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About This Presentation
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U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated 
regularly by the author as part of his teaching of the graduate 
course ECE 252B, Computer Arithmetic, at the University of 
California, Santa Barbara. Instructors can use these slides freely 
in classroom teaching and for other educational purposes. 
Unauthorized uses are strictly prohibited. © Behrooz Parhami
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V  Real Arithmetic

Topics in This Part
Chapter 17 Floating-Point Representations
Chapter 18 Floating-Point Operations
Chapter 19 Errors and Error Control
Chapter 20 Precise and Certifiable Arithmetic

Review floating-point numbers, arithmetic, and errors:
• How to combine wide range with high precision
• Format and arithmetic ops; the IEEE standard
• Causes and consequence of computation errors
• When can we trust computation results?
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“According to my calculation, 
you should float now ...  I think ...” “It’s an inexact science.”
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17  Floating-Point Representations

Chapter Goals
Study a representation method offering both
wide range (e.g., astronomical distances)
and high precision (e.g., atomic distances)

Chapter Highlights
Floating-point formats and related tradeoffs
The need for a floating-point standard
Finiteness of precision and range
Fixed-point and logarithmic representations

as special cases at the two extremes
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Floating-Point Representations: Topics

Topics in This Chapter

17.1 Floating-Point Numbers

17.2 The IEEE Floating-Point Standard

17.3 Basic Floating-Point Algorithms

17.4 Conversions and Exceptions

17.5 Rounding Schemes

17.6 Logarithmic Number Systems
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17.1  Floating-Point Numbers
No finite number system can represent all real numbers
Various systems can be used for a subset of real numbers

Fixed-point w . f
Rational p /q
Floating-point sbe

Logarithmic  logbx

Fixed-point numbers
x = (0000 0000 .0000 1001)two Small number
y = (1001 0000 .0000 0000)two Large number

Low precision and/or range
Difficult arithmetic
Most common scheme
Limiting case of floating-point

Floating-point numbers
x =   s  be or      significand  baseexponent

A floating-point number comes with two signs: 
Number sign, usually appears as a separate bit   
Exponent sign, usually embedded in the biased exponent

Square of 
neither number 
representable

x = 1.001  2–5

y = 1.001  2+7
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Floating-Point Number Format and Distribution

Fig. 17.2   Subranges 
and special values in 
floating-point number 
representations.

E x p o n  e n t : 
Signed integer, 
often represented 
as unsigned value 
by adding a bias   
 
Range with h bits: 
[–bias, 2  –1–bias]h

S i g n i f i c a n d : 
Represented as a fixed-point number

Usually normalized by shifting,  
so that the MSB becomes nonzero.  
In radix 2, the fixed leading 1   
can be removed to save one bit;  
this bit is known as "hidden 1".

Sign 
 
0 : + 
1 : –

± e sFig. 17.1   Typical 
floating-point 
number format.

Denser Denser Sparser Sparser 

Negative numbers  
FLP FLP 0 + 

 
– 

 

Overflow 
region 

Overflow 
region 

Underflow 
regions  

Positive numbers  

Underflow 
example 

Overflow 
example 

Midway 
example 

Typical 
example 

min max min max + + – – – + 

1.001  2–5

1.001  2+7
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Floating-Point Before the IEEE Standard
Computer manufacturers tended to have their own hardware-level formats

This created many problems, as floating-point computations could produce 
vastly different results (not just differing in the last few significant bits)

In computer arithmetic, we talked about IBM, CDC, DEC, Cray, … formats 
and discussed their relative merits

First IEEE standard for binary floating-point arithmetic was adopted in 1985 
after years of discussion

The 1985 standard was continuously discussed, criticized, and clarified for 
a couple of decades

In 2008, after several years of discussion, a revised standard was issued

To get a sense for the wide variations in floating-point formats, visit:

http://www.mrob.com/pub/math/floatformats.html
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17.2  The IEEE Floating-Point Standard

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits, 
 bias = 127, 
 –126 to 127 

 11 bits, 
 bias = 1023, 
 –1022 to 1023 

52 bits for fractional part  
(plus hidden 1 in integer part) 

23 bits for fractional part  
(plus hidden 1 in integer part) 

Fig. 17.3    The IEEE standard floating-point 
number representation formats. 

IEEE 754-2008 Standard
(supersedes IEEE 754-1985)

Also includes half- & 
quad-word binary, plus 
some decimal formats
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Overview of IEEE 754-2008 Standard Formats

––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Feature Single /Short Double /Long
––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Word width (bits) 32 64
Significand bits 23 + 1 hidden 52 + 1 hidden
Significand range [1, 2 – 2–23] [1, 2 – 2–52]
Exponent bits 8 11
Exponent bias 127 1023
Zero (0) e + bias = 0, f = 0 e + bias = 0, f = 0
Denormal e + bias = 0, f  0 e + bias = 0, f  0 

represents 0.f2–126 represents0.f2–1022

Infinity () e + bias = 255, f = 0 e + bias = 2047, f = 0
Not-a-number (NaN) e + bias = 255, f  0 e + bias = 2047, f  0
Ordinary number e + bias  [1, 254] e + bias  [1, 2046]

e  [–126, 127] e  [–1022, 1023]
represents 1.f  2e represents 1.f  2e

min 2–126  1.2  10–38 2–1022  2.2  10–308

max  2128  3.4  1038  21024  1.8  10308
––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table 17.1  Some features of the IEEE 754-2008 standard floating-point number representation formats 
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Exponent Encoding

00 01 7F FE FF7E 80
0 1 127 254 255126 128

–126 0 +127–1 +1

Decimal code
Hex code

Exponent value

f = 0: Representation of 0
f  0: Representation of subnormals, 

0.f  2–126

f = 0: Representation of 
f  0: Representation of NaNs

Exponent encoding in 8 bits for the single/short (32-bit) IEEE 754 format

Exponent encoding in 
11 bits for the double/long 
(64-bit) format is similar

Denser Denser Sparser Sparser 

Negative numbers  
FLP FLP 0 + 

 
– 

 

Overflow 
region 

Overflow 
region 

Underflow 
regions 

Positive numbers  

Underflow 
example 

Overflow 
example 

Midway 
example 

Typical 
example 

min max min max + + – – – + 

1.f  2e
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Special Operands and Subnormals

Operations on special operands:
Ordinary number  (+)  = 0
(+)  Ordinary number  = 
NaN + Ordinary number = NaN

Biased value
0 1 2 .   . . 253  254 255

126 125    .   . . 126  127 

Ordinary FLP numbers

, NaN0, Subnormal
( 0.f  2–126)

(1.f  2e )

(1.00…01 – 1.00…00)2–126 = 2–149

0 2
–126Denormals 2

–125

.     .     .    .     .     .    

min

. . .

