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About This Presentation
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course ECE 252B, Computer Arithmetic, at the University of 
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Unauthorized uses are strictly prohibited. © Behrooz Parhami
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I  Background and Motivation

Topics in This Part
Chapter 1 Numbers and Arithmetic

Chapter 2 Representing Signed Numbers

Chapter 3 Redundant Number Systems

Chapter 4 Residue Number Systems

Number representation arguably the most important topic:
• Effects on system compatibility and ease of arithmetic
• 2’s-complement, redundant, residue number systems
• Limits of fast arithmetic
• Floating-point numbers to be covered in Chapter 17
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“This can’t be right . . . It goes into the red!”



Mar. 2020 Computer Arithmetic, Number Representation Slide 5

1  Numbers and Arithmetic

Chapter Goals

Define scope and provide motivation
Set the framework for the rest of the book
Review positional fixed-point numbers

Chapter Highlights

What goes on inside your calculator?
Ways of encoding numbers in k bits
Radices and digit sets: conventional, exotic
Conversion from one system to another
Dot notation: a useful visualization tool
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Numbers and Arithmetic: Topics

Topics in This Chapter

1.1 What is Computer Arithmetic?

1.2 Motivating Examples

1.3 Numbers and Their Encodings

1.4 Fixed-Radix Positional Number Systems

1.5 Number Radix Conversion

1.6 Classes of Number Representations
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1.1  What is Computer Arithmetic?

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT 
algorithm occasionally gave incorrect quotient 
First noted in 1994 by Tom Nicely who computed sums of 
reciprocals of twin primes:

1/5 + 1/7 + 1/11 + 1/13 + . . . + 1/p + 1/(p + 2) + . . .

Worst-case example of division error in Pentium: 

 
4 195 835 

3 145 727 

1.333 820 44... 

1.333 739 06... 
c = = 

Correct quotient 

circa 1994 Pentium   
double FLP value;  

 accurate to only 14 bits 
(worse than single!) 
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Top Ten Intel Slogans for the Pentium

Humor, circa 1995 (in the wake of Pentium processor’s FDIV bug)

• 9.999 997 325 It’s a FLAW, dammit, not a bug

• 8.999 916 336 It’s close enough, we say so

• 7.999 941 461 Nearly 300 correct opcodes

• 6.999 983 153 You don’t need to know what’s inside

• 5.999 983 513 Redefining the PC –– and math as well

• 4.999 999 902 We fixed it, really

• 3.999 824 591 Division considered harmful

• 2.999 152 361 Why do you think it’s called “floating” point?

• 1.999 910 351 We’re looking for a few good flaws

• 0.999 999 999 The errata inside
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Aspects of, and Topics in, Computer Arithmetic

Fig. 1.1 The scope of computer arithmetic.

Hardware (our focus in this book) Software
––––––––––––––––––––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––––––––––

Design of efficient digital circuits for Numerical methods for solving
primitive and other arithmetic operations systems of linear equations,
such as +, –, , , , log, sin, and cos partial differential eq’ns, and so on

Issues: Algorithms Issues: Algorithms
Error analysis Error analysis
Speed/cost trade-offs Computational complexity
Hardware implementation Programming
Testing, verification Testing, verification

General-purpose Special-purpose
–––––––––––––––––––––– –––––––––––––––––––––––

Flexible data paths Tailored to application
Fast primitive areas such as:

operations like Digital filtering
+, –, , ,  Image processing

Benchmarking Radar tracking
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Using a calculator with √, x2, and xy functions, compute:

u = √√ … √ 2 = 1.000 677 131 “1024th root of 2”

v = 21/1024 = 1.000 677 131  

Save u and v; If you can’t save, recompute values when needed

x = (((u2)2)...)2 = 1.999 999 963

x'  =  u1024 = 1.999 999 973 

y = (((v2)2)...)2 = 1.999 999 983

y' = v1024 = 1.999 999 994 

Perhaps v and u are not really the same value

w = v – u = 1  10–11 Nonzero due to hidden digits    

(u – 1)  1000  = 0.677 130 680  [Hidden  ... (0) 68]

(v – 1)  1000   = 0.677 130 690   [Hidden  ... (0) 69] 

1.2  A Motivating Example
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Finite Precision Can Lead to Disaster

Example: Failure of Patriot Missile (1991 Feb. 25)
Source    http://www.ima.umn.edu/~arnold/disasters/disasters.html

American Patriot Missile battery in Dharan, Saudi Arabia, failed to 
intercept incoming Iraqi Scud missile

The Scud struck an American Army barracks, killing 28 
Cause, per GAO/IMTEC-92-26 report: “software problem” (inaccurate 

calculation of the time since boot)
Problem specifics: 
Time in tenths of second as measured by the system’s internal clock 

was multiplied by 1/10 to get the time in seconds 
Internal registers were 24 bits wide

1/10 = 0.0001 1001 1001 1001 1001 100 (chopped to 24 b)
Error ≈ 0.1100 1100  2–23 ≈ 9.5  10–8

Error in 100-hr operation period 
≈ 9.5  10–8  100  60  60  10 = 0.34 s

Distance traveled by Scud = (0.34 s)  (1676 m/s) ≈ 570 m
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Inadequate Range Can Lead to Disaster

Example: Explosion of Ariane Rocket (1996 June 4)
Source   http://www.ima.umn.edu/~arnold/disasters/disasters.html

Unmanned Ariane 5 rocket of the European Space Agency veered 
off its flight path, broke up, and exploded only 30 s after lift-off 
(altitude of 3700 m)

The $500 million rocket (with cargo) was on its first voyage after a 
decade of development costing $7 billion

Cause: “software error in the inertial reference system”
Problem specifics: 
A 64 bit floating point number relating to the horizontal velocity of the 

rocket was being converted to a 16 bit signed integer
An SRI* software exception arose during conversion because the 

64-bit floating point number had a value greater than what could 
be represented by a 16-bit signed integer (max 32 767)

*SRI = Système de Référence Inertielle or Inertial Reference System 
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1.3  Numbers and Their Encodings

Some 4-bit number representation formats

Unsigned integer ± Signed integer

Signed fraction 2's-compl fraction

Floating point Logarithmic

Fixed point, 3+1

±

e s log x

Radix 
point

Base-2
logarithm

Exponent in
{-2, -1, 0, 1}

Significand in
{0, 1, 2, 3}
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Encoding Numbers in 4 Bits

Fig. 1.2 Some of the possible ways of assigning 16 distinct codes to 
represent numbers. Small triangles denote the radix point locations.

