
May 2010 Computer Arithmetic, Implementation Topics Slide 1

Part VII
Implementation Topics

 Number Representation
 Numbers and Arithmetic
 Representing Signed Numbers
 Redundant Number Systems
 Residue Number Systems

 Addition / Subtraction
 Basic Addition and Counting
 Carry-Lookahead Adders
 Variations in Fast Adders
 Multioperand Addition

 Multiplication
 Basic Multiplication Schemes
 High-Radix Multipliers
 Tree and Array Multipliers
 Variations in Multipliers

 Division
 Basic Division Schemes
 High-Radix Dividers
 Variations in Dividers
 Division by Convergence

 Real Arithmetic
 Floating-Point Reperesentations
 Floating-Point Operations
 Errors and Error Control
 Precise and Certifiable Arithmetic

 Function Evaluation
 Square-Rooting Methods
 The CORDIC Algorithms
 Variations in Function Evaluation
 Arithmetic by Table Lookup

 Implementation Topics
 High-Throughput Arithmetic
 Low-Power Arithmetic
 Fault-Tolerant Arithmetic
 Past, Present, and Future

 Parts Chapters

I.

II.

III.

IV.

V.

VI.

VII.

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

25.
26.
27.
28.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

E
le

m
en

ta
ry

 O
pe

ra
tio

ns

28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

May 2010 Computer Arithmetic, Implementation Topics Slide 2

About This Presentation

Edition Released Revised Revised Revised Revised
First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 Dec. 2007

Second May 2010

This presentation is intended to support the use of the textbook
Computer Arithmetic: Algorithms and Hardware Designs (Oxford
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated
regularly by the author as part of his teaching of the graduate
course ECE 252B, Computer Arithmetic, at the University of
California, Santa Barbara. Instructors can use these slides freely
in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. © Behrooz Parhami

May 2010 Computer Arithmetic, Implementation Topics Slide 3

VII Implementation Topics

Topics in This Part
Chapter 25 High-Throughput Arithmetic
Chapter 26 Low-Power Arithmetic
Chapter 27 Fault-Tolerant Arithmetic
Chapter 28 Reconfigurable Arithmetic

Sample advanced implementation methods and tradeoffs
• Speed/ latency is seldom the only concern
• We also care about throughput, size, power/energy
• Fault-induced errors are different from arithmetic errors
• Implementation on Programmable logic devices

May 2010 Computer Arithmetic, Implementation Topics Slide 4

May 2010 Computer Arithmetic, Implementation Topics Slide 5

25 High-Throughput Arithmetic
Chapter Goals

Learn how to improve the performance of
an arithmetic unit via higher throughput
rather than reduced latency

Chapter Highlights
To improve overall performance, one must

• Look beyond individual operations
• Trade off latency for throughput

For example, a multiply may take 20 cycles,
but a new one can begin every cycle

Data availability and hazards limit the depth

May 2010 Computer Arithmetic, Implementation Topics Slide 6

High-Throughput Arithmetic: Topics

Topics in This Chapter

25.1 Pipelining of Arithmetic Functions

25.2 Clock Rate and Throughput

25.3 The Earle Latch

25.4 Parallel and Digit-Serial Pipelines

25.5 On-Line of Digit-Pipelined Arithmetic

25.6 Systolic Arithmetic Units

May 2010 Computer Arithmetic, Implementation Topics Slide 7

25.1 Pipelining of Arithmetic Functions

Throughput
Operations per unit time

Pipelining period
Interval between applying
successive inputs

In Out
1 . . .

Inter-stage latchesInput
latches

Output
latches

In Out
Non-pipelined

t/ +τ

2 σ3

σ
t + στ

t
Fig. 25.1 An arithmetic function unit
and its σ-stage pipelined version.

Latency, though a secondary consideration, is still important because:
a. Occasional need for doing single operations
b. Dependencies may lead to bubbles or even drainage

At times, pipelined implementation may improve the latency of a multistep
computation and also reduce its cost; in this case, advantage is obvious

May 2010 Computer Arithmetic, Implementation Topics Slide 8

Analysis of Pipelining Throughput

In Out
1 . . .

Inter-stage latchesInput
latches

Output
latches

In Out
Non-pipelined

t/ +τ

2 σ3

σ
t + στ

t

Consider a circuit with cost (gate count) g and latency t

Simplifying assumptions for our analysis:

1. Time overhead per stage is τ (latching delay)
2. Cost overhead per stage is γ (latching cost)
3. Function is divisible into σ equal stages for any σ

Then, for the pipelined implementation:

Latency T = t + στ

1 1Throughput R = = T / σ t / σ + τ

Cost G = g + σγ

Throughput approaches its maximum of 1/τ for large σ Fig. 25.1

May 2010 Computer Arithmetic, Implementation Topics Slide 9

Analysis of Pipelining Cost-Effectiveness
1 1T = t + στ R = = G = g + σγT / σ t / σ + τ

Latency Throughput Cost

Consider cost-effectiveness to be throughput per unit cost

E = R /G = σ / [(t + στ)(g + σγ)]

To maximize E, compute dE/dσ and equate the numerator with 0

tg – σ2τγ = 0 ⇒ σopt = √ tg / (τγ)

We see that the most cost-effective number of pipeline stages is:

Directly related to the latency and cost of the function;
it pays to have many stages if the function is very slow or complex

Inversely related to pipelining delay and cost overheads;
few stages are in order if pipelining overheads are fairly high

All in all, not a surprising result!

May 2010 Computer Arithmetic, Implementation Topics Slide 10

In Out
1 . . .

Inter-stage latchesInput
latches

Output
latches

In Out
Non-pipelined

t/ +τ

2 σ3

σ
t + στ

t

25.2 Clock Rate and Throughput
Consider a σ-stage pipeline with stage delay tstage

One set of inputs is applied to the pipeline at time t1
At time t1 + tstage + τ, partial results are safely stored in latches

Apply the next set of inputs at time t2 satisfying t2 ≥ t1 + tstage + τ

Therefore:

Clock period = Δt = t2 – t1 ≥ tstage + τ

Throughput = 1/ Clock period ≤ 1/(tstage + τ)

Fig. 25.1

May 2010 Computer Arithmetic, Implementation Topics Slide 11

In Out
1 . . .

Inter-stage latchesInput
latches

Output
latches

In Out
Non-pipelined

t/ +τ

2 σ3

σ
t + στ

t

The Effect of Clock Skew on Pipeline Throughput
Two implicit assumptions in deriving the throughput equation below:

One clock signal is distributed to all circuit elements
All latches are clocked at precisely the same time

Throughput = 1/ Clock period
≤ 1/(tstage + τ)

Fig. 25.1

Uncontrolled or random clock skew
causes the clock signal to arrive at
point B before/after its arrival at point A

With proper design, we can place a bound ±ε on the uncontrolled
clock skew at the input and output latches of a pipeline stage

Then, the clock period is lower bounded as:

Clock period = Δt = t2 – t1 ≥ tstage + τ + 2ε

May 2010 Computer Arithmetic, Implementation Topics Slide 12

Wave Pipelining: The Idea

The stage delay tstage is really not a constant but varies from tmin to tmax

tmin represents fast paths (with fewer or faster gates)
tmax represents slow paths

Suppose that one set of inputs is applied at time t1
At time t1 + tmax + τ, the results are safely stored in latches

If that the next inputs are applied at time t2, we must have:

t2 + tmin ≥ t1 + tmax + τ

This places a lower bound on the clock period:

Clock period = Δt = t2 – t1 ≥ tmax – tmin + τ

Thus, we can approach the maximum possible pipeline throughput of
1/τ without necessarily requiring very small stage delay

All we need is a very small delay variance tmax – tmin

Two roads to higher
pipeline throughput:
Reducing tmax
Increasing tmin

May 2010 Computer Arithmetic, Implementation Topics Slide 13

Visualizing Wave Pipelining
S

ta
ge

 in
pu

t

S
ta

ge
 o

ut
pu

t

Wavefront
i + 3

(not yet applied)

Wavefront
i + 2

Wavefront
i + 1

Wavefront
i

(arriving at output)

Faster signals

Slower signals

Allowance for
latching, skew, etc. t – t max min

Fig. 25.2 Wave pipelining allows multiple computational
wavefronts to coexist in a single pipeline stage .

