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VII  Implementation Topics

Topics in This Part
Chapter 25   High-Throughput Arithmetic
Chapter 26   Low-Power Arithmetic
Chapter 27   Fault-Tolerant Arithmetic
Chapter 28   Reconfigurable Arithmetic

Sample advanced implementation methods and tradeoffs
• Speed/ latency is seldom the only concern
• We also care about throughput, size, power/energy
• Fault-induced errors are different from arithmetic errors
• Implementation on Programmable logic devices
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25  High-Throughput Arithmetic
Chapter Goals

Learn how to improve the performance of
an arithmetic unit via higher throughput
rather than reduced latency 

Chapter Highlights
To improve overall performance, one must

• Look beyond individual operations
• Trade off latency for throughput

For example, a multiply may take 20 cycles,
but a new one can begin every cycle

Data availability and hazards limit the depth
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High-Throughput Arithmetic: Topics

Topics in This Chapter

25.1  Pipelining of Arithmetic Functions

25.2  Clock Rate and Throughput

25.3  The Earle Latch

25.4  Parallel and Digit-Serial Pipelines

25.5  On-Line of Digit-Pipelined Arithmetic

25.6  Systolic Arithmetic Units
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25.1  Pipelining of Arithmetic Functions

Throughput
Operations  per unit time

Pipelining period
Interval between applying 
successive inputs

In Out
1 . . .

Inter-stage latchesInput 
latches

Output 
latches

In Out
Non-pipelined

t/  +τ

2 σ3

σ
t + στ

t
Fig. 25.1   An arithmetic function unit 
and its σ-stage pipelined version.

Latency, though a secondary consideration, is still important because:
a. Occasional need for doing single operations
b. Dependencies may lead to bubbles or even drainage

At times, pipelined implementation may improve the latency of a multistep 
computation and also reduce its cost; in this case, advantage is obvious
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Analysis of Pipelining Throughput

In Out
1 . . .

Inter-stage latchesInput 
latches

Output 
latches

In Out
Non-pipelined

t/  +τ

2 σ3

σ
t + στ

t

Consider a circuit with cost (gate count) g and latency t

Simplifying assumptions for our analysis:

1. Time overhead per stage is τ (latching delay)
2. Cost overhead per stage is γ (latching cost)
3. Function is divisible into σ equal stages for any σ

Then, for the pipelined implementation:

Latency T = t + στ

1 1Throughput  R = =  T / σ t / σ + τ

Cost    G = g + σγ

Throughput approaches its maximum of 1/τ for large σ Fig. 25.1
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Analysis of Pipelining Cost-Effectiveness
1 1T =  t + στ R = =  G =  g + σγT / σ t / σ + τ

Latency Throughput  Cost    

Consider cost-effectiveness to be throughput per unit cost

E =  R /G = σ / [(t + στ)(g + σγ)]

To maximize E, compute dE/dσ and equate the numerator with 0

tg – σ2τγ = 0   ⇒ σopt = √ tg / (τγ)

We see that the most cost-effective number of pipeline stages is: 

Directly related to the latency and cost of the function; 
it pays to have many stages if the function is very slow or complex

Inversely related to pipelining delay and cost overheads;
few stages are in order if pipelining overheads are fairly high 

All in all, not a surprising result!



May 2010 Computer Arithmetic, Implementation Topics Slide 10

In Out
1 . . .

Inter-stage latchesInput 
latches

Output 
latches

In Out
Non-pipelined

t/  +τ

2 σ3

σ
t + στ

t

25.2  Clock Rate and Throughput
Consider a σ-stage pipeline with stage delay tstage

One set of inputs is applied to the pipeline at time t1
At time t1 + tstage + τ, partial results are safely stored in latches 

Apply the next set of inputs at time t2 satisfying  t2 ≥ t1 + tstage + τ

Therefore:

Clock period  =  Δt =  t2 – t1 ≥ tstage + τ

Throughput  =  1/ Clock period  ≤ 1/(tstage + τ)

Fig. 25.1
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The Effect of Clock Skew on Pipeline Throughput
Two implicit assumptions in deriving the throughput equation below: 

One clock signal is distributed to all circuit elements 
All latches are clocked at precisely the same time

Throughput = 1/ Clock period 
≤ 1/(tstage + τ)

Fig. 25.1

Uncontrolled or random clock skew
causes the clock signal to arrive at 
point B before/after its arrival at point A

With proper design, we can place a bound ±ε on the uncontrolled 
clock skew at the input and output latches of a pipeline stage 

Then, the clock period is lower bounded as:

Clock period  =  Δt =  t2 – t1 ≥ tstage + τ + 2ε
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Wave Pipelining: The Idea

The stage delay tstage is really not a constant but varies from tmin to tmax

tmin represents fast paths (with fewer or faster gates) 
tmax represents slow paths 

Suppose that one set of inputs is applied at time t1
At time t1 + tmax + τ, the results are safely stored in latches 

If that the next inputs are applied at time t2, we must have:

t2 + tmin ≥ t1 + tmax + τ

This places a lower bound on the clock period:  

Clock period = Δt = t2 – t1 ≥ tmax – tmin + τ

Thus, we can approach the maximum possible pipeline throughput of 
1/τ without necessarily requiring very small stage delay 

All we need is a very small delay variance tmax – tmin

Two roads to higher 
pipeline throughput:
Reducing tmax
Increasing tmin
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Visualizing Wave Pipelining
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Fig. 25.2   Wave pipelining allows multiple computational 
wavefronts to coexist in a single pipeline stage .
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Another Visualization of Wave Pipelining

Fig. 25.3    
Alternate view of 
the throughput 
advantage of 
wave pipelining 
over ordinary 
pipelining.
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Difficulties in Applying Wave Pipelining