0 2 4 6 8 10 12 14 16 -2 -4 -6 -8 -10 -12 -14 -16 

Unsigned integers 

Signed-magnitude 

3 + 1 fixed-point, xxx.x 

Signed fraction, .xxx 

2’s-compl. fraction, x.xxx 

2 + 2 floating-point, s  2 
      e in [-2, 1], s in [0, 3] 

2 + 2 logarithmic (log = xx.xx) 

 

 

Number 
format 

log x 

s e e 
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1.4  Fixed-Radix Positional Number Systems

( xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l )r = xi r i

One can generalize to: 

Arbitrary radix (not necessarily integer, positive, constant) 

Arbitrary digit set, usually  {–a, –a+1, . . . , b–1, b} = [–a, b]

Example 1.1. Balanced ternary number system: 

Radix r = 3,  digit set = [–1, 1]

Example 1.2. Negative-radix number systems: 

Radix –r,  r  2, digit set = [0, r – 1]

The special case with radix –2 and digit set [0, 1] 

is known as the negabinary number system


-

-

1k

li
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More Examples of Number Systems

Example 1.3. Digit set [–4, 5] for r = 10:  

(3  –1   5)ten represents    295 = 300 – 10 + 5 

Example 1.4. Digit set [–7, 7] for r = 10:  

(3  –1   5)ten =  (3   0  –5)ten =   (1  –7   0  –5)ten

Example 1.7. Quater-imaginary number system:

radix r = 2j, digit set [0, 3] 
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1.5  Number Radix Conversion

Radix conversion, using arithmetic in the old radix r
Convenient when converting from r = 10

u = w . v
= ( xk–1xk–2 . . .  x1x0 . x–1x–2 . . . x–l )r Old
= ( XK–1XK–2 . . . X1X0 . X–1X–2 . . . X–L )R New

Radix conversion, using arithmetic in the new radix R
Convenient when converting to R = 10

Whole part Fractional part

Example: (31)eight = (25)ten 31 Oct. = 25 Dec. Halloween = Xmas
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Radix Conversion: Old-Radix Arithmetic

Converting whole part w: (105)ten = (?)five
Repeatedly divide by five Quotient Remainder

105 0
21 1
4 4
0

Therefore, (105)ten = (410)five

Converting fractional part v: (105.486)ten = (410.?)five
Repeatedly multiply by five Whole Part Fraction

.486
2 .430
2 .150
0 .750
3 .750
3 .750

Therefore, (105.486)ten  (410.22033)five
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Radix Conversion: New-Radix Arithmetic

Converting whole part w: (22033)five = (?)ten
((((2  5) + 2)  5 + 0)  5 + 3)  5 + 3 

|-----| : : : :
10 : : : :

|-----------| : : :
12 : : :

|---------------------| : :
60 : :

|-------------------------------| :
303 :

|-----------------------------------------|
1518

Converting fractional part v:     (410.22033)five = (105.?)ten

(0.22033)five  55 = (22033)five = (1518)ten

1518 / 55 = 1518 / 3125 = 0.48576
Therefore, (410.22033)five = (105.48576)ten

Horner’s rule is also applicable: Proceed from right to left 
and use division instead of multiplication

Horner’s
rule or 
formula
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Horner’s Rule for Fractions

Converting fractional part v: (0.22033)five = (?)ten

(((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5
|-----| : : : :

0.6 : : : :
|-----------| : : :

3.6 : : :
|---------------------| : :

0.72 : :
|-------------------------------| :

2.144 :
|-----------------------------------------|

2.4288
|-----------------------------------------------|

0.48576

Horner’s
rule or 
formula

Fig. 1.3      Horner’s rule used to convert (0.220 33)five to decimal.
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1.6  Classes of Number Representations
Integers (fixed-point), unsigned: Chapter 1

Integers (fixed-point), signed
Signed-magnitude, biased, complement: Chapter 2
Signed-digit, including carry/borrow-save: Chapter 3

(but the key point of Chapter 3 is
using redundancy for faster arithmetic,
not how to represent signed values)

Residue number system: Chapter 4
(again, the key to Chapter 4 is
use of parallelism for faster arithmetic,
not how to represent signed values)

Real numbers, floating-point: Chapter 17
Part V deals with real arithmetic

Real numbers, exact: Chapter 20
Continued-fraction, slash, . . .

For the most part you need:

- 2’s complement numbers
- Carry-save representation
- IEEE floating-point format

However, knowing the rest of 
the material (including RNS) 
provides you with more 
options when designing 
custom and special-purpose 
hardware systems
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Dot Notation: A Useful Visualization Tool

Fig. 1.4      Dot notation to depict number representation formats and 
arithmetic algorithms.

+ 

(a) Addition

(b) Multiplication
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2  Representing Signed Numbers

Chapter Goals

Learn different encodings of the sign info
Discuss implications for arithmetic design

Chapter Highlights

Using sign bit, biasing, complementation
Properties of 2’s-complement numbers
Signed vs unsigned arithmetic
Signed numbers, positions, or digits
Extended dot notation: posibits and negabits
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Representing Signed Numbers: Topics

Topics in This Chapter

2.1 Signed-Magnitude Representation

2.2 Biased Representations

2.3 Complement Representations

2.4 2’s- and 1’s-Complement Numbers

2.5 Direct and Indirect Signed Arithmetic

2.6 Using Signed Positions or Signed Digits



Mar. 2020 Computer Arithmetic, Number Representation Slide 25

2.1  Signed-Magnitude Representation

Fig. 2.1 A 4-bit signed-magnitude number representation 
system for integers.

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

0 
+1 

+3 

+4 

+5 

+6 
+7 

-7 

-3 

-5 

-4 

-0 
-1 

+2
- 

+ _  

Bit pattern 
(representation) 

Signed values 
(signed magnitude) 

+2 -6 

Increment Decrement 

-
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Signed-Magnitude Adder

Fig. 2.2 Adding signed-magnitude numbers using precomplementation 
and postcomplementation.

Adder cc

s

x ySign x Sign y

Sign

Sign s

Selective          
Complement

Selective          
Complement

out in

Comp x

Control 

Comp s

Add/Sub

Compl x 

___ 
Add/Sub 

Compl s 

Selective 
complement 

Selective 
complement 
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2.2  Biased Representations

Fig. 2.3 A 4-bit biased integer number representation system 
with a bias of 8.

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

-8 
-7 

-5 

-4 

-3 

-2 
-1 

+7 

+3 

+5 

+4 

 0 
+1 

+2 

+ 
_  

Bit pattern 
(representation) 

Signed values 
(biased by 8) 

-6 +6 

Increment Increment 
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Arithmetic with Biased Numbers

Addition/subtraction of biased numbers
x + y + bias =  (x + bias) + (y + bias) – bias
x – y + bias =  (x + bias) – (y + bias) + bias

A power-of-2 (or 2a – 1) bias simplifies addition/subtraction

Comparison of biased numbers:
Compare like ordinary unsigned numbers
find true difference by ordinary subtraction

We seldom perform arbitrary arithmetic on biased numbers
Main application: Exponent field of floating-point numbers
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2.3  Complement Representations

Fig. 2.4 Complement representation of signed integers.