May 2010 Computer Arithmetic, Implementation Topics Slide 14

Another Visualization of Wave Pipelining

Fig. 25.3
Alternate view of
the throughput
advantage of
wave pipelining
over ordinary
pipelining.

Stage
output

Stage
input

Stationary
region

(unshaed)

Transient
region

(unshaed)

Clock cycle

Lo
gi

c
de

pt
h

t t min max

Stage
output

Stage
input

Clock cycle

Lo
gi

c
de

pt
h

t t min max

Time

Time

Controlled
clock skew

(a)

(b)

(a) Ordinary pipelining

(b) Wave pipelining

Transient
region

(shaded)

Stationary
region

(unshaded)

May 2010 Computer Arithmetic, Implementation Topics Slide 15

Difficulties in Applying Wave Pipelining

LAN and other
high-speed links
(figures rounded
from Myrinet
data [Bode95])

Sender Receiver

Gb/s link (cable)

30 m

10 b

Gb/s throughput → Clock rate = 108 → Clock cycle = 10 ns
In 10 ns, signals travel 1-1.5 m (speed of light = 0.3 m/ns)
For a 30 m cable, 20-30 characters will be in flight at the same time

At the circuit and logic level (μm-mm distances, not m), there are still
problems to be worked out

For example, delay equalization to reduce tmax – tmin is nearly impossible
in CMOS technology:

CMOS 2-input NAND delay varies by factor of 2 based on inputs
Biased CMOS (pseudo-CMOS) fairs better, but has power penalty

May 2010 Computer Arithmetic, Implementation Topics Slide 16

Controlled Clock Skew in Wave Pipelining
With wave pipelining, a new input enters the pipeline stage every
Δt time units and the stage latency is tmax + τ

Thus, for proper sampling of the results, clock application at the
output latch must be skewed by (tmax + τ) mod Δt

Example: tmax + τ = 12 ns; Δt = 5 ns

A clock skew of +2 ns is required at the stage output latches relative
to the input latches

In general, the value of tmax – tmin > 0 may be different for each stage

Δt ≥ maxi=1 to σ [tmax
(i) – tmin

(i) + τ]

The controlled clock skew at the output of stage i needs to be:

S(i) = ∑j=1 to i [tmax
(i) – tmin

(i) + τ] mod Δt

May 2010 Computer Arithmetic, Implementation Topics Slide 17

Random Clock Skew in Wave Pipelining

Clock period = Δt = t2 – t1
≥ tmax – tmin + τ + 4ε

Reasons for the term 4ε:

Clocking of the first input set may
lag by ε, while that of the second
set leads by ε (net difference = 2ε)

The reverse condition may exist at
the output side

Uncontrolled skew has a larger
effect on wave pipelining than on
standard pipelining, especially
when viewed in relative terms

Stage
output

Stage
input

Clock cycle

Lo
gi

c
de

pt
h

Stage
output

Stage
input

Clock cycle
Lo

gi
c

de
pt

h

Time

Time

ε ε

ε ε

Graphical justification
of the term 4ε

May 2010 Computer Arithmetic, Implementation Topics Slide 18

25.3 The Earle Latch

Example: To latch d = vw + xy,
substitute for d in the latch equation

z = dC + dz +⎯Cz
to get a combined “logic + latch” circuit
implementing z = vw + xy

z = (vw + xy)C + (vw + xy)z +⎯Cz
= vwC + xyC + vwz + xyz +⎯Cz

d
C

z

w

x

y
_

C

Fig. 25.4 Two-level AND-OR
realization of the Earle latch.

C

C

z

v
w

x
y

_

Fig. 25.5 Two-level AND-OR
latched realization of the
function z = vw + xy.

Earle latch can be merged with a
preceding 2-level AND-OR logic

May 2010 Computer Arithmetic, Implementation Topics Slide 19

Clocking Considerations for Earle Latches

We derived constraints on the maximum clock rate 1/Δt

Clock period Δt has two parts: clock high, and clock low

Δt = Chigh + Clow

Consider a pipeline stage between Earle latches

Chigh must satisfy the inequalities

3δmax – δmin + Smax(C↑,⎯C↓) ≤ Chigh ≤ 2δmin + tmin

δmax and δmin are maximum and minimum gate delays

Smax(C↑,⎯C↓) ≥ 0 is the maximum skew between C↑ and⎯C↓

 Clock m ust go low
before the fastest
signals from the
next input data set
can affect the input
z of the latch

The clock pulse m ust be
wide enough to ensure
that valid data is stored in
the output latch and to
avoid logic hazard should
C slightly lead C

_

May 2010 Computer Arithmetic, Implementation Topics Slide 20

25.4 Parallel and Digit-Serial Pipelines

×

+

×

−

×

/ √

√
/

×
−

+

Pipelining period
Latency

t = 0

Latch positions in a four-stage pipeline

a
b

c
d

e
f

z

Output
available

Time

(a + b) c d
e − f

Fig. 25.6 Flow-graph representation of an arithmetic expression
and timing diagram for its evaluation with digit-parallel computation.

May 2010 Computer Arithmetic, Implementation Topics Slide 21

Feasibility of Bit-Level or Digit-Level Pipelining

Bit-serial addition and multiplication can be done LSB-first, but
division and square-rooting are MSB-first operations

Besides, division can’t be done in pipelined bit-serial fashion,
because the MSB of the quotient q in general depends on all the
bits of the dividend and divisor

Example: Consider the decimal division .1234/.2469

Solution: Redundant number representation!

.1xxx
-------- = .?xxx
.2xxx

.12xx
-------- = .?xxx
.24xx

.123x
-------- = .?xxx
.246x

May 2010 Computer Arithmetic, Implementation Topics Slide 22

25.5 On-Line or Digit-Pipelined Arithmetic

×

√
/

×
−

+

t = 0

Output
available

Time

(a + b) c d
e − f

×

√
/

×
−

+

t = 0

Output
complete

Output
Operation
latencies

Begin next
computation

Digit-parallel

Digit-serial

Fig. 25.7 Digit-parallel versus
digit-pipelined computation.

May 2010 Computer Arithmetic, Implementation Topics Slide 23

Digit-Pipelined Adders

Fig. 25.8
Digit-pipelined
MSD-first
carry-free
addition.

Decimal example:

.1 8

.4 2

.5

Shaded boxes show the
"unseen" or unprocessed
parts of the operands and
unknown part of the sum

+
x
y t

w

s

w

–i+1

–i+1

–i+1

–i

–i

–i

Latch
Latch

(interim sum)

-

Fig. 25.9
Digit-pipelined
MSD-first
limited-carry
addition.

BSD example:

.1 0 1

.0 1 1

.1

Shaded boxes show the
"unseen" or unprocessed
parts of the operands and
unknown part of the sum

+
x
y

e
p

s

p

–i+2

–i+1

–i+1

–i

–i

–i

Latch

Latch

(position sum)

w–i+1 (interim sum)

w–i+2

Latch

t –i+2
-

May 2010 Computer Arithmetic, Implementation Topics Slide 24

Digit-Pipelined Multiplier: Algorithm Visualization

Fig. 25.10 Digit-pipelined
MSD-first multiplication
process.