Fig. 17.4   Subnormals in the IEEE single-precision format. 

Subnormals
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Extended Formats

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits, 
 bias = 127, 
 –126 to 127 

 11 bits, 
 bias = 1023, 
 –1022 to 1023 

52 bits for fractional part  
(plus hidden 1 in integer part) 

23 bits for fractional part  
(plus hidden 1 in integer part) 

 11 bits  32 bits

 15 bits  64 bits

Double extended
[16 382, 16 383]

Single extended
[1022, 1023]

Bias is unspecified, 
but exponent range 
must include:

Single extended

Double extended
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Requirements for Arithmetic

Results of the 4 basic arithmetic operations (+, , , ) 
as well as square-rooting must match those obtained 
if all intermediate computations were infinitely precise
That is, a floating-point arithmetic operation should introduce no 
more imprecision than the error attributable to the final rounding of 
a result that has no exact representation (this is the best possible)

Example:
(1 + 21)   (1 + 223 ) 

Chopped result 1 + 21 + 223 Error = ½ ulp

Exact result 1 + 21 + 223 + 224

Rounded result 1 + 21 + 222 Error = +½ ulp
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17.3  Basic Floating-Point Algorithms

( s1  be1) + ( s2  be2) =  ( s1  be1) + ( s2 /be1–e2)  be1

=  ( s1  s2 /be1–e2)  be1 =   s  be

Assume e1  e2; alignment shift (preshift) is needed if e1 > e2

Operands after alignment shift: 
  x = 2   1.00101101 
  y = 2   0.000111101101 

Numbers to be added: 
  x = 2   1.00101101 
  y = 2   1.11101101 

5 


5 



Extra bits to be  
rounded off 

Operand with  
smaller exponent  
to be preshifted 

Result of addition: 
  s = 2   1.010010111101 
  s = 2   1.01001100 Rounded sum 




5 

1 

5 
5 

Example:

Addition

Rounding, 
overflow, 
and 
underflow 
issues 
discussed 
later
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Floating-Point Multiplication and Division

Because s1  s2  [1, 4), postshifting may be needed for normalization

( s1  be1)  ( s2  be2) =  ( s1  s2 )be1+e2

Multiplication

Overflow or underflow can occur during multiplication or normalization

Because s1 /s2  (0.5, 2), postshifting may be needed for normalization

( s1  be1) / ( s2  be2) =  ( s1 /s2 )be1e2

Division

Overflow or underflow can occur during division or normalization
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Floating-Point Square-Rooting

Overflow or underflow is impossible; no postnormalization needed

For e even: s  be =    s  be

For e odd: bs  be1 =     bs b (e–1) /2

After the adjustment of s to bs and e to e – 1, if needed, we have:

s*  be* =    s*  be*

In [1, 4)
for IEEE 754

In [1, 2)
for IEEE 754

Even
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17.4  Conversions and Exceptions

Conversions from fixed- to floating-point
Conversions between floating-point formats
Conversion from high to lower precision: Rounding

The IEEE 754-2008 standard includes five rounding modes:
Round to nearest, ties away from 0 (rtna)
Round to nearest, ties to even (rtne) [default rounding mode]
Round toward zero (inward)
Round toward + (upward)
Round toward – (downward)
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Exceptions in Floating-Point Arithmetic

Divide by zero
Overflow
Underflow

Inexact result: Rounded value not the same as original

Invalid operation: examples include
Addition (+) + (–)
Multiplication 0  
Division 0 0 or  
Square-rooting operand < 0

Produce 
NaN
as their 
results
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17.5  Rounding Schemes

The simplest possible rounding scheme: chopping or truncation

Fractional partWhole part

xk–1xk–2 . . .  x1x0 . x–1x–2 . . . x–l yk–1yk–2 . . . y1y0Round

ulp

xk–1xk–2 . . .  x1x0 . x–1x–2 . . . x–l xk–1xk–2 . . . x1x0Chop

ulp
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Truncation or Chopping

Fig. 17.5    Truncation or chopping 
of a signed-magnitude number 
(same as round toward 0). 

chop(x) 

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

Fig. 17.6    Truncation or chopping 
of a 2’s-complement number (same 
as downward-directed rounding).

chop(x) = down(x)

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 
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Round to Nearest Number

Fig. 17.7    Rounding of a signed-magnitude 
value to the nearest number. 

Rounding has a slight upward bias.
Consider rounding 
(xk–1xk–2 ... x1x0 .x–1x–2)two
to an integer (yk–1yk–2 ... y1y0 . )two

The four possible cases, and their 
representation errors are:

x–1x–2 Round        Error
00 down 0
01 down –0.25
10 up 0.5
11 up 0.25

With equal prob., mean = 0.125

For certain calculations, 
the probability of getting 
a midpoint value can be 
much higher than 2–l

rtn(x)

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

rtna(x)
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Round to Nearest Even Number

Fig. 17.8    Rounding to the 
nearest even number. 

rtne(x) 

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

Fig. 17.9    R* rounding or rounding 
to the nearest odd number.

R*(x)

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 
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A Simple Symmetric Rounding Scheme

Fig. 17.10     Jamming or 
von Neumann rounding.

jam(x)

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

Chop and force the LSB 
of the result to 1

Simplicity of chopping, 
with the near-symmetry 
or ordinary rounding

Max error is comparable 
to chopping (double that 
of rounding)
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ROM Rounding
Fig. 17.11    ROM rounding 
with an 8  2 table.

Example: Rounding with a 
32  4 table

ROM(x)

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

Rounding result is the same 
as that of the round to nearest 
scheme in 31 of the 32 
possible cases, but a larger 
error is introduced when

x3 = x2 = x1 = x0 = x–1 = 1

xk–1 . . . x4x3x2x1x0 . x–1x–2 . . . x–l xk–1 . . . x4y3y2y1y0ROM
ROM dataROM address
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Directed Rounding: Motivation

We may need result errors to be in a known direction

Example: in computing upper bounds, 
larger results are acceptable, 
but results that are smaller than correct values 
could invalidate the upper bound 

This leads to the definition of directed rounding modes
upward-directed rounding (round toward +) and 
downward-directed rounding (round toward –)
(required features of IEEE floating-point standard)
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Directed Rounding: Visualization

Fig. 17.12    Upward-directed 
rounding or rounding toward +.

