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Outline

1. Feedback control over a digital channel with limited bit-rate:
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digital
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2. Decentralized cooperative control with limited message-rate and delays
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node
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Control with finite bit-rate
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Motivation: Control of systems with sensors and actuators far from each other, 
connected by a digital network.
E.g., control of an autonomous flying vehicle using measurements from a camera on the ground.



Control with finite bit-rate
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Questions:
1. What is the minimum bit-rate for which stabilization (boundedness) is possible?
2. How to divide the bits among the distinct components of the output?
3. How to choose quantization intervals?

average bit-rate ≡
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Minimum bit-rate

encoderdecoder

u(t) y(t)yq(t)
no noise/disturbance

bk∈{0,1}

Theorem: Stabilization is not possible with average bit-rate smaller than

average bit-rate ≡

continuous-time process

discrete-time process
[Tatikonda & Mitter]

λi ≡ eigenvalues of A



Proof outline
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A stable

component of x in – goes 
to zero without control

∴ we will assume that all eigenvalues of A have real part ≥ 0

x decays to zero 
without control⇒

minimum bit-rate is 
zero (just set u ú 0)⇒

A has asympt. stable 
inv. subspace – ⇒ ⇒

can reduce A to its 
unstable inv. subspace



Proof outline

encoderdecoder
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y(t) = x(t)yq(t)

0

1

2x(t0)

x(t1)

x(t2)

0 ≡ set to which x(t0) is known to belong after bit b0 is received
1 ≡ set to which x(t1) is known to belong after bit b1 is received    …



Proof outline

encoderdecoder

t0 t1 t2 t3
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y(t)yq(t)

Case 1: For some k, k has a single element
⇒ could take x to zero (even in finite time) after tk

Case 2: As k → ∞,  ρ(k) → 0
⇒ could take x to zero as k→∞

Case 3: As  k→ ∞,  ρ(k) unbounded
⇒ no matter what control we use, x(tk) is unbounded

diameter of k

0 ≡ set to which x(t0) is known to belong after bit b0 is received
1 ≡ set to which x(t1) is known to belong after bit b1 is received    …



Case 1: For some k, k has a single element
⇒ could take x to zero (even in finite time) after tk

Case 2: As k → ∞,  ρ(k) → 0
⇒ could take x to zero as k→∞

Case 3: As  k→ ∞,  ρ(k) unbounded
⇒ no matter what control we use, x(tk) is unbounded

Proof outline

encoderdecoder

t0 t1 t2 t3

b0 b1
b2

b3
b4

t4 t

y(t)yq(t)

bit rate · rmin ⇒ µ(k) unbounded ⇒ ρ(k) unbounded Stabilization 
not possible⇒

diameter of kvolume of k

Main idea:

0 ≡ set to which x(t0) is known to belong after bit b0 is received
1 ≡ set to which x(t1) is known to belong after bit b1 is received    …

diameter of k



Proof outline
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before bk+1 is received, it is only known that

∈ k

volume of kvolume of –
k+1



Proof outline

tk tk+1

bk
bk+1

t

uk
before bk+1 is received, it is only known that

∈ k

Q: Which coding would make µ(k+1)
as small as possible?

A: Divide –
k+1 into two sets of equal volume 

& use bit bk+1 to locate x(tk+1) in one of them

coding that minimizes volume

volume of kvolume of –
k+1



Proof outline

tk tk+1
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At best…

with = only for coding 
that minimizes 

volume

iterating…

explodes if average
bit-rate is smaller than 



Minimum bit-rate

encoderdecoder

u(t) y(t)yq(t)

bk∈{0,1}

Theorem: Stabilization is not possible with average bit-rate smaller than

average bit-rate ≡

continuous-time process

discrete-time process
[Tatikonda & Mitter]

λi ≡ eigenvalues of A

no noise/disturbance



Minimum bit-rate

encoderdecoder

u(t) y(t)yq(t)
no noise/disturbance

bk∈{0,1}

Theorem: Assume A is diagonalizable

1. It is possible to keep the state bounded with any 
average bit rate larger or equal to rmin

2. It is possible to make the state converge to zero with 
any average bit rate strictly larger than rmin

average bit-rate ≡

previous bound
is tight

But … minimum volume coding may not work because 
unbounded volume ⇒ unbounded diameter
bounded volume ; bounded diameter



Encoding/decoding schemes

encoderdecoder

u(t) y(t)yq(t)

wk∈{1,…,N}

d(t) n(t)

Assume: closed-loop is stable for “transparent” encoding/decoding, i.e.,
A + B K asymptotically stable

Questions:
1. How to design the encoder/decoder pair to make the closed-loop stable? 
2. How much larger than rmin does the bit-rate need to be for stability?

Ts ≡ (fixed) sampling interval bit-rate ≡



State-prediction coding

encoderdecoder
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Inspired by Differential Pulse Code Modulation (DPCM)…

1. Encoder and decoder maintain consistent estimates of the state, based only on 
the quantized information sent to the decoder.