. 1 0 1

. 1 1 1

. 1 0 1

. 1 0 1

. 1 0 1

-

- -

. 0

a
x

Already
processed

Being
processed Not yet

known

×

May 2010 Computer Arithmetic, Implementation Topics Slide 25

Digit-Pipelined Multiplier: BSD Implementation

Fig. 25.11
Digit-pipelined
MSD-first BSD
multiplier.

a

Mux
–1 1 0

0

x

Mux

0

p

3-operand carry-free adder

Partial Multiplicand Partial Multiplier

Product Residual

Shift

–i+2

–i–i

–1 1 0

MSD

May 2010 Computer Arithmetic, Implementation Topics Slide 26

Digit-Pipelined Divider

Table 25.1 Example of digit-pipelined division showing
that three cycles of delay are necessary before quotient
digits can be output (radix = 4, digit set = [–2, 2])

––
Cycle Dividend Divisor q Range q–1 Range
––

1 (.0 . . .)four (.1 . . .)four (–2/3, 2/3) [–2, 2]

2 (.0 0 . . .)four (.1–2 . . .)four (–2/4, 2/4) [–2, 2]

3 (.0 0 1 . . .)four (.1–2–2 . . .)four (1/16, 5/16) [0, 1]

4 (.0 0 1 0 . . .)four (.1–2–2–2 . . .)four (10/64, 14/64) 1
––

May 2010 Computer Arithmetic, Implementation Topics Slide 27

Digit-Pipelined Square-Rooter

Table 25.2 Examples of digit-pipelined square-root computation
showing that 1-2 cycles of delay are necessary before root digits can
be output (radix = 10, digit set = [–6, 6], and radix = 2, digit set = [–1, 1])
–––
Cycle Radicand q Range q–1 Range
–––

1 (.3 . . .)ten (√ 7/30 , √ 11/30) [5, 6]

2 (.3 4 . . .)ten (√ 1/3 , √ 26/75) 6
–––

1 (.0 . . .)two (0, √ 1/2) [–2, 2]

2 (.0 1 . . .)two (0, √ 1/2) [0, 1]

3 (.0 1 1 . . .)two (1/2, √ 1/2) 1
–––

May 2010 Computer Arithmetic, Implementation Topics Slide 28

Digit-Pipelined Arithmetic: The Big Picture

Fig. 25.12 Conceptual view of on-Line
or digit-pipelined arithmetic.

Output already
produced

Residual

Processed
input parts

Unprocessed
input parts

On-line arithmetic unit

May 2010 Computer Arithmetic, Implementation Topics Slide 29

25.6 Systolic Arithmetic Units
Systolic arrays: Cellular circuits in which data elements

Enter at the boundaries
Advance from cell to cell in lock step
Are transformed in an incremental fashion
Leave from the boundaries

Systolic design mitigates the effect of signal propagation delay and
allows the use of very clock rates

Fig. 25.13 High-level design of a
systolic radix-4 digit-pipelined multiplier.

a
x–i

–i . . .
. . .
. . .p–i+1

Head
Cell

May 2010 Computer Arithmetic, Implementation Topics Slide 30

Case Study: Systolic Programmable FIR Filters

Fig. 25.14 Conventional and systolic
realizations of a programmable FIR filter.

(a) Conventional: Broadcast control, broadcast data

(b) Systolic: Pipelined control, pipelined data

May 2010 Computer Arithmetic, Implementation Topics Slide 31

26 Low-Power Arithmetic

Chapter Goals
Learn how to improve the power efficiency
of arithmetic circuits by means of
algorithmic and logic design strategies

Chapter Highlights
Reduced power dissipation needed due to

• Limited source (portable, embedded)
• Difficulty of heat disposal

Algorithm and logic-level methods: discussed
Technology and circuit methods: ignored here

May 2010 Computer Arithmetic, Implementation Topics Slide 32

Low-Power Arithmetic: Topics

Topics in This Chapter

26.1 The Need for Low-Power Design

26.2 Sources of Power Consumption

26.3 Reduction of Power Waste

26.4 Reduction of Activity

26.5 Transformations and Tradeoffs

26.6 New and Emerging Methods

May 2010 Computer Arithmetic, Implementation Topics Slide 33

26.1 The Need for Low-Power Design

-

Portable and wearable electronic devices

Lithium-ion batteries: 0.2 watt-hr per gram of weight

Practical battery weight < 500 g (< 50 g if wearable device)

Total power ≅ 5-10 watt for a day’s work between recharges

Modern high-performance microprocessors use 100s watts

Power is proportional to die area × clock frequency

Cooling of micros difficult, but still manageable

Cooling of MPPs and server farms is a BIG challenge

New battery technologies cannot keep pace with demand

Demand for more speed and functionality (multimedia, etc.)

May 2010 Computer Arithmetic, Implementation Topics Slide 34

Processor Power Consumption Trends

Fig. 26.1 Power consumption trend in DSPs [Raba98].
1980 1990 2000

10–4

10–3

10–2

10–1

1
P

ow
er

 c
on

su
m

pt
io

n
pe

r M
IP

S
 (W

)
The factor-of-100 improvement
per decade in energy efficiency
has been maintained since 2000

May 2010 Computer Arithmetic, Implementation Topics Slide 35

26.2 Sources of Power Consumption

Both average and peak power are important

Average power determines battery life or heat dissipation

Peak power impacts power distribution and signal integrity

Typically, low-power design aims at reducing both

Power dissipation in CMOS digital circuits

Static: Leakage current in imperfect switches (< 10%)

Dynamic: Due to (dis)charging of parasitic capacitance

Pavg ≅ α f C V 2

data rate
(clock frequency)

Capacitance
Square of
voltage“activity”

May 2010 Computer Arithmetic, Implementation Topics Slide 36

Power Reduction Strategies: The Big Picture

Pavg ≅ α f C V 2

For a given data rate f, there are but 3 ways
to reduce the power requirements:

1. Using a lower supply voltage V
2. Reducing the parasitic capacitance C
3. Lowering the switching activity α

Example: A 32-bit off-chip bus operates at 5 V and 100 MHz and
drives a capacitance of 30 pF per bit. If random values were put
on the bus in every cycle, we would have α = 0.5. To account for
data correlation and idle bus cycles, assume α = 0.2. Then:

Pavg ≅ α f C V 2 = 0.2 × 108 × (32 × 30 × 10–12) × 52 = 0.48 W

May 2010 Computer Arithmetic, Implementation Topics Slide 37

26.3 Reduction of Power Waste

Function
 Unit Clock

Enable

Data Inputs

Data Outputs

Function
 Unit

FU Inputs
FU Output

Mux

Select

Latches0

1

Fig. 26.3 Saving power via guarded evaluation.

Fig. 26.2 Saving power through clock gating.

May 2010 Computer Arithmetic, Implementation Topics Slide 38

Glitching and Its Impact on Power Waste

s i

xi yi

ci c0Carry propagationpi

xi

yi

s i

ci

Fig. 26.4 Example of glitching in a ripple-carry adder.

May 2010 Computer Arithmetic, Implementation Topics Slide 39

Array Multipliers with Lower Power Consumption

p0

p1

p2

p3

p4p6p7p8

0 0 0

p9 p5

0 0

0

0

0

0

0

a0a1a2a3a4

x4

x3

x2

x1

x0
Carry

Sum

Fig. 26.5 An array multiplier with gated FA cells.

May 2010 Computer Arithmetic, Implementation Topics Slide 40

26.4 Reduction of Activity

Fig. 26.6 Reduction of activity
by precomputation.

Arithmetic
 Circuit

m bits n – m bits

Precomputation

n inputs

Output

Load enable

n – 1 inputs

 Function
 Unit
for x = 0

 Function
 Unit
for x = 1

Select

x n–1

Mux
0 1

n–1n–1

Fig. 26.7 Reduction of activity
via Shannon expansion.

May 2010 Computer Arithmetic, Implementation Topics Slide 41

26.5 Transformations and Tradeoffs

Fig. 26.8 Reduction of power via parallelism or pipelining.

Clock

Arithmetic
 Circuit

f

Frequency = f
Capacitance = C
Voltage = V
Power = P

Frequency = 0.5f
Capacitance = 2.2C
Voltage = 0.6V
Power = 0.396P

Frequency = f
Capacitance = 1.2C
Voltage = 0.6V
Power = 0.432P

Circuit
Copy 1

Circuit
Copy 2

Mux

Circuit
Stage 1

Circuit
Stage 2

Clock
f

Register

Input Reg. Input Reg.

Output Reg.

Output Reg.
Clock

f

Select

Input Reg.Clock
f

Output Reg.

May 2010 Computer Arithmetic, Implementation Topics Slide 42

Unrolling of Iterative Computations

Fig. 26.9 Realization of a first-order IIR filter.

x(i)

×

+

×a b

y(i–1)
y(i)

x

×

+

× ab

y (i)

×

+

×a b

y
y(i–2)

2
×ab

y(i–3)

x

(i–1)

(i)

(i–1)

(a) Simple (b) Unrolled once

May 2010 Computer Arithmetic, Implementation Topics Slide 43

Retiming for Power Efficiency

Fig. 26.10 Possible realizations of a fourth-order FIR filter.

x (i) a

x (i–1)

x (i–3)

b

d

×

×

×

+

+

y (i)
y (i–1)

x (i–2) c

×

+

x(i) a

b

d

×

×

×

+

+

y(i)
y (i–1)

c

×

+

u(i)

v (i–1)

w (i–1)

u(i–1)

(a) Original (b) Retimed

May 2010 Computer Arithmetic, Implementation Topics Slide 44

26.6 New and Emerging Methods

Local
Control

Local
Control

Local
Control

Arithmetic
 Circuit

Arithmetic
 Circuit

Arithmetic
 Circuit

Data readyData

Release

Fig. 26.11 Part of an asynchronous
chain of computations.

