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ABSTRACT
This article outlines a new control approach

for flapping-wing micro-aerial vehicles (MAVs), in-
spired both by biological systems and by the need for
lightweight actuation and control solutions. In our
approach, the aerodynamic forces required for agile
motions are achieved indirectly, by modifying passive
impedance properties that couple motion of the power
stroke to the angle of attack (AoA) of the wing. This
strategy is theoretically appealing because it can ex-
ploit an invariant, cyclical power stroke, for efficiency,
and because an impedance-adjusting strategy should
also require lower bandwidth, weight, and power than
direct, intra-wingbeat control of AoA. We examine the
theoretical range of control torques and forces that can
be achieved using this method and conclude that it is
a plausible method of control. Our results demon-
strate the potential of a passive dynamic design and
control approach in reducing mechanical complexity,
weight and power consumption of an MAV while achiev-
ing the aerodynamic forces required for the types of
high-fidelity maneuvers that drive current interest in au-
tonomous, flapping-wing robotics.

NOMENCLATURE
c(r) Chord length of wing, at radius r
cm(r) Mean chord position, at radius r
COP Center of pressure on wing during flapping
c̄w Normalized mean chord length

CD Drag coefficient
CL Lift coefficient
CN Wing-normal force coefficient
CT Wing-tangential force coefficient
fD Drag force on a blade element
FD Drag force on the entire wing
fL Lift force on a blade element
FL Lift force on the entire wing
F∗

L Lift force when αr is optimal
fw Flapping frequency (Hz)
FN Aerodynamic force normal to wing
FT Aerodynamic force tangential to wing
kw Spring coefficient for wing rotation
k̂w Non-dimensionalized spring coef.
m Mass of the MAV
r̂cop Normalized, radial distance to COP on wing
Re Reynolds number
Rw Span of a single wing, root to tip
Sw Shape factor (non-dimensional) for the wing
ur Air velocity, relative to wing
ẑcop Normalized, spanwise distance to COP on wing
α Geometric angle of attack, relative to body
αr True angle of attack, relative to local airflow
ν Kinematic viscosity
ρ Density of air
τk Wing-pitching torque due to spring forces
τψ Wing-pitching torque due to aero forces
φ Stroke angle of wing
ψ Pitch rotation angle of wing
ψo Offset angle for passive spring



ωw Flapping frequency (rad/s)

INTRODUCTION
Many recent approaches to robot locomotion are

inspired by the astonishing agility, efficiency and/or ro-
bustness of animal locomotion [1–3]. In this paper, we
suggest a new approach for the control of underactu-
ated, flapping-wing micro-aerial vehicles (MAVs) and
examine its theoretical feasibility. Our motivation is to
develop a method that (1) could realistically be imple-
mented to provide a simple, low-weight actuation solu-
tion for a real robot, (2) exploits and modifies passive
dynamics to steer. Throughout this paper, we assume
a difference in time scale between fast flapping and the
(slower) time-averaged control forces and torques that
steer agile maneuvers. Because it takes several wing-
beats for an insect or robot to complete a flapping-wing
maneuver, we assume we can use the time-averaged
aerodynamics over the course of a wingbeat to closely
approximate the true forces over time.

Bio-Inspired Flapping Flight Control
Insects such as flies use two types of muscles in

flight [4]. One set primarily provides power, employ-
ing cyclical high frequency, low variability motion. The
second set operates indirectly and functions, primar-
ily, to generate steering forces rather than to drive the
gross velocity of the wing [5]. Although flies demon-
strate amazingly agile maneuvers, as anyone who has
attempted to catch one can verify, they employ a “re-
markable economy of control” [6] in doing so. They are
most certainly underactuated, with significant coupling
between the forces and torques generated to control the
six degrees of freedom of the body [6]. An underactu-
ated animal or robot, however, can still be controllable,
in the sense of finding some motion control plan to ori-
ent all six degrees of freedom into a particular configu-
ration in finite time.

We examine the feasibility of a similar, bio-
inspired approach, where a motor and transmission are
used to drive a gross flapping motion in a harmonic mo-
tion, while the angle of attack (AoA) is indirectly de-
termined via the impedance (stiffness, damping, and in-
ertia) relationship between the wing spar and the wing
itself. Although there is direct evidence that real in-
sects employ active methods to flip the wing to control
AoA [7], there is also evidence that passive wing pitch
rotation is sufficient to generate lift and drag forces for
flight [8]. We investigate a new approach where pitch
rotation is controlled indirectly, through the mechanism
of an adjustable impedance.

