Dynamic Programming Lecture #1

Outline:
e Problem formulation(s)
e Principle of optimality

e |ssues and variations



Motivation: Staged Optimization

e Q: How to formulate optimization for problems that occur in “stages”?

e “Standard” Optimization:
raléiél J(6)
— Cost function: J(0) = J(64,...,6,)
— Variables: (04,...,0,) =10

— Constraints: # € ©
e Examples: Best fit of experimental data, variation of design parameters, etc.

e Example: Shortest Path
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— Setup: Hop from one node to next
— Define: ﬁfj & distance from node i to j at stage k
— Objective: Minimize

K-l
> gij
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— Tradeoff: Immediate distance versus future distances



Nondeterministic Path Evolution

e Setup: Hop from one node to next, but
ACTUAL DESTINATION = DESIRED DESTINATION +1, +0, -1

i.e., uncertain evolution
e Consequences

— Cost function Z,f;ol f’fj not fully specified
— Must specify “contingency” rules

— Must model nondeterminism



Example: Inventory Control

e Inventory model:

T =x4+u—D

tomorrow'’s inventory = today's inventory + production - demand

e Cost:

N

Z CposTpos + CnegTneg
k=0

— x > (0 = storage cost
— x < 0 = backlog cost

e Demand d € {0, diow, dnign }
e Decisions:

— How much to produce?
— How to model demand?



Modeling Nondeterminism

e Let 7 denote a “policy”, i.e., a set of contingency rules
e Let w denote nondeterministic elements

e Overall cost is a function of both:

J(m, w)
e How to model w?
— Random:
min E,, [J(7, w)]
— Worst case:

min max J (7, w)
™ w

— Risk sensitive: 0 < a < o0
mﬂin E, [eaJ(ﬂ',w)}

— Game theoretic: w penalized according to G(7,w) (is G(-) known?)
e Examples

— Series of coin tosses: {1, 7,7, H,T,H,T,T,...}
_ Payoff: 2ﬁrst occurrence of H

— “Expected” payoff with fair coin:
(1/2) -2+ (1/4)-22 +(1/8)-2° + ... = 0
— Risk sensitive reward with fair coin: log(payoff) (discounts large rewards)
(1/2)1log(2) + (1/4)log(2%) + (1/8)log(2*) + ... < 0o

— Worst case payoff =1
— Game theoretic payoff?

e How to model w in inventory control?



Example: Asset Management

e Have property...get buy offer: wy
e Do we sell? hold?
e Costs:

— If we hold, we must pay to keep on market
— If we hold until end, we must accept final offer

— If we sell, we may miss future offers
e Model of offers: wj, € {Wigw, Wid, Whigh } With probabilities.

e Similar to “parking lot” dilemma



Example: Hypothesis Testing

e Gambling game involving opponent with dice.
e Two possibilities:

1. Rolling fair dice
2. Rolling crooked dice

e Q: Is opponent cheating?
e Costs:

— |If we make correct conclusion, we are rewarded
— If we make incorrect conclusion, we are penalized

— If we continue to play, we are penalized
e COMMON THEME: Distinction from “standard” optimization

— Staged evolution

— Uncertain evolution



Principle of Optimality
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e Optimal course for subproblem = tail of optimal original problem
e Why? If not, then original course can be improved

e Utility: Reduction in computations

e Introduce “terminal node” t

e Define Ji(i) = minimum distance from node i to ¢ starting at stage k

e Clearly
In(1) = by,
In(2) = by
In(3) = l3

(no choice)



Principle of Optimality, cont (2)

e How to compute Jy_1(1)? Compare...

=0y + N (1)
- gi\g_l + JN(Q)
— K‘{\é_l + JN(?))

e Jy_1(1) is smallest of 3 choices

e How to compute Jy_o(1)7

o >® o
A
® ® ® )
* t
o [ O
N-2 N-1 N

e Total # of paths = 9...but only need to check 3!
— Kﬁ_Q + JN_l(l)
— 572+ In-1(2)
— f{\g_B + JN_1(3)



Principle of Optimality, cont (3)

e Can proceed backward to compute Jy_3(i),. .., J1(7)
e Minimum total cost from start node s? Compare...

_ 651 + Jl(l)
— Ly + J1(2)
— U3+ J1(3)

e Compare: N stages & m nodes = m” # paths
e Using DP: # comparisons-per-stage = m? = Nm? total comparisons

e Principle of optimality DISQUALIFIES all but optimal “tails”



Issues & Variations

e Generalization: Main idea is “simply” principle of optimality
e Key question: How to REPRESENT different optimization to fit DP framework.

e Random element: Presence of stochastic/random behaviors in evolution of stages must
be modeled.

e Information: What is optimal policy given limited information about current situation?

e Horizon: What if there is no clear “termination” stage?
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e ““h(xp) vs lim — h(xy.
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e Curse of dimensionality: Dynamic programming reduces search...but still can be huge.



