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Part I
Fundamental Concepts
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About This Presentation

This presentation is intended to support the use of the textbook 
Introduction to Parallel Processing: Algorithms and Architectures 
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by 
the author in connection with teaching the graduate-level course 
ECE 254B: Advanced Computer Architecture: Parallel Processing,  
at the University of California, Santa Barbara. Instructors can use 
these slides in classroom teaching and for other educational 
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019 Winter 2020 Winter 2021
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The Two Web Pages You Will Need
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I   Fundamental Concepts

Provide motivation, paint the big picture, introduce the 3 Ts:
• Taxonomy (basic terminology and models)
• Tools for evaluation or comparison
• Theory to delineate easy and hard problems

Topics in This Part

Chapter 1 Introduction to Parallelism

Chapter 2 A Taste of Parallel Algorithms

Chapter 3 Parallel Algorithm Complexity

Chapter 4 Models of Parallel Processing
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1  Introduction to Parallelism

Set the stage for presenting the course material, including:
• Challenges in designing and using parallel systems
• Metrics to evaluate the effectiveness of parallelism

Topics in This Chapter

1.1 Why Parallel Processing?

1.2 A Motivating Example

1.3 Parallel Processing Ups and Downs

1.4 Types of Parallelism: A Taxonomy

1.5 Roadblocks to Parallel Processing

1.6 Effectiveness of Parallel Processing
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Some Resources

Our textbook; followed closely in lectures
Parhami, B., Introduction to Parallel Processing: 
Algorithms and Architectures, Plenum Press, 1999 

Recommended book; complementary software topics
Rauber, T. and G. Runger, Parallel Programming for 
Multicore and Cluster Systems, 2nd ed., Springer, 2013

Free on-line book (Creative Commons License)
Matloff, N., Programming on Parallel Machines: GPU, 
Multicore, Clusters and More, 341 pp., PDF file 
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

Useful free on-line course, sponsored by NVIDIA
“Introduction to Parallel Programming,” CPU/GPU-CUDA
https://developer.nvidia.com/udacity-cs344-intro-parallel-programming  

1

2

3

4

Complete 
Unified
Device 
Architecture
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1.1  Why Parallel Processing?

Fig. 1.1 The exponential growth of microprocessor performance, 
known as Moore’s Law, shown over the past two decades (extrapolated).
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From: 
“Robots After All,” 
by H. Moravec, 

CACM, pp. 90-97, 
October 2003.

Mental power in four scales

Evolution of Computer Performance/Cost
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The Semiconductor Technology Roadmap

From the 2001 edition of the roadmap [Alla02]

Calendar year 2001 2004 2007 2010 2013 2016

Halfpitch (nm) 140 90 65 45 32 22

Clock freq. (GHz) 2 4 7 12 20 30

Wiring levels 7 8 9 10 10 10

Power supply (V) 1.1 1.0 0.8 0.7 0.6 0.5

Max. power (W) 130 160 190 220 250 290

Factors contributing to the validity of Moore’s law
Denser circuits; Architectural improvements

Measures of processor performance
Instructions/second (MIPS, GIPS, TIPS, PIPS)
Floating-point operations per second 

(MFLOPS, GFLOPS, TFLOPS, PFLOPS)
Running time on benchmark suites 1990 1980 2000 2010 
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Actual halfpitch (Wikipedia, 2019): 2001, 130; 2010, 32; 2014, 14; 2018, 7
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NRC Report (2011): The Future of Computing Performance: Game Over or Next Level?

Trends in Processor Chip Density, Performance, 
Clock Speed, Power, and Number of Cores

Perfor-
mance

Power

Cores

Clock

Density
Transistors per chip (1000s)
Relative performance
Clock speed (MHz)
Power dissipation (W)
Number of cores per chip

Year of Introduction
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Original data up to 2010 collected/plotted by M. Horowitz et al.; Data for 2010-2017 extension collected by K. Rupp

Trends in Processor Chip Density, Performance, 
Clock Speed, Power, and Number of Cores

Year of Introduction



Winter 2021 Parallel Processing, Fundamental Concepts Slide 12

Source: [DANO12] “CPU DB: Recording Microprocessor History,” CACM, April 2012.

