Dynamic Programming Lecture #17

Outline:

- Stochastic fixed point
- ullet Q-learning

"Stochastic" Fixed Point

• Objective: Find fixed point

$$x = E_{\theta} \{G(x, \theta)\}$$

Probabilities of θ can depend on x

• Example: Unknown mean

$$G(x, \theta) = \theta \Rightarrow x = E\{\theta\}$$

• Example: Stochastic gradient

$$G(x, \theta) = x - \nabla f(x) + \theta$$

$$x = E_{\theta} \left\{ x - \nabla f(x) + \theta \right\}$$

If θ is zero-mean,

$$0 = -\nabla f(x)$$

- ullet Problem: Can only measure "noisy" samples $G(x,\theta)$
- Noisy fixed-point iteration attempt:

$$x^+ = G(x, \theta)$$

- Averaging attempt:
 - Take several samples

$$\bar{G}(x) = \frac{1}{K} \sum_{k=1}^{K} G(x, \theta_k)$$

— Apply deterministic algorithm on $\bar{G}(x)$, e.g.,

$$x^+ = \bar{G}(x)$$

Robbins-Monro & Stochastic Approximation

• Iterative algorithm:

$$x^{+} = (1 - \gamma)x + \gamma G(x, \theta) = x + \gamma (G(x, \theta) - x)$$

- Main issue: How to choose iteration-dependent step size, γ , to neutralize effect of θ ?
- Example: Unknown mean

$$x_{t+1} = x_t + \gamma_t(\theta_t - x_t)$$

For $\gamma_t = \frac{1}{t+1}$,

$$x_{t+1} = x_t + \frac{1}{t+1}(\theta_t - x_t)$$

• This is a recursive form of a running average:

$$x_{t+1} = \frac{\theta_0 + \dots + \theta_t}{t+1}$$

$$= \frac{\theta_0 + \dots + \theta_{t-1}}{t} \frac{t}{t+1} + \frac{\theta_t}{t+1}$$

$$= x_t \left(1 - \frac{1}{t+1}\right) + \frac{1}{t+1} \theta_t$$

$$= x_t + \frac{1}{t+1} (\theta_t - x_t)$$

• Temporal difference learning is precisely an iterative algorithm for stochastic approximation

Q-Factor DP

• Define *Q*-factor:

$$Q(i, u) = g(i, u) + \alpha \sum_{s} p_{ij}(u) J^{*}(j)$$

Note: Q is function of state AND control.

• Bellman equation:

$$J^*(i) = \min_{u} Q(i, u)$$

ullet Implication: For any i and u

$$g(i, u) + \alpha \sum_{j} p_{ij}(u) J^{*}(j) = g(i, u) + \alpha \sum_{j} p_{ij}(u) \min_{v} Q(j, v)$$

$$\Rightarrow$$

$$Q(i, u) = g(i, u) + \alpha \cdot E_{j} \left\{ \min_{v} Q(j, v) \right\}$$

"Q-factor Bellman equation"

• What's the difference?

$$E_w \min_u(\cdot)$$
 vs $\min_u E_w(\cdot)$
 Q -factor Bellman vs J Bellman

• Q learning:

$$Q^{+}(i, u) = Q(i, u) + \gamma (g(i, u) + \alpha \min_{v} Q(j, v) - Q(i, u))$$

Q-Factor Contraction

• Q-factor Bellman equation:

$$Q(i, u) = g(i, u) + \alpha \sum_{s} p_{ij}(u) J^{*}(j)$$

$$\Rightarrow$$

$$Q(i, u) = g(i, u) + \alpha E_{j} \left\{ \min_{v} Q(j, v) \right\}$$

$$Q = \bar{G}Q$$

or

ullet FACT: $ar{G}$ is a contraction in the \max -norm.

• Proof: Suppose

$$Q_B(i, u) - c \le Q_A(i, u) \le Q_B(i, u) + c$$

Then

$$(\bar{G}Q_A)(i,u) = g(i,u) + \alpha \sum_{j=1}^n p_{ij}(u) \min_v Q_A(j,v)$$

$$\leq g(i,u) + \alpha \sum_{j=1}^n p_{ij}(u) (\min_v Q_B(j,v) + c)$$

$$= (\bar{G}Q_B)(i,u) + \alpha c$$

Likewise

$$(\bar{G}Q_B)(i,u) - \alpha c \le (\bar{G}Q_A)(i,u)$$

Q Learning

Q Bellman equation looks like stochastic fixed point

$$x = E_{\theta} \{G(x, \theta)\}$$

where

$$-x \sim Q(i,u)$$

$$-\theta \sim j$$
 (i.e., next state)

• Apply stochastic iterations:

$$Q^{+}(i,u) = Q(i,u) + \gamma (g(i,u) + \alpha \min_{v} Q(j,v) - Q(i,u))$$

= $Q(i,u) + \gamma ((\bar{G}Q)(i,u) - Q(i,u) + w)$

where

$$w = \min_{v} Q(j, v) - \sum_{j=1}^{n} p_{ij}(u) \min_{v} Q(j, v)$$

Note

$$E\left\{w|Q\right\} = 0$$

- ullet Almost looks like stochastic approximation, but only one (i,u) pair is updated per iteration.
- Theorem: Asynchronous Q-learning results in bounded iterations that converge to the unique equilibrium, Q^* .

Q Learning Issues

- ullet Convergence requires infinite visits to every (i,u) pair
- No policy is specified!
 - Define "softmax"

$$\sigma_i(v;T) = \frac{e^{v_i/T}}{e^{v_1/T} + \dots + e^{v_m/T}}$$

e.g., for m=2,

$$\sigma(v) = \begin{pmatrix} e^{v_1/T}/(e^{v_1/T} + e^{v_2/T}) \\ e^{v_2/T}/(e^{v_1/T} + e^{v_2/T}) \end{pmatrix}$$

- Note that $\sum_i \sigma_i(v) = 1$.
- Choosing a component according to a distribution of $\sigma_i(v)$ looks like choosing maximum of v with high probability.
- Parameter T represents "temperature". Recovers \max as $T \to \infty$
- Suitable policy to accompany Q-learning:

$$\mu(i;Q) = \mathtt{rand}[\sigma(Q(i,\cdot);T)]$$

Combines "exploration" with "exploitation".

- What about curse of dimensionality?
 - Impose a structured form of ${\it Q}$:

$$Q(i, u) = \Phi(i, u; r)$$

where r is a vector of parameters (e.g., basis coefficients, neural net weights, etc.)

- New Q learning: Update coefficients as done in temporal difference learning
- No convergence results.