Dual-rail data encoding with
transition signaling:

Two wires per signal

Transition on wire 0 (1) indicates
the arrival of 0 (1)

Dual-rail design does increase
the wiring density, but it offers
the advantage of complete
insensitivity to delays

May 2010 Computer Arithmetic, Implementation Topics Slide 45

The Ultimate in Low-Power Design

Fig. 26.12
Some reversible
logic gates.

A
B
C

P = A
Q = B
R = A B ⊕ C

TG

(a) Toffoli gate

A
B
C

FRG

(b) Fredkin gate

A

B

P = A

Q = A ⊕ B
FG

(c) Feynman gate

A
B
C

P = A

R = A B ⊕ C
PG Q = A ⊕ B

(d) Peres gate

P = A

R = A C ⊕ A B
Q = A B ⊕ A C

B
0

C
1

0

+

A
Cout

s
(sum)

B

A

G

s

Fig. 26.13 Reversible
binary full adder built
of 5 Fredkin gates, with
a single Feynman gate
used to fan out the
input B. The label “G”
denotes “garbage.”

May 2010 Computer Arithmetic, Implementation Topics Slide 46

27 Fault-Tolerant Arithmetic
Chapter Goals

Learn about errors due to hardware faults
or hostile environmental conditions,
and how to deal with or circumvent them

Chapter Highlights
Modern components are very robust, but . . .

put millions /billions of them together
and something is bound to go wrong

Can arithmetic be protected via encoding?
Reliable circuits and robust algorithms

May 2010 Computer Arithmetic, Implementation Topics Slide 47

Fault-Tolerant Arithmetic: Topics

Topics in This Chapter

27.1 Faults, Errors, and Error Codes

27.2 Arithmetic Error-Detecting Codes

27.3 Arithmetic Error-Correcting Codes

27.4 Self-Checking Function Units

27.5 Algorithm-Based Fault Tolerance

27.6 Fault-Tolerant RNS Arithmetic

May 2010 Computer Arithmetic, Implementation Topics Slide 48

27.1 Faults, Errors, and Error Codes

Protected
 by
Encoding

Input

Encode

Send

Store

Send

Decode

Output

Manipulate

Unprotected
 Protected

 by
encoding

Fig. 27.1
A common way of
applying information
coding techniques.

May 2010 Computer Arithmetic, Implementation Topics Slide 49

Fault Detection and Fault Masking
Coded
inputs Decode

 1

Decode
 2

ALU
 1

ALU
 2

Compare

Mismatch
detected

Encode

Coded
outputs

Coded
inputs Decode

 1

Decode
 2

ALU
 1

ALU
 2

Decode
 3

ALU
 3

Vote Encode

Coded
outputs

Non-codeword
detected

Fig. 27.2 Arithmetic
fault detection or fault
tolerance (masking)
with replicated units.

(a) Duplication and comparison

(b) Triplication and voting

May 2010 Computer Arithmetic, Implementation Topics Slide 50

Inadequacy of Standard Error Coding Methods

Unsigned addition 0010 0111 0010 0001
+ 0101 1000 1101 0011

–––––––––––––––––
Correct sum 0111 1111 1111 0100
Erroneous sum 1000 0000 0000 0100

↑
Stage generating an
erroneous carry of 1

Fig. 27.3 How a single
carry error can produce
an arbitrary number of
bit-errors (inversions).

The arithmetic weight of an error: Min number of signed powers of 2 that
must be added to the correct value to produce the erroneous result

Example 1 Example 2
-- --

Correct value 0111 1111 1111 0100 1101 1111 1111 0100
Erroneous value 1000 0000 0000 0100 0110 0000 0000 0100
Difference (error) 16 = 24 –32752 = –215 + 24

Min-weight BSD 0000 0000 0001 0000 –1000 0000 0001 0000
Arithmetic weight 1 2
Error type Single, positive Double, negative

May 2010 Computer Arithmetic, Implementation Topics Slide 51

27.2 Arithmetic Error-Detecting Codes

Arithmetic error-detecting codes:

Are characterized by arithmetic weights of detectable errors

Allow direct arithmetic on coded operands

We will discuss two classes of arithmetic error-detecting codes,
both of which are based on a check modulus A (usually a small
odd number)

Product or AN codes
Represent the value N by the number AN

Residue (or inverse residue) codes
Represent the value N by the pair (N, C),
where C is N mod A or (N – N mod A) mod A

May 2010 Computer Arithmetic, Implementation Topics Slide 52

Product or AN Codes

For odd A, all weight-1 arithmetic errors are detected

Arithmetic errors of weight ≥ 2 may go undetected

e.g., the error 32 736 = 215 – 25 undetectable with A = 3, 11, or 31

Error detection: check divisibility by A

Encoding/decoding: multiply/divide by A

Arithmetic also requires multiplication and division by A

Product codes are nonseparate (nonseparable) codes
Data and redundant check info are intermixed

May 2010 Computer Arithmetic, Implementation Topics Slide 53

Low-Cost Product Codes

Low-cost product codes use low-cost check moduli of the form A = 2a – 1

Multiplication by A = 2a – 1: done by shift-subtract

Division by A = 2a – 1: done a bits at a time as follows

Given y = (2a – 1)x, find x by computing 2a x – y
. . . xxxx 0000 – . . . xxxx xxxx = . . . xxxx xxxx
Unknown 2a x Known (2a – 1)x Unknown x

Theorem 27.1: Any unidirectional error with arithmetic weight of at most
a – 1 is detectable by a low-cost product code based on A = 2a – 1

May 2010 Computer Arithmetic, Implementation Topics Slide 54

Arithmetic on AN-Coded Operands

Add/subtract is done directly: Ax ± Ay = A(x ± y)

Direct multiplication results in: Aa × Ax = A2ax

The result must be corrected through division by A

For division, if z = qd + s, we have: Az = q(Ad) + As

Thus, q is unprotected
Possible cure: premultiply the dividend Az by A
The result will need correction

Square rooting leads to a problem similar to division

⎣√ A2x ⎦ = ⎣ A√ x ⎦ which is not the same as A ⎣√ x ⎦

May 2010 Computer Arithmetic, Implementation Topics Slide 55

Residue and Inverse Residue Codes

Represent N by the pair (N, C(N)), where C(N) = N mod A

Residue codes are separate (separable) codes

Separate data and check parts make decoding trivial

Encoding: given N, compute C(N) = N mod A

Low-cost residue codes use A = 2a – 1
Arithmetic on residue-coded operands
Add/subtract: data and check parts are handled separately

(x, C(x)) ± (y, C(y)) = (x ± y, (C(x) ± C(y)) mod A)
Multiply

(a, C(a)) × (x, C(x)) = (a × x, (C(a)×C(x)) mod A)
Divide/square-root: difficult

May 2010 Computer Arithmetic, Implementation Topics Slide 56

Arithmetic on Residue-Coded Operands
Add/subtract: Data and check parts are handled separately

(x, C(x)) ± (y, C(y)) = (x ± y, (C(x) ± C(y)) mod A)

Multiply
(a, C(a)) × (x, C(x)) = (a × x, (C(a)×C(x)) mod A)

Divide/square-root: difficult

 Main
Arithmetic
Processor

 Check
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error
Indicator

A
Fig. 27.4
Arithmetic processor
with residue checking.

