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Talk outline

1. Stochastic hybrid systems (SHSs)
2. Examples:

• network traffic
• networked control systems
• biology

3. Analysis tools for SHSs
• Lyapunov-based methods
• moment dynamics
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Deterministic hybrid systems

guard
conditions

reset-maps

continuous
dynamics

q(t) ∈ Q={1,2,…} ≡ discrete state
x(t) ∈ Rn ≡ continuous state

we assume here a deterministic system so the invariant sets 
would be the exact complements of the guards

Stochastic hybrid systems

transition intensities
(probability of transition 
in interval (t, t+dt])

q(t) ∈ Q={1,2,…} ≡ discrete state
x(t) ∈ Rn ≡ continuous state

continuous
dynamics

reset-maps
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Example I: TCP congestion control

server clientnetwork

transmits
data packets

receives
data packets

TCP (Reno) congestion control: packet sending rate given by
congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast (slow-start)
• after first packet is dropped, w increases linearly (congestion-avoidance)
• each time a drop occurs, w is divided by 2 (multiplicative decrease)

packets dropped
with probability pdrop

congestion control ≡ selection of the rate r at which the server transmits packets
feedback mechanism ≡ packets are dropped by the network to indicate congestion

r

Example I: TCP congestion control

per-packet
drop prob.

pckts sent
per sec

× pckts dropped
per sec=

TCP (Reno) congestion control: packet sending rate given by
congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast (slow-start)
• after first packet is dropped, w increases linearly (congestion-avoidance)
• each time a drop occurs, w is divided by 2 (multiplicative decrease)
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many SHS models for TCP…

long-lived TCP flows
(no delays)

on-off TCP
flows with delay

long-lived TCP 
flows with delay

on-off TCP flows
(no delays)

[SIGMETRICS’03,CRC Press’06]

Stochastic hybrid systems with diffusion

stochastic
diff. equation

transition 
intensities

w≡ Brownian motion process

reset-maps
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packet-switched
network

Example II: Remote estimation

encoder decoder

white noise
disturbance

x
x(t1) x(t2)

process state-estimator

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

encoder ≡ determines when to send measurements to the network 

decoder ≡ determines how to incorporate received measurements

packet-switched
network

Example II: Remote estimation

encoder decoder

white noise
disturbance

x
x(t1) x(t2)

process state-estimator

Error dynamics:

reset error to zero

prob. of sending data in [t,t+dt)
depends on current error e

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

[CDC’04, CRC Press’06]
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Example III: Ecology

For African honey bees: a1 = .3, a2 = .02, b1 = .015, b2 = .001 [Matis et al 1998]

Stochastic Logistic model for population dynamics

x(t) ≡ number of individuals of a particular species

probability of a birth
in interval (t, t+dt]

probability of a death
in interval (t, t+dt]

x x

Example IV: Bio-chemical reactions

Why model chemical reactions inside cells?

I cells are dynamical systems controlled by chemical reactions

H state ≡ # of molecules of different species

S1, S2, …, Sn

N dynamics ≡ determined by chemical reactions inside the cell

Sα + Sβ + Sγ + … ⎯→ Sa + Sb + Sc + …

reactant species product species

Sα + Sβ ⎯→ 2 Sa

change in # of molecules
(stochiometry)

xα a x α – 1, xβ a x β – 1, xa a xa + 2

xi ≡ # of molecules of species Si

E.g.,

Some chemical species appear inside cell in very small numbers.
This greatly amplifies stochastic effects [A. Arkin, M. Khammash,…]

spatial location also 
matters, but I will not 

pursue this today
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Stochastic modeling of chemical reactions
Gillespie’s model:
x = (x1, x2, …, xn) ≡ continuous-time Markov process whose jumps 

correspond to chemical reactions

probability that reaction j will occur in the interval (t, t+dt]

[Gillespie 76, 92]

# of distinct combinations of 
reactant molecules in volume V

Sα → … aj(x) = xα
2 Sα → … aj (x) = xα (xα – 1)/2
Sα + Sβ → … aj (x) = xα xβ

constant that depends on
• temperature
• volume
• molecule masses

☺ There is significant structure in these Markov chains

Assumption:
well mixed system at thermal equilibrium
(justifiable by large number of non-reactive collisions between molecules)

Example IV: Bio-chemical reactions

Decaying-dimerizing chemical reactions (DDR):

SHS model population of 
species S1

population of 
species S2

reaction rates

S2 0S1 0 2 S1 S2

c1 c2
c3

c4
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Talk outline

1. A model for stochastic hybrid systems (SHSs)
2. Examples:

• network traffic
• networked control systems
• biology

3. Analysis tools for SHSs
• Lyapunov-based methods
• moment dynamics

Analysis—Lie derivative

Given scalar-valued function ψ : Rn × [0,∞) → R

derivative
along solution

to ODE
Lf ψ

Lie derivative of ψ

Basis of “Lyapunov” formal arguments to establish boundedness and stability…

E.g., picking

||x(t)|| remains bounded along trajectories !
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Generator of a SHS

Given scalar-valued function ψ : Q × Rn × [0,∞) → R

generator 
for the SHS

where

Lie derivative

reset term

Dynkin’s formula
(in differential form)

diffusion term

Disclaimer: see Nonlinear Analysis’05 for technical assumptions

instantaneous variation

intensity

Lyapunov-based stability analysis

For constant rate: λ(e) = γ (exp. distributed inter-jump times)