LAN and other 
high-speed links
(figures rounded 
from Myrinet 
data [Bode95])

Sender Receiver 

Gb/s link (cable) 

30 m 

10 b 

Gb/s throughput   → Clock rate = 108 → Clock cycle = 10 ns
In 10 ns, signals travel 1-1.5 m (speed of light = 0.3 m/ns)
For a 30 m cable, 20-30 characters will be in flight at the same time

At the circuit and logic level (μm-mm distances, not m), there are still 
problems to be worked out 

For example, delay equalization to reduce tmax – tmin is nearly impossible 
in CMOS technology:

CMOS 2-input NAND delay varies by factor of 2 based on inputs
Biased CMOS (pseudo-CMOS) fairs better, but has power penalty
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Controlled Clock Skew in Wave Pipelining
With wave pipelining, a new input enters the pipeline stage every 
Δt time units and the stage latency is tmax + τ

Thus, for proper sampling of the results, clock application at the 
output latch must be skewed by (tmax + τ) mod Δt

Example: tmax + τ = 12 ns;  Δt = 5 ns

A clock skew of +2 ns is required at the stage output latches relative 
to the input latches

In general, the value of tmax – tmin > 0 may be different for each stage 

Δt ≥ maxi=1 to σ [tmax
(i) – tmin

(i) + τ]

The controlled clock skew at the output of stage i needs to be:

S(i) =  ∑j=1 to i [tmax
(i) – tmin

(i) + τ] mod Δt
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Random Clock Skew in Wave Pipelining

Clock period  = Δt = t2 – t1
≥ tmax – tmin + τ + 4ε

Reasons for the term 4ε: 

Clocking of the first input set may 
lag by ε, while that of the second 
set leads by ε (net difference = 2ε) 

The reverse condition may exist at 
the output side 

Uncontrolled skew has a larger 
effect on wave pipelining than on 
standard pipelining, especially 
when viewed in relative terms
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25.3  The Earle Latch

Example: To latch d = vw + xy,  
substitute for d in the latch equation

z = dC + dz +⎯Cz
to get a combined “logic + latch” circuit 
implementing z = vw + xy

z = (vw + xy)C + (vw + xy)z +⎯Cz
= vwC + xyC + vwz + xyz +⎯Cz

d
C

z

w

x

y
_

C

Fig. 25.4    Two-level AND-OR 
realization of the Earle latch.

C

C

z

v
w

x
y

_

Fig. 25.5   Two-level AND-OR 
latched realization of the 
function z = vw + xy.

Earle latch can be merged with a 
preceding 2-level AND-OR logic 
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Clocking Considerations for Earle Latches

We derived constraints on the maximum clock rate 1/Δt

Clock period Δt has two parts: clock high, and clock low  

Δt =  Chigh + Clow

Consider a pipeline stage between Earle latches 

Chigh must satisfy the inequalities

3δmax – δmin +  Smax(C↑,⎯C↓)   ≤ Chigh  ≤ 2δmin + tmin

δmax and δmin are maximum and minimum gate delays 

Smax(C↑,⎯C↓) ≥ 0 is the maximum skew between C↑ and⎯C↓

 Clock m ust go low  
before the fastest  
signals from  the  
next input data set  
can affect the input  
z of the latch  

The clock pulse m ust be  
wide enough to ensure  
that valid data is stored in  
the output latch and to  
avoid logic hazard should  
C        slightly lead C  

_ 
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25.4  Parallel and Digit-Serial Pipelines
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Fig. 25.6    Flow-graph representation of an arithmetic expression 
and timing diagram for its evaluation with digit-parallel computation.
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Feasibility of Bit-Level or Digit-Level Pipelining

Bit-serial addition and multiplication can be done LSB-first, but 
division and square-rooting are MSB-first operations 

Besides, division can’t be done in pipelined bit-serial fashion, 
because the MSB of the quotient q in general depends on all the 
bits of the dividend and divisor 

Example: Consider the decimal division .1234/.2469 

Solution: Redundant number representation!

.1xxx
-------- = .?xxx
.2xxx

.12xx
-------- = .?xxx
.24xx

.123x
-------- = .?xxx
.246x
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25.5  On-Line or Digit-Pipelined Arithmetic
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Fig. 25.7    Digit-parallel versus 
digit-pipelined computation.
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Digit-Pipelined Adders

Fig. 25.8    
Digit-pipelined 
MSD-first 
carry-free 
addition.

Decimal example:
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.5 

Shaded boxes show the 
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Fig. 25.9    
Digit-pipelined 
MSD-first 
limited-carry 
addition.

BSD example:
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Digit-Pipelined Multiplier: Algorithm Visualization

Fig. 25.10   Digit-pipelined 
MSD-first multiplication 
process. 
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Digit-Pipelined Multiplier: BSD Implementation

Fig. 25.11   
Digit-pipelined 
MSD-first BSD 
multiplier. 
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Digit-Pipelined Divider

Table 25.1    Example of digit-pipelined division showing 
that three cycles of delay are necessary before quotient 
digits can be output (radix = 4, digit set = [–2, 2])

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Cycle Dividend Divisor q Range q–1 Range
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 (.0 . . .)four (.1 . . .)four (–2/3, 2/3) [–2, 2]

2 (.0 0 . . .)four (.1–2 . . .)four (–2/4, 2/4) [–2, 2]

3 (.0 0 1 . . .)four (.1–2–2 . . .)four (1/16, 5/16) [0, 1]

4 (.0 0 1 0 . . .)four (.1–2–2–2 . . .)four (10/64, 14/64) 1
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Digit-Pipelined Square-Rooter

Table 25.2     Examples of digit-pipelined square-root computation 
showing that 1-2 cycles of delay are necessary before root digits can 
be output (radix = 10, digit set = [–6, 6], and radix = 2, digit set = [–1, 1])
–––––––––––––––––––––––––––––––––––––––––––––––––––––––
Cycle Radicand q Range q–1 Range
–––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 (.3 . . .)ten (√ 7/30 , √ 11/30 ) [5, 6]

2 (.3 4 . . .)ten (√ 1/3 , √ 26/75 ) 6
–––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 (.0 . . .)two (0, √ 1/2 ) [–2, 2]

2 (.0 1 . . .)two (0, √ 1/2 ) [0, 1]

3 (.0 1 1 . . .)two (1/2, √ 1/2 ) 1
–––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Digit-Pipelined Arithmetic: The Big Picture

Fig. 25.12    Conceptual view of on-Line 
or digit-pipelined arithmetic.

