Dynamic Programming Lecture #16

Outline:
e Approximate Dynamic Programming

e Temporal Difference Learning



Approximate DP & the Curses

e Curse of dimensionality:

— Large state-space

— Large control-space

e Example: Inventory control with failure-prone machines

T Inventory
u  production
+ —d
o T au ’ d demand
« machine state € {0, 1}

e Probabilities: po1(u) & pio(u) =777
e 7 states = 2x # allowable parts per machine

e Now consider N-machines:

] — [

N

o # states = 2" x (# allowable parts per machine)

— 3 parts/machine & 8 machines — 1,700, 000 states
— 3 parts/machine & 9 machines — 10, 000, 000 states

e Curse of modeling: Need knowledge of p;;(u)



Facing the Curses

e Approaches:

— Use experience based updating (online algorithms)
— Use complexity reduction approximations (cost function parametrization)

— Use simulation based planning (receding horizon policy evaluation)
e Central point: Approximation of (optimal) cost-to-go

e Suppose j() is an approximate cost-to-go, and consider

p(i) = arg mmgz U +pr

u€el (1)

—1fJ approximates J*, then above policy should be near optimal.

—1If J approximates J,, then above policy represents policy update step of policy
iteration.



Value Function Approximation

Impose a structured form of J:
J(i) = ®(i;7)

Particularly convenient form: Feature vectors.

L
J(i) =Y ¢uliyr; = ¢ (i)r
/=1

Example: Tetris features

— Column heights
— Column height differences
— Maximum column height

— Number of “holes”
Basis coefficients r; determine relative importance of features.

Approximation based policy:

p(i;r) = arg maX g(i,u) + pr

uel (i



Temporal Difference Learning

e Initial focus: Autonomous Systems
Tip1 = [z, wy)

Note there is no notion of control:

e Consider approximating a value function of the form:

Z olg(xy)|zg = x]

t=0

J(x)=FE

with a function of the form

e General idea: Refine weights through simulated play and observation of results

— Let r; be the weights at time ¢
— Initial estimate of cost to go from z;: ¢(xy)r!

— Improved estimate of cost to go from z;: g(x;) + o - ¢(wyy1)rl
e Define temporal difference (improved estimate - original estimate)
dy = (9(x1) + - p(wra)rf ) — (o))

e Goal: Use temporal difference to adjust weights



Temporal Difference Learning

e Temporal Difference Learning: Protocol for adjusting weights

Tey1 =Tt + % dp - 2
where 7; € [0,1] is step-size and 2; € R¥ is a direction vector and of the form:
t
2= 3@V o)
7=0
where X\ € [0, 1] is a tuning parameter that scales past basis vectors.
e Referred to a temporal different learning with A, i.e., TD(\)

e Special case: A =0, i.e., T'D(0), which results in update of form

Tipr = T + % - di - O(x)

e Fact: There exists an M such that:

— limy_yoo 7 — ™) with probability 1

—J (-,r(/\)) performs close to best approximation function using basis functions, i.e.,

17 = T )| < pliTty - )|
for some p > 1 and some norm. IIJ* is best approximation function.

e Key technical assumptions:

— Step size 7y — 0 at “right” rate (common choice v; = 1/t)

* D gt = 00

* Y eo(1)? < o0
— All states visited infinitely often.



Gibbs distribution

e New Focus: Controlled system with stationary policy
Tir1 = f(xe, plze), wy)

e Temporal difference learning can be used to approximate J,. How do we ensure all states
are visited infinitely often?

e Answer: Add noise to the policy

e Probability simplex: (assume U = U(x) for all x)

A—{pGRU:piZO& ij—l}

J

(suppress |U| in notation)

e Compare:
0 -
0 €
u ~ rand|p| = é vS. u ~ rand[p'] = L _656
0 €
| 0 | e

e Note: p’ is approximately p but induces more exploration
e Utility: Ensure that every state visited infinitely often

e Question: Heterogeneity in noise? i.e., better states more likely to be visited?



Gibbs distribution, cont

e Suppose

() = argmax, oy G(x, )
e Now define Gibbs distribution or “soft-max’:

Osmaz(T;T) € A

by
6G(x,u1)/T
1 eG(x,ug)/T
smazx ;T I
Tomar(@T) = 7 :
eG(Ivu\UI)/T

where Z is a normalizing factor to assure ogy,q.(2;T) is on the simplex, i.e.,

7 - eG(m,ul)/T 4+ eG(x,uQ)/T I eG(x7u‘U|)/T

e Details: “Temperature” T' > 0
e Main idea:

— For high temperatures (7" > 1), approximates uniform distribution

— For low temperatures (1" < 1), approximates 0,,q,()

e Example: Let G(x,u1) =1 and G(x,uz) = 2

LeN oy L et 027 L (el (045
Z\ e201 ] 7\ 1 Zz\ et ) 7\ 0.73 z\ e ) 7\ 055

e Works for utility maximization. Must put in -" sign for cost minimization



Controlled Temporal Difference Learning

e Goal: Find stationary policy i that optimizes

oo

T(w) = B |3 a'glen o) |mo =«
t=0

where o € [0, 1]

e Algorithmic thoughts:

1. Fix structure of approximation functions

K
J(@,r) = r(k)r(x)
k=1
2. Fix stationary policy u* and simulate with softmax

3. Use temporal difference learning to approximate .J

T R A

4. Perform policy improvement: u* — p/F+!

5. Use temporal difference learning to approximate J,x+1 and simulate with softmax

k41 k+1

A\k+1)
T

e
6. Repeat

e Note: Time-scale separation, i.e., evaluation then improvement

e Is time-scale separation necessary? In practice, it does not appear so.



Controlled Temporal Difference Learning

e Recap: Tetris objective
N
lim F
maXNl_IgO {;g(xkyuk)}

e Assume a linear basis approximation for the value function:

N
Sy = lim {ng,uk)xo _ }
k=0

e Algorithmic procedure

— Step 1: Simulate policy using approximate cost to go with current weights

« State/weights at time t: zy, 74
« Action at time ¢: u; ~ Ogmnaz(x;T) where T' > 0 and for any u; € U(xy)

G(SUt, Ut) = Ewt {g(l’t, ut) + Qb(f(xt: Ut, wt))rr?

x State at time t + 1: @41 ~ f(xs, ug, wy)

— Step 2: Evaluate temporal difference

dy = g(w,w) + d(e1)ri — Sy

— Step 3: Revise weights
Tep1 =T+ Y di - 2
In the case of T"D(0) we have

Tee1 =T+ % - di - @(x)
— Repeat
e Tends to work well in practice. No theoretical guarantees.

e For more information see: Neuro-Dynamic Programming: Overview and Recent Trends
by Benjamin Van Roy
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