Fig. 17.6    Truncation or chopping 
of a 2’s-complement number (same 
as downward-directed rounding).

up(x) 

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

chop(x) = down(x)

–4 

–3 

–2 

–1 

x
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 
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17.6  Logarithmic Number Systems
Sign-and-logarithm number system: Limiting case of FLP representation

x =  ± be  1   e = logb |x|

We usually call b the logarithm base, not exponent base 

Using an integer-valued e wouldn’t be very useful, so we consider e to
be a fixed-point number

Sign

Implied radix point

e±
Fixed-point exponent

Fig. 17.13     Logarithmic number representation with 
sign and fixed-point exponent.
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Properties of Logarithmic Representation

The logarithm is often represented as a 2’s-complement number

(Sx, Lx) = (sign(x), log2|x|)

Simple multiplication and division; harder add and subtract

L(xy) = Lx + Ly L(x/y) = Lx – Ly

Example: 12-bit, base-2, logarithmic number system

1 1 0 1 1 0 0 0 1 0 1 1


Sign Radix point

The bit string above represents –2–9.828125  –(0.0011)ten

Number range  (–216, 216); min = 2–16
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Advantages of Logarithmic Representation

Fig. 1.2     Some of the possible ways of assigning 
16 distinct codes to represent numbers.

0 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 

Unsigned integers 

Signed-magnitude 

3 + 1 fixed-point, xxx.x 

Signed fraction, .xxx 

2’s-compl. fraction, x.xxx 

2 + 2 floating-point, s  2 
      e in [2, 1], s in [0, 3] 

2 + 2 logarithmic (log = xx.xx) 

 

 

Number 
format  

log x 

s e e 
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18  Floating-Point Operations

Chapter Goals
See how adders, multipliers, and dividers
are designed for floating-point operands
(square-rooting postponed to Chapter 21)

Chapter Highlights
Floating-point operation = preprocessing +

exponent and significand arithmetic +
postprocessing (+ exception handling)

Adders need preshift, postshift, rounding
Multipliers and dividers are easy to design
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Floating-Point Operations: Topics

Topics in This Chapter

18.1 Floating-Point Adders /Subtractors

18.2 Pre- and Postshifting

18.3 Rounding and Exceptions

18.4 Floating-Point Multipliers and Dividers

18.5 Fused-Multiply-Add Units

18.6 Logarithmic Arithmetic Units
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18.1  Floating-Point Adders/Subtractors

-

( s1  be1) + ( s2  be2) =  ( s1  be1) + ( s2 /be1–e2)  be1

=  ( s1  s2 /be1–e2)  be1 =   s  be

Assume e1  e2; alignment shift (preshift) is needed if e1 > e2

Operands after alignment shift: 
  x = 2   1.00101101 
  y = 2   0.000111101101 

Numbers to be added: 
  x = 2   1.00101101 
  y = 2   1.11101101 

5 


5 



Extra bits to be  
rounded off 

Operand with  
smaller exponent  
to be preshifted 

Result of addition: 
  s = 2   1.010010111101 
  s = 2   1.01001100 Rounded sum 




5 

1 

5 
5 

Example:

Floating-Point Addition Algorithm

Like signs:
Possible 1-position 
normalizing right shift
Different signs:
Left shift, possibly 
by many positions
Overflow/underflow
during addition or 
normalization
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FLP Addition Hardware

Fig. 18.1    Block diagram of a 
floating-point adder/subtractor.

Normalize 

Add 

Align significands 

 

Unpack 
 

Control 
& sign 
logic 

Add/ 
Sub 

    
Pack 

Operands 

Sum/Difference 

Significands Exponents Signs 

Significand Exponent Sign 

x y 

s 

Sub 

Add 

Mux 

c out c in 

Selective complement 
and possible swap  

 Round and 
selective complement 

 

Normalize 

Other key parts of the adder:
Significand aligner (preshifter): Sec. 18.2
Result normalizer (postshifter), including

leading 0s detector/predictor: Sec. 18.2
Rounding unit: Sec. 18.3
Sign logic: Problem 18.2

Converting internal to external 
representation, if required, must 
be done at the rounding stage

Isolate the sign, exponent, significand
Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Combine sign, exponent, significand
Hide (remove) the leading 1
Identify special outcomes, exceptions
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Types of Post-Normalization

Magnitude in [0, 4)

( s1  be1) + ( s2  be2) =  ( s1  be1) + ( s2 /be1–e2)  be1

=  ( s1  s2 /be1–e2)  be1 =   s  be

In [0, 1) In [1, 2) In [2, 4)

None 1-bit
right shift

Arbitrary
left shift
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18.2  Pre- and Postshifting

Fig. 18.2    One bit-slice of 
a single-stage pre-shifter.

xixi+2 xi+1xi+4 xi+3xi+6 xi+5xi+8 xi+7

yiyi+2 yi+1yi+4 yi+3yi+6 yi+5yi+8 yi+7

LSB

MSB

  4-Bit 
  Shift 
Amount

y i

x ix i+2 x i+1x i+30x i+31

5
Shift amount 31 30                            2      1      0    

.   .   .

32-to-1 Mux
Enable

Fig. 18.3    
Four-stage 
combinational 
shifter for 
preshifting 
an operand 
by 0 to 15 bits.
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Leading Zeros /Ones Detection or Prediction

Leading zeros prediction, with adder inputs
(0x0.x–1x–2 ...)2’s-compl and (0y0.y–1y–2 ...)2’s-compl

Ways in which leading 0s/1s are generated:

p  p  . . .  p p  g  a  a  . . .  a a  g  . . .
p  p  . . .  p p  g  a  a . . .  a a  p  . . .
p  p  . . .  p p  a  g  g . . .  g g  a  . . .
p  p  . . .  p p  a  g  g . . .  g g  p  . . .

Prediction might be done in two stages:
 Coarse estimate, used for coarse shift
 Fine tuning of estimate, used for fine shift

In this way, prediction can be 
partially overlapped with shifting

Shift amount
Post-Shifter

Significand 
    Adder

  Adjust 
Exponent

Count 
Leading 
0s/1s

Post-Shifter

Significand 
    Adder

  Adjust 
Exponent

Predict 
Leading 
0s/1s

Shift amount

Fig. 18.4    Leading zeros/ones 
counting versus prediction.
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18.3  Rounding and Exceptions

Amount of alignment right-shift 
One bit: G holds the bit that is shifted out, no precision is lost  
Two bits or more: Shifted significand has a magnitude in [0, 1/2)

Unshifted significand has a magnitude in [1, 2)
Difference of aligned significands has a magnitude in (1/2, 2)
Normalization left-shift will be by at most one bit

If a normalization left-shift actually takes place:
R = 0, round down, discarded part < ulp/2
R = 1, round up, discarded part  ulp/2 

The only remaining question is establishing whether the discarded part 
is exactly ulp/2 (for round to nearest even); S provides this information

Round bit

Adder result = (coutz1z0 . z–1z–2 . . . z–l G R S)2’s-compl

Sticky bitGuard bit
OR of all bits 
shifted past RWhy only 3 extra bits?