2. At sampling times, the difference between the measured state and its estimate 
(based on previously transmitted data) is quantized and transmitted digitally.
(hopefully state estimation error has smaller dynamic range than state itself)

3. Upon transmission, the state-estimates are corrected using the quantized error.



State-prediction coding

encoderdecoder

u(t) y(t)yq(t)

d(t) n(t)

wk∈{1,…,N}

process estimate

1. Encoder and decoder maintain consistent estimates of the state, based only on 
the quantized information sent to the decoder.



State-prediction coding

encoderdecoder

u(t) y(t)yq(t)

d(t) n(t)

wk∈{1,…,N}

1. Encoder and decoder maintain consistent estimates of the state, based only on 
the quantized information sent to the decoder.

2. At sampling times, the difference between the measured state and its estimate 
is quantized and transmitted digitally.

y
–

A2D
TsQ

smaller dynamic range



State-prediction coding

encoderdecoder

u(t) y(t)yq(t)

d(t) n(t)

wk∈{1,…,N}

1. Encoder and decoder maintain consistent estimates of the state, based only on 
the quantized information sent to the decoder.

2. At sampling times, the difference between the measured state and its estimate 
is quantized and transmitted digitally.

3. Upon transmission, the state-estimates are corrected using the quantized error:

without quantization (Q = identity) 
and noise, we would have



Encoder/decoder pair

y

–
A2D

Q
D2A

encoder decoder

1. Encoder and decoder maintain consistent estimates of the state, based only on 
the quantized information sent to the decoder.

2. At sampling times, the difference between the measured state and its estimate 
is quantized and transmitted digitally

3. Upon transmission, the state-estimates are corrected using the quantized error.



Fixed-step quantization

Ki ≡ # of quantization levels used for the ith component of 

i ≡ saturation level for the ith component quantizer

Ki levels
(equidistributed)

i

# of words needed ≡ bit-rate ≡

For simplicity…
• assume A diagonal with real eigenvalues
• quantize the vector by using a scalar quantizer on each of its components

If A was not diagonal one would precede the component-
wise quantization by a diagonalizing linear transformation

(see [JH, Ortega, Vasudevan, 02]
for case of A with complex eigenvalues)



Fixed-step quantization

Theorem: The state of the closed-loop system will remain bounded provided that

ηi, δi ≡ constants that depend on upper 
bounds on the noise/disturbance

&
# of quant. levels

quantizer saturation level

λi large ⇒ eλi Ts large  ⇒ Ki large ⇒ many bits needed for ith eigenspace

bit allocation…



Fixed-step quantization

Theorem: The state of the closed-loop system will remain bounded provided that

ηi, δi ≡ constants that depend on upper 
bounds on the noise/disturbance

&

bit-rate ≡
# of symbols

bit-rate approximately rmin
when i À ηi+δi

(but course quantization
leads to large x even

without noise/disturbance)

required bit-rate…

# of quant. levels

quantizer saturation level

λi large ⇒ eλi Ts large  ⇒ Ki large ⇒ many bits needed for ith eigenspace

bit allocation…



Variable-step quantization

Ki ≡ # of quantization levels used for the ith component of 

i(k) ≡ saturation level for the ith component quantizer at sampling time tk

Ki levels
(equidistributed)

i

# of words needed ≡ bit-rate ≡

For simplicity…
• assume A diagonal with real eigenvalues
• quantize the vector by using a scalar quantizer on each of its components

If A was not diagonal one would precede the component-
wise quantization by a diagonalizing linear transformation

(see paper for case of A with complex eigenvalues)



Variable-step quantization

Theorem: The state of the closed-loop system will remain bounded provided that
ηi, δi ≡ constants that depend on upper 

bounds on the noise/disturbance

bit allocation…

required bit-rate…

λi large ⇒ eλi Ts large  ⇒ Ki large ⇒ many bits needed for ith eigenspace

bit-rate minimum rate can be achieved !!!



Conclusions

processcontroller

encoderdecoder
digital channel

There exists a minimum rate below which stabilization is not possible

We proposed encoder/decoder pairs (inspired by DPCM) that can achieve 
rates arbitrarily close to the minimal

Variable-step quantization allows one to achieve the minimum bit rate

Performance/robustness vs. bit-rate 
tradeoffs are still poorly understood

Need to investigate problem in 
stochastic setting (Will entropy-like 

coding work with lower rates?)



Distributed Control

process process process

controller
node

controller
node

controller
node

spatially distributed
process to be controlled

(e.g., autonomous vehicles)

controller couplings
supported by a

communication network

physical
couplings

• minimize controller communication (stealth, bandwidth)
• study the effect of nonideal communication (delays, drops, blackouts)

sensing
actuation



Scenarios

Rendezvous in minimum-time 
or using minimum-energy 
(in spite of disturbances)

Group of autonomous agents 
cooperate in searching for a target

(perhaps mobile—search & pursuit)



Communication minimization

The “every bit-counts” paradigm…

The “cost-per-message” paradigm…

controller
node

controller
node

controller
node controller couplings

supported by a
communication network

Goal: Design each controller to minimize the number of bits/second that 
need to be exchanged between nodes (quantization, compression, …)

Domain: Media with little capacity and low-overhead protocols (bit at-a-time) 
E.g., underwater acoustic comm. between a small number of nodes.