Other researchers have already considered the case
of an actively-powered flapping motion with passive but
unrealistically instantaneous rotation of the pitch angle,

ψ. This idealization assumes that there is no impedance
to resist aerodynamic forces and that the wing flips over
instantly until it hits a “hard stop” at some prescribed
AoA [9, 10]. Such modeling approaches also assume
constant velocity through the forward or backward por-
tions of the wing stroke, φ, requiring a step change in
velocity as the wing reverses direction. These design as-
sumptions are impractical if not impossible to achieve
in a real flight vehicle, and they do not allow for any
variations in AoA.

In this paper, we assume the wing “hinge” deter-
mining angle of attack has a finite impedance, which
can be adjusted through the use of indirect control actu-
ators. Specifically, we analyze a simplified case, where
this impedance is a spring; that is, the mass of the wing
and any damping at the wing hinge are both assumed
to be negligible for this particular analysis. By adjust-
ing the properties of this spring, one indirectly adjusts
the relationship between stroke angle and angle of at-
tack, and the question is: “How large are the subsequent
steering forces that can be generated?”

METHODS
This section outlines the model and methods em-

ployed in quantifying the utility of this passive dynamic
approach for controlling output forces and torque to ma-
neuver the body of a small, flapping-wing vehicle. We
assume that only the impedance properties of each wing
may change over time, indirectly resulting in variations
in the angle of attack throughout a wingbeat that re-
sult in some net force over time. In practice, this ap-
proach would best be used in conjunction with mod-
ulation of the frequency and/or waveform of the wing
stroke. However, we intentionally examine an extreme
case where the power stroke remains invariant, as a rig-
orous test of the range of aerodynamic forces that can be
generated when the AoA of the wing is set “passively”
by the tuned impedance, rather than being directly com-
manded throughout the stroke.
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Figure 1. OVERHEAD VIEW OF WING.
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Figure 2. SIDE VIEW OF WING.

To examine this approach, we use two models,
spanning a range of practical sizes that are arguably
feasible for present-day flapping-wing robotics technol-
ogy. Both designs employ a single wing on either side
of the body, as opposed to four-wing designs such as
a dragonfly. In addition to simplifying any future ex-
perimental implementations, this design is more appro-
priate for our modeling assumptions, since it avoids
wing-wing aerodynamic interference. For the smaller
of the two designs, we model a fly-scale robot based
loosely on the smallest proven, lightweight flapping-
wing MAV design demonstrating self-sustaining lift of
which we are aware to date [3], and at the large end,
we scale the model roughly to the size of a humming-
bird. Hummingbirds are unique among vertebrates in
displaying the near-sinusoidal stroke patterns and near-
symmetrical flapping patterns typically associated with
insect flight [4], and it therefore seems practical to limit
our study of insect-style flapping to robotic vehicles de-
signed at or below this size. Properties of both models
are listed in Table 1, and additional details on selecting
vehicles parameters are given ahead on page 6.

Aerodynamic Forces
To model the aerodynamic forces on the wing, we

employ a quasi-steady model, where the instantaneous
aerodynamic forces on the wing are approximated using
Blade Element Method (BEM) [11, 12].

Blade Element Method (BEM). The Blade
Element Method for flapping flight [13] approxi-
mates the flow across a wing element as being quasi-
stationary. By its nature, this method neglects sev-
eral unsteady effects which can contribute importantly
in insect flight [14]. However, at the low to moder-
ate Reynolds number conditions (10–20,000) [4], BEM
theory is commonly used to derive a first-order estimate

of the dominant forces on flapping wings typical of in-
sect and hummingbird flight [11, 12, 15, 16].