Output already 
produced

Residual
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Unprocessed 
input parts
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25.6  Systolic Arithmetic Units
Systolic arrays: Cellular circuits in which data elements

Enter at the boundaries
Advance from cell to cell in lock step
Are transformed in an incremental fashion
Leave from the boundaries

Systolic design mitigates the effect of signal propagation delay and 
allows the use of very clock rates

Fig. 25.13     High-level design of a 
systolic radix-4 digit-pipelined multiplier.

a
x–i

–i . . .
. . .
. . .p–i+1

Head 
Cell
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Case Study: Systolic Programmable FIR Filters

Fig. 25.14    Conventional and systolic 
realizations of a programmable FIR filter.

(a) Conventional: Broadcast control, broadcast data

(b) Systolic: Pipelined control, pipelined data
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26  Low-Power Arithmetic

Chapter Goals
Learn how to improve the power efficiency
of arithmetic circuits by means of
algorithmic and logic design strategies

Chapter Highlights
Reduced power dissipation needed due to

• Limited source (portable, embedded)
• Difficulty of heat disposal

Algorithm and logic-level methods: discussed
Technology and circuit methods: ignored here
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Low-Power Arithmetic: Topics

Topics in This Chapter

26.1  The Need for Low-Power Design

26.2  Sources of Power Consumption

26.3  Reduction of Power Waste

26.4  Reduction of Activity

26.5  Transformations and Tradeoffs

26.6  New and Emerging Methods
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26.1  The Need for Low-Power Design

-

Portable and wearable electronic devices 

Lithium-ion batteries: 0.2 watt-hr per gram of weight

Practical battery weight < 500 g (< 50 g if wearable device)

Total power ≅ 5-10 watt for a day’s work between recharges

Modern high-performance microprocessors use 100s watts 

Power is proportional to die area × clock frequency

Cooling of micros difficult, but still manageable

Cooling of MPPs and server farms is a BIG challenge

New battery technologies cannot keep pace with demand 

Demand for more speed and functionality (multimedia, etc.)
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Processor Power Consumption Trends

Fig. 26.1    Power consumption trend in DSPs [Raba98].
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per decade in energy efficiency 
has been maintained since 2000
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26.2  Sources of Power Consumption

Both average and peak power are important

Average power determines battery life or heat dissipation

Peak power impacts power distribution and signal integrity

Typically, low-power design aims at reducing both

Power dissipation in CMOS digital circuits

Static: Leakage current in imperfect switches (< 10%)

Dynamic: Due to (dis)charging of parasitic capacitance

Pavg ≅ α f C V 2

data rate 
(clock frequency)

Capacitance
Square of 
voltage“activity”
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Power Reduction Strategies: The Big Picture

Pavg ≅ α f C V 2

For a given data rate f, there are but 3 ways 
to reduce the power requirements:

1. Using a lower supply voltage V
2. Reducing the parasitic capacitance C
3. Lowering the switching activity α

Example: A 32-bit off-chip bus operates at 5 V and 100 MHz and 
drives a capacitance of 30 pF per bit. If random values were put
on the bus in every cycle, we would have α = 0.5. To account for 
data correlation and idle bus cycles, assume α = 0.2. Then:

Pavg ≅ α f C V 2 = 0.2 × 108 × (32 × 30 × 10–12) × 52 = 0.48 W
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26.3  Reduction of Power Waste

Function 
   Unit Clock

Enable

Data Inputs

Data Outputs

Function 
   Unit

FU Inputs
FU Output

Mux

Select

Latches0 
 
1

Fig. 26.3    Saving power via guarded evaluation.

Fig. 26.2    Saving power through clock gating.
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Glitching and Its Impact on Power Waste

s i

xi yi

ci c0Carry propagationpi

xi

yi

s i

ci

Fig. 26.4    Example of glitching in a ripple-carry adder.
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Array Multipliers with Lower Power Consumption
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Fig. 26.5    An array multiplier with gated FA cells.
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26.4  Reduction of Activity

Fig. 26.6   Reduction of activity 
by precomputation.

Arithmetic 
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Fig. 26.7   Reduction of activity 
via Shannon expansion.
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26.5  Transformations and Tradeoffs

Fig. 26.8   Reduction of power via parallelism or pipelining.
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Unrolling of Iterative Computations

Fig. 26.9   Realization of a first-order IIR filter.
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Retiming for Power Efficiency

Fig. 26.10   Possible realizations of a fourth-order FIR filter.
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26.6  New and Emerging Methods

Local 
Control

Local 
Control

Local 
Control

Arithmetic 
  Circuit

Arithmetic 
  Circuit

Arithmetic 
  Circuit

Data readyData

Release

Fig. 26.11   Part of an asynchronous 
chain of computations.

Dual-rail data encoding with 
transition signaling:

Two wires per signal

Transition on wire 0 (1) indicates 
the arrival of 0 (1)

Dual-rail design does increase 
the wiring density, but it offers 
the advantage of complete 
insensitivity to delays
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The Ultimate in Low-Power Design

Fig. 26.12   
Some reversible 
logic gates.

