
Dynamic Programming Lecture #7

Outline:

• Stochastic DP algorithm

• Simple example

• Repeated prisoner’s dilemma

• LQ optimal control



Stochastic DP

• System:
xk+1 = fk(xk, uk, wk)

xk ∈ Sk, uk ∈ Uk(xk), wk ∈ Wk(xk, uk)

• Assume:

– wk is an RV on some probability space Ωk

– Probability function p(wk) can depend on xk & uk.

– Probability function cannot depend on w0, . . . , wk−1.

– More precisely:

pWk
(wk|xk, uk) = pWk

(wk|x0, ..., xk, u0, ..., uk, w0, ..., wk−1)

• Objective:

J∗(x0) = min
µ0,...,µN−1

Ew0,...,wN−1

gN(xN) +
N−1∑
k=0

gk(xk, µk(xk), wk)


• Interpretation:

– Total probability space Ω = Ω0 × . . .× ΩN−1.

– Given admissible policy, value between {·} is an RV on Ω.

– Can enumerate possibilities & probabilities to compute expected value.



Stochastic DP Algorithm

• Define
JN(xN) = gN(xN)

Jk(xk) = min
uk∈Uk(xk)

Ewk
{gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))}

• Theorem:

– J0(x0) = J∗(x0)

– µk(xk) = arg minuk∈Uk(xk)Ewk
{gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))}

– Jk(xk) = optimal cost-to-go (i.e., solution to subproblem).

• Proof by induction to show Jk(xk) = optimal cost-to-go

– Assume true for Jk+1(·).

– Show true for Jk(·).

– Start induction with JN(·).

• Details of proof: Later...



Example

1

0

4

1
1

1

0 0

0

1/2

0

• Two states per stage: {1, 2}.

• High road (=1) costly...low road (=2) cheap.

• On low road, can get a costly “bump” to high road with probability p:

x+ = u+ w, u ∈ {1, 2} , W (u = 1) = {0} , W (u = 2) = {0,−1}



Example, cont (2)

1

0

4

1
1

1

0 0

0

1/2

0

• Apply DP with p = 1/4:
J3(1) = 1, J3(2) = 0

J2(1) = min

{
1 + J3(1)
(0 + 4 + J3(1))p+ (0 + J3(2))(1− p)

= min

{
1 + 1
(0 + 4 + 1)(1/4) + (0 + 0)(3/4)

= 5/4(low)

J2(2) = min

{
1/2 + J3(1)
(0 + 4 + J3(1))p+ (0 + J3(2))(1− p)

=

{
1/2 + 1
(0 + 4 + 1)(1/4) + (0 + 0)(3/4)

= 5/4(low)

J1(1) = min

{
1 + J2(1)
(0 + 4 + J2(1))p+ (0 + J2(2))(1− p)

=

{
1 + 5/4
(0 + 4 + 5/4)(1/4) + (0 + 5/4)(3/4)

= 9/4(high or low)

J1(2) = min

{
1/2 + J2(1)
(0 + 4 + J2(1))(1/4) + (0 + J2(2))(3/4)

= 7/4(high)

J0 = min

{
1 + J1(1)
(0 + 4 + J1(1))(1/4) + (0 + J1(2))(3/4)

= 2(low)

• Result: Map of cost-to-go AND optimal decision.

1

0

5/4

5/4

9/4

7/4

2



Repeated Prisoner’s Dilemma

C D

C 4, 4 0, 5

D 5, 0 1, 1

• Row = “us”, Column = “them”

• Reward = (us, them)

• “Dilemma”: Defected is a “dominating” strategy for both players.

• Repeated PD: Play game over stages [0, 1, ..., N − 1].

• Define:

– uk = Row’s action at stage k

– wk = Column’s action at stage k

• Opponent models:

– Tit-for-Tat:

wk =

{
uk−1, with probability p;
D, with probability 1− p.

– Grim trigger:

wk =


C, with probability p if u0, ..., uk−1 = C;
D, with probability 1− p if u0, ..., uk−1 = C;
D, if uj = D for any j < k.

Typically, p = 1.



DP for PD: Tit-for-Tat

• Set M =

(
4 0
5 1

)
.

• Dynamics and costs:
xk+1 = uk

gk(xk, uk, wk) = Mukwk

gN(xN) = 0

• Stage N − 1, xN−1 = C:

JN−1(C) = max

{
4p+ 0 · (1− p) + JN(C), uN−1 = C;
5p+ 1 · (1− p) + JN(D), uN−1 = D.