 

0 
1 

2 

3 

4 

M - N  

P 

+0 
+1 

+3 

+4 

-1 

+ 
_  

Unsigned 
representations 

Signed values 

+2 -2 

+ P 
- N 

M - 1 

M - 2 

Increment Decrement 
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Arithmetic with Complement Representations

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Desired Computation to be Correct result Overflow
operation performed mod M with no overflow condition
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
(+x) + (+y) x + y x + y x + y > P

(+x) + (–y) x + (M – y) x – y if y  x N/A
M – (y – x) if y > x

(–x) + (+y) (M – x) + y y – x if x  y N/A
M – (x – y) if x > y

(–x) + (–y) (M – x) + (M – y) M – (x + y) x + y > N
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table 2.1    Addition in a complement number system with 
complementation constant M and range [–N, +P]
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Example and Two Special Cases

Example -- complement system for fixed-point numbers:
Complementation constant M = 12.000
Fixed-point number range [–6.000, +5.999]
Represent –3.258 as 12.000 – 3.258 = 8.742

Auxiliary operations for complement representations
complementation or change of sign (computing M – x)
computations of residues mod M

Thus, M must be selected to simplify these operations

Two choices allow just this for fixed-point radix-r arithmetic
with k whole digits and l fractional digits

Radix complement M = rk

Digit complement M = rk – ulp (aka diminished radix compl)

ulp (unit in least position) stands for r-l

Allows us to forget about l, even for nonintegers
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2.4  2’s- and 1’s-Complement Numbers

Fig. 2.5 A 4-bit 2’s-complement number representation system for integers.

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

+0 
+1 

+3 

+4 

+5 

+6 
+7 

-1 

-5 

-3 

-4 

-8 
-7 

-6 

+ _  

Unsigned 
representations 

Signed values 
(2’s complement) 

+2 -2 
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numbers in with k whole bits:

from  –2k–1 to  2k–1 – ulp
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1’s-Complement Number Representation

Fig. 2.6 A 4-bit 1’s-complement number representation system for integers.

One’s complement = digit 
complement (diminished radix 
complement) system for r = 2

M = 2k – ulp

(2k – ulp) – x = xcompl

Range of representable 
numbers in with k whole bits:

from –2k–1 + ulp to 2k–1 – ulp

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 
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0111 1001 

+0 
+1 
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-5 

+ _  

Unsigned 
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(1’s complement) 

+2 -1 
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Some Details for 2’s- and 1’s Complement

Range/precision extension for 2’s-complement numbers
. . . xk–1 xk–1 xk–1 xk–1 xk–2 . . . x1 x0 . x–1 x–2 . . . x–l 0 0 0 . . .

 Sign extension Sign LSD  Extension
bit

Range/precision extension for 1’s-complement numbers
. . . xk–1 xk–1 xk–1 xk–1 xk–2 . . . x1 x0 . x–1 x–2 . . . x–l xk–1 xk–1 xk–1 . . .

 Sign extension Sign LSD  Extension
bit

Mod-(2k – ulp) operation needed in 1’s-complement arithmetic is done 
via end-around carry

(x + y) – (2k – ulp) = (x – y – 2k) + ulp            Connect cout to cin

Mod-2k operation needed in 2’s-complement arithmetic is trivial:
Simply drop the carry-out (subtract 2k if result is 2k or greater)
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Which Complement System Is Better?

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Feature/Property Radix complement Digit complement
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Symmetry (P = N?) Possible for odd r Possible for even r

(radices of practical
interest are even)

Unique zero? Yes No, there are two 0s

Complementation Complement all digits Complement all digits
and add ulp

Mod-M addition Drop the carry-out End-around carry
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table 2.2    Comparing radix- and digit-complement 
number representation systems 
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Why 2’s-Complement Is the Universal Choice

Fig. 2.7 Adder/subtractor architecture for 2’s-complement numbers.

Mux 

Adder 

0      1 

x y 

y or y 
_ 

s = x  y 

add/sub 
___ 

c in 

Controlled 
complementation 

0 for addition,  
1 for subtraction 

c out 

Can replace 
this mux with 
k XOR gates
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Signed-Magnitude vs 2’s-Complement

Fig. 2.7

Mux 

Adder 

0      1 

x y 

y or y 
_ 

s = x  y 

add/sub 
___ 

c in 

Controlled 
complementation 

0 for addition,  
1 for subtraction 

c out 

Adder cc

s

x ySign x Sign y

Sign

Sign s

Selective          
Complement

Selective          
Complement

out in

Comp x

Control 

Comp s

Add/Sub

Compl x 

___ 
Add/Sub 

Compl s 

Selective 
complement 

Selective 
complement 

Fig. 2.2

Signed-magnitude 
adder/subtractor is 
significantly more 
complex than a 
simple adder

2’s-complement 
adder/subtractor 
needs very little 
hardware other than 
a simple adder
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2.5  Direct and Indirect Signed Arithmetic

Direct signed arithmetic is usually faster (not always)

Indirect signed arithmetic can be simpler (not always); allows sharing 
of signed/unsigned hardware when both operation types are needed

Fig. 2.8 Direct versus indirect operation on signed numbers.

x y

f

x y

f(x, y)

Sign  
logic

Unsigned 
operation

Sign removal

f(x, y)

Adjustment
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2.6  Using Signed Positions or Signed Digits

A key property of 2’s-complement numbers that facilitates 
direct signed arithmetic: 

Fig. 2.9       Interpreting a 2’s-complement number as having a 
negatively weighted most-significant digit.

x =  (1 0 1 0 0 1 1 0)two’s-compl

–27 26 25 24 23 22 21 20

–128 + 32       + 4    + 2     = –90

Check:
x =  (1 0 1 0 0 1 1 0)two’s-compl

–x =  (0 1 0 1 1 0 1 0)two

27 26 25 24 23 22 21 20

64  + 16   + 8 + 2     = 90
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Associating a Sign with Each Digit

Fig. 2.10       Converting a standard radix-4 integer to a radix-4 
integer with the nonstandard digit set [–1, 2]. 

3 1 2 0 2 3 Original digits in [0, 3] 

–1 1 2 0 2 –1 

1 0 0 0 0 1 

Rewritten digits in [–1, 2] 

Transfer digits in [0, 1] 

1 –1 1 2 0 3 –1 

1 –1 1 2 0 –1 –1 

0 0 0 0 1 0 

1 –1 1 2 1 –1 –1 

Sum digits in [–1, 3] 

Rewritten digits in [–1, 2] 

Transfer digits in [0, 1] 

Sum digits in [–1, 3] 

Signed-digit representation: Digit set [-a, b] instead of [0, r – 1] 

Example: Radix-4 representation with digit set [-1, 2] rather than [0, 3]
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Redundant Signed-Digit Representations

Fig. 2.11       Converting a standard radix-4 integer to a radix-4 
integer with the nonstandard digit set [–2, 2].

Signed-digit representation: Digit set [-a, b], with r = a + b + 1 – r > 0

Example: Radix-4 representation with digit set [-2, 2]

3 1 2 0 2 3 Original digits in [0, 3] 

–1 1 –2 0 –2 1 

1 0 1 0 1 1 

Interim digits in [–2, 1] 

Transfer digits in [0, 1] 

1 –1 2 –2 1 –1 –1 Sum digits in [–2, 2] 

Here, the transfer does not propagate, so conversion is “carry-free”
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Extended Dot Notation: Posibits and Negabits

Fig. 2.12      Extended dot notation depicting various number 
representation formats.

