Dynamic Programming Lecture #2

Outline:

e Deterministic DP
e |llustrations

e Extensions



Deterministic DP Framework

e System:
Trr1 = [, ur)
— State: x, € S;
— Control (decision): uy € Ug(zy)

e Objective:

J*(z9) = mingo(xo,uo) + ...+ gn-1(xn_1,un—1) + gn(TN)

N-1
= mingn(zn) + > gz, ur)
k=0
def
— gr(zk, up) = stage cost
— gn(zN) def terminal cost
—[0,...,N] ¥ (finite) horizon
e Issue: Minimize over what?

— Open-loop viewpoint: Given xg, produce {u,...,ux_1}
— Feedback viewpoint: Produce {yj, ..., uy_;} and implement

up = pp(zr), where uy @ Sy — Uk(xy)

— In case of no uncertainty (randomness, disturbances, etc), two are SAME.



Deterministic DP Framework, cont (2)

e Example:
Thel = ;a:k +ug, xp=1
— Compare:
u=1/2,uy =1/2,...;uy_1 =1/2
up = pu () = (1/2)z
— BOoTH lead to z1,...,ay =1 if g =1

— DIFFERENT trajectories if zg # 1, eg
{2,3/2,5/4,9/8,17/16,...} vs {2,2,2,...}
e We will use POLICIES in anticipation of future discussion.
e Principle of optimality:

— Full problem:
Tr1 = fr(@r, up)

N-1
o UL gn(xN) + kz::O i (T, pr(r))

where . : S — Uk(xp)
— Partial problem:
. N-1
pin gy (o) + Ek 9 (2. pi(zp)
—If {ul, ..., w_1} is optimal for full problem, then the “tail” {uj,...,uy_1} must
be optimal for for partial problem.



DP Algorithm

e THEOREM: Define
In(zy) = gn(zy)
Jp(xr) = min  gr(ar, ug) + Jee1 (fr(zr, ur))

ukEUk(mk)

Then
— J*(x0) = Jo(o)
— pp(xr) = arg My, v, (a1, gr(xr, ug) + o1 (fr(zr, ug))
e Comments:

— Algorithm produces optimal cost AND policies.
— One multistage problem converted into several 1-stage problem.
— Associate Jy(xx) as “optimal cost-to-go” starting from zy, i.e., partial solution:

N-1
Jo(wr) =, min_gy(zn) + 32 gi(wg, mi(zp))
k=k

e Proof:

— Assume Ji.1 is optimal cost-to-go, i.e., solution to subproblem.
— Jy(zn) = gn(xn) is indeed optimal cost-to-go.

N-1
min  gy(xy) + Z gi (@, pi(xy))

Mk s MN -1
k=k

- H/gn (9k<xkaﬂk(xk))+ min (QN(ZL"N)+ Nil 91;(5’31%>N12(5”l%))))

Hk+15-- s MN—1

k=k+1

= min i (xr, p(zr)) + i1 (Ths1)

=  min gr(xp, ur) + S (f(2r, ug))

ukEUk(xk)

© gz



Formulation Examples

e Shortest path:
Th+1 = U

(@, u) = L5
gn(zn) =0
— Ui(z) defines connectivity
— OR can set (% = oo for illegal jumps
e Can exploit shortest path algorithms (tailored DP).
e Example: Matrix multiplication (problem 1.16).

— Cost to multiply A x B: # rows(A)x # cols(A)x # cols(B)
— Consider

( M1 My ) M3 = 20 multiplications
= M ( M3Ms) = 200 multiplications

— What is optimal sequence to multiply M = MM, ... My?
— Two formulations:

1. Split products allowed:
M = (MyMs)(M3sMy)

2. Split products not allowed:

M = My ((MsMs)My)



Matrix Example

2-strings 3-strings
L °
N-1 strings
L °
Start o End
[ J
o °

e Split products not allowed...what is state?

— 2-strings: {(M1M3), (MsMs), ...}

— 3-strings: {(M1MyMs3), (MyMsMy), ...}

— N — 1-strings: {(My...Mn_1),(My...My)}
— Can define cost of node jump.

— Not all nodes connected.

e Split products allowed...what is state?



Traveling Salesman

e Given N cities, minimize total distance to visit each city once starting from S and ending
at S.

2-strings 3-strings N-strings
[ ] Y °
[ ] ® °
s End
([ ] ® { ) i
[ ] ° °

e What is state?
e Example: {S, A, B,C, D}

— 2-strings: {SA,SB,SC,SD}
— 3-strings: {SAB,SAC,SAD,SBA,SBC,SBD, ...}
— N-strings: {SABC,SABD,SACB,SACD,SBAC,...}

e N! different paths



Variations

e Multiplicative positive cost:

J = go(xo, po(wo)) X ... X gn(TN)

— Since log(+) is monotonic, equivalent cost:

J = log(go(wo, po(z0)) X ... X gn(7N))
= log(go(wo, %0(1330)) + ... +log(gn(zn))

= gn(zn) + kZ_O 9(xr, pr(rr))

— Do not have principle of optimality for nonnegative multiplicative costs!

e History dependent controls: Today's decision constrained by yesterday's decision.

2 — <$k+1> _ (fk(%ﬂk))

Uk+1 Uy,

— What is state?

— Constraint uy, € U(x}®) = U(xg, vg) = U(zg, up—1)

— Can similarly augment history dependent (random) disturbances.



Variations, cont (2)

e Terminating processes:

— Play until end:
N—1

J =gn(zy) + kzo I (v, pr(r))

OR terminate early:
k/,*

J=T+ > ge(wk, p(xr))
k=0

— Augment state space: 7 & ur

— New state dynamics:

Trpr = filzg, ug)
_ {fk(xk,uk) ), # o7 and uy, # ur;
xTr T = X O U, = UT

— New stage cost:

gr(xp, up)  xp # xp and wy, # ur;
gp(Tp,up) =3 T xp # o7 and uy = ur;
0 T = XT

— New terminal cost:

v(oy) = { Vo) a7