(1/2, 1)
Shift left

[1, 2)
No shift
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Floating-Point Adder with Dual Data Paths

Near path Far path 

0 or 1 bit preshift  
Arbitrary preshift  

0 or 1 bit postshift  
Arbitrary postshift 

Add 
Add 

Control

Amount of alignment right-shift 

One bit: Arbitrary left shift may be needed due to cancellation  
Two bits or more: Normalization left-shift will be by at most one bit

Fig. 18.5   Conceptual 
view of significand 
handling in a dual-path 
floating-point adder.

2 or more bits 
preshift
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Implementation of Rounding for Addition

Round to nearest even:

Do nothing if Z–l–1 = 0  or Z–l = Z–l–2 = Z–l–3 =  0 
Add ulp = 2–l otherwise  

The effect of 1-bit normalization shifts on the rightmost few bits of 
the significand adder output is as follows:

Before postshifting (z) . . .   z–l+1 z–l |    G R S
1-bit normalizing right-shift . . .   z–l+2 z–l+1 |    z–l G RS
1-bit normalizing left-shift . . .   z–l G |    R S 0
After normalization (Z) . . .   Z–l+1 Z–l |    Z–l–1 Z–l–2 Z–l–3

Note that no rounding is needed in case of multibit left-shift, 
because full precision is preserved in this case
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Exceptions in Floating-Point Addition

Overflow/underflow detected by 
exponent adjustment block in Fig. 18.1

Overflow can occur only for 
normalizing right-shift

Underflow possible only with 
normalizing left shifts

Exceptions involving NaNs and invalid 
operations handled by unpacking and 
packing blocks in Fig. 18.1

Zero detection: Special case of 
leading 0s detection

Determining when “inexact” exception 
must be signaled left as an exercise

Normalize 

Add 

Align significands 

 

Unpack 
 

Control 
& sign 
logic 

Add/ 
Sub 

    
Pack 

Operands 

Sum/Difference 

Significands Exponents Signs 

Significand Exponent Sign 

x y 

s 

Sub 

Add 

Mux 

c out c in 

Selective complement 
and possible swap  

 Round and 
selective complement 

 

Normalize 
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18.4  Floating-Point Multipliers and Dividers

Fig. 18.6   Block diagram of a 
floating-point multiplier (divider).

Speed considerations
Many multipliers produce the lower half 
of the product (rounding info) early

Need for normalizing right-shift is known 
at or near the end

Hence, rounding can be integrated in 
the generation of the upper half, 
by producing two versions of these bits

s1  s2  [1, 4): may need postshifting

( s1  be1)  ( s2  be2) =  ( s1  s2 )be1+e2

XOR     Add 
Exponents 

Unpack

Normalize
  Adjust 
Exponent 

Round

Normalize

Pack

  Multiply 
Significands 

Floating-point operands

Product

  Adjust 
Exponent 

Overflow or underflow can occur during 
multiplication or normalization
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XOR  Subtract 
Exponents 

Unpack

Normalize
  Adjust 
Exponent 

Round

Normalize

Pack

   Divide 
Significands 

Floating-point operands

Quotient

  Adjust 
Exponent 

Floating-Point Dividers

Rounding considerations
Quotient must be produced with two 
extra bits (G and R), in case of the need 
for a normalizing left shift

The remainder acts as the sticky bit

s1 /s2  (0.5, 2): may need postshifting

( s1  be1) / ( s2  be2) =  ( s1 /s2 )be1e2

Overflow or underflow can occur during 
division or normalization

Note: Square-rooting never leads to 
overflow or underflow

Fig. 18.6   Block diagram of a 
floating-point multiplier (divider).
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18.5  Fused-Multiply-Add Units

Application 1: Polynomial evaluation
f(z) = c(n–1)zn–1 + c(n–2)zn–2 + . . . + c(1)z + c(0)

s := s z + c(j) for j from n – 1 downto 0; initialize s to 0 

Multiply-add operation:  p = ax + b
The most useful operation beyond the five basic ones

Application 2: Dot-product computation
u . v = u(0)v(0) + u(1)v(1) + . . . + u(n–1)v(n–1)

s := s + u(j)v(j) for j from 0 upto n – 1; initialize s to 0 

Straightforward implementation: Use a multiplier that keeps its 
entire double-width product, followed by a double-width adder
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Design of a Fast FMA Unit

Fig. 18.7   Block diagram 
of a fast FMA unit.

Can act as a simple 
adder (x = 1) or 
multiplier (b = 0)

Multiply-add operation:  
p = ax + b

. . .

Exponentssa

Alignment 
preshift

ax in 
stored-
carry 
form

Carry-save 
adder tree

Multiples formation

Adder

Normalization

To rounding

Leading 
0s/1s 

prediction

ea + ex – eb

Preshift 
may be to 
right or left

Carry-save adder

sx sbSignificands

Optimization 1

Optimization 2

Optimization 3
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18.6  Logarithmic Arithmetic Unit

Multiply/divide algorithm in LNS
log(x y)  =  log x + log y
log(x /y) =  log x – log y

Add/subtract algorithm in LNS
(Sx, Lx)  (Sy, Ly) = (Sz, Lz)

Assume x > y > 0 (other cases are similar)

Lz =  log z =  log(x  y)  =  log(x(1  y/x))  =  log x + log(1  y/x)

Given  = – (log x – log y), the term log(1  y/x) = log(1 ± log–1)
is obtained from a table (two tables + and – needed)

log(x + y)  =  log x + +()  
log(x – y)  =  log x + –()
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Four-Function Logarithmic Arithmetic Unit

Fig. 18.8   Arithmetic unit for a logarithmic number system.

log(x + y)  =  log x + +()  
log(x – y)  =  log x + –()

log(x y)  =  log x + log y
log(x / y) =  log x – log y

Log of the scale factor m which allows values 
in [0, 1] to be represented as unsigned log’s

Add/  
Sub

Lx > Ly?