Unsigned positive-radix number

2’s-complement number

Negative-radix number

Posibit, or simply bit: positively weighted
Negabit: negatively weighted
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Extended Dot Notation in Use

Fig. 2.13      Example arithmetic algorithms represented in extended 
dot notation.

+ 

(a) Addition

(b) Multiplication
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3  Redundant Number Systems

Chapter Goals

Explore the advantages and drawbacks
of using more than r digit values in radix r

Chapter Highlights

Redundancy eliminates long carry chains
Redundancy takes many forms: trade-offs
Redundant/nonredundant conversions
Redundancy used for end values too?
Extended dot notation with redundancy
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Redundant Number Systems: Topics

Topics in This Chapter

3.1 Coping with the Carry Problem

3.2 Redundancy in Computer Arithmetic

3.3 Digit Sets and Digit-Set Conversions

3.4 Generalized Signed-Digit Numbers

3.5 Carry-Free Addition Algorithms

3.6 Conversions and Support Functions
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3.1  Coping with the Carry Problem

Ways of dealing with the carry propagation problem:

1.  Limit propagation to within a small number of bits (Chapters 3-4)

2.  Detect end of propagation; don’t wait for worst case (Chapter 5)

3.  Speed up propagation via lookahead etc. (Chapters 6-7)

4.  Ideal: Eliminate carry propagation altogether! (Chapter 3)

5 7 8 2 4 9

6 2 9 3 8 9 Operand digits in [0, 9]
––––––––––––––––––––––––––––––––––
11 9 17 5 12 18         Position sums in [0, 18] 

But how can we extend this beyond a single addition?

+
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Addition of Redundant Numbers

Fig. 3.1       Adding radix-10 numbers with digit set [0, 18]. 

Position sum decomposition [0, 36] = 10  [0, 2] + [0, 16]

Absorption of transfer digit [0, 16] + [0, 2] = [0, 18]

6 12 9 10 8 18 
Operand digits in [0, 18] 

17 21 26 20 20 36 

7 11 16 0 10 16 

Position sums in [0, 36] 

Interim sums in [0, 16] 

1 1 1 2 1 2 

1 8 12 18 1 12 16 

11 9 17 10 12 18 

Transfer digits in [0, 2] 

Sum digits in [0, 18] 

+ 
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Meaning of Carry-Free Addition

Fig. 3.2       Ideal and practical carry-free addition schemes.

s i+1 s i–1s i

i+1 i+1 xi–1 ,y i–1,x ixi+1, y i+1 y i

(b) Two-stage carry-free.

s i+1 s i–1s i

t i

(c) Single-stage with lookahead.

s i+1 s i–1s i

xi–1 , y i–1,x ixi+1, y i+1 y i

(a) Ideal single-stage carry-free. 
   

(Impossible for positional 
system with fixed digit set)

Interim sum
at position i

Transfer digit
into position i

Operand digits 
at position i
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Redundancy Index

Fig. 3.3       Adding radix-10 numbers with digit set [0, 11]. 

So, redundancy helps us achieve carry-free addition

But how much redundancy is actually needed? Is [0, 11] enough for r = 10?

18 12 16 21 12 16 Position sums in [0, 22] 

8 2 6 1 2 6 

1 1 1 2 1 1 

Interim sums in [0, 9] 

Transfer digits in [0, 2] 

1 9 3 8 2 3 6 

11 10 7 11 3 8 

Sum digits in [0, 11] 

+ 7 2 9 10 9 8 
Operand digits in [0, 11] 

Redundancy index  r = a + b + 1 – r For example, 0 + 11 + 1 – 10 = 2

-a b
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3.2  Redundancy in Computer Arithmetic

Binary
Inputs

One or more 
arithmetic 
operations

Binary
OutputBinary-to-

redundant 
converter

Redundant
-to-binary 
converter

Overhead 
(often zero)

Overhead
(always nonzero)

The more the amount of computation performed between the 
initial forward conversion and final reverse conversion (reconversion), 
the greater the benefits of redundant representation.

Same block diagram applies to residue number systems of Chapter 4.
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Binary Carry-Save or Stored-Carry Representation

Fig. 3.4 Addition of 
four binary numbers, 
with the sum obtained 
in stored-carry form.

0 0 1 0 0 1 First binary number 

0 1 1 1 1 0 

0 1 2 1 1 1 

Add second binary number 

Position sums in [0, 2] 

+ 0 1 1 1 0 1 Add third binary number 

Position sums in [0, 3] 

Interim sums in [0, 1] 

Transfer digits in [0, 1] 

Position sums in [0, 2] 

Add fourth binary number 

Position sums in [0, 3] 

0 2 3 2 1 2 

0 0 1 0 1 0 

0 1 1 1 0 1 

1 1 2 0 2 0 

+ 

1 1 3 0 3 1 

1 1 1 0 1 1 

0 0 1 0 1 0 

1 2 1 1 1 1 

+ 0 0 1 0 1 1 

Interim sums in [0, 1] 

Transfer digits in [0, 1] 

Sum digits in [0, 2] 

Oldest example of 
redundancy in 
computer arithmetic 
is the stored-carry 
representation 
(carry-save addition) 
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Hardware for Carry-Save Addition

Fig. 3.5 Using an array of 
independent binary full adders 
to perform carry-save addition. 

Binary 
Full 
Adder 
(Stage i)

c incout

Digit in [0, 2] Binary digit

Digit in [0, 2]

To  
Stage  
i+1

From 
Stage 
i – 1

x y

s

Two-bit encoding for binary 
stored-carry digits used in 
this implementation:

0    represented as 0  0

1    represented as 0  1    
or as    1  0

2    represented as 1  1

Because in carry-save addition, 
three binary numbers are 
reduced to two binary numbers, 
this process is sometimes 
referred to as 3-2 compression
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Carry-Save Addition in Dot Notation

Two 
carry-save 

inputs 

Carry-save 
input  

Binary input 

Carry-save 
output  

This bit 
being 1 

represents 
overflow 
(ignore it) 

0 
0 

0 

a. Carry-save addition.  b. Adding two carry-save numbers.  