In blade-element theory, each wing is divided into
a set of cross-sectional strips, each of width dr, and at a
mean radius r from the axis of rotation of the wing on
the body, as depicted in Figure 3. Although the aerody-
namic effects of twisting and warping of the wings can
be measurable in insect-scale flapping [17], we model
each wing as a rigid, thin plate. We also ignore any
inertial forces due to added mass and the mass distribu-
tion of the wing itself, which typically represent a small
fraction of total force in near-hovering flight [16], and
we do not include second-order effects of wing pitch
velocity, ψ̇, on local wing velocity. The aerodynamic
lift and drag forces on a differential blade element are
then modeled as:

fL(r) =
ρ

2
c(r)u2

r ·CL(αr) (1)

fD(r) =
ρ

2
c(r)u2

r ·CD(αr) (2)

where c(r) is the chord length which is a function of the
radius r on the wing, and the relative velocity during
near-hover maneuvers is approximately:

ur = rφ̇ (3)

Integrating over the entire span, Rw, of the wing,
the total lift and drag forces are then:

FL =
∫ Rw

r=0

(
ρ

2
c(r)[rφ̇]2 ·CL(αr)

)
dr

=CL(αr) ·
ρ

2
φ̇

2 ·
∫ Rw

r=0

(
c(r)r2)dr (4)

FD =
∫ Rw

r=0

(
ρ

2
c(r)[rφ̇]2 ·CD(αr)

)
dr

=CD(αr) ·
ρ

2
φ̇

2 ·
∫ Rw

r=0

(
c(r)r2)dr (5)

These expressions can be written as a constant,
wing-dependent shape factor (in parentheses at left in
Equations 6–7, below) times a term that varies with both
wing stroke speed, φ̇, and with angle of attack, αr (in
parentheses at right). Note that for a rectangular wing
of constant chord length, c(r) =C, they would become:

FL−rect =
(

ρ

2
CR3

w

)
·
(
CL(αr)φ̇

2) (6)

FD−rect =
(

ρ

2
CR3

w

)
·
(
CD(αr)φ̇

2) (7)
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Figure 3. A BLADE ELEMENT OF THE WING.

For the arbitrary wing shape we use, shown in Figure 3,
and using ρ = 1.28 (kg/m2) as the density of air, the
total lift and drag on a wing scale as R4

w and are:

FL =
(
0.0566 ·R4

w
)
·
(
CL(αr)φ̇

2) (8)

FD =
(
0.0566 ·R4

w
)
·
(
CD(αr)φ̇

2) (9)

These final expressions depend on the velocity of the
stroke angle, φ̇, and on lift and drag coefficients that
vary with angle of attack. The lift and draft coefficients
we use are detailed below in the next section.

To find the center of pressure (COP) on the wing,
we integrate to find the torque about each rotational de-
gree of freedom, φ and ψ, then divide by the force to
solve for the length of the moment arm. Note that be-
cause lift and drag forces are related by the same ratio
for any location on the wing, we can use either 8 or ??
as a proxy to solve for the COP, calculating only the
component of torque due to that particular force. Solv-
ing for the torques due to lift, we obtain:

τL,φ =
∫ Rw

r=0

(
r · ρ

2
c(r)[rφ̇]2CL(αr)

)
dr

=
ρ

2
CL(αr)φ̇

2
∫ Rw

r=0

(
c(r)r3)dr (10)

τL,ψ =
∫ Rw

r=0

(
cm(r) ·

ρ

2
c(r)[rφ̇]2CL(αr)

)
dr

=
ρ

2
CL(αr)φ̇

2
∫ Rw

r=0

(
cm(r)c(r)r2)dr (11)

where cm(r) is the location of the middle of the chord
at radius r. For our particular wing shape, the non-
dimensional COP location (scaled by Rw) is:

r̂cop = 0.8662 (12)
ẑcop =−0.0807 (13)

Lift and Drag Coefficients. Experimental
data for 3D insect-scale wing flapping provide the fol-
lowing fitted expressions for the translational lift and
drag coefficients as a function of angle of attack [14]:

CL−exp = 0.225+1.58sin(2.13αr −7.20◦) (14)
CD−exp = 1.92−1.55cos(2.04αr −9.82◦) (15)

These relationships are now widely used to approximate
the lift and drag forces on MAV-scale flapping wing
models [18–20], and they correspond to aerodynamic
forces that are primarily directed normal to the wing,
indicating viscous drag effects are far less important
than pressure forces. For our simple model, we have ap-
proximated these equations with a purely normal force.
These simplified curves also ensure both smoothness
and symmetry (as theoretically required) near αr = 01:

CL = 1.8sin(2αr) (16)
CD = 1.8(1− cos(2αr)) (17)

Figure 4 shows these coefficients as a function of αr,
the true angle of attack of the wing, with respect to rel-
ative air flow. Our simulation results are nearly iden-
tical, quantitatively, when we use either set of expres-
sions, so we have adopted the simplified expressions in
Equations 16 and 17 primarily to aid the reader in un-
derstanding the basic, theoretical relationships between
the passive dynamics and output control forces more in-
tuitively.
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Figure 4. LIFT AND DRAG COEFFICIENTS VS ALPHA.

1By symmetry, both CL and the derivative of CD should mathemat-
ically be zero at αr = 0. These requirements are not satisfied by the fit
curves from experimental data, which is one reason we have chosen
to adjust these curves slightly for our model.



We can equivalently represent these two orthogo-
nal force components in terms of normal and tangential
force coefficients, CN and CT , with respect to the lo-
cal axis of the wing. From Figure 5, it is clear that the
overall force is largely normal to the wing, and for our
approximate relationships in Equations 16 and 17, the
tangential component is identically zero, while the nor-
mal component varies as the sine of αr:

CT = 0 (18)
CN = 3.6sin(αr) (19)
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Figure 5. NORMAL AND TANGENTIAL FORCE COEFFS.

Figure 6 shows the aerodynamic forces acting on a
cross-section of the wing. Here, ur is the direction of
the flow of air, relative to a wing-fixed coordinate sys-
tem, and αr is the angle of attack, with respect to ur.
Note that we define the angle of rotation of the wing, ψ,
with respect to a wing-fixed coordinate system, so that
the geometric angle of attack, α = π

2 −ψ, is not nec-
essarily equivalent to αr in general, although they will
be equivalent for our particular study, which examines
motions initiating from a steady state of hovering.

Indirect Control of Wing Pitch
This section derives equations of motion for two

indirect methods to control the wing pitch angle, ψ,
through direct control of the stiffness, kw and neutral set
point, ψo of the wing-hinge spring. In the end, our goal
is not to dictate a particular trajectory, ψ(t), over time
but rather to obtain time-averaged forces and torque to
accelerate and steer a robotic vehicle.

Force Balance for Wing Pitch. Combining
Equations 8 and 9 with our approximation from Equa-

ψ

αr

ur

FL

FD

COP

rcop

FN

Figure 6. AERODYNAMIC FORCES ON THE WING.

tion 19 of the net force as being normal to the wing, we
can solve for the net force on our wing shape as:

FN = 0.0566 ·R4
w ·

(
CN(αr)φ̇

∣∣φ̇∣∣)
= 0.0566 ·R4

w ·
(
3.6sin(αr) φ̇

∣∣φ̇∣∣) (20)

= 0.2038 ·R4
w · sin(αr) · φ̇

∣∣φ̇∣∣ (21)

From 12 and 13, the COP at which this force acts re-
mains at a constant position on the wing:

rcop = r̂cop ·Rw = 0.8662Rw (22)
zcop = ẑcop ·Rw =−0.0807Rw (23)

Therefore, we can write the torque driving wing pitch
in terms of the moment arm and normal force as:

τψ =−zcop ·FN,y+

= 0.0164 ·
(
R4

w
)
·
(
sin(αr) φ̇

∣∣φ̇∣∣) (24)

We assume the inertia of the wing is small, so
that the aerodynamic force essentially remains balanced
with the torsional stiffness of the wing pitch angle:

τkr =−kr(ψ−ψo) (25)

where both kr and ψo are impedance properties we can
control, for instance by adjusting the tensions in an op-
posing pair of tendons along each wing. By equating 24
and 25, we can solve at any moment for ψ as a function



of φ and φ̇:

ψ = ψo +
0.0164

kr
·R4

w · sin(αr) φ̇
∣∣φ̇∣∣ (26)