Add/ 
Sub

ROM for 
+, –

Lm

Lx

Ly

Sx
Sy

Lz

Sz

Muxes

0
1

0
1

Control

Add/Sub1

Add/Sub2

Address Data

op
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LNS Arithmetic for Wider Words
log(x + y)  =  log x + +()  
log(x – y)  =  log x + –()

+  is well-behaved; easy to interpolate 
– causes difficulties in [–1, 0]

Use nonuniform 
segmentation for 
direct table lookup 
or for a scheme 
based on linear 
interpolation

10xxx.xxxxxxx
110xx.xxxxxxx
1110x.xxxxxxx
11110.xxxxxxx
11111.0xxxxxx
. . .
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19  Errors and Error Control

Chapter Goals
Learn about sources of computation errors,
consequences of inexact arithmetic,
and methods for avoiding or limiting errors

Chapter Highlights
Representation and computation errors
Absolute versus relative error
Worst-case versus average error
Why 3 (1/3) does not necessarily yield 1
Error analysis and bounding
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Errors and Error Control: Topics

Topics in This Chapter

19.1 Sources of Computational Errors

19.2 Invalidated Laws of Algebra

19.3 Worst-Case Error Accumulation

19.4 Error Distribution and Expected Errors

19.5 Forward Error Analysis

19.6 Backward Error Analysis
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19.1  Sources of Computational Errors

FLP approximates exact computation with real numbers

Two sources of errors to understand and counteract: 

Representation errors

e.g., no machine representation for 1/3, 2, or 

Arithmetic errors 

e.g., (1 + 2–12)2 =  1 + 2–11 + 2–24

not representable in IEEE 754 short format

We saw early in the course that errors due to finite precision 
can lead to disasters in life-critical applications
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Example Showing Representation and Arithmetic Errors

Precise result = 1/9900  1.010  10–4 (error  10–8 or 0.01%)

Example 19.1: Compute 1/99 – 1/100, using a decimal floating-point
format with 4-digit significand in [1, 10) and single-digit signed exponent

x = 1/99  1.010  10–2 Error  10–6 or 0.01%

y = 1/100 = 1.000  10–2 Error = 0

z = x –fp y = 1.010  10–2 – 1.000  10–2 = 1.000  10–4

Error  10–6 or 1%

Chopped to 3 decimals
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Notation for a General Floating-Point System

Number representation in FLP(r, p, A)
Radix r (assume to be the same as the exponent base b)
Precision p in terms of radix-r digits
Approximation scheme A  {chop, round, rtne, chop(g),  . . .}

Let x = r es be an unsigned real number, normalized such that 1/r  s < 1, 
and assume xfp is the representation of x in FLP(r, p, A)

xfp =  r e sfp =  (1 + )x  is the relative representation error
A  = chop –ulp < sfp – s  0 –r  ulp <   0     
A  = round –ulp/2 < sfp – s  ulp/2     r  ulp/2

Arithmetic in FLP(r, p, A) 
Obtain an infinite-precision result, then chop, round, . . .

Real machines approximate this process by keeping g > 0 guard digits, 
thus doing arithmetic in FLP(r, p, chop(g))
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Error Analysis for Multiplication and Division

Errors in floating-point division
Again, consider positive operands xfp and yfp

xfp /fp yfp = (1 + ) xfp yfp
= (1 + )(1 + )x / [(1 + )y]
= (1 + )(1 + )(1 – )(1 + 2)(1 + 4)( . . . )xy
 (1 +  +  – )x /y

Errors in floating-point multiplication
Consider the positive operands xfp and yfp

xfp fp yfp = (1 + )xfpyfp
= (1 + )(1 + )(1 + )xy
= (1 +  +  +  +  +  +  + )xy
 (1 +  +  + )xy
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Error Analysis for Addition and Subtraction

Errors in floating-point addition
Consider the positive operands xfp and yfp

xfp +fp yfp = (1 + )(xfp+ yfp)
= (1 + )(x + x + y + y)

x + y
= (1 + )(1 + )(x + y)

x + y

Errors in floating-point subtraction
Again, consider positive operands xfp and yfp

xfp fp yfp = (1 + )(xfpyfp)
= (1 + )(x + x  y  y)

x  y
= (1 + )(1 + )(x  y)

x  y

Magnitude of this ratio 
is upper-bounded by 
max(| | |, |  |), so the 
overall error is no more 
than | | + max(| | |, |  |)

Magnitude of this ratio 
can be very large if x and 
y are both large but x – y
is relatively small (recall 
that  can be negative)

This term also 
unbounded 
for subtraction
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Cancellation Error in Subtraction
x  y

xfp fp yfp = (1 + )(1 + )(x  y) Subtraction result
x  y

Example 19.2: Decimal FLP system, r = 10, p = 6, no guard digit

x = 0.100 000 000  103 y = –0.999 999 456  102

xfp = .100 000  103 yfp = – .999 999  102

x + y = 0.544  10–4 and xfp + yfp = 0.1  10–3

xfp +fp yfp = 0.100 000  103 fp 0.099 999  103 =  0.100 000  102

Relative error = (10–3 – 0.54410–4) / (0.54410–4)  17.38 = 1738%

Now, ignore representation errors, so as to focus on the effect of 
(measure relative error with respect to xfp + yfp, not x + y)

Relative error = (10–3 – 10–4) / 10–4 = 9 = 900%



May 2015 Computer Arithmetic, Real Arithmetic Slide 58

Bringing Cancellation Errors in Check
x  y

xfp fp yfp = (1 + )(1 + )(x  y) Subtraction result
x  y

Example 19.2 (cont.): Decimal FLP system, r = 10, p = 6, 1 guard digit

x = 0.100 000 000  103 y = –0.999 999 456  102

xfp = .100 000  103 yfp = – .999 999  102

x + y = 0.544  10–4 and xfp + yfp = 0.1  10–3

xfp +fp yfp = 0.100 000  103 fp 0.099 999 9  103 =  0.100 000  103

Relative error = (10–4 – 0.54410–4) / (0.54410–4)  0.838 = 83.8%

Now, ignore representation errors, so as to focus on the effect of 
(measure relative error with respect to xfp + yfp, not x + y)

Relative error = 0 Significantly better than 900%!
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How Many Guard Digits Do We Need?
x  y

xfp fp yfp = (1 + )(1 + )(x  y) Subtraction result
x  y

Theorem 19.1: In the floating-point system FLP(r, p, chop(g)) with g  1 
and –x < y < 0 < x, we have:

xfp +fp yfp =  (1 + )(xfp + yfp)    with    –r –p+1 <  < r–p–g+2

So, a single guard digit is sufficient to make the relative arithmetic 
error in floating-point addition or subtraction comparable to relative 
representation error with truncation 