Carry-save 
addition 

Carry-save 
addition 

We sometimes find it convenient to use an extended dot notation, 
with heavy dots (●) for posibits and hollow dots (○) for negabits

Eight-bit, 2’s-complement number ○ ● ● ● ● ● ● ●

Negative-radix number ○ ● ○ ● ○ ● ○ ●

BSD number with n, p encoding ○ ○ ○ ○ ○ ○ ○ ○
of the digit set [-1, 1] ● ● ● ● ● ● ● ●

Fig. 9.3 From text on computer architecture (Parhami, Oxford/2005) 

3-to-2 
reduction

4-to-2 
reduction
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Example for the Use of Extended Dot Notation

2’s-complement multiplicand ○ ● ● ● ● ● ● ●
2’s-complement multiplier ○ ● ● ● ● ● ● ●

○ ● ● ● ● ● ● ●
○ ● ● ● ● ● ● ●

○ ● ● ● ● ● ● ●
○ ● ● ● ● ● ● ●

○ ● ● ● ● ● ● ●
○ ● ● ● ● ● ● ●

○ ● ● ● ● ● ● ●
● ○ ○ ○ ○ ○ ○ ○

○ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Option 2: Baugh-Wooley method

-x
-y

1- x
-1 1- y

Option 1: 
sign extension

-x
-x     x     x     x    x

Multiplication of 
2’s-complement 

numbers
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3.3  Digit Sets and Digit-Set Conversions

Example 3.1: Convert from digit set [0, 18] to [0, 9] in radix 10

11 9 17 10 12 18    18 = 10 (carry 1) + 8
11 9 17 10 13 8    13 = 10 (carry 1) + 3
11 9 17 11 3 8    11 = 10 (carry 1) + 1
11 9 18 1 3 8 18 = 10 (carry 1) + 8
11 10 8 1 3 8 10 = 10 (carry 1) + 0
12 0 8 1 3 8 12 = 10 (carry 1) + 2

1 2 0 8 1 3 8 Answer; 
all digits in [0, 9]

Note: Conversion from redundant to nonredundant representation 
always involves carry propagation

Thus, the process is sequential and slow
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Conversion from Carry-Save to Binary

Example 3.2: Convert from digit set [0, 2] to [0, 1] in radix 2

1 1 2 0 2 0 2 = 2 (carry 1) + 0
1 1 2 1 0 0 2 = 2 (carry 1) + 0
1 2 0 1 0 0 2 = 2 (carry 1) + 0
2 0 0 1 0 0 2 = 2 (carry 1) + 0

1 0 0 0 1 0 0 Answer;
all digits in [0, 1]

Another way: Decompose the carry-save number
into two numbers and add them:

1 1 1 0 1 0 1st number: sum bits
+ 0 0 1 0 1 0 2nd number: carry bits

––––––––––––––––––––––––––––––––––––––––
1 0 0 0 1 0 0 Sum
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Conversion Between Redundant Digit Sets

Example 3.3: Convert from digit set [0, 18] to [-6, 5] in radix 10 (same as 
Example 3.1, but with the target digit set signed and redundant)

11 9 17 10 12 18    18 = 20 (carry 2) – 2
11 9 17 10 14 -2    14 = 10 (carry 1) + 4
11 9 17 11 4 -2 11 = 10 (carry 1) + 1
11 9 18 1 4 -2 18 = 20 (carry 2) – 2
11 11 -2 1 4 -2 11 = 10 (carry 1) + 1
12 1 -2 1 4 -2 12 = 10 (carry 1) + 2

1 2 1 -2 1 4 -2 Answer; 
all digits in [-6, 5]

On line 2, we could have written 14 = 20 (carry 2) – 6; this would have 
led to a different, but equivalent, representation

In general, several representations may exist for a redundant digit set
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Carry-Free Conversion to a Redundant Digit Set

Example 3.4: Convert from digit set [0, 2] to [-1, 1] in radix 2 (same as 
Example 3.2, but with the target digit set signed and redundant)

Carry-free conversion:

1 1 2 0 2 0 Carry-save number
–1 –1 0 0 0 0 Interim digits in [–1, 0]

1 1 1 0 1 0 Transfer digits in [0, 1]
––––––––––––––––––––––––––––––––––––––––
1 0 0 0 1 0 0 Answer;

all digits in [–1, 1]

We rewrite 2 as 2 (carry 1) + 0, and 1 as 2 (carry 1) – 1

A carry of 1 is always absorbed by the interim digit that is in {-1, 0}



Mar. 2020 Computer Arithmetic, Number Representation Slide 59

3.4  Generalized Signed-Digit Numbers

Fig. 3.6     
A taxonomy of 
redundant and 
non-redundant 
positional 
number 
systems.

Radix-r Positional
r r

Non-redundant

a a

Conventional Non-redundant 
signed-digit

Generalized 
signed-digit (GSD)

r r

Minimal 
GSD

Non-minimal 
GSD

ab
(even r)

ab

Symmetric 
minimal GSD

r = 2

BSD or 
BSB

Asymmetric 
minimal GSD

a a
(r ° 2)

Stored- 
carry (SC)

Non-binary 
SB

Symmetric non- 
minimal GSD

ab ab

Asymmetric non- 
minimal GSD

a r

Ordinary 
signed-digit

Minimally 
redundant OSD

Maximally 
redundant OSD BSCB

SCB

r = 2

a
b ra

Unsigned-digit 
redundant (UDR)

r = 2

BSC

a r – 1ar/2 + 1

 

Radix r
Digit set [–a, b]
Requirement   

a + b + 1  r
Redundancy index

r = a + b + 1 – r
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Encodings for Signed Digits

Fig. 3.7       Four encodings for the BSD digit set [–1, 1].

xi

s, v
2’s-compl
n, p
n, z, p

Two of the 
encodings 
above 
can be shown 
in extended 
dot notation 

Fig. 3.8       Extended dot notation and its use in visualizing 
some BSD encodings.

Posibit {0, 1}

Negabit {–1, 0}

Doublebit    {0, 2}

Negadoublebit {–2, 0}

Unibit {–1, 1}

(a)  Extended dot notation

(n, p) encoding

2’s-compl. encoding

2’s-compl. encoding

(b)  Encodings for a BSD number

BSD representation of +6
Sign and value encoding
2-bit 2’s-complement
Negative & positive flags
1-out-of-3 encoding

0
00 
00
00
010

–1
11 
11
10
100

0
00 
00
00
010

–1
11 
11
10
100

1
01 
01
01
001
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Hybrid Signed-Digit Numbers

i 

i 

i 

i 

i 

BSD B  B BSD B B Type 

1 0 1 –1 0 1 

+ 0 1 1 –1 1 

x 

y 

1 1 2 –2 1 1 

–1 0 

1 –1 0 

1 –1 1 1 0 1 1 

p 

w 

t 

s 

BSD B B 

–1 0 1 

–1 1 1 

–1 1 1 

0 1 0 

–1 

0 

i+1 

Fig. 3.9       Example of addition for hybrid signed-digit numbers.

Radix-8 
GSD 
with 
digit set 
[-4,7]

The hybrid-redundant representation above in extended dot notation:

n, p -encoded ○ ● ● ○ ● ● ○ ● ● Nonredundant
binary signed digit ● ● ● binary positions
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Hybrid Redundancy in Extended Dot Notation

Fig. 3.10       Two hybrid-redundant representations in extended 
dot notation.

Radix-8 digit set [–4, 7]

Radix-8 digit set [–4, 4]
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3.5  Carry-Free Addition Algorithms

Carry-free addition of GSD numbers

Compute the position sums pi = xi + yi

Divide pi into a transfer ti+1 and interim sum wi = pi – rti+1

Add incoming transfers to get the sum digits si = wi + ti

xi–1,y i–1,x ixi+1,y i+1 y i

s i+1 s i–1s i

tiwi

If the transfer digits ti are in [–l, m], we must have:

–a + l  pi – rti+1  b – m

interim sum           

Smallest interim sum         Largest interim sum
if a transfer of –l if a transfer of m
is to be absorbable           is to be absorbable

These   
constraints 
lead to:

l  a / (r – 1)

m  b / (r – 1)
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Is Carry-Free Addition Always Applicable?

