Dynamic Programming Lecture #17

Outline:
e Stochastic fixed point

e ()-learning

“Stochastic” Fixed Point

e Objective: Find fixed point
r = Ep{G(z,0)}

Probabilities of 6 can depend on z

e Example: Unknown mean

G(z,0) =0 =2 =FE{0}
e Example: Stochastic gradient

G(x,0)=x—Vf(x)+46

r=FEg{r —Vf(x)+0}

If 6 is zero-mean,

0= —Vf(x)
e Problem: Can only measure "noisy” samples G(x,)

e Noisy fixed-point iteration attempt:

e Averaging attempt:

— Take several samples

Robbins-Monro & Stochastic Approximation

e lterative algorithm:
7 =(1—-7)z+7G(x,0) = v+ ~(G(x,0) —)

e Main issue: How to choose iteration-dependent step size, 7, to neutralize effect of 67

e Example: Unknown mean
Tir1 = T + V(0 — 24)

1
— 79 —
Tip1 = T + t+1(¢ —)

e This is a recursive form of a running average:

Op+ ...+ 0;

t+1
90+---+et—1 t Ht

t t+1+t+1
(1 L)+ Ly
= r —
! t+1) t+1 "
— = (g, —
$t+t+1(t oy

Li+1 =

e Temporal difference learning is precisely an iterative algorithm for stochastic approxima-
tion

()-Factor DP

e Define (Q-factor:

NOTE: @ is function of state AND control.

e Bellman equation:
J*(i) = min Q(4, u)
e Implication: For any 7 and u
9, u) + a3 pi(u)J*(j) = g, u) + a3 pi;(u) min Q(j, v)
j j

=
QUi u) = (i, u) + o~ By {min Q(j,0)}

“(Q-factor Bellman equation”

e What's the difference?
Ey,min(-) vs min Ey(-)
Q-factor Bellman vs J Bellman

e () learning:

Q" (i,u) = Q(i,u) + v (g(i, u) + amin, Q(j, v) — Q(i,u))

()-Factor Contraction

e ()-factor Bellman equation:

Qi,u) = g(i,u) + @gpij(U)J*(j)
=
Q(iyu) = g(i, w) + o E; {min Q(j, v)]
or)
Q=GQ
e FacT: G is a contraction in the max-norm.

e Proof: Suppose
QB(ia U) —c< QA(Zau) < QB<Z7U) +c

Then
(GQA)(iu) = gli,u)+a zl pis () min Q4(j, v)
iz
< g(i,u) +a lezy(u)(mz}l’l Qp(j,v) +c)
iz
= (GQp)(i,u) + ac
Likewise

(GQB)(Za u) —ac < (GQA)(Zu u)

() Learning

e () Bellman equation looks like stochastic fixed point
r = FEy{G(z,0)}
where
—x~ Q(i,u)
— 0 ~ j (i.e., next state)

e Apply stochastic iterations:

Q7 (i,u) = Qi,u) +7(g(i,u) + amin, Q(j,v) — Q(i,u))
= Qi u) + 7 ((GQ)(I,u) = Qi u) +w)

where n
w =minQ(j,v) — leij(U) min Q(j, v)
j=
Note
E{w|Q} =0

e Almost looks like stochastic approximation, but only one (i, u) pair is updated per iter-
ation.

e THEOREM: Asynchronous ()-learning results in bounded iterations that converge to the
unique equilibrium, Q*.

() Learning Issues

e Convergence requires infinite visits to every (i,u) pair
e No policy is specified!

— Define “softmax”

evi/T
oi(viT) = e /T + . + evm/T
e.g., form =2,
B evl/T/(e’Ul/T + e’UQ/T)
O-(/U) - e’Ug/T/(evl/T _|_ evg/T)

— Note that >, 0;(v) = 1.

— Choosing a component according to a distribution of ;(v) looks like choosing max-
imum of v with high probability.

— Parameter T represents “temperature”. Recovers max as T' — oo

— Suitable policy to accompany)-learning:
pu(i; Q) = rand|o(Q(4, -); T)]
Combines “exploration” with “exploitation”.
e What about curse of dimensionality?
— Impose a structured form of ():
Q(i,u) = P(i,u;r)
where r is a vector of parameters (e.g., basis coefficients, neural net weights, etc.)

— New @ learning: Update coefficients as done in temporal difference learning

— No convergence results.