1. E[ e ] → 0 if and only if γ > <[λ(A)]
2. E[ || e ||m ] bounded if and only if γ > m <[λ(A)]

For polynomial rates: λ(e) = (e0 Q e)k Q > 0, k > 0 (reactive transmissions)

1. E[ e ] → 0 (always)
2. E[ || e ||m ] bounded ∀m

getting more moments bounded 
requires higher comm. rates

Moreover, one can achieve the same E[ ||e||2 ]
with less communication than with a constant 

rate or periodic transmissions…

[CDC’04, Birkhauser’06]

error dynamics
in remote estimation
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Moment dynamics

Lemma: For SHSs with vector fields, transition intensities and reset maps all 
polynomial, the (uncentered) statistical moments of the populations 
satisfy a system of linear ODEs, generally infinite dimensional

[HSCC'05, Proc. IEE’06]

Given a vector

uncentered moment 
associated with m

How to go beyond bounds and
study the dynamics of  means, variances, co-variances, etc.?

Moment dynamics

Stacking all moments into an (infinite) vector

infinite-dimensional linear ODE
for uncentered moments

mth order 
uncentered moment

Stochastic Logistic model 
for population dynamics birth death
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Moment closure problem

Suppose one only wants to study the 1st & 2nd order moments: 

truncated dynamics
(incomplete system)

Moment closure problem: find function ϕ such that    μ3 ≈ ϕ (μ1,μ2)

moment closure function

mth order 
uncentered moment

Stochastic Logistic model 
for population dynamics birth death

Derivative-matching moment closure

From a Taylor series expansion:  Given 
• desired precision δ > 0
• (compact) time interval [0,T ]

there integer K > 0 such that if 

then

infinite-dimensional linear ODE

truncated linear ODE
(nonautonomous, not nec. stable)

nonlinear approximate
moment dynamics

When will μ remain close to ν (at least locally in time) ?

(under appropriate regularity assumptions)
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From a Taylor series expansion:  Given 
• desired precision δ > 0
• (compact) time interval [t0,T ]

there integer K > 0 such that if 

then

Derivative-matching moment closure
infinite-dimensional linear ODE

truncated linear ODE
(nonautonomous, not nec. stable)

nonlinear approximate
moment dynamics

Design ϕ to keep μ close to ν (at least locally in time) …

From a Taylor series expansion: 

Things can be even better: assuming that:

1. infinite-dimensional system is asymptotically stable

2. derivative matching holds for sufficient large (but finite!) K

3. derivative matching holds for a “rich” set of initial conditions

Then the δ-bound holds uniformly on [0,∞) 

[HSCC'05,Proc. IEE’06]

Can we construct ϕ for which we have 
derivative matching over a “rich” set of initial conditions?

For chemical reactions, almost!

(under appropriate regularity assumptions)

Single-species, nth-order truncation

truncated linear ODE nonlinear approximation

It is possible to find functions ϕ such that for every initial population xinit

There are a few “universal” ϕ, e.g., n = 2

independent of  initial condition 
xinit and set of reactions

[CDC’05, sub. to Bull. Math. Bio.]

Analogous result for general multi-species reactions
but the formula for the error is more messy… [sub. to CDC’06]

most previous 
methods for truncation 

were limited to n=2
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Monte Carlo vs. truncated model
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populations correlation coefficient

E[x1]

E[x2]

Std[x1]

Std[x2]

ρ[x1,x2]
(lines essentially

undistinguishable 
at this scale)

Parameters from: Rathinam, Petzold, Cao, Gillespie, Stiffness in stochastic chemically reacting 
systems: The implicit tau-leaping method. J. of Chemical Physics, 2003

Fast  time-scale
transient

S1 0
c1

S2 0
c2

c3

2 S1 S2

c3

c4

Decaying-dimerizing 
reaction set (DDR):

Monte Carlo vs. truncated model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

populations means

populations standard deviations

populations correlation coefficient

E[x1]

E[x2]

Slow  time-scale
evolution

Std[x1]

Std[x2]

ρ[x1,x2]

error only noticeable in corr. coef. 
and with very small populations

(“sub-molecule” of x2)

Parameters from: Rathinam, Petzold, Cao, Gillespie, Stiffness in stochastic chemically reacting 
systems: The implicit tau-leaping method. J. of Chemical Physics, 2003

S1 0
c1

S2 0
c2

c3

2 S1 S2

c3

c4

Decaying-dimerizing 
reaction set (DDR):
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Conclusions

1. A simple SHS model that finds use in several areas
(traffic modeling, networked control systems, molecular biology,
population dynamics in ecosystems)

2. The analysis of SHSs is challenging but there are tools available
(generator, Lyapunov methods, moment dynamics, truncations)

3. Lots of work to be done: 
1. computable worst-case bounds on approximation errors
2. study of oscillatory behavior
3. study of time-to-extinction
4. modeling of spatial processes…

Related topics that were omitted in this talk…
• Communication constraints and latency in Networked Control Systems
• Game theoretical approaches to network security (stochastic policies) 

Talks on these topics available at
http://www.ece.ucsb.edu/~hespanha
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