No: It requires one of the following two conditions

a.  r > 2, r  3

b. r > 2, r = 2, a  1, b  1 e.g., not [-1, 10] in radix 10

In other words, it is inapplicable for

r = 2 Perhaps most useful case

r = 1 e.g., carry-save

r = 2 with a = 1 or b = 1 e.g., carry/borrow-save

BSD fails on at least two criteria!

Fortunately, in the latter cases, a limited-carry 
addition algorithm is always applicable
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Limited-Carry Addition

Example: BSD addition  1 1 1 -1
0 1 0 -1

1 -1

Fig. 3.12       Some implementations for limited-carry addition.

(a) Three-stage carry estimate. (b) Three-stage repeated-carry.

s i+1 s i–1s i

ei

ti

i+1 i+1

s i+1 s i–1s i

ti

t'i

xi–1,y i–1,x ixi+1,y i+1 y i

(c) Two-stage parallel-carries.

s i+1 s i–1s i

ti
(2)

ti
(1)

xi–1,y i–1,x ixi+1,y i+1 y i

(a) Three-stage carry estimate (b) Three-stage repeated carry (c) Tw o-stage parallel carries 

Estimate, or
early warning
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Limited-Carry BSD Addition

Fig. 3.13      Limited-carry addition of radix-2 numbers with digit set [–1, 1] 
using carry estimates. A position sum –1 is kept intact when the incoming 
transfer is in [0, 1], whereas it is rewritten as 1 with a carry of –1 for 
incoming transfer in [–1, 0]. This guarantees that ti  wi and thus –1 si 1.

1 –1 0 –1 0 x   in [–1, 1] 

+ 0 –1 –1 0 1 

1 –2 –1 –1 1 

1 0 1 –1 –1 

–1 –1 0 1 

0 –1 1 0 –1 

i 

i+1 

y    in [–1, 1] i 

p    in [–2, 2] i 

w   in [–1, 1] i 

s    in [–1, 1] i 

t     in [–1, 1] 

low low low high high high 

0 

0 

e   in {low: [–1, 0], high: [0, 1]} i 
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3.6  Conversions and Support Functions

Example 3.10:  Conversion from/to BSD to/from standard binary

1 -1 0 -1 0 BSD representation of +6
1 0 0 0 0 Positive part
0 1 0 1 0 Negative part
0 0 1 1 0 Difference =

Conversion result

The negative and positive parts above are particularly easy to obtain 
if the BSD number has the n, p encoding

Conversion from redundant to nonredundant representation 
always requires full carry propagation

Conversion from nonredundant to redundant is often trivial
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Other Arithmetic Support Functions

Overflow and its detection in GSD arithmetic.

xk–1 xk–2 . . . x1 x0 k-digit GSD operands
+ yk–1 yk–2 . . . y1 y0

–––––––––––––––––––––––––––
pk–1 pk–2 . . . p1 p0 Position sums
| | | |

wk–1 wk–2 . . . w1 w0 Interim sum digits
⁄          ⁄ ⁄ ⁄ 

tk tk–1 . . . t2 t1 Transfer digits
–––––––––––––––––––––––––––
sk–1 sk–2 . . . s1 s0 k-digit apparent sum

Zero test: Zero has a unique code under some conditions

Sign test: Needs carry propagation

Overflow: May be real or apparent (result may be representable)
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4  Residue Number Systems

Chapter Goals

Study a way of encoding large numbers
as a collection of smaller numbers
to simplify and speed up some operations

Chapter Highlights

Moduli, range, arithmetic operations
Many sets of moduli possible: tradeoffs
Conversions between RNS and binary
The Chinese remainder theorem
Why are RNS applications limited?



Mar. 2020 Computer Arithmetic, Number Representation Slide 70

Residue Number Systems: Topics

Topics in This Chapter

4.1 RNS Representation and Arithmetic

4.2 Choosing the RNS Moduli

4.3 Encoding and Decoding of Numbers

4.4 Difficult RNS Arithmetic Operations

4.5 Redundant RNS Representations

4.6 Limits of Fast Arithmetic in RNS
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4.1  RNS Representations and Arithmetic

Puzzle, due to the Chinese scholar Sun Tzu,1500+ years ago: 

What number has the remainders of 2, 3, and 2 
when divided by 7, 5, and 3, respectively? 

Residues (akin to digits in positional systems) uniquely identify 
the number, hence they constitute a representation

Pairwise relatively prime moduli: mk–1 > . . . > m1 > m0

The residue xi of x wrt the ith modulus mi (similar to a digit):
xi =   x mod mi =  xmi

RNS representation contains a list of k residues or digits:
x =  (2 | 3 | 2)RNS(7|5|3)

Default RNS for this chapter:  RNS(8 | 7 | 5 | 3) 
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RNS Dynamic Range
Product M of the k pairwise relatively prime moduli is the dynamic range

M = mk–1  . . .  m1  m0

For RNS(8 | 7 | 5 | 3), M = 8753 = 840

Negative numbers: Complement relative to M
–xmi

= M – xmi
21 = (5 | 0 | 1 | 0)RNS

–21 = (8 – 5 | 0 | 5 – 1 | 0)RNS = (3 | 0 | 4 | 0)RNS

Here are some example numbers in our default RNS(8 | 7 | 5 | 3):
(0 | 0 | 0 | 0)RNS Represents 0 or 840 or . . .
(1 | 1 | 1 | 1)RNS Represents 1 or 841 or . . .
(2 | 2 | 2 | 2)RNS Represents 2 or 842 or . . .
(0 | 1 | 3 | 2)RNS Represents 8 or 848 or . . .
(5 | 0 | 1 | 0)RNS Represents 21 or 861 or . . .
(0 | 1 | 4 | 1)RNS Represents 64 or 904 or . . .
(2 | 0 | 0 | 2)RNS Represents –70 or 770 or . . .
(7 | 6 | 4 | 2)RNS Represents –1 or 839 or . . .

We can take the 
range of RNS(8|7|5|3) 
to be [-420, 419] or 
any other set of 840 
consecutive integers



Mar. 2020 Computer Arithmetic, Number Representation Slide 73

We will see later how the weights can be determined for a given RNS

RNS as Weighted Representation

For RNS(8 | 7 | 5 | 3), the weights of the 4 positions are:

105 120 336 280

Example:  (1 | 2 | 4 | 0)RNS represents the number

1051 + 1202 + 3364 + 2800840 =  1689840 =  9

For RNS(7 | 5 | 3), the weights of the 3 positions are:

15 21 70

Example -- Chinese puzzle:  (2 | 3 | 2)RNS(7|5|3) represents the number

15  2  +  21  3  +  70  2105 =  233105 =  23
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RNS Encoding and Arithmetic Operations

Fig. 4.1     Binary-coded 
format for RNS(8 | 7 | 5 | 3). 

