
Dynamic Programming Lecture #6

Outline:

• Worst case DP

• Stochastic DP preview

Deterministic DP Review

• System:
xk+1 = fk(xk, uk)

– State: xk ∈ Sk
– Control (decision): uk ∈ Uk(xk)

• Policy shorthand: π = {µ0, µ1, ..., µN−1}

µk : xk → uk ∈ Uk(xk)

• Cost of policy π:

Jπ(x0) = gN(xN) +
N−1∑
k=0

gk(xk, µk(xk))

• Optimization:
J∗(x0) = min

π
Jπ(x0)

• Value iteration:
JN(xN) = gN(xN)

Jk(xk) = min
uk∈Uk(xk)

g(xk, uk) + Jk+1)(fk(xk, uk))

• Principle of optimality:
J∗(x0) = J0(x0)

Jk(xk) = optimal cost-to-go at stage k

µ∗k(xk) = argmin g(xk, uk) + Jk+1(fk(xk, uk))

Minimax/worst-case formulation

• Setup:
xk+1 = fk(xk, uk, wk)

uk ∈ Uk(xk)
wk ∈ Wk(xk, uk)

• Cost of policy:

Jπ(x0) = max
w0,w1,...,wN−1

gN(xN) +
N−1∑
k=0

gk(xk, µk(xk), wk)

• Optimization:
J∗(x0) = min

π
Jπ(x0)

• New element: Adversarial Disturbance

– Disturbance seeks to maximize cost

– Control commits to policy before disturbance acts

– Very different from control commits to actions

– Disturbance can be constrained by state/control

• Motivation:

– Design guarantees/verifiable performance

– Strategic interaction

Examples

• Disturbance rejection:
xk+1 = Axk +Buk + Lwk

|wk| ≤ 1

Objective:
min
π

max
w

max
k≥0
|Cxk|

• Switching systems:
xk+1 = A(wk)xk +Buk

A(wk) ∈
{
A1, A2, ..., Am

}
Objective:

min
π

max
w

max
k≥0
|Cxk|

• More sophisticated disturbance model:

|wk+1 − wk| ≤ ρ

• “Disturbance” need not be adversarial, but worst case formulation provides guarantees

Rational & Adversarial Disturbances

• Pursuit/Evasion:
pk+1 = Appk +Bpuk (pursuer)

ek+1 = Aeek +Bewk (evader)

Objective:
min
π

max
e
|C(pk − ek)|

• Strategic games (chess, go, etc)

• Questioning rational models: Centipede game

u w u w

1,-1 -5,5 2,-2 -4,4

C

Q

C

Q

C

Q

C

Q . . .
(1,0) (0,2) (2,1) (1,3)

– C = Continue, Q = Quit

– Reward to (u,w) is (v,−v)
– Rational model of opponent forces u to immediately quit...even after observing mul-

tiple missteps!?

Value Iteration

• Setup:
xk+1 = fk(xk, uk, wk)

uk ∈ Uk(xk)
wk ∈ Wk(xk, uk)

• Cost of policy:

Jπ(x0) = max
w0,w1,...,wN−1

gN(xN) +
N−1∑
k=0

gk(xk, µk(xk), wk)

• Optimization:
J∗(x0) = min

π
Jπ(x0)

• Value Iteration:
JN(xN) = gN(xN)

Jk(xk) = min
uk∈U(xk)

max
wk∈W (xk,uk)

g(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

Note: Left to right = order of commitment

• Theorem:

– J∗(x0) = J0(x0)

– µ∗k(xk) = argminuk∈U(xk)maxwk∈W (xk,uk) g(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

Minimax Lemmas

• Fact: (minimax inequality)

min
x∈X

max
y∈Y

G(x, y) ≥ max
y∈Y

min
x∈X

G(x, y)

Inspect: For any (x, y)

max
y
G(x, y) ≥ G(x, y) ≥ min

x
G(x, y)

LHS depends only on x & RHS depends only on y

min
x

LHS(x) ≥ max
y

RHS(y)

• Fact: (minimax exchange)

min
µ(·)

max
w

G(µ(w), w) = max
w

min
u
G(u,w)

Know
min
µ

max
w

G(µ(w), w) ≥ max
w

min
µ
G(µ(w), w) = max

w
min
u
G(u,w)

Use
µ∗(w) = argmin

u
G(u,w)

to show equality

Proof of Value Iteration

• Special case: N = 2

• J2(x2) = g2(x2)

• J1(x1) = minu1 maxw1
g1(x1, u1, w1) + J2(f1(x1, u1, w1))

• J∗0 (x0) =
min
µ0

min
µ1

max
w0

max
w1

G′(µ0, µ1, w0, w1;x0)

• Define
G(µ0, µ1, w0;x0) = max

w1
G′(µ0, µ1, w0, w1;x0)

• Now faced with
min
µ0

min
µ1

max
w0

G(µ0, µ1, w0;x0)

Note that for x0 and µ0 specified, x1 is effectively a function of w0

• Apply minimax exchange and restate G′

min
µ0

max
w0

min
u1

max
w1

G′(·)

• Expand definitions to show that

J∗0 (x0) = J0(x0)

Example

• Scalar linear system:
xk+1 = xk + uk + wk, |wk| ≤ 1

g(x, u, w) = |x|+ (3/2) |u|
gN(x) = |x|
N = 2

• J2(x) = |x|

• J1:

– J1(x) = minumax|w|≤1 |x|+ (3/2) |u|+ |x+ u+ w|
– Worst case w aligned with x+ u

– Best case u at vertex, either u = 0 or u = −x
– Compare:

u = 0 : |x|+ 0 + |x|+ 1

u = −x : |x|+ (3/2) |x|+ 1

– Therefore,
J1(x) = 2 |x|+ 1 & µ∗1(x1) = 0

• J0:
J0(x) = min

u
max
|w|≤1
|x|+ (3/2) |u|+ 2 |x+ u+ w|+ 1

u = 0 : J0(x) = |x|+ 0 + 2 |x|+ 2 + 1

u = −x : J0(x) = |x|+ (3/2) |x|+ 2 + 1

• Therefore,
J0(x) = (5/2) |x|+ 3 & µ∗0(x) = −x

Stochastic DP Preview

• Objective: Study systems with random phenomena.

• Example: Inventory control
xk+1 = xk + uk − wk

– x =

{
inventory x > 0
backlog x < 0

– u = production

– w = demand

– Total cost:

R(xN) +
N−1∑
k=0

r(xk) + cuk

terminal cost + sum of stage cost & production cost

• How to model w?

– Worst case:
min

µ0,...,µN−1
max
w∈W

etc

– “Random”:
min

µ0,...,µN−1
E(etc)

– E def= expected value = average cost over lots of experiments

• Random formulation is a model (not necessarily reality) that expresses unwillingness/futility
of pursuing a more detailed model.