A
B
C

P = A
Q = B
R = A B ⊕ C

TG

(a) Toffoli gate

A
B
C

FRG

(b) Fredkin gate

A

B

P = A

Q = A ⊕ B
FG

(c) Feynman gate

A
B
C

P = A

R = A B ⊕ C
PG Q = A ⊕ B

(d) Peres gate

P = A

R = A C ⊕ A B
Q = A B ⊕ A C

B
0

C
1

0

+

A
Cout

s
(sum)

B

A

G

s

Fig. 26.13   Reversible 
binary full adder built 
of 5 Fredkin gates, with 
a single Feynman gate 
used to fan out the 
input B. The label “G”
denotes “garbage.”
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27  Fault-Tolerant Arithmetic
Chapter Goals

Learn about errors due to hardware faults
or hostile environmental conditions,
and how to deal with or circumvent them

Chapter Highlights
Modern components are very robust, but . . .

put millions /billions of them together
and something is bound to go wrong

Can arithmetic be protected via encoding?
Reliable circuits and robust algorithms
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Fault-Tolerant Arithmetic: Topics

Topics in This Chapter

27.1  Faults, Errors, and Error Codes

27.2  Arithmetic Error-Detecting Codes

27.3  Arithmetic Error-Correcting Codes

27.4  Self-Checking Function Units

27.5  Algorithm-Based Fault Tolerance

27.6  Fault-Tolerant RNS Arithmetic
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27.1  Faults, Errors, and Error Codes

Protected 
     by  
Encoding

Input

Encode

Send

Store

Send

Decode

Output

Manipulate

Unprotected
     Protected 

     by 
encoding

Fig. 27.1   
A common way of 
applying information 
coding techniques.



May 2010 Computer Arithmetic, Implementation Topics Slide 49

Fault Detection and Fault Masking
Coded 
inputs Decode 

    1

Decode 
    2

ALU 
  1

ALU 
  2

Compare

Mismatch 
detected

Encode

Coded 
outputs

Coded 
inputs Decode 

    1

Decode 
    2

ALU 
  1

ALU 
  2

Decode 
    3

ALU 
  3

Vote Encode

Coded 
outputs

Non-codeword 
detected

Fig. 27.2   Arithmetic 
fault detection or fault 
tolerance (masking) 
with replicated units.

(a) Duplication and comparison

(b) Triplication and voting
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Inadequacy of Standard Error Coding Methods

Unsigned addition 0010 0111 0010 0001
+ 0101 1000 1101 0011

–––––––––––––––––
Correct sum 0111 1111 1111 0100
Erroneous sum 1000 0000 0000 0100

↑
Stage generating an
erroneous carry of 1

Fig. 27.3   How a single 
carry error can produce 
an arbitrary number of 
bit-errors (inversions).

The arithmetic weight of an error: Min number of signed powers of 2 that 
must be added to the correct value to produce the erroneous result

Example 1 Example 2
------------------------------------------------------------------------ --------------------------------------------------------------------------

Correct value 0111 1111 1111 0100 1101 1111 1111 0100
Erroneous value 1000 0000 0000 0100 0110 0000 0000 0100
Difference (error) 16 = 24 –32752 = –215 + 24

Min-weight BSD 0000 0000 0001 0000 –1000 0000 0001 0000
Arithmetic weight        1 2
Error type Single, positive Double, negative
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27.2  Arithmetic Error-Detecting Codes

Arithmetic error-detecting codes:

Are characterized by arithmetic weights of detectable errors

Allow direct arithmetic on coded operands 

We will discuss two classes of arithmetic error-detecting codes, 
both of which are based on a check modulus A (usually a small 
odd number)

Product or AN codes
Represent the value N by the number AN

Residue (or inverse residue) codes
Represent the value N by the pair (N, C),
where C is N mod A or (N – N mod A) mod A
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Product or AN Codes

For odd A, all weight-1 arithmetic errors are detected 

Arithmetic errors of weight ≥ 2 may go undetected 

e.g., the error 32 736 = 215 – 25 undetectable with A = 3, 11, or 31

Error detection: check divisibility by A

Encoding/decoding: multiply/divide by A

Arithmetic also requires multiplication and division by A

Product codes are nonseparate (nonseparable) codes
Data and redundant check info are intermixed
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Low-Cost Product Codes

Low-cost product codes use low-cost check moduli of the form A = 2a – 1   

Multiplication by A = 2a – 1: done by shift-subtract

Division by A = 2a – 1: done a bits at a time as follows 

Given y = (2a – 1)x, find x by computing 2a x – y
. . . xxxx 0000   – . . . xxxx xxxx   =    . . . xxxx xxxx
Unknown 2a x Known (2a – 1)x Unknown x

Theorem 27.1:  Any unidirectional error with arithmetic weight of at most 
a – 1 is detectable by a low-cost product code based on A = 2a – 1
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Arithmetic on AN-Coded Operands

Add/subtract is done directly:  Ax ± Ay = A(x ± y)

Direct multiplication results in:  Aa × Ax = A2ax

The result must be corrected through division by A

For division, if z = qd + s, we have:  Az = q(Ad) + As

Thus, q is unprotected
Possible cure: premultiply the dividend Az by A
The result will need correction

Square rooting leads to a problem similar to division 

⎣√ A2x ⎦ =  ⎣ A√ x ⎦ which is not the same as  A ⎣√ x ⎦
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Residue and Inverse Residue Codes