⇒
JN−1(C) = 4p+ 1 & µ∗N−1(C) = D

• Stage N − 1, xN−1 = D:

JN−1(D) = max

{
0 + JN(C), uN−1 = C;
1 + JN(D), uN−1 = D.

⇒
JN−1(D) = 1 & µ∗N−1(D) = D



DP for PD: Tit-for Tat, cont.

• Stage N − 2, xN−2 = C:

JN−2(C) = max

{
4p+ 0 · (1− p) + (4p+ 1), uN−2 = C;
5p+ 1 · (1− p) + 1, uN−2 = D.

Accordingly, if
4p+ 4p+ 1 > 4p+ 1 + 1⇔ p > 1/4

then
JN−2(C) = 8p+ 1 & µ∗N−2(C) = C

• Stage N − 2, xN−2 = D:

JN−2(D) = max

{
0 + (4p+ 1), uN−2 = C;
1 + 1, uN−2 = D.

Accordingly, if
4p+ 1 > 1 + 1⇔ p > 1/4

then
JN−2(D) = 4p+ 1 & µ∗N−2(D) = C



DP for PD: Grim trigger

• As before, for p > 1/4:

JN−1(C) = 4p+ 1 & µ∗N−1(C) = D

JN−1(D) = 1 & µ∗N−1(D) = D

JN−2(C) = 8p+ 1 & µ∗N−2(C) = C

• Not as before:

JN−2(D) = max

{
0 + JN−1(D), uN−2 = C;
1 + JN−1(D), uN−2 = D.
⇒

JN−2(D) = 2 & µ∗N−2(D) = D

• In fact, µ∗k(D) = D

• Next question: What is optimal control versus µ∗?



LQ Optimal Control

• Linear system (time-invariant):

x+ = Ax+Bu+ w, E {w} = 0

– x : state

– u : control

– w : “process” disturbance

• Quadratic cost:

min
µ0,...,µN

E

xTNQNxN +
N−1∑
k=0

xTkQxk + uTk uk

 , QN ≥ 0

• Assumptions: Q = QT > 0, QN = QT
N ≥ 0

• Recall: Q > 0 :
xTQx > 0, for allx 6= 0

• Interpretation: Want to minimize “energy” of state while not expending excessive energy
of control, where

E [f ] =
∑
k

fTk Qfk

Compare to: ∫
i2R or

∫
cv2

• Applications: Flutter control, vibration suppression, control law generation

• Q scales relative importance of terms & state/control energy tradeoff

• QN penalize size of terminal state



LQ Optimal Control, cont

• N − 1 recursion:
JN(xN) = xTNQNxN

JN−1(xN−1)

= min
uN−1

EwN−1

{
xTN−1QxN−1 + uTN−1uN−1 + JN (AxN−1 +BuN−1 + wN−1)

}
= min

uN−1
E
{
xTN−1QxN−1 + uTN−1uN−1 + (AxN−1 +BuN−1 + wN−1)

TQN (AxN−1 +BuN−1 + wN−1)
}

= min
uN−1

xTx-terms + uTu-terms + xTu-terms + E
{
wT
N−1QNwN−1

}
Take ∂

∂uN−1
:

uN−1 = −(I +BTQNB)−1BTQNAxN−1

and substitute to produce (quadratic!)

JN−1(xN−1) = xTN−1PN−1xN−1 + E
{
wT
N−1QNwN−1

}
where

PN−1 = Q+ ATQNA− ATQNB(I +BTQNB)−1BTQNA



LQ Optimal Control, cont

• N − 2 recursion: Same analysis, but QN replaced by PN−1.

• kth recursion:
uk = −(I +BTPk+1B)−1BTPk+1Axk

Pk−1 = Q+ ATPkA− ATPk(I +BTPkB)−1BTPkA, PN = QN

J0(x0) = xT0 P0x0 +
N−1∑
k=0

E
{
wT
k Pk+1wk

}

• Pk ≥ 0 by definition of positive cost.

• Comments:

– Indicative of DP: Find a recurring structure and exploit.

– DP leads to map of cost-to-go and optimal decision.

– Could have derived case where A & B vary with k ... today’s optimal action depends
on tomorrow’s model.