Goal: Design each controller to minimize the number of message exchanges
between nodes (scheduling, estimation, …)

Domain: Media shared by a large number of nodes with nontrivial media 
access control (MAC) protocol (packet at-a-time)
E.g., 802.11 wireless comm. between a large number of nodes.
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Prototype problem

process process process

controller
node

controller
node

controller
node

In this talk:

decoupled linear processes
(with stochastic disturbance d)

coupled quadratic control objective

notation: x+ ≡ x(k+1)



Prototype problem

process process process

controller
node

controller
node

controller
node

coupled quadratic control objective

E.g., rendez-vous of two vehicles
notation: x+ ≡ x(k+1)

In this talk:

decoupled linear processes
(with stochastic disturbance d)



Prototype problem

Completely decentralized solution

process process process

controller
node

controller
node

controller
node

Minimum-cost solution (centralized)

In this talk:

decoupled linear processes
(with stochastic disturbance d)



Communication performance trade-off
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minimum comm. needed  for solvability
(zero, when decentralized solution yields finite cost)

minimum-cost 
(centralized)

optimal
communication

achievable
cost/comm. pairs

nonachievable
cost/comm. pairs

communication



Centralized architecture

jth external process

for simplicity here we assume 
only two processes

constant communication between 
local and external process(es)

Closed-loop system

ith local process

ith local controller



Estimator-based distributed architecture

ith local process

ith local estimator for 
jth external process

ith local controller continuous open-loop estimator
with discrete “updates” from the network

additive perturbation w.r.t centralized equations

jth external process

Closed-loop system

[Yook & Tilbury, 
Montestruque & 
Antsaklis, Xu & JH] 



Communication logic

ith local estimator for 
jth external process

fusion
logic

sched.
logic

ne
tw

or
k

When to send data?How to fuse data?

With no noise & delay (for now…)

xj(k) received from
network at time k

⇓

“best-estimate”
based on data received

⇓

Options…
• periodically

aj(k) = {k divisible by T ?}, T ∈ N
• feedback policy

aj(k) = F (xj(k), …)
• “optimal” …

Scheduling logic action

jth external process



relative weight of two criteria
(will lead to Pareto-optimal solution)

Optimal Scheduling Logic

Goals:
minimize the estimation error ⇒ minimize cost-penalty w.r.t. centralized
minimize the number of transitions ⇒ minimize communication bandwidth

average L-2 norm average transmission rate

ith local estimator for 
jth external process

fusion
logic

sched.
logic

ne
tw

or
k

jth external process

d is Gaussian i.i.d. with zero 
mean and covariance Σ



Dynamic Programming solution

undiscounted
average-cost problem

Theorem

1. There exists J* ∈ R and bounded h* : Rn→ R such that

2. J* is the optimal cost and is achieved by the (deterministic) static policy

3. h can be found by value iteration

dynamic programming
(DP) operator



Proof outline:
1. e(k) is Markov and its transition distribution satisfies an Ergodic property

(requires a mild restriction on the set of admissible policies omitted here)
2. T is a span-contraction [Hernandez-Lerma 96]
3. Result follows using standard arguments based on Banach’s Fixed-Point 

Theorem for semi-norms.

Dynamic Programming solution

Theorem

1. There exists J* ∈ R and bounded h* : Rn→ R such that

2. J* is the optimal cost and is achieved by the (deterministic) static policy

3. h can be found by value iteration

dynamic programming
(DP) operator



-10 -5 0 5 10
-10

-5

0

5

10

Example (2-dim)

optimal scheduling
λ = 100

a(k) = 0
a(k) = 1

not ellipses!

e1

e2

local process
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Example (2-dim)

optimal scheduling

λ = 10

λ = 100

a(k) = 0

a(k) = 1

e1

e2

large weight in comm. cost
⇓

large error threshold
⇓

only communicate 
when error is very large

local process



Communication with latency

ith local estimator for 
jth external process

fusion
logic
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delay of τ

sched. logic 
sends xj(k)

k k+τ

fusion logic 
recs. xj(k)

k+τ+1

xj(k) is 
incorporated 
into estimate

τ = 0 in previous case

jth external process



Example (1-dim)

with network latency
same error variance 

requires more bandwidth.1 .25 .510
-1

10
0

10
1

10
2

communication rate

es
tim

at
io

n 
er

ro
r v

ar
ia

nc
e

τ = 1

τ = 0

τ = 3
τ = 2

optimal scheduling

estimation error, given 
all information enroute

optimal
comm. vs. estim. error

trade-off



Conclusions

We constructed communications logics that minimize communication
(measured in messages sending rate)

We considered networks with (fixed) latency

process process process

controller
node

controller
node

controller
node

communication network

Study the effect of packet losses
(especially important in wireless networks)

Coupled control/communication-logic design

Nonlinear processes

Papers available at http://www.ece.ucsb.edu/~hespanha