Represent N by the pair (N, C(N)), where C(N) = N mod A

Residue codes are separate (separable) codes 

Separate data and check parts make decoding trivial

Encoding: given N, compute C(N) = N mod A

Low-cost residue codes use A = 2a – 1
Arithmetic on residue-coded operands
Add/subtract: data and check parts are handled separately

(x, C(x)) ± (y, C(y))  =  (x ± y, (C(x) ± C(y)) mod A)
Multiply 

(a, C(a)) × (x, C(x))  =  (a × x, (C(a)×C(x)) mod A)
Divide/square-root: difficult
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Arithmetic on Residue-Coded Operands
Add/subtract: Data and check parts are handled separately

(x, C(x)) ± (y, C(y))  =  (x ± y, (C(x) ± C(y)) mod A)

Multiply 
(a, C(a)) × (x, C(x))  =  (a × x, (C(a)×C(x)) mod A)

Divide/square-root: difficult

    Main 
Arithmetic 
Processor

   Check 
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error 
Indicator

A
Fig. 27.4   
Arithmetic processor 
with residue checking.
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Example: Residue Checked Adder

Add 

x, x mod A 

Add mod A  

Compare 
Find 
mod A 

y, y mod A 

s, s mod A Error 

 Not 
 equal 
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27.3  Arithmetic Error-Correcting Codes
––––––––––––––––––––––––––––––––––––––––
Positive Syndrome Negative Syndrome 

error mod 7  mod 15 error mod 7  mod 15
––––––––––––––––––––––––––––––––––––––––

1 1 1 –1 6 14
2 2 2 –2 5 13
4 4 4 –4 3 11
8 1 8 –8 6 7

16 2 1 –16 5 14
32 4 2 –32 3 13
64 1 4 –64 6 11

128 2 8 –128 5 7
256 4 1 –256 3 14
512 1 2 –512 6 13

1024 2 4 –1024 5 11
2048 4 8 –2048 3 7

––––––––––––––––––––––––––––––––––––––––
4096 1 1 –4096 6 14
8192 2 2 –8192 5 13

16,384 4 4 –16,384 3 11
32,768 1 8 –32,768 6 7

––––––––––––––––––––––––––––––––––––––––

Table 27.1   
Error syndromes for 
weight-1 arithmetic 
errors in the (7, 15) 
biresidue code

Because all the 
symptoms in this 
table are different, 
any weight-1 
arithmetic error is 
correctable by the 
(mod 7, mod 15) 
biresidue code



May 2010 Computer Arithmetic, Implementation Topics Slide 59

Properties of Biresidue Codes

Biresidue code with relatively prime low-cost check moduli 
A = 2a – 1 and B = 2b – 1 supports a × b bits of data for 
weight-1 error correction 

Representational redundancy = (a + b)/(ab) = 1/a + 1/b
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27.4  Self-Checking Function Units

Self-checking (SC) unit: any fault from a prescribed set does not 
affect the correct output (masked) or leads to a noncodeword
output (detected) 

An invalid result is: 

Detected immediately by a code checker, or 

Propagated downstream by the next self-checking unit

To build SC units, we need SC code checkers that never 
validate a noncodeword, even when they are faulty



May 2010 Computer Arithmetic, Implementation Topics Slide 61

Design of a Self-Checking Code Checker

Example: SC checker for inverse residue code (N, C' (N)) 
N mod A should be the bitwise complement of C' (N) 

Verifying that signal pairs (xi, yi) are all (1, 0) or (0, 1) is the 
same as finding the AND of Boolean values encoded as:

1: (1, 0) or (0, 1) 0: (0, 0) or (1, 1)

x
yi

i

x
yj

j

Fig. 27.5    Two-input 
AND circuit, with 2-bit 
inputs (xi, yi) and (xi, yi), 
for use in a self-checking 
code checker.
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Case Study: Self-Checking Adders

P/R = Parity-to-redundant 
converter

R/P = Redundant-to-parity 
converter

Fig. 27.6    
Self-checking adders 
with parity-encoded 
inputs and output.

/ 
k 

/ 
k 

/ 
k 

Parity- 
encoded 
inputs 

ALU 

Error 

Parity- 
encoded 
output  

Parity 
generator 

Ordinary ALU 

(b) Parity prediction 

Parity 
predictor 

/ 
k 

Parity- 
encoded 
inputs 

ALU 

k + h 
/ P/R 

k + h 
/ 

/ 
k 

Parity- 
encoded 
output  

R/P 

/ 
k 

P/R 

k + h 
/ 

Redundant parity-preserving ALU 

(c) Parity/redundant and redundant/parity code conversion 

(a) Parity prediction

(b) Parity preservation
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27.5  Algorithm-Based Fault Tolerance
Alternative strategy to error detection after each basic operation:

Accept that operations may yield incorrect results 

Detect/correct errors at data-structure or application level

Fig. 27.7    A 3 × 3 
matrix M with its 
row, column, and full 
checksum matrices 
Mr, Mc, and Mf. 

2   1   6 2   1   6   1
M = 5   3   4 Mr = 5   3   4   4

3   2   7 3   2   7   4

2   1   6 2   1   6   1
5   3   4 5   3   4   4
3   2   7 3   2   7   4
2   6   1 2   6   1   1

Mc = Mf =

Example: multiplication of matrices X and Y yielding  P
Row, column, and full checksum matrices (mod 8)
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Properties of Checksum Matrices

Theorem 27.3: If P = X × Y , we have Pf = Xc × Yr
(with floating-point values, the equalities are approximate)

Theorem 27.4: In a full-checksum matrix, any single erroneous 
element can be corrected and any three errors can be detected

Fig. 27.72   1   6 2   1   6   1
M = 5   3   4 Mr = 5   3   4   4

3   2   7 3   2   7   4

2   1   6 2   1   6   1
5   3   4 5   3   4   4
3   2   7 3   2   7   4
2   6   1 2   6   1   1

Mc = Mf =
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27.6  Fault-Tolerant RNS Arithmetic
Residue number systems allow very elegant and effective error detection 
and correction schemes by means of redundant residues (extra moduli) 

Example: RNS(8 | 7 | 5 | 3), Dynamic range M = 8 × 7 × 5 × 3 = 840; 
redundant modulus: 11. Any error confined to a single residue detectable. 