May 2010 Computer Arithmetic, Implementation Topics Slide 57

Example: Residue Checked Adder

Add

x, x mod A

Add mod A

Compare
Find
mod A

y, y mod A

s, s mod A Error

 Not
 equal

May 2010 Computer Arithmetic, Implementation Topics Slide 58

27.3 Arithmetic Error-Correcting Codes
––
Positive Syndrome Negative Syndrome

error mod 7 mod 15 error mod 7 mod 15
––

1 1 1 –1 6 14
2 2 2 –2 5 13
4 4 4 –4 3 11
8 1 8 –8 6 7

16 2 1 –16 5 14
32 4 2 –32 3 13
64 1 4 –64 6 11

128 2 8 –128 5 7
256 4 1 –256 3 14
512 1 2 –512 6 13

1024 2 4 –1024 5 11
2048 4 8 –2048 3 7

––
4096 1 1 –4096 6 14
8192 2 2 –8192 5 13

16,384 4 4 –16,384 3 11
32,768 1 8 –32,768 6 7

––

Table 27.1
Error syndromes for
weight-1 arithmetic
errors in the (7, 15)
biresidue code

Because all the
symptoms in this
table are different,
any weight-1
arithmetic error is
correctable by the
(mod 7, mod 15)
biresidue code

May 2010 Computer Arithmetic, Implementation Topics Slide 59

Properties of Biresidue Codes

Biresidue code with relatively prime low-cost check moduli
A = 2a – 1 and B = 2b – 1 supports a × b bits of data for
weight-1 error correction

Representational redundancy = (a + b)/(ab) = 1/a + 1/b

May 2010 Computer Arithmetic, Implementation Topics Slide 60

27.4 Self-Checking Function Units

Self-checking (SC) unit: any fault from a prescribed set does not
affect the correct output (masked) or leads to a noncodeword
output (detected)

An invalid result is:

Detected immediately by a code checker, or

Propagated downstream by the next self-checking unit

To build SC units, we need SC code checkers that never
validate a noncodeword, even when they are faulty

May 2010 Computer Arithmetic, Implementation Topics Slide 61

Design of a Self-Checking Code Checker

Example: SC checker for inverse residue code (N, C' (N))
N mod A should be the bitwise complement of C' (N)

Verifying that signal pairs (xi, yi) are all (1, 0) or (0, 1) is the
same as finding the AND of Boolean values encoded as:

1: (1, 0) or (0, 1) 0: (0, 0) or (1, 1)

x
yi

i

x
yj

j

Fig. 27.5 Two-input
AND circuit, with 2-bit
inputs (xi, yi) and (xi, yi),
for use in a self-checking
code checker.

May 2010 Computer Arithmetic, Implementation Topics Slide 62

Case Study: Self-Checking Adders

P/R = Parity-to-redundant
converter

R/P = Redundant-to-parity
converter

Fig. 27.6
Self-checking adders
with parity-encoded
inputs and output.

/
k

/
k

/
k

Parity-
encoded
inputs

ALU

Error

Parity-
encoded
output

Parity
generator

Ordinary ALU

(b) Parity prediction

Parity
predictor

/
k

Parity-
encoded
inputs

ALU

k + h
/ P/R

k + h
/

/
k

Parity-
encoded
output

R/P

/
k

P/R

k + h
/

Redundant parity-preserving ALU

(c) Parity/redundant and redundant/parity code conversion

(a) Parity prediction

(b) Parity preservation

May 2010 Computer Arithmetic, Implementation Topics Slide 63

27.5 Algorithm-Based Fault Tolerance
Alternative strategy to error detection after each basic operation:

Accept that operations may yield incorrect results

Detect/correct errors at data-structure or application level

Fig. 27.7 A 3 × 3
matrix M with its
row, column, and full
checksum matrices
Mr, Mc, and Mf.

2 1 6 2 1 6 1
M = 5 3 4 Mr = 5 3 4 4

3 2 7 3 2 7 4

2 1 6 2 1 6 1
5 3 4 5 3 4 4
3 2 7 3 2 7 4
2 6 1 2 6 1 1

Mc = Mf =

Example: multiplication of matrices X and Y yielding P
Row, column, and full checksum matrices (mod 8)

May 2010 Computer Arithmetic, Implementation Topics Slide 64

Properties of Checksum Matrices

Theorem 27.3: If P = X × Y , we have Pf = Xc × Yr
(with floating-point values, the equalities are approximate)

Theorem 27.4: In a full-checksum matrix, any single erroneous
element can be corrected and any three errors can be detected

Fig. 27.72 1 6 2 1 6 1
M = 5 3 4 Mr = 5 3 4 4

3 2 7 3 2 7 4

2 1 6 2 1 6 1
5 3 4 5 3 4 4
3 2 7 3 2 7 4
2 6 1 2 6 1 1

Mc = Mf =

May 2010 Computer Arithmetic, Implementation Topics Slide 65

27.6 Fault-Tolerant RNS Arithmetic
Residue number systems allow very elegant and effective error detection
and correction schemes by means of redundant residues (extra moduli)

Example: RNS(8 | 7 | 5 | 3), Dynamic range M = 8 × 7 × 5 × 3 = 840;
redundant modulus: 11. Any error confined to a single residue detectable.

Error detection (the redundant modulus must be the largest one, say m):

1. Use other residues to compute the residue of the number mod m
(this process is known as base extension)

2. Compare the computed and actual mod-m residues

The beauty of this method is that arithmetic algorithms are completely
unaffected; error detection is made possible by simply extending the
dynamic range of the RNS

May 2010 Computer Arithmetic, Implementation Topics Slide 66

Example RNS with two Redundant Residues

RNS(8 | 7 | 5 | 3), with redundant moduli 13 and 11

Representation of 25 = (12, 3,1,4, 0,1)RNS

Corrupted version = (12, 3, 1, 6,0,1)RNS

Transform (–,–,1,6,0,1) to (5,1,1,6,0,1) via base extension

Reconstructed number = (5, 1, 1,6, 0, 1)RNS

The difference between the first two components of the corrupted
and reconstructed numbers is (+7, +2)

This constitutes a syndrome, allowing us to correct the error

May 2010 Computer Arithmetic, Implementation Topics Slide 67

28 Reconfigurable Arithmetic

Chapter Goals
Examine arithmetic algorithms and designs
appropriate for implementation on FPGAs
(one-of-a-kind, low-volume, prototype systems)

Chapter Highlights
Suitable adder designs beyond ripple-carry
Design choices for multipliers and dividers
Table-based and “distributed” arithmetic
Techniques for function evaluation
Enhanced FPGAs and higher-level alternatives

May 2010 Computer Arithmetic, Implementation Topics Slide 68

Reconfigurable Arithmetic: Topics

Topics in This Chapter

28.1 Programmable Logic Devices

28.2 Adder Designs for FPGAs

28.3 Multiplier and Divider Designs

28.4 Tabular and Distributed Arithmetic

28.5 Function Evaluation on FPGAs

28.6 Beyond Fine-Grained Devices

May 2010 Computer Arithmetic, Implementation Topics Slide 69

28.1 Programmable Logic Devices

Fig. 28.1 Examples of programmable sequential logic.

(a) Portion of PAL with storable output (b) Generic structure of an FPGA

8-input
ANDs

 D

C

 Q

Q

 FF

 Mux

 Mux

0 1

0 1

I/O blocks

Configurable
logic block

Programmable
connections

CLB

CLB

CLB

CLB

LB LB

LB LB

LB LB LB LB

LB LB LB LB

LB
LB

LB LB LB

LB LB LB LB

I/O block

Programmable
interconnects

Logic block
(or LB cluster)

May 2010 Computer Arithmetic, Implementation Topics Slide 70

Programmability Mechanisms

Fig. 28.2 Some memory-controlled switches and
interconnections in programmable logic devices.

(a) Tristate buffer

0

1

(b) Pass transistor (c) Multiplexer

Memory
cell

Memory
cell

Memory
cell

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 71

Configurable Logic Blocks

Fig. 28.3 Structure of a simple logic block.

Inputs

FF

Carry-in

Carry-out

Outputs

Logic
or

LUT

0

1

0 1

0
1
2

1
0

0
1
2
3
4

1

y0

y1

y2

x0
x1
x2
x3

x4

0
1

May 2010 Computer Arithmetic, Implementation Topics Slide 72

The Interconnect Fabric

Fig. 28.4 A possible
arrangement of
programmable
interconnects between
LBs or LB clusters.