Corollary: In FLP(r, p, chop(1))

xfp +fp yfp = (1 + )(xfp + yfp) with    < –r –p+1
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19.2  Invalidated Laws of Algebra

Many laws of algebra do not hold for floating-point arithmetic 
(some don’t even hold approximately)

This can be a source of confusion and incompatibility 

Associative law of addition:        a + (b + c)  =  (a + b) + c
a = 0.123 41  105 b = –0.123 40  105       c = 0.143 21  101

a +fp (b +fp c) 
= 0.123 41  105 +fp (–0.123 40  105 +fp 0.143 21  101) 
= 0.123 41  105 –fp 0.123 39  105

= 0.200 00  101

(a +fp b) +fp c
= (0.123 41  105 –fp 0.123 40  105) +fp 0.143 21  101

= 0.100 00  101 +fp 0.143 21  101

= 0.243 21  101

Results
differ
by more
than
20%!
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Elaboration on the Non-Associativity of Addition

Denser Denser Sparser Sparser 

Negative numbers 
FLP FLP 0 + 

 
– 

 

Overflow 
region 

Overflow 
region 

Underflow 
regions 

Positive numbers  

Underflow 
example 

Overflow 
example 

Midway 
example 

Typical 
example 

min max min max + + – – – + 

Associative law of addition:        a + (b + c)  =  (a + b) + c

a = 0.123 41  105 b = –0.123 40  105       c = 0.143 21  101

acb

When we first compute s1 = b + c, the small value of c barely makes 
a dent, yielding a value for a + s1 that is not much affected by c

When we first compute s2 = a + b, the result will be nearly 0, making 
the effect of c on the final sum s2 + c more pronounced

s1 s2
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Do Guard Digits Help with Laws of Algebra?

Invalidated laws of algebra are intrinsic to FLP arithmetic; 
problems are reduced, but don’t disappear, with guard digits

Let’s redo our example with 2 guard digits 

Associative law of addition:        a + (b + c)  =  (a + b) + c
a = 0.123 41  105 b = –0.123 40  105       c = 0.143 21  101

a +fp (b +fp c) 
= 0.123 41  105 +fp (–0.123 40  105 +fp 0.143 21  101) 
= 0.123 41  105 –fp 0.123 385 7  105

= 0.243 00  101

(a +fp b) +fp c
= (0.123 41  105 –fp 0.123 40  105) +fp 0.143 21  101

= 0.100 00  101 +fp 0.143 21  101

= 0.243 21  101

Difference 
of about 
0.1% is 
better, but 
still too high!
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Unnormalized Floating-Point Arithmetic

One way to reduce problems resulting from invalidated laws of 
algebra is to avoid normalizing computed floating-point results

Let’s redo our example with unnormalized arithmetic 

Associative law of addition:        a + (b + c)  =  (a + b) + c
a = 0.123 41  105 b = –0.123 40  105       c = 0.143 21  101

a +fp (b +fp c) 
= 0.123 41  105 +fp (–0.123 40  105 +fp 0.143 21  101) 
= 0.123 41  105 –fp 0.123 39  105

= 0.000 02  105

(a +fp b) +fp c
= (0.123 41  105 –fp 0.123 40  105) +fp 0.143 21  101

= 0.000 01  105 +fp 0.143 21  101

= 0.000 02  105

Results 
are the 
same and 
also carry 
a kind of 
warning
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Other Invalidated Laws of Algebra with FLP Arithmetic

Associative law of multiplication a  (b  c)  =  (a  b)  c

Cancellation law  (for a > 0) a  b = a  c implies  b = c

Distributive law a  (b + c) = (a  b) + (a  c)

Multiplication canceling division a  (b a)  =  b

Before the IEEE 754 floating-point standard became available and 
widely adopted, these problems were exacerbated by the use of 
many incompatible formats



May 2015 Computer Arithmetic, Real Arithmetic Slide 65

Effects of Algorithms on Result Precision

Example 19.3: The formula x = –b  d, with d = (b 2 – c)1/2, 
yielding the roots of the quadratic equation x 2 + 2bx + c = 0, 
can be rewritten as x = –c / (b  d) 

When c is small compared with b 2, the root –b + d will have a large 
error due to cancellation; in such a case, use –c / (b + d) for that root 

Example 19.4: The area of a triangle with sides a, b, and c
(assume a  b  c) is given by the formula 

A = [s(s – a)(s – b)(s – c)]1/2

where s = (a+b+c)/2. When the triangle is very flat (needlelike), 
such that a  b + c, Kahan’s version returns accurate results:

A = ¼[(a + (b + c))(c – (a – b))(c + (a – b))(a + (b – c))]1/2

Confirmation that –b + d = –c / (b + d)  –c = d 2 – b 2
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19.3  Worst-Case Error Accumulation
In a sequence of operations, round-off errors might add up 

The larger the number of cascaded computation steps (that depend 
on results from previous steps), the greater the chance for, and the 
magnitude of, accumulated errors

With rounding, errors of opposite signs tend to cancel each other 
out in the long run, but one cannot count on such cancellations

Practical implications:
Perform intermediate computations with a higher precision than 
what is required in the final result 

Implement multiply-accumulate in hardware (DSP chips)

Reduce the number of cascaded arithmetic operations; So, using 
computationally more efficient algorithms has the double benefit of 
reducing the execution time as well as accumulated errors
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Example: Inner-Product Calculation

Consider the computation z =  x(i) y(i), for i  [0, 1023]

Max error per multiply-add step = ulp/2 + ulp/2 = ulp

Total worst-case absolute error = 1024 ulp
(equivalent to losing 10 bits of precision)

A possible cure: keep the double-width products in their entirety 
and add them to compute a double-width result which is rounded 
to single-width at the very last step

Multiplications do not introduce any round-off error 
Max error per addition = ulp2/2
Total worst-case error = 1024  ulp2/2 + ulp/2 

Therefore, provided that overflow is not a problem, a highly 
accurate result is obtained 
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Kahan’s Summation Algorithm

To compute s =  x(i), for i  [0, n – 1], more accurately:

s  x(0)

c  0 {c is a correction term}
for i = 1 to n – 1 do

y  x(i) – c {subtract correction term}
z  s + y
c  (z – s) – y {find next correction term}
s  z

endfor
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19.4  Error Distribution and Expected Errors

Fig. 19.1   Probability density function for the distribution 
of normalized significands in FLP(r = 2, p, A).