Robot Vehicle Scaling

The two sets of vehicle parameters we study, given
in Table 1, span a size range from fly (Diptera) through
hummingbird (Trochilidae). The smaller design is
based closely on proven designs of the Harvard mi-
crorobotic fly [3], which we believe is still the small-
est and lightest flapping-wing robot capable of suffi-
cient lift generation for sustained flight. The larger de-
sign is scaled to match allometric data for humming-
birds, since they are the largest animals that employ
insect-style flapping [4]. Our model of the fluid dy-
namics assumes a viscous Reynolds number regime.
Hummingbirds typically hover at or just exceeding this
range (∼5000-30,000) [21], and we have intentionally
designed our bird-scale model to lie within in this range,
with Re = 20,000. Although some turbulent effects
may begin to appear with a real robot flapping at these
wing velocities, we believe this is a reasonable upper
limit at which our model would capture first-order dy-
namics. To calculate the Reynolds number (Re = uL/ν)
for a flapping wing, we use the peak airflow velocity
across the chord located at the center of pressure on the
wing:

Re =
(Rwr̂cop ·φmax ·ωw) · (Rwc̄m)

νair
(27)

For our geometry, r̂cop = 0.866, c̄m = 0.333, and φmax =
π/3. Using νair ≈ 15.11×10−6 (m2/s), we can write Re
in terms of the wing length in m, Rw, and frequency in
Hertz ( fw = 2πω) as:

Re =
(
R2

w · fw
)
·125,000 (s/cm2) (28)

Our modeled vehicle parameters are scaled to
match allometrically with agile flapping animals, to
provide designs with a reasonable expectation of aero-
dynamic feasibility. Figures 7 and 8 illustrate how
the mass, wing area and flapping frequency scale in
comparison to a variety of animals (insects and hum-
mingbirds) capable of sustained, flapping-wing hover-
ing; these figures are adapted from Figures 3.3A and
3.3B in [4], with our robot parameters overlaid.
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RESULTS
Here, we summarize our results for both fly- and

hummingbird-scale flapping wing flight with tunable
stiffness of the wing pitch degree of freedom. Ta-
ble 1 shows the characteristics of each model along with
predicted forces and corresponding maximum accelera-
tions in z (up only) and x (forward or back); no sideslip
is predicted in this model (ÿ = 0). The translational ac-
celerations correspond to ∼ 2g for the smaller vehicle,
and 1/3 to 1/2 of gravity for the larger design. Quan-
titative estimates for angular rates are more difficult to
predict, but achievable accelerations about both the z
axis (yaw) and y axis (roll) are clearly significant (i.e.,
greater than 1000◦/s2). After initiating a maneuver
from a state of hover, actual robot accelerations would
typically drop over time, since air drag on the body and
wings will act to slow any translational and rotational



Table 1. THEORETICAL CONTROL OUTPUT RANGES.

Parameter Fly Scale Hummingbird Scale

Re ∼ 2,800 ∼ 20,000

ω f 100 Hz 25 Hz

Rw 1.5 cm 8 cm

F̄L,max .0021 N 0.10 N

F̄D,max .0012 N .062 N

m 70 mg 6,000 mg

F̄L,max/gz 210 mg 10,600 mg

+z̈max 19.6 m/s2 7.5 m/s2

±ẍmax 17.6 m/s2 10.4 m/s2

τx,max 1.8e-5 (Nm) 0.9e-2 (Nm)

τz,max 3.1e-5 (Nm) 1.5e-2 (Nm)

velocities significantly [22].
The remainder of this section details our simulation

results. We assume flapping is maintained at a constant
frequency, to isolate the capabilities of using tuned stiff-
ness in affecting control; note that employing variable
speeds and/or waveform types should certainly enhance
control range beyond our presentation here. On either
of the two wings, there are only two values that can be
manipulated: the wing pitch stiffness (kr) and the null
pitch angle about which the spring operates (ψo).

Varying the stiffness, kr
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Figure 9 shows the time-averaged lift generated
over a range of non-dimensionalized stiffnesses, k̂r.
Here, FL is normalized by the optimal theoretical value
that could be achieved if ψ were controlled actively
throughout a stroke, instead of being set by the wing
impedance. From data in Figure 9, an optimal passive
hinge results in 0.9311 times the lift of optimal, active
control of ψ.