LB or
cluster

Vertical wiring channels

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

Switch
box

Switch
box

Switch
box

Horizontal
wiring

channels

Switch
box

May 2010 Computer Arithmetic, Implementation Topics Slide 73

Standard FPGA Design Flow
1. Specification: Creating the design files, typically via a

hardware description language such as Verilog, VHDL, or Abel
2. Synthesis: Converting the design files into interconnected

networks of gates and other standard logic circuit elements
3. Partitioning: Assigning the logic elements of stage 2 to specific

physical circuit elements that are capable of realizing them
4. Placement: Mapping of the physical circuit elements of stage 3

to specific physical locations of the target FPGA device
5. Routing: Mapping of the interconnections prescribed in stage 2

to specific physical wires on the target FPGA device
6. Configuration: Generation of the requisite bit-stream file that

holds configuration bits for the target FPGA device
7. Programming: Uploading the bit-stream file of stage 6 to

memory elements within the FPGA device
8. Verification: Ensuring the correctness of the final design, in

terms of both function and timing, via simulation and testing

May 2010 Computer Arithmetic, Implementation Topics Slide 74

28.2 Adder Designs for FPGAs

This slide to include a discussion of ripple-carry adders and built-in carry
chains in FPGAs

May 2010 Computer Arithmetic, Implementation Topics Slide 75

Carry-Skip Addition

Fig. 28.5 Possible design of a 16-bit
carry-skip adder on an FPGA.

/ 5 / 5 / 5

0

1

Skip
logic

/ 5/ 6 / 6

/ 5 / 5

cout cin
Adder AdderAdder

Slide to be completed

/ 6

May 2010 Computer Arithmetic, Implementation Topics Slide 76

Carry-Select Addition

Fig. 28.6 Possible design of a carry-select adder on an FPGA.

/ 2

2 bits

0

1

0

1

0

1

0

1

3 bits4 bits6 bits 1 bit

/ 3/ 4/ 6

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 77

28.3 Multiplier and Divider Designs

Fig. 28.7 Divide-and-conquer 4 × 4 multiplier design
using 4-input lookup tables and ripple-carry adders.

a3a2x1x0

4 LUTs

a1a0x3x2

a1a0x1x0

a3a2x3x2

p0p1

0

4-bit adder
6-bit adder

p2p3p4p5p6p7

cout

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 78

Multiplication by Constants

Fig. 28.8 Multiplication of an 8-bit input by 13, using LUTs.

xL

8 LUTs

0

xH

8 LUTs

4
/

/
4

/
8

13xH

13x

13xL

8-bit adder

Slide to be completed

0

May 2010 Computer Arithmetic, Implementation Topics Slide 79

Division on FPGAs

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 80

28.4 Tabular and Distributed Arithmetic

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 81

Second-Order Digital Filter: Definition

Current and two previous inputs

y (i) = a(0)x (i) + a(1)x (i–1) + a(2)x (i–2) – b(1)y (i–1) – b(2)y (i–2)

Expand the equation for y (i) in terms of the bits in operands
x = (x0.x–1x–2 . . . x–l)2’s-compl and y = (y0.y–1y–2 . . . y–l)2’s-compl ,
where the summations range from j = – l to j = –1

y (i) = a(0)(–x0
(i) + ∑2j xj

(i))
+ a(1)(–x0

(i−1) + ∑2j xj
(i−1)) + a(2)(–x0

(i−2) + ∑2j xj
(i−2))

– b(1)(–y0
(i−1) + ∑2j yj

(i−1)) – b(2)(–y0
(i−2) + ∑2j yj

(i−2))

Filter
Latch

x (1)
x (2)
x (3)

x (i)
...

y (1)
y (2)
y (3)

y (i)
...

x (i+1)

Two previous outputs

a(j)s and b(j)s
are constants

Define f(s, t, u, v, w) = a(0)s + a(1)t + a(2)u – b(1)v – b(2)w

y (i) = ∑2j f(xj
(i), xj

(i−1), xj
(i−2), yj

(i−1), yj
(i−2)) – f(x0

(i), x0
(i−1), x0

(i−2), y0
(i−1), y0

(i−2))

May 2010 Computer Arithmetic, Implementation Topics Slide 82

Second-Order Digital Filter: Bit-Serial Implementation

Fig. 28.9 Bit-serial tabular realization of a second-order filter.

f

x

x

x

(i)

(i–1)

(i–2)

j

j

j

y (i–1)
j

y (i–2)
j

LSB-first y (i)

±

Input

32-Entry
 Table
 (ROM)

 Output
 Shift
Register

(m+3)-Bit
 Register

Data Out

Address In

s

Right-Shift

LSB-first
Output

Shift
Reg.

Shift
Reg.

Shift
Reg.

Shift
Reg.

Registeri th
input

(i – 1) th
input

(i – 2) th
input

(i – 1) th
output

i th output
being formed

(i – 2) th
output

Copy at
the end
of cycle

32-entry
lookup
table

May 2010 Computer Arithmetic, Implementation Topics Slide 83

28.5 Function Evaluation on FPGAs

Fig. 28.10 The first four
stages of an unrolled
CORDIC processor.

Add/Sub Add/Sub

Add/Sub Add/Sub

>> 1

>> 1

Add/Sub Add/Sub

>> 2

>> 2

Add/Sub Add/Sub

>> 3

>> 3

Add/Sub

Add/Sub

Add/Sub

Add/Sub

Sign logic

Sign logic

Sign logic

Sign logic

e(0)

e(1)

e(2)

e(3)

x y z

z(4)x(4) y(4)

z(3)x(3) y(3)

x(2) y(2)

x(1) y(1)

z(2)

z(1)

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 84

Implementing Convergence Schemes

Fig. 28.11 Generic convergence structure for function evaluation.

Lookup
table

x

Convergence
step

y(0) ≈ f(x)
Convergence

step
Convergence

step

y(1) y(2)

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 85

28.6 Beyond Fine-Grained Devices

Fig. 28.12 The design space for arithmetic-intensive applications.
Word width (bits)

1 4 64 16 256 1024
1

4

64

16

256

1024 Instruction depth

FPGA

DPGA

GP
micro

Our approach

MPP

SP
processor

General-
purpose

processor

Special-
purpose

processor

Field-programmable
arithmetic array

1024

Slide to be completed

May 2010 Computer Arithmetic, Implementation Topics Slide 86

A Past, Present, and Future

Appendix Goals
Wrap things up, provide perspective, and
examine arithmetic in a few key systems

Appendix Highlights
One must look at arithmetic in context of

• Computational requirements
• Technological constraints
• Overall system design goals
• Past and future developments

Current trends and research directions?

May 2010 Computer Arithmetic, Implementation Topics Slide 87

Past, Present, and Future: Topics

Topics in This Chapter

A.1 Historical Perspective

A.2 Early High-Performance Computers

A.3 Deeply Pipelined Vector Machines

A.4 The DSP Revolution

A.5 Supercomputers on Our Laps

A.6 Trends, Outlook, and Resources

May 2010 Computer Arithmetic, Implementation Topics Slide 88

A.1 Historical Perspective
Babbage was aware of ideas such as
carry-skip addition, carry-save addition,
and restoring division

1848

Modern reconstruction from Meccano parts;
http://www.meccano.us/difference_engines/

http://www.meccano.us/difference_engines/rde_1/DSCN1413.JPG

May 2010 Computer Arithmetic, Implementation Topics Slide 89

Computer Arithmetic in the 1940s

Machine arithmetic was crucial in proving the feasibility of computing
with stored-program electronic devices

Hardware for addition/subtraction, use of complement representation,
and shift-add multiplication and division algorithms were developed and
fine-tuned

A seminal report by A.W. Burkes, H.H. Goldstein, and J. von Neumann
contained ideas on choice of number radix, carry propagation chains,
fast multiplication via carry-save addition, and restoring division

State of computer arithmetic circa 1950:
Overview paper by R.F. Shaw [Shaw50]

May 2010 Computer Arithmetic, Implementation Topics Slide 90

Computer Arithmetic in the 1950s

The focus shifted from feasibility to algorithmic speedup methods and
cost-effective hardware realizations

By the end of the decade, virtually all important fast-adder designs had
already been published or were in the final phases of development

Residue arithmetic, SRT division, CORDIC algorithms were proposed
and implemented

Snapshot of the field circa 1960:
Overview paper by O.L. MacSorley [MacS61]

May 2010 Computer Arithmetic, Implementation Topics Slide 91

Computer Arithmetic in the 1960s

Tree multipliers, array multipliers, high-radix dividers, convergence
division, redundant signed-digit arithmetic were introduced