Arithmetic in RNS(8 | 7 | 5 | 3)
(5 | 5 | 0 | 2)RNS Represents x = +5
(7 | 6 | 4 | 2)RNS Represents y = –1
(4 | 4 | 4 | 1)RNS x + y : 5 + 78 = 4, 5 + 67 = 4, etc.
(6 | 6 | 1 | 0)RNS x – y : 5 – 78 = 6, 5 – 67 = 6, etc.

(alternatively, find –y and add to x)
(3 | 2 | 0 | 1)RNS x  y : 5  78 = 3, 5  67 = 2, etc.

mod 8    mod 7    mod 5   mod 3

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result

Fig. 4.2     The structure of an adder, 
subtractor, or multiplier for RNS(8|7|5|3). 
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4.2  Choosing the RNS Moduli

Target range for our RNS: Decimal values [0, 100 000]

Strategy 1: To minimize the largest modulus, and thus ensure 
high-speed arithmetic, pick prime numbers in sequence

Pick m0 = 2, m1 = 3, m2 = 5, etc. After adding m5 = 13:
RNS(13 | 11 | 7 | 5 | 3 | 2) M = 30 030 Inadequate

RNS(17 | 13 | 11 | 7 | 5 | 3 | 2) M = 510 510 Too large

RNS(17 | 13 | 11 | 7 | 3 | 2) M = 102 102 Just right!
5 + 4 + 4 + 3 + 2 + 1 = 19  bits

Fine tuning: Combine pairs of moduli 2 & 13 (26) and 3 & 7 (21)
RNS(26 | 21 | 17 | 11) M = 102 102
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An Improved Strategy

Target range for our RNS: Decimal values [0, 100 000]

Strategy 2: Improve strategy 1 by including powers of smaller 
primes before proceeding to the next larger prime

RNS(22 | 3) M = 12
RNS(32 | 23 | 7 | 5) M = 2520
RNS(11 | 32 | 23 | 7 | 5) M = 27 720
RNS(13 | 11 | 32 | 23 | 7 | 5) M = 360 360

(remove one 3, combine 3 & 5)
RNS(15 | 13 | 11 | 23 | 7) M = 120 120

4 + 4 + 4 + 3 + 3 = 18 bits

Fine tuning: Maximize the size of the even modulus within the 4-bit limit
RNS(24 | 13 | 11 | 32 | 7 | 5) M = 720 720 Too large
We can now remove 5 or 7; not an improvement in this example 
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Low-Cost RNS Moduli

Target range for our RNS: Decimal values [0, 100 000]

Strategy 3: To simplify the modular reduction (mod mi) operations, 
choose only moduli of the forms 2a or 2a – 1, aka “low-cost moduli”

RNS(2ak–1 | 2ak–2 – 1 | . . . | 2a1 – 1 | 2a0 – 1)

We can have only one even modulus
2ai – 1 and 2aj – 1 are relatively prime iff ai and aj are relatively prime

RNS(23 | 23–1 | 22–1) basis: 3, 2 M = 168
RNS(24 | 24–1 | 23–1) basis: 4, 3 M = 1680
RNS(25 | 25–1 | 23–1 | 22–1) basis: 5, 3, 2 M = 20 832
RNS(25 | 25–1 | 24–1 | 23–1) basis: 5, 4, 3 M = 104 160

Comparison

RNS(15 | 13 | 11 | 23 | 7) 18 bits M = 120 120
RNS(25 | 25–1 | 24–1 | 23–1) 17 bits M = 104 160
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Low- and Moderate-Cost RNS Moduli

Target range for our RNS: Decimal values [0, 100 000]

Strategy 4: To simplify the modular reduction (mod mi) operations, 
choose moduli of the forms 2a, 2a – 1, or 2a + 1

RNS(2ak–1 | 2ak–2  1 | . . . | 2a1  1 | 2a0  1)

We can have only one even modulus
2ai – 1 and 2aj + 1 are relatively prime

RNS(25 | 24–1 | 24+1 | 23–1) M = 57 120
RNS(25 | 24+1 | 23+1 | 23–1 | 22–1) M = 102 816

Neither 5 nor 3 is acceptable

The modulus 2a + 1 is not as convenient as 2a – 1 
(needs an extra bit for residue, and modular operations are not as simple)

Diminished-1 representation of values in [0, 2a] is a way to simplify things
Represent 0 by a special flag bit and nonzero values by coding one less
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Reverse converter: Multioperand adder, with shifted xis as inputs

Example RNS with Special Moduli

For RNS(17 | 16 | 15), the weights of the 3 positions are:

2160 3825 2176

Example:  (x2, x1, x0) = (2 | 3 | 4)RNS represents the number

21602 + 38253 + 217644080 =  24,4994080 =  19

2160 = 24  (24 – 1)  (23 + 1) = 211 + 27 – 24

3825 = (28 – 1)  (24 – 1) = 212 – 28 – 24 + 1

2176 = 27  (24 + 1) = 211 + 27

4080 = 212 – 24 ; thus, to subtract 4080, ignore bit 12 and add 24
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4.3  Encoding and Decoding of Numbers

Binary
Inputs

One or more 
arithmetic 
Operations

Binary
OutputBinary-to-

RNS 
converter

RNS-to-
binary 

converter

Encoding or 
forward 

conversion

Decoding or 
reverse 

conversion

The more the amount of computation performed between the 
initial forward conversion and final reverse conversion (reconversion), 
the greater the benefits of RNS representation.

Example: 
Digital filter
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Conversion from Binary/Decimal to RNS

–––––––––––––––––––––––––––––
i 2i 2i7 2i5 2i3

–––––––––––––––––––––––––––––
0 1 1 1 1
1 2 2 2 2
2 4 4 4 1
3 8 1 3 2
4 16 2 1 1
5 32 4 2 2
6 64 1 4 1
7 128 2 3 2
8 256 4 1 1
9 512 1 2 2

–––––––––––––––––––––––––––––

Table 4.1 Residues of 
the first 10 powers of 2

Example 4.1:  Represent the 
number y = (1010 0100)two = 
(164)ten in RNS(8 | 7 | 5 | 3)

The mod-8 residue is easy to find

x3 = y8 = (100)two = 4

We have y = 27+25+22; thus

x2 = y7 = 2 + 4 + 47 = 3

x1 = y5 = 3 + 2 + 45 = 4

x0 = y3 = 2 + 2 + 13 = 2
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Conversion from RNS to Mixed-Radix Form

MRS(mk–1 | . . . | m2 | m1 | m0) is a k-digit positional system with weights
mk–2...m2m1m0 . . . m2m1m0 m1m0 m0 1

and digit sets
[0, mk–1–1] . . . [0,m3–1] [0,m2–1] [0,m1–1] [0,m0–1]

Example: (0 | 3 | 1 | 0)MRS(8|7|5|3) = 0105 + 315 + 13 + 01 = 48

RNS-to-MRS conversion problem:
y = (xk–1 | . . . | x2 | x1 | x0)RNS = (zk–1 | . . . | z2 | z1 | z0)MRS