Probability density function for the distribution of radix-r
floating-point significands is 1/(x ln r)

0 

1 

2 

3 

1/2 1 3/4 
Significand x 

1 / (x ln 2) 
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Maximum Relative Representation Error

MRRE = maximum relative representation error

MRRE(FLP(r, p, chop)) = r –p+1

MRRE(FLP(r, p, round)) = r –p+1 /2

From a practical standpoint, the distribution of errors and their 
expected values may be more important

Limiting ourselves to positive significands, we define:

ARRE(FLP(r, p, A))   =    

1/(x ln r) is a probability density function

rx
dx

x
xx

r

fp

ln
||1

/1
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19.5  Forward Error Analysis

Consider the computation y = ax + b and its floating-point version

yfp =  (afp fp xfp) +fp bfp =  (1 + )y

Can we establish any useful bound on the magnitude of the relative 
error , given the relative errors in the input operands afp, bfp, xfp? 

The answer is “no”

Forward error analysis = 

Finding out how far yfp can be from ax + b, 
or at least from afpxfp + bfp, in the worst case
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Some Error Analysis Methods
Automatic error analysis
Run selected test cases with higher precision and observe differences 
between the new, more precise, results and the original ones 

Significance arithmetic
Roughly speaking, same as unnormalized  arithmetic, although there 
are fine distinctions. The result of the unnormalized decimal addition 
.1234105 +fp .00001010 = .00001010 warns us about precision loss

Noisy-mode computation
Random digits, rather than 0s, are inserted during normalizing left shifts 
If several runs of the computation in noisy mode yield comparable 
results, then we are probably safe

Interval arithmetic
An interval [xlo, xhi] represents x, xlo  x  xhi. With xlo, xhi, ylo, yhi > 0, 
to find z = x y, we compute [zlo, zhi]  =  [xlo fp yhi, xhi fp ylo]  
Drawback: Intervals tend to widen after many computation steps
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19.6  Backward Error Analysis

Backward error analysis replaces the original question

How much does yfp = afp fp xfp + bfp deviate from y?

with another question:

What input changes produce the same deviation?

In other words, if the exact identity yfp = aalt xalt + balt
holds for alternate parameter values aalt, balt, and xalt, 
we ask how far aalt, balt, xalt can be from afp, xfp, xfp

Thus, computation errors are converted or compared to 
additional input errors
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Example of Backward Error Analysis

yfp = afp fp xfp +fp bfp
=  (1 + )[afp fp xfp + bfp] with    < r–p+1 = rulp
=  (1 + )[(1 + ) afp xfp + bfp] with    < r–p+1 = rulp
=  (1 + ) afp (1 + ) xfp + (1 + ) bfp
=  (1 + )(1 + )a (1 + )(1 + )x + (1 + )(1 + )b
 (1 +  + )a (1 +  + )x + (1 +  + )b

So the approximate solution of the original problem is the exact 
solution of a problem close to the original one

The analysis assures us that the effect of arithmetic errors on the 
result yfp is no more severe than that of r  ulp additional error in 
each of the inputs a, b, and x
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20  Precise and Certifiable Arithmetic

Chapter Goals
Discuss methods for doing arithmetic
when results of high accuracy
or guaranteed correctness are required

Chapter Highlights
More precise computation through

multi- or variable-precision arithmetic
Result certification by means of

exact or error-bounded arithmetic
Precise /exact arithmetic with low overhead
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Precise and Certifiable Arithmetic: Topics

Topics in This Chapter

20.1 High Precision and Certifiability

20.2 Exact Arithmetic

20.3 Multiprecision Arithmetic

20.4 Variable-Precision Arithmetic

20.5 Error-Bounding via Interval Arithmetic

20.6 Adaptive and Lazy Arithmetic
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20.1  High Precision and Certifiability
There are two aspects of precision to discuss:

Results possessing adequate precision

Being able to provide assurance of the same

We consider 3 distinct approaches for coping with precision issues:

1. Obtaining completely trustworthy results via exact arithmetic

2. Making the arithmetic highly precise to raise our confidence 
in the validity of the results: multi- or variable-precision arith

3. Doing ordinary or high-precision calculations, while tracking 
potential error accumulation (can lead to fail-safe operation) 

We take the hardware to be completely trustworthy
Hardware reliability issues dealt with in Chapter 27 
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20.2  Exact Arithmetic

x 
p
q  a 0 

1

a1 
1

a 2 
1

 1

a m 1 
1

a m

Continued fractions
Any unsigned rational number x = p/q has a unique continued-fraction 
expansion with a0  0, am  2, and ai  1 for 1  i  m – 1

277
642  0  1

2  1

3  1

6 
1

1  1
3  1

3

 [ 0/ 2/ 3/6 /1/ 3/3]
0
1/2

3/7
19/44

Example: Continued fraction representation of 277/642

Can get approximations for finite representation by limiting the number 
of “digits” in the continued-fraction representation
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Fixed-Slash Number Systems

Rational number if  p > 0 q > 0 “rounded” to nearest value
0 if  p = 0 q odd
 if  p odd  q = 0
NaN (not a number) otherwise

Sign
Implied 
slash 
position

± p q

Inexact

k  bits m  bits

/
Fig. 20.1 Example fixed-slash 
number representation format.

Waste due to multiple representations such as 3/5 = 6/10 = 9/15 = . . . 
is no more than one bit, because:

limn {p/q  1  p,q  n, gcd(p, q) = 1}/n2 = 6/2 = 0.608

Represents p /q
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Floating-Slash Number Systems

Set of numbers represented:
{p/q  p,q  1, gcd(p, q) = 1, log2p + log2q  k – 2}

Fig. 20.2   Example floating-
slash representation format.

Again the following mathematical result, due to Dirichlet, shows that the
space waste is no more than one bit:

limn {p/q  pqn, gcd(p,q)=1} / {p/q  pqn, p,q1} = 6/2 = 0.608

Represents p /q
Sign

± p q

Inexact

m  bitsh  bits
m

Floating 
slash 
position

k – m  bits

/
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20.3  Multiprecision Arithmetic

Fig. 20.3    Example 
quadruple-precision 
integer format.

Fig. 20.4    Example 
quadruple-precision 
floating-point format.

Sign ± MSB

LSB

x

x

x

x

(3)

(2)

(1)

(0)

Sign ± MSB x

x

x

x

(3)

(2)

(1)

(0)

Exponent

LSB

e

Signi- 
ficand



May 2015 Computer Arithmetic, Real Arithmetic Slide 82

Multiprecision Floating-Point Addition

Fig. 20.5      Quadruple-precision significands 
aligned for the floating-point addition z = x +fp y. 