Error detection (the redundant modulus must be the largest one, say m): 

1. Use other residues to compute the residue of the number mod m
(this process is known as base extension)

2. Compare the computed and actual mod-m residues

The beauty of this method is that arithmetic algorithms are completely 
unaffected; error detection is made possible by simply extending the 
dynamic range of the RNS
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Example RNS with two Redundant Residues

RNS(8 | 7 | 5 | 3), with redundant moduli 13 and 11

Representation of 25  =   (12, 3,1,4, 0,1)RNS

Corrupted version =   (12, 3, 1, 6,0,1)RNS

Transform (–,–,1,6,0,1) to (5,1,1,6,0,1) via base extension

Reconstructed number =   ( 5, 1, 1,6, 0, 1)RNS

The difference between the first two components of the corrupted
and reconstructed numbers is (+7, +2)

This constitutes a syndrome, allowing us to correct the error
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28  Reconfigurable Arithmetic

Chapter Goals
Examine arithmetic algorithms and designs
appropriate for implementation on FPGAs 
(one-of-a-kind, low-volume, prototype systems)

Chapter Highlights
Suitable adder designs beyond ripple-carry
Design choices for multipliers and dividers
Table-based and “distributed” arithmetic
Techniques for function evaluation
Enhanced FPGAs and higher-level alternatives
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Reconfigurable Arithmetic: Topics

Topics in This Chapter

28.1  Programmable Logic Devices

28.2  Adder Designs for FPGAs

28.3  Multiplier and Divider Designs

28.4  Tabular and Distributed Arithmetic

28.5  Function Evaluation on FPGAs

28.6  Beyond Fine-Grained Devices
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28.1  Programmable Logic Devices

Fig. 28.1    Examples of programmable sequential logic. 

(a) Portion of PAL with storable output (b) Generic structure of an FPGA 
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Programmability Mechanisms

Fig. 28.2   Some memory-controlled switches and 
interconnections in programmable logic devices.

(a) Tristate buffer

0

1

(b) Pass transistor (c) Multiplexer

Memory 
cell

Memory 
cell

Memory 
cell

Slide to be completed
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Configurable Logic Blocks

Fig. 28.3   Structure of a simple logic block.
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The Interconnect Fabric

Fig. 28.4   A possible 
arrangement of 
programmable 
interconnects between 
LBs or LB clusters.
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Standard FPGA Design Flow
1. Specification: Creating the design files, typically via a  

hardware description language such as Verilog, VHDL, or Abel
2. Synthesis: Converting the design files into interconnected 

networks of gates and other standard logic circuit elements
3. Partitioning: Assigning the logic elements of stage 2 to specific 

physical circuit elements that are capable of realizing them
4. Placement: Mapping of the physical circuit elements of stage 3 

to specific physical locations of the target FPGA device
5. Routing: Mapping of the interconnections prescribed in stage 2 

to specific physical wires on the target FPGA device
6. Configuration: Generation of the requisite bit-stream file that 

holds configuration bits for the target FPGA device
7. Programming: Uploading the bit-stream file of stage 6 to 

memory elements within the FPGA device
8. Verification: Ensuring the correctness of the final design, in 

terms of both function and timing, via simulation and testing
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28.2  Adder Designs for FPGAs

This slide to include a discussion of ripple-carry adders and built-in carry 
chains in FPGAs
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Carry-Skip Addition

Fig. 28.5   Possible design of a 16-bit 
carry-skip adder on an FPGA.
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Slide to be completed
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Carry-Select Addition

Fig. 28.6   Possible design of a carry-select adder on an FPGA.
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Slide to be completed
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28.3  Multiplier and Divider Designs

Fig. 28.7   Divide-and-conquer 4 × 4 multiplier design 
using 4-input lookup tables and ripple-carry adders.
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Slide to be completed
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Multiplication by Constants

Fig. 28.8   Multiplication of an 8-bit input by 13, using LUTs.
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Division on FPGAs

Slide to be completed
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28.4  Tabular and Distributed Arithmetic

Slide to be completed
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Second-Order Digital Filter: Definition

Current and two previous inputs

y (i) =  a(0)x (i) + a(1)x (i–1) + a(2)x (i–2) – b(1)y (i–1) – b(2)y (i–2)

Expand the equation for y (i) in terms of the bits in operands 
x = (x0.x–1x–2 . . . x–l)2’s-compl and y = (y0.y–1y–2 . . . y–l)2’s-compl , 
where the summations range from j = – l to j = –1

y (i) = a(0)(–x0
(i) + ∑2j xj

(i)) 
+ a(1)(–x0

(i−1) + ∑2j xj
(i−1)) + a(2)(–x0

(i−2) + ∑2j xj
(i−2)) 

– b(1)(–y0
(i−1) + ∑2j yj

(i−1)) – b(2)(–y0
(i−2) + ∑2j yj

(i−2)) 

Filter
Latch

x (1)
x (2)
x (3)

x (i)
...

y (1)
y (2)
y (3)

y (i)
...

x (i+1)

Two previous outputs

a(j)s and b(j)s 
are constants

Define f(s, t, u, v, w) = a(0)s + a(1)t + a(2)u – b(1)v – b(2)w

y (i) = ∑2j f(xj
(i), xj

(i−1), xj
(i−2), yj

(i−1), yj
(i−2)) – f(x0

(i), x0
(i−1), x0

(i−2), y0
(i−1), y0

(i−2)) 