MRS representation allows magnitude comparison and sign detection

Example: 48 versus 45
(0 | 6 | 3 | 0)RNS vs (5 | 3 | 0 | 0)RNS

(000 | 110 | 011 | 00)RNS vs (101 | 011 | 000 | 00)RNS

Equivalent mixed-radix representations
(0 | 3 | 1 | 0)MRS vs (0 | 3 | 0 | 0)MRS

(000 | 011 | 001 | 00)MRS vs (000 | 011 | 000 | 00)MRS
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Conversion from RNS to Binary/Decimal

Theorem 4.1 (The Chinese remainder theorem)
x = (xk–1 | . . . | x2 | x1 | x0)RNS =  i Mi ai ximi M

where Mi = M/mi and ai = Mi
–1mi (multiplicative inverse of Mi wrt mi)

Implementing CRT-based RNS-to-binary conversion
x =  i Mi ai ximi M =  i fi(xi) M

We can use a table to store the fi values –- i mi entries

Table 4.2      Values needed in applying the 
Chinese remainder theorem to RNS(8 | 7 | 5 | 3)

––––––––––––––––––––––––––––––
i mi xi Mi ai ximiM––––––––––––––––––––––––––––––
3 8 0 0

1 105
2 210
3 315
. .. .. .
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Intuitive Justification for CRT

Puzzle: What number has the remainders of 2, 3, and 2 
when divided by the numbers 7, 5, and 3, respectively? 

x =  (2 | 3 | 2)RNS(7|5|3) =  (?)ten

(1 | 0 | 0)RNS(7|5|3) =  multiple of 15 that is 1 mod 7  =  15
(0 | 1 | 0)RNS(7|5|3) =  multiple of 21 that is 1 mod 5  =  21
(0 | 0 | 1)RNS(7|5|3) =  multiple of 35 that is 1 mod 3  =  70

(2 | 3 | 2)RNS(7|5|3) =  (2 | 0 | 0) +  (0 | 3 | 0) + (0 | 0 | 2)
=  2  (1 | 0 | 0) + 3  (0 | 1 | 0) + 2  (0 | 0 | 1)

=  2  15 + 3  21 + 2  70 
=  30 + 63 + 140
=  233 = 23 mod 105

Therefore, x = (23)ten
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4.4  Difficult RNS Arithmetic Operations

Sign test and magnitude comparison are difficult

Example: Of the following RNS(8 | 7 | 5 | 3) numbers:

Which, if any, are negative?
Which is the largest?
Which is the smallest?

Assume a range of [–420, 419]

a =  (0 | 1 | 3 | 2)RNS

b =  (0 | 1 | 4 | 1)RNS

c =  (0 | 6 | 2 | 1)RNS

d =  (2 | 0 | 0 | 2)RNS

e =  (5 | 0 | 1 | 0)RNS

f =  (7 | 6 | 4 | 2)RNS

Answers:
d <  c <  f <  a <  e <  b

–70  < –8   <   –1  <    8    <   21   <   64
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Approximate CRT Decoding

Theorem 4.1 (The Chinese remainder theorem, scaled version)
Divide both sides of CRT equality by M to get scaled version of x in [0, 1)

x = (xk–1 | . . . | x2 | x1 | x0)RNS =  i Mi ai ximi M
x/M =  i ai ximi / mi 1 =  i gi(xi) 1

where mod-1 summation implies that we discard the integer parts

Table 4.3      Values needed in applying the approximate 
Chinese remainder theorem decoding to RNS(8 | 7 | 5 | 3)

––––––––––––––––––––––––––––––
i mi xi ai ximi / mi 

––––––––––––––––––––––––––––––
3 8 0 .0000

1 .1250
2 .2500
3 .3750
. .. .. .

Errors can be estimated and kept in check for the particular application
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General RNS Division

General RNS division, as opposed to division by one of the moduli 
(aka scaling), is difficult; hence, use of RNS is unlikely to be effective 
when an application requires many divisions

Scheme proposed in 1994 PhD thesis of Ching-Yu Hung (UCSB):
Use an algorithm that has built-in tolerance to imprecision, and apply 
the approximate CRT decoding to choose quotient digits

Example –– SRT algorithm (s is the partial remainder)

s < 0 quotient digit = –1
s  0 quotient digit =   0
s > 0 quotient digit =   1

The BSD quotient can be converted to RNS on the fly
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4.5  Redundant RNS Representations

Fig. 4.3    Adding a 4-bit ordinary 
mod-13 residue x to a 4-bit 
pseudoresidue y, producing a 
4-bit mod-13 pseudoresidue z.

Adder

Adder

x y

z

cout
0 0

Drop

Pseudoresidue x Residue y 

Pseudoresidue z  

Drop 
Adder 

Adder 

sum in sum out

Mux

0

2h

operand residue

coefficient 
residue

h

2h+1

h

–m

LSBs

 h

2h
 h

 h
2h

MSB



 

0 
1

Sum out  Sum in 

Operand residue 

Coefficient  
residue 

Fig. 4.4    A modulo-m
multiply-add cell that accumulates 
the sum into a double-length 
redundant pseudoresidue.

[0, 15] [0, 12]

[0, 15]
[0, 11]

if cout = 1

[0, 15]
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4.6  Limits of Fast Arithmetic in RNS

Known results from number theory

Implications to speed of arithmetic in RNS

Theorem 4.5: It is possible to represent all k-bit binary numbers
in RNS with O(k / log k) moduli such that the largest modulus
has O(log k) bits

That is, with fast log-time adders, addition needs O(log log k) time

Theorem 4.2: The ith prime pi is asymptotically i ln i

Theorem 4.3: The number of primes in [1, n] is asymptotically n / ln n

Theorem 4.4: The product of all primes in [1, n] is asymptotically en
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Limits for Low-Cost RNS

Known results from number theory

Implications to speed of arithmetic in low-cost RNS

Theorem 4.8: It is possible to represent all k-bit binary numbers in
RNS with O((k / log k)1/2) low-cost moduli of the form 2a – 1
such that the largest modulus has O((k log k)1/2) bits

Because a fast adder needs O(log k) time, asymptotically,
low-cost RNS offers little speed advantage over standard binary

Theorem 4.6: The numbers 2a – 1 and 2b – 1 are relatively prime 
iff a and b are relatively prime

Theorem 4.7: The sum of the first i primes is asymptotically O(i2 ln i)
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s i+1 s i–1s i

i+1 i+1 xi–1,y i–1,x ixi+1,y i+1 y i

(b) Two-stage carry-free.

s i+1 s i–1s i

ti

(c) Single-stage with lookahead.

s i+1 s i–1s i

xi–1,y i–1,x ixi+1,y i+1 y i

(a) Ideal single-stage carry-free. 
   

(Impossible for positional 
system with fixed digit set)

Positional representation does not 
support totally carry-free addition; 
but it appears that RNS does allow 
digitwise arithmetic

Disclaimer About RNS Representations

RNS representations are sometimes referred to as “carry-free”

However . . .   even though each RNS digit is processed independently 
(for +, –, ), the size of the digit set is dependent on the desired range 
(grows at least double-logarithmically with the range M, or logarithmically 
with the word width k in the binary representation of the same range)

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result