± x x x x(3) (2) (1) (0)

y y y y(3) (2) (1) (0)

z z z z(3) (2) (1) (0)

Use to derive guard,  
round, & sticky bits?

Sign-extend ±

GRS
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Quad-Precision Arithmetic Using Two Doubles

http://crd.lbl.gov/~dhbailey/mpdist/

xH = 1.011100 . . . 101  220

xL = 1.110101 . . . 110  2–33 
x = xH + xL

x = 1.011100 . . . 101                              220

The following website provides links to downloadable software 
packages for double-double and quad-double arithmetic

Key idea used: One can obtain an accurate sum for two 
floating-point numbers by computing their regular sum 
s = x +fp y and an error term e = y – (s – x)

1110101 . . . 110 
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20.4  Variable-Precision Arithmetic

Fig. 20.6   Example 
variable-precision 
integer format.

Sign

±

MSB

LSBx

x

x

(0)

(1)

(w)

w  (# add'l words)

Fig. 20.7   Example 
variable-precision 
floating-point format.

Sign ±

MSB

x

x

x

(1)

(2)

(w)

Exponent  e

LSB

Signi- 
ficand

 Width  w Flags
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Variable-Precision Floating-Point Addition

Fig. 20.8      Variable-precision floating-point addition.

x x x(u) (u–h) (1)

h words = hk bits y y(v) (1)

y (v) y (1) Case 2Case 1 
g = v+h–u  0g = v+h–u < 0

y (g+1)
Alignment shift 

. . . 

.  .  .. . .. . .

. . .

. . .. . .
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20.5  Error-Bounding via Interval Arithmetic
Interval definition

[a, b], a  b, is an interval enclosing x, a  x  b 
(intervals model uncertainty in real-valued parameters)

[a, a] represents the real number x = a
[a, b], a > b, is the empty interval

Combining and comparing intervals

[xlo, xhi]  [ylo, yhi] = [max(xlo, ylo), min(xhi, yhi)]
[xlo, xhi]  [ylo, yhi] = [min(xlo, ylo), max(xhi, yhi)]
[xlo, xhi]  [ylo, yhi] iff xlo  ylo and xhi  yhi

[xlo, xhi] = [ylo, yhi] iff xlo = ylo and xhi = yhi

[xlo, xhi] < [ylo, yhi] iff xhi < ylo
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Arithmetic Operations on Intervals

Additive and multiplicative inverses

–[xlo, xhi]   =   [–xhi, –xlo]

1 / [xlo, xhi]  =   [1/xhi, 1/xlo],  provided that 0  [xlo, xhi] 
When 0  [xlo, xhi], the multiplicative inverse is [–,+] 

The four basic arithmetic operations

[xlo, xhi] + [ylo, yhi] = [xlo + ylo, xhi + yhi]
[xlo, xhi] – [ylo, yhi] = [xlo – yhi, xhi – ylo]
[xlo, xhi]  [ylo, yhi] = [min(xloylo, xloyhi, xhiylo, xhiyhi),

max(xloylo, xloyhi, xhiylo, xhiyhi)]
[xlo, xhi] / [ylo, yhi] = [xlo, xhi]  [1/yhi, 1/ylo]
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Getting Narrower Result Intervals

With reasonable assumptions about machine arithmetic, we have:

Theorem 20.2: Consider the execution of an algorithm on real numbers 
using machine interval arithmetic in FLP(r, p, ). If the same 
algorithm is executed using the precision q, with q > p, the bounds for 
both the absolute error and relative error are reduced by the factor rq–p

(the absolute or relative error itself may not be reduced by this factor; 
the guarantee applies only to the upper bound)

Theorem 20.1: If f(x(1), x(2), . . . , x(n)) is a rational expression in the 
interval variables x(1), x(2), . . . , x(n), that is, f is a finite combination of 
x(1), x(2), . . . , x(n) and a finite number of constant intervals by means 
of interval arithmetic operations, then x(i)  y(i), i = 1, 2, . . . , n, implies:

f(x(1), x(2), . . . , x(n))   f(y(1), y(2), . . . , y(n)) 

Thus, arbitrarily narrow result intervals can be obtained by simply 
performing arithmetic with sufficiently high precision
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A Strategy for Accurate Interval Arithmetic

Theorem 20.2: Consider the execution of an algorithm on real numbers 
using machine interval arithmetic in FLP(r, p, ). If the same 
algorithm is executed using the precision q, with q > p, the bounds for 
both the absolute error and relative error are reduced by the factor rq–p

(the absolute or relative error itself may not be reduced by this factor; 
the guarantee applies only to the upper bound)

Let wmax be the maximum width of a result interval when 
interval arithmetic is used with p radix-r digits of precision. 
If wmax  , then we are done. Otherwise, interval 
calculations with the higher precision

q =  p + logr wmax – logr

is guaranteed to yield the desired accuracy.
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The Interval Newton Method1/x – d 

x6543210
0

–1

2

1

I (0)

N(I(0))
I (1)

Slope = –1/4

Slope = –4

A

Fig. 20.9      Illustration of the interval Newton method for computing 1/d.

x(i+1) = x(i) – f(x(i)) / f (x(i))

N(I (i)) = c(i) – f(c(i)) / f (I (i))

I (i+1) = I (i)  N(I (i))
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Laws of Algebra in Interval Arithmetic

As in FLP arithmetic, laws of algebra may not hold for interval arithmetic

For example, one can readily construct an example where for intervals 
x, y and z, the following two expressions yield different interval results, 
thus demonstrating the violation of the distributive law:

x(y + z) xy + xz

Can you find other laws of algebra that may be violated?
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20.6  Adaptive and Lazy Arithmetic

Need-based incremental precision adjustment to avoid 
high-precision calculations dictated by worst-case errors

Lazy evaluation is a powerful paradigm that has been and is 
being used in many different contexts. For example, in evaluating 
composite conditionals such as 

if cond1 and cond2 then action

evaluation of cond2 may be skipped if cond1 yields “false”
More generally, lazy evaluation means 

postponing all computations or actions 
until they become irrelevant or unavoidable

Opposite of lazy evaluation (speculative or aggressive execution) 
has been applied extensively
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Lazy Arithmetic with Redundant Representations

Redundant number representations offer some advantages for 
lazy arithmetic

Because redundant representations support MSD-first arithmetic, 
it is possible to produce a small number of result digits by using 
correspondingly less computational effort, until more precision is 
actually needed 