Implementation of floating-point arithmetic operations in hardware or
firmware (in microprogram) became prevalent

Many innovative ideas originated from the design of early
supercomputers, when the demand for high performance,
along with the still high cost of hardware, led designers to novel
and cost-effective solutions

Examples reflecting the sate of the art near the end of this decade:
IBM’s System/360 Model 91 [Ande67]
Control Data Corporation’s CDC 6600 [Thor70]

May 2010 Computer Arithmetic, Implementation Topics Slide 92

Computer Arithmetic in the 1970s

Advent of microprocessors and vector supercomputers

Early LSI chips were quite limited in the number of transistors or logic
gates that they could accommodate

Microprogrammed control (with just a hardware adder) was a natural
choice for single-chip processors which were not yet expected to offer
high performance

For high end machines, pipelining methods were perfected to allow
the throughput of arithmetic units to keep up with computational
demand in vector supercomputers

Examples reflecting the state of the art near the end of this decade:
Cray 1 supercomputer and its successors

May 2010 Computer Arithmetic, Implementation Topics Slide 93

Computer Arithmetic in the 1980s

Spread of VLSI triggered a reconsideration of all arithmetic designs in
light of interconnection cost and pin limitations

For example, carry-lookahead adders, thought to be ill-suited to VLSI,
were shown to be efficiently realizable after suitable modifications.
Similar ideas were applied to more efficient VLSI tree and array
multipliers

Bit-serial and on-line arithmetic were advanced to deal with severe pin
limitations in VLSI packages

Arithmetic-intensive signal processing functions became driving forces
for low-cost and/or high-performance embedded hardware: DSP chips

May 2010 Computer Arithmetic, Implementation Topics Slide 94

Computer Arithmetic in the 1990s

No breakthrough design concept

Demand for performance led to fine-tuning of arithmetic algorithms and
implementations (many hybrid designs)

Increasing use of table lookup and tight integration of arithmetic unit and
other parts of the processor for maximum performance

Clock speeds reached and surpassed 100, 200, 300, 400, and 500 MHz
in rapid succession; pipelining used to ensure smooth flow of data
through the system

Examples reflecting the state of the art near the end of this decade:
Intel’s Pentium Pro (P6) → Pentium II
Several high-end DSP chips

May 2010 Computer Arithmetic, Implementation Topics Slide 95

Computer Arithmetic in the 2000s

Continued refinement of many existing methods, particularly those
based on table lookup

New challenges posed by multi-GHz clock rates

Increased emphasis on low-power design

Work on, and approval of, the IEEE 754-2008 floating-point standard

Three parallel and interacting trends:
Availability of many millions of transistors on a single microchip
Energy requirements and heat dissipation of the said transistors
Shift of focus from scientific computations to media processing

May 2010 Computer Arithmetic, Implementation Topics Slide 96

A.2 Early High-Performance Computers

IBM System 360 Model 91 (360/91, for short; mid 1960s)

Part of a family of machines with the same instruction-set architecture

Had multiple function units and an elaborate scheduling and interlocking
hardware algorithm to take advantage of them for high performance

Clock cycle = 20 ns (quite aggressive for its day)

Used 2 concurrently operating floating-point execution units performing:

Two-stage pipelined addition

12 × 56 pipelined partial-tree multiplication

Division by repeated multiplications (initial versions of the machine
sometimes yielded an incorrect LSB for the quotient)

May 2010 Computer Arithmetic, Implementation Topics Slide 97

The IBM
System 360

Model 91

Fig. A.1 Overall
structure of the IBM
System/360 Model
91 floating-point
execution unit.

Floating-
Point
Instruction
Unit

RS1 RS2 RS3 RS1 RS2

Register Bus
Buffer Bus

Common Bus

Instruction
Buffers and
Controls

4 Registers 6 Buffers

To Storage

Adder
Stage 1

Adder
Stage 2

Result Bus

Result Result

Multiply
Iteration
Unit

Propagate
Adder

From Storage To Fixed-Point Unit

Add
Unit

Mul./
Div.
Unit

Floating-Point
Execution Unit 1

Floating-
Point
Execution
Unit 2

May 2010 Computer Arithmetic, Implementation Topics Slide 98

A.3 Deeply Pipelined Vector Machines

Cray X-MP/Model 24 (multiple-processor vector machine)

Had multiple function units, each of which could produce a new result
on every clock tick, given suitably long vectors to process

Clock cycle = 9.5 ns

Used 5 integer/logic function units and 3 floating-point function units

Integer/Logic units: add, shift, logical 1, logical 2, weight/parity

Floating-point units: add (6 stages), multiply (7 stages),
reciprocal approximation (14 stages)

Pipeline setup and shutdown overheads

Vector unit not efficient for short vectors (break-even point)

Pipeline chaining

May 2010 Computer Arithmetic, Implementation Topics Slide 99

Cray X-MP
Vector

Computer

Fig. A.2 The
vector section
of one of the
processors in
the Cray X-MP/
Model 24
supercomputer.

V0

V7
V6

V5
V4

V3
V2

V1
 0
 1
 2
 3

 .
 .
 .

62
63

Vector
Registers

Vector
Integer
Units

Logical 1
Shift

 Add

Logical 2

Weight/
Parity

Stages = 5

4
2

3
3

Floating-
Point
Units

Multiply

 Add

Reciprocal
Approx.

Stages = 14

7

6

To/from Scalar Unit

Vector Length,
Mask, & Control

From
Address
Unit

Control
Signals

May 2010 Computer Arithmetic, Implementation Topics Slide 100

A.4 The DSP Revolution

Special-purpose DSPs have used a wide variety of unconventional
arithmetic methods; e.g., RNS or logarithmic number representation

General-purpose DSPs provide an instruction set that is tuned to the
needs of arithmetic-intensive signal processing applications

Example DSP instructions

ADD A, B { A + B → B }
SUB X, A { A – X → A }
MPY ±X1, X0, B { ±X1 × X0 → B }
MAC ±Y1, X1, A { A ± Y1 × X1 → A }
AND X1, A { A AND X1 → A }

General-purpose DSPs come in integer and floating-point varieties

May 2010 Computer Arithmetic, Implementation Topics Slide 101

Fixed-Point
DSP Example

Fig. A.3 Block diagram
of the data ALU in
Motorola’s DSP56002
(fixed-point) processor.

B Shifter/Limiter

X Bus
Y Bus

X1 X0
Y1 Y0

X
Y

24 24

24 24

24

A1 A0
B1 B0

A
B

A2
B2

56 56Shifter

56

A Shifter/Limiter

Accumulator,
Rounding, and
Logical Unit

Multiplier

Input
Registers

Accumulator
Registers

24+
Ovf

May 2010 Computer Arithmetic, Implementation Topics Slide 102

Floating-Point
DSP Example

Fig. A.4 Block diagram
of the data ALU in
Motorola’s DSP96002
(floating-point) processor.

I/O Format Converter

X Bus
Y Bus

32 32

Register File
10 96-bit,
or 10 64-bit,
or 30 32-bit

Add/
Subtract
Unit

Multiply
Unit

Special
Function
Unit

May 2010 Computer Arithmetic, Implementation Topics Slide 103

A.5 Supercomputers on Our Laps

In the beginning, there was the 8080; led to the 80x86 = IA32 ISA

Half a dozen or so pipeline stages

80286
80386
80486
Pentium (80586)

A dozen or so pipeline stages, with out-of-order instruction execution

Pentium Pro
Pentium II
Pentium III
Celeron

Two dozens or so pipeline stages

Pentium 4

More advanced
technology

More advanced
technology

Instructions are broken
into micro-ops which are
executed out-of-order
but retired in-order

May 2010 Computer Arithmetic, Implementation Topics Slide 104

Performance Trends in Intel Microprocessors

1990 1980 2000 2010
KIPS

MIPS

GIPS

TIPS
P

ro
ce

ss
or

 p
er

fo
rm

an
ce

Calendar year

80286
68000

80386

80486 68040
Pentium

Pentium II R10000

×1.6 / yr

May 2010 Computer Arithmetic, Implementation Topics Slide 105

Arithmetic in the Intel Pentium Pro Microprocessor

Integer
 Execution
 Unit 0

80

80

80

Port-0
 Units

Port-1
 Units

Port 0

Port 1

Port 2

Dedicated to
 memory access
 (address
 generation
 units, etc)

Port 3
 Port 4

Reservation
 Station

Reorder
 Buffer and
 Retirement
 Register
 File

FLP Add

Integer Div

FLP Div

FLP Mult

Shift

Integer
 Execution
 Unit 1

Jump
 Exec
 Unit

Fig. 28.5 Key parts of the CPU in the Intel Pentium Pro (P6) microprocessor.