The non-dimensionalized optimal stiffness in Fig-
ure 9 is k̂r = 1.533, and the actual stiffness for particular
vehicle parameters scales as:

kr = k̂r · ρ̂ ·
(

SwR5
w

)
·ω2

f φ
2
max (29)

Here φmax = π/3 is the driven wing stroke amplitude,
ρ̂ is the density of the fluid, normalized by ρair =
1.28 (kg/m3), and Sw is a non-dimensional shape fac-
tor for our particular, scalable wing shape:

Sw =
1

R5
w

∫ Rw

r=0
cm(r)c(r)r2dr (30)

= 0.00594

From Equation 16, the optimal angle of attack for
lift generation is just a constant value of 45◦ through
stroke, resulting a step function in ψ(t), as shown in
Figure 10. This figure also shows the passive motion of
ψ over the course of a single wingbeat when kr is tuned



optimally, and Figure 11 compares FL(t) for the tuned,
passive hinge versus for ψ = 45◦. A similar plot com-
paring FD in both cases is shown in Figure 12. Here, FD
is multiplied by sgn(φ̇) to make it visually clear that the
net forces in one wingbeat sum to zero.
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Figure 12. FD · sgn(φ̇) WITH OPTIMAL kr .

Varying the Offset Angle, ψo
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Figure 14. Fx(t) AS ψo VARIES.

Figures 13 and 14 show variations in FD and in Fx,
respectively, over one wingbeat for different values of
ψo. The magnitude of the force asymmetry produced
can be visualized clearly in Figure 15. These data all
correspond to the same value of k̂r. Note that although
FD increases as the offset wing pitch angle increases, the
magnitude of FL decreases. From Table 1, each vehicle
produces enough lift to carry significantly more than its

weight. (F̄L/gz = 10,600 mg, vs m =6,000 mg for the
hummingbird scale design, for instance.) Since 60%
of peak lift is adequate for hover for either model, we
assume ψo is kept less than 45◦, where FL/F∗

L ≈ 0.6.
At this value, FD/F∗

L is also approximately 0.6, giving
us our peak force (and acceleration) estimates in the x
direction in Table 1.
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Figure 15. FL AND Fx VS ψo.

Altitude control can be achieved by de-tuning both
lefthand and righthand spring stiffnesses in unison,
while asymmetries in these tunings can achieve roll
torques. Similarly, forward flight and yaw turns can
be controlled by adjusting the set-points of the left and
right wings together or in opposition, respectively. Es-
timates for τz (yaw) and τx (roll) in Table 1 assume that
the distance from the center of mass of the vehicle (to
the wing root and then) to the COP on the wing is ∼ Rw.

DISCUSSION
Our primary goal here is to demonstrate the range

of control outputs that can be achieved by modifying
only the passive impedance properties of a wing. How-
ever, we again emphasize that it is clearly possible – and
will likely be optimal – to utilize both active modifica-
tion of the power stroke (amplitudes, offsets, frequen-
cies and waveforms of both the left and right wings)
in conjunction with a passivity-based control approach,
such as the one outlined here. We anticipate such a
hybrid approach can maximize the range of control
forces and torques possible while potentially increasing
steady-state stability of hovering and constant-velocity
flight, as well.

As a final comment, we note that while ignoring
wing mass and inertia is a reasonable approximation
for Diptera and other small insects, it becomes more
questionable as wingspan increases [23]. Additionally,
our model assumes laminar flow and a corresponding
Reynolds number below 20,000 or so. The larger robot
was specifically selected, with Re ≈ 20,000, to be just
at this desired limit, and Re scales as R2

w ·ωw. Thus, we
caution the reader to take care in extending this analysis
beyond the scale of a hummingbird-sized aircraft.



CONCLUSIONS
We present a control approach where an appropri-

ately set combination of a periodic stroke-angle wave-
form and a tuned, variable-impedance wing hinge can
generate desired, time-averaged forces and torque to
maneuver a small-scale, flapping-wing robot. Specif-
ically, aerodynamic pressure forces on the wing are
modulated indirectly by adjusting the set point and ten-
sion of a torsional spring element for wing pitch on each
wing.

Using a quasi-static model, we find that the magni-
tudes of the forces that can be generated on a flapping-
wing MAV scale in proportion to R4

w ·ω2
w, and we pre-

dict that for fly- to hummingbird- scale robots, accel-
erations on the order of 1-2 times gravity are feasible,
even without exploiting non-quasistatic aerodynamics.
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