gene as parent

Scenario II: with low probability, offspring suffers a mutation (different gene)

R + P → 2 P with rate prop. to r . p
R + S → 2 R with rate prop. to r . s
P + S → 2 S with rate prop. to p . s

r ≡ # of
p ≡ # of
s ≡ # of

R + P → P + S with rate prop. to r . p
R + S → R + P with rate prop. to r . s
P + S → S + R with rate prop. to p . s
2 R    → R + P with rate prop. to r . (r – 1)/2
2 R    → R + S with rate prop. to r . (r – 1)/2
2 P    → P + R with rate prop. to p . (p – 1)/2
2 P    → P + S with rate prop. to p . (p – 1)/2
2 S    → S + R with rate prop. to s . (s – 1)/2
2 S    → S + P with rate prop. to s . (s – 1)/2

Q: What will happen in 
the island?
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The Rock-Paper-Scissors island

Scenario I: offspring always has same gene as parent

Scenario II: with low probability, offspring suffers a mutation (1/50 mutations)

Q: What will happen in the island?
Answer given by a deterministic formulation 
(chemical rate equation/Lotka-Volterra-like model)

far from correct…

close to correct but…

r(0) = 100, p(0) = 200, s(0) = 300

The Rock-Paper-Scissors island

Scenario II: with low probability, offspring suffers a mutation (1/50 mutations)

Q: What will happen in the island?
Answer given by a stochastic formulation (2nd order truncation)

r(0) = 100, p(0) = 200, s(0) = 300

mean populations

standard deviations

coefficient of correlation

Even at steady state, the populations oscillate significantly with negative coefficient of correlation
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The Rock-Paper-Scissors island

Scenario II: with low probability, offspring suffers a mutation (1/50 mutations)

Q: What will happen in the island?
Answer given by a stochastic formulation (2nd order truncation)

r(0) = 100, p(0) = 200, s(0) = 300

Even at steady state, the populations oscillate significantly with negative coefficient of correlation

one sample run (using StochKit, Petzold et al.)

What next?

Gene regulation:

Times to extinction/Probability of extinction: 
Sometimes truncations are poorly behaved at times scales for which 
extinctions are likely
(predict negative populations, lead to division by zero, etc.)

Temporal correlations:
Sustained oscillations are often hard to detected solely from steady-state 
distributions.

X → ∅

Gene_on → Gene_on + X

natural decay of X

Gene_on + X → Gene_off
X binds to gene and inhibits 
further production of protein X

protein X produced when gene is on

Gene_off → Gene_on + X X detaches from gene and activates 
production of protein X

(binary nature of gene allows for very effective truncations)