May 2010 Computer Arithmetic, Implementation Topics Slide 106

A.6 Trends, Outlook, and Resources

Current focus areas in computer arithmetic

Design: Shift of attention from algorithms to optimizations at the
level of transistors and wires

This explains the proliferation of hybrid designs

Technology: Predominantly CMOS, with a phenomenal rate of
improvement in size/speed

New technologies cannot compete

Applications: Shift from high-speed or high-throughput designs
in mainframes to embedded systems requiring

Low cost
Low power

May 2010 Computer Arithmetic, Implementation Topics Slide 107

Ongoing Debates and New Paradigms

Renewed interest in bit- and digit-serial arithmetic as mechanisms to
reduce the VLSI area and to improve packageability and testability

Synchronous vs asynchronous design (asynchrony has some overhead,
but an equivalent overhead is being paid for clock distribution and/or
systolization)

New design paradigms may alter the way in which we view or design
arithmetic circuits

Neuronlike computational elements
Optical computing (redundant representations)
Multivalued logic (match to high-radix arithmetic)
Configurable logic

Arithmetic complexity theory

May 2010 Computer Arithmetic, Implementation Topics Slide 108

Computer Arithmetic Timeline

Fig. A.6 Computer arithmetic through the decades.

Decade

40s

50s

60s

70s

80s

90s

00s

10s

1940

2020

1960

1980

2000

Snapshot

[Burk46]

Key ideas, innovations, advancements, technology traits, and milestones

Binary format, carry chains, stored carry, carry-save multiplier, restoring divider
[Shaw50]

Carry-lookahead adder, high-radix multiplier, SRT divider, CORDIC algorithms

Tree/array multiplier, high-radix & convergence dividers, signed-digit, floating point

Pipelined arithmetic, vector supercomputer, microprocessor, ARITH-2/3/4 symposia

VLSI, embedded system, digital signal processor, on-line arithmetic, IEEE 754-1985

CMOS dominance, circuit-level optimization, hybrid design, deep pipeline, table lookup

Power/energy/heat reduction, media processing, FPGA-based arith., IEEE 754-2008

Teraflops on laptop (or pocket device?), asynchronous design, nanodevice arithmetic

[MacS61]

[Thor70]
[Ande67]

[Swar90]

[Swar09]

[Garn76]]

May 2010 Computer Arithmetic, Implementation Topics Slide 109

The End!

You’re up to date. Take my advice and try to keep it that way. It’ll be
tough to do; make no mistake about it. The phone will ring and it’ll be the
administrator –– talking about budgets. The doctors will come in, and
they’ll want this bit of information and that. Then you’ll get the salesman.
Until at the end of the day you’ll wonder what happened to it and what
you’ve accomplished; what you’ve achieved.
That’s the way the next day can go, and the next, and the one after that.
Until you find a year has slipped by, and another, and another. And then
suddenly, one day, you’ll find everything you knew is out of date. That’s
when it’s too late to change.
Listen to an old man who’s been through it all, who made the mistake of
falling behind. Don’t let it happen to you! Lock yourself in a closet if you
have to! Get away from the phone and the files and paper, and read and
learn and listen and keep up to date. Then they can never touch you,
never say, “He’s finished, all washed up; he belongs to yesterday.”

Arthur Hailey, The Final Diagnosis

	Part VII�Implementation Topics
	About This Presentation
	VII Implementation Topics
	25 High-Throughput Arithmetic
	High-Throughput Arithmetic: Topics
	25.1 Pipelining of Arithmetic Functions
	Analysis of Pipelining Throughput
	Analysis of Pipelining Cost-Effectiveness
	25.2 Clock Rate and Throughput
	The Effect of Clock Skew on Pipeline Throughput
	Wave Pipelining: The Idea
	Visualizing Wave Pipelining
	Another Visualization of Wave Pipelining
	Difficulties in Applying Wave Pipelining
	Controlled Clock Skew in Wave Pipelining
	Random Clock Skew in Wave Pipelining
	25.3 The Earle Latch
	Clocking Considerations for Earle Latches
	25.4 Parallel and Digit-Serial Pipelines
	Feasibility of Bit-Level or Digit-Level Pipelining
	25.5 On-Line or Digit-Pipelined Arithmetic
	Digit-Pipelined Adders
	Digit-Pipelined Multiplier: Algorithm Visualization
	Digit-Pipelined Multiplier: BSD Implementation
	Digit-Pipelined Divider
	Digit-Pipelined Square-Rooter
	Digit-Pipelined Arithmetic: The Big Picture
	25.6 Systolic Arithmetic Units
	Case Study: Systolic Programmable FIR Filters
	26 Low-Power Arithmetic
	Low-Power Arithmetic: Topics
	26.1 The Need for Low-Power Design
	Processor Power Consumption Trends
	26.2 Sources of Power Consumption
	Power Reduction Strategies: The Big Picture
	26.3 Reduction of Power Waste
	Glitching and Its Impact on Power Waste
	Array Multipliers with Lower Power Consumption
	26.4 Reduction of Activity
	26.5 Transformations and Tradeoffs
	Unrolling of Iterative Computations
	Retiming for Power Efficiency
	26.6 New and Emerging Methods
	The Ultimate in Low-Power Design
	27 Fault-Tolerant Arithmetic
	Fault-Tolerant Arithmetic: Topics
	27.1 Faults, Errors, and Error Codes
	Fault Detection and Fault Masking
	Inadequacy of Standard Error Coding Methods
	27.2 Arithmetic Error-Detecting Codes
	Product or AN Codes
	Low-Cost Product Codes
	Arithmetic on AN-Coded Operands
	Residue and Inverse Residue Codes
	Arithmetic on Residue-Coded Operands
	Example: Residue Checked Adder
	27.3 Arithmetic Error-Correcting Codes
	Properties of Biresidue Codes
	27.4 Self-Checking Function Units
	Design of a Self-Checking Code Checker
	Case Study: Self-Checking Adders
	27.5 Algorithm-Based Fault Tolerance
	Properties of Checksum Matrices
	27.6 Fault-Tolerant RNS Arithmetic
	Example RNS with two Redundant Residues
	28 Reconfigurable Arithmetic
	Reconfigurable Arithmetic: Topics
	28.1 Programmable Logic Devices
	Programmability Mechanisms
	Configurable Logic Blocks
	The Interconnect Fabric
	Standard FPGA Design Flow
	28.2 Adder Designs for FPGAs
	Carry-Skip Addition
	Carry-Select Addition
	28.3 Multiplier and Divider Designs
	Multiplication by Constants
	Division on FPGAs
	28.4 Tabular and Distributed Arithmetic
	Second-Order Digital Filter: Definition
	Second-Order Digital Filter: Bit-Serial Implementation
	28.5 Function Evaluation on FPGAs
	Implementing Convergence Schemes
	28.6 Beyond Fine-Grained Devices
	A Past, Present, and Future
	Past, Present, and Future: Topics
	A.1 Historical Perspective
	Computer Arithmetic in the 1940s
	Computer Arithmetic in the 1950s
	Computer Arithmetic in the 1960s
	Computer Arithmetic in the 1970s
	Computer Arithmetic in the 1980s
	Computer Arithmetic in the 1990s
	Computer Arithmetic in the 2000s
	A.2 Early High-Performance Computers
	The IBM System 360 Model 91
	A.3 Deeply Pipelined Vector Machines
	Cray X-MP Vector Computer
	A.4 The DSP Revolution
	Fixed-Point �DSP Example
	Floating-Point �DSP Example
	A.5 Supercomputers on Our Laps
	Performance Trends in Intel Microprocessors
	Arithmetic in the Intel Pentium Pro Microprocessor
	A.6 Trends, Outlook, and Resources
	Ongoing Debates and New Paradigms
	Computer Arithmetic Timeline
	The End!