May 2010 Computer Arithmetic, Implementation Topics Slide 82

Second-Order Digital Filter: Bit-Serial Implementation

Fig. 28.9   Bit-serial tabular realization of a second-order filter. 
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28.5  Function Evaluation on FPGAs

Fig. 28.10   The first four 
stages of an unrolled 
CORDIC processor.
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Implementing Convergence Schemes

Fig. 28.11   Generic convergence structure for function evaluation. 
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28.6  Beyond Fine-Grained Devices

Fig. 28.12   The design space for arithmetic-intensive applications.
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A   Past, Present, and Future

Appendix Goals
Wrap things up, provide perspective, and
examine arithmetic in a few key systems

Appendix Highlights
One must look at arithmetic in context of

• Computational requirements
• Technological constraints
• Overall system design goals
• Past and future developments

Current trends and research directions?
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Past, Present, and Future: Topics

Topics in This Chapter

A.1  Historical Perspective

A.2  Early High-Performance Computers

A.3  Deeply Pipelined Vector Machines

A.4  The DSP Revolution

A.5  Supercomputers on Our Laps

A.6  Trends, Outlook, and Resources
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A.1  Historical Perspective
Babbage was aware of ideas such as 
carry-skip addition, carry-save addition, 
and restoring division

1848

Modern reconstruction from Meccano parts;
http://www.meccano.us/difference_engines/ 

http://www.meccano.us/difference_engines/rde_1/DSCN1413.JPG
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Computer Arithmetic in the 1940s

Machine arithmetic was crucial in proving the feasibility of computing 
with stored-program electronic devices 

Hardware for addition/subtraction, use of complement representation, 
and shift-add multiplication and division algorithms were developed and 
fine-tuned 

A seminal report by A.W. Burkes, H.H. Goldstein, and J. von Neumann 
contained ideas on choice of number radix, carry propagation chains, 
fast multiplication via carry-save addition, and restoring division 

State of computer arithmetic circa 1950: 
Overview paper by R.F. Shaw [Shaw50]
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Computer Arithmetic in the 1950s

The focus shifted from feasibility to algorithmic speedup methods and 
cost-effective hardware realizations 

By the end of the decade, virtually all important fast-adder designs had 
already been published or were in the final phases of development 

Residue arithmetic, SRT division, CORDIC algorithms were proposed 
and implemented 

Snapshot of the field circa 1960: 
Overview paper by O.L. MacSorley [MacS61] 
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Computer Arithmetic in the 1960s

Tree multipliers, array multipliers, high-radix dividers, convergence 
division, redundant signed-digit arithmetic were introduced

Implementation of floating-point arithmetic operations in hardware or 
firmware (in microprogram) became prevalent 

Many innovative ideas originated from the design of early 
supercomputers, when the demand for high performance, 
along with the still high cost of hardware, led designers to novel 
and cost-effective solutions

Examples reflecting the sate of the art near the end of this decade:
IBM’s System/360 Model 91 [Ande67] 
Control Data Corporation’s CDC 6600 [Thor70]
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Computer Arithmetic in the 1970s

Advent of microprocessors and vector supercomputers 

Early LSI chips were quite limited in the number of transistors or logic 
gates that they could accommodate 

Microprogrammed control (with just a hardware adder) was a natural 
choice for single-chip processors which were not yet expected to offer 
high performance 

For high end machines, pipelining methods were perfected to allow 
the throughput of arithmetic units to keep up with computational
demand in vector supercomputers 

Examples reflecting the state of the art near the end of this decade:
Cray 1 supercomputer and its successors
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Computer Arithmetic in the 1980s

Spread of VLSI triggered a reconsideration of all arithmetic designs in 
light of interconnection cost and pin limitations 

For example, carry-lookahead adders, thought to be ill-suited to VLSI, 
were shown to be efficiently realizable after suitable modifications. 
Similar ideas were applied to more efficient VLSI tree and array
multipliers 

Bit-serial and on-line arithmetic were advanced to deal with severe pin 
limitations in VLSI packages 

Arithmetic-intensive signal processing functions became driving forces 
for low-cost and/or high-performance embedded hardware: DSP chips



May 2010 Computer Arithmetic, Implementation Topics Slide 94

Computer Arithmetic in the 1990s

No breakthrough design concept 

Demand for performance led to fine-tuning of arithmetic algorithms and 
implementations (many hybrid designs)

Increasing use of table lookup and tight integration of arithmetic unit and 
other parts of the processor for maximum performance 

Clock speeds reached and surpassed 100, 200, 300, 400, and 500 MHz 
in rapid succession; pipelining used to ensure smooth flow of data 
through the system

Examples reflecting the state of the art near the end of this decade:
Intel’s Pentium Pro (P6) → Pentium II
Several high-end DSP chips
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Computer Arithmetic in the 2000s

Continued refinement of many existing methods, particularly those 
based on table lookup

New challenges posed by multi-GHz clock rates

Increased emphasis on low-power design

Work on, and approval of, the IEEE 754-2008 floating-point standard

Three parallel and interacting trends:
Availability of many millions of transistors on a single microchip
Energy requirements and heat dissipation of the said transistors
Shift of focus from scientific computations to media processing
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A.2  Early High-Performance Computers

IBM System 360 Model 91 (360/91, for short; mid 1960s)

Part of a family of machines with the same instruction-set architecture

Had multiple function units and an elaborate scheduling and interlocking 
hardware algorithm to take advantage of them for high performance

Clock cycle = 20 ns (quite aggressive for its day)

Used 2 concurrently operating floating-point execution units performing:

Two-stage pipelined addition

12 × 56 pipelined partial-tree multiplication

Division by repeated multiplications (initial versions of the machine 
sometimes yielded an incorrect LSB for the quotient)
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The IBM 
System 360 

Model 91

Fig. A.1    Overall 
structure of the IBM 
System/360 Model 
91 floating-point 
execution unit.
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A.3  Deeply Pipelined Vector Machines

Cray X-MP/Model 24 (multiple-processor vector machine)

Had multiple function units, each of which could produce a new result 
on every clock tick, given suitably long vectors to process

Clock cycle = 9.5 ns

Used 5 integer/logic function units and 3 floating-point function units

Integer/Logic units: add, shift, logical 1, logical 2, weight/parity

Floating-point units: add (6 stages), multiply (7 stages), 
reciprocal approximation (14 stages)

Pipeline setup and shutdown overheads

Vector unit not efficient for short vectors (break-even point)

Pipeline chaining



May 2010 Computer Arithmetic, Implementation Topics Slide 99

Cray X-MP 
Vector 

Computer

Fig. A.2   The 
vector section 
of one of the 
processors in 
the Cray X-MP/ 
Model 24 
supercomputer.
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A.4  The DSP Revolution

Special-purpose DSPs have used a wide variety of unconventional 
arithmetic methods; e.g., RNS or logarithmic number representation

General-purpose DSPs provide an instruction set that is tuned to the 
needs of arithmetic-intensive signal processing applications

Example DSP instructions

ADD A, B { A + B → B }
SUB X, A { A – X → A }
MPY ±X1, X0, B { ±X1 × X0 → B }
MAC ±Y1, X1, A { A ± Y1 × X1 → A }
AND X1, A { A AND X1 → A }

General-purpose DSPs come in integer and floating-point varieties
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Fixed-Point 
DSP Example

Fig. A.3    Block diagram 
of the data ALU in 
Motorola’s DSP56002 
(fixed-point) processor.
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Floating-Point 
DSP Example

Fig. A.4    Block diagram 
of the data ALU in 
Motorola’s DSP96002 
(floating-point) processor.
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A.5  Supercomputers on Our Laps

In the beginning, there was the 8080; led to the 80x86 = IA32 ISA

Half a dozen or so pipeline stages

80286
80386
80486
Pentium (80586)

A dozen or so pipeline stages, with out-of-order instruction execution

Pentium Pro
Pentium II
Pentium III
Celeron

Two dozens or so pipeline stages

Pentium 4

More advanced 
technology

More advanced 
technology

Instructions are broken 
into micro-ops which are 
executed out-of-order 
but retired in-order
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Performance Trends in Intel Microprocessors
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Arithmetic in the Intel Pentium Pro Microprocessor
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Fig. 28.5  Key parts of the CPU in the Intel Pentium Pro (P6) microprocessor.
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A.6  Trends, Outlook, and Resources

Current focus areas in computer arithmetic

Design: Shift of attention from algorithms to optimizations at the 
level of transistors and wires

This explains the proliferation of hybrid designs

Technology: Predominantly CMOS, with a phenomenal rate of 
improvement in size/speed

New technologies cannot compete

Applications: Shift from high-speed or high-throughput designs 
in mainframes to embedded systems requiring

Low cost
Low power
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Ongoing Debates and New Paradigms

Renewed interest in bit- and digit-serial arithmetic as mechanisms to 
reduce the VLSI area and to improve packageability and testability 

Synchronous vs asynchronous design (asynchrony has some overhead, 
but an equivalent overhead is being paid for clock distribution and/or 
systolization)

New design paradigms may alter the way in which we view or design 
arithmetic circuits 

Neuronlike computational elements
Optical computing (redundant representations) 
Multivalued logic (match to high-radix arithmetic)
Configurable logic

Arithmetic complexity theory
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Computer Arithmetic Timeline

Fig. A.6   Computer arithmetic through the decades.
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[Burk46]

Key ideas, innovations, advancements, technology traits, and milestones

Binary format, carry chains, stored carry, carry-save multiplier, restoring divider
[Shaw50]

Carry-lookahead adder, high-radix multiplier, SRT divider, CORDIC algorithms

Tree/array multiplier, high-radix & convergence dividers, signed-digit, floating point

Pipelined arithmetic, vector supercomputer, microprocessor, ARITH-2/3/4 symposia

VLSI, embedded system, digital signal processor, on-line arithmetic, IEEE 754-1985

CMOS dominance, circuit-level optimization, hybrid design, deep pipeline, table lookup

Power/energy/heat reduction, media processing, FPGA-based arith., IEEE 754-2008

Teraflops on laptop (or pocket device?), asynchronous design, nanodevice arithmetic

[MacS61]

[Thor70]
[Ande67]

[Swar90]

[Swar09]

[Garn76]]
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The End!

You’re up to date. Take my advice and try to keep it that way. It’ll be 
tough to do; make no mistake about it. The phone will ring and it’ll be the 
administrator –– talking about budgets. The doctors will come in, and 
they’ll want this bit of information and that. Then you’ll get the salesman. 
Until at the end of the day you’ll wonder what happened to it and what 
you’ve accomplished; what you’ve achieved.
That’s the way the next day can go, and the next, and the one after that. 
Until you find a year has slipped by, and another, and another. And then 
suddenly, one day, you’ll find everything you knew is out of date. That’s 
when it’s too late to change.
Listen to an old man who’s been through it all, who made the mistake of 
falling behind. Don’t let it happen to you! Lock yourself in a closet if you 
have to! Get away from the phone and the files and paper, and read and 
learn and listen and keep up to date. Then they can never touch you, 
never say, “He’s finished, all washed up; he belongs to yesterday.”

Arthur Hailey, The Final Diagnosis
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