Feature Size (mm)

Overall Performance Improvement
(SPECINT, relative to 386)

Gate Speed Improvement
(FO4, relative to 386)

~1985 ~2010--------- 1995-2000 ---------
Much of arch. improvements already achieved

Shares of Technology and Architecture in Processor 
Performance Improvement

~2005
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Why High-Performance Computing?

Higher speed (solve problems faster)
Important when there are “hard” or “soft” deadlines; 
e.g., 24-hour weather forecast

Higher throughput (solve more problems)
Important when we have many similar tasks to perform;
e.g., transaction processing

Higher computational power (solve larger problems)
e.g., weather forecast for a week rather than 24 hours,
or with a finer mesh for greater accuracy 

Categories of supercomputers
Uniprocessor; aka vector machine
Multiprocessor; centralized or distributed shared memory
Multicomputer; communicating via message passing
Massively parallel processor (MPP; 1K or more processors)

1

2

3
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The Speed-of-Light Argument

The speed of light is about 30 cm/ns.

Signals travel at 40-70% speed of light (say, 15 cm/ns).

If signals must travel 1.5 cm during the execution of an 
instruction, that instruction will take at least 0.1 ns; 
thus, performance will be limited to 10 GIPS.

This limitation is eased by continued miniaturization, 
architectural methods such as cache memory, etc.; 
however, a fundamental limit does exist.

How does parallel processing help? Wouldn’t multiple 
processors need to communicate via signals as well?
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Interesting Quotes about Parallel Programming

“There are 3 rules to follow when parallelizing large codes. 
Unfortunately, no one knows what these rules are.” 
~ W. Somerset Maugham, Gary Montry 

“The wall is there. We probably won’t have any more 
products without multicore processors [but] we see a lot of 
problems in parallel programming.” ~ Alex Bachmutsky

“We can solve [the software crisis in parallel computing], 
but only if we work from the algorithm down to the 
hardware — not the traditional hardware-first mentality.”    
~ Tim Mattson

“[The processor industry is adding] more and more cores, 
but nobody knows how to program those things. I mean, 
two, yeah; four, not really; eight, forget it.” ~ Steve Jobs

1

2

3

4
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The Three Walls of High-Performance Computing
Memory-wall challenge:
Memory already limits single-processor performance. 
How can we design a memory system that provides 
a bandwidth of several terabytes/s for data-intensive 
high-performance applications?

Power-wall challenge:
When there are millions of processing nodes, each 
drawing a few watts of power, we are faced with the 
energy bill and cooling challenges of MWs of power 
dissipation, even ignoring the power needs of the 
interconnection network and peripheral devices

Reliability-wall challenge:
Ensuring continuous and correct functioning of a 
system with many thousands or even millions of 
processing nodes is non-trivial, given that a few of 
the nodes are bound to malfunction at an given time

1

2

3
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Power-Dissipation 
Challenge

Koomey’s Law: 
Exponential improvement in 
energy-efficient computing, 
with computations 
performed per KWh 
doubling every 1.57 years

How long will Koomey’s law 
be in effect? It will come to 
an end, like Moore’s Law

A challenge at both ends: 
- Supercomputers 
- Personal electronics

https://cacm.acm.org/magazines/2017/1/211094-
exponential-laws-of-computing-growth/fulltext
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Why Do We Need TIPS or TFLOPS Performance?

Reasonable running time = Fraction of hour to several hours (103-104 s)
In this time, a TIPS/TFLOPS machine can perform 1015-1016 operations 

Example 2: Fluid dynamics calculations (1000  1000  1000 lattice)
109 lattice points  1000 FLOP/point  10 000 time steps = 1016 FLOP

Example 3: Monte Carlo simulation of nuclear reactor
1011 particles to track (for 1000 escapes)  104 FLOP/particle = 1015 FLOP

Decentralized supercomputing: A grid of tens of thousands networked 
computers discovered the Mersenne prime 282 589 933 – 1 as the largest 
known prime number as of Jan. 2021 (it has 24 862 048 digits in decimal)

Example 1: Southern oceans heat Modeling 
(10-minute iterations)
300 GFLOP per iteration 
300 000 iterations per 6 yrs = 
1016 FLOP
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Supercomputer Performance Growth

Fig. 1.2 The exponential growth in supercomputer performance over 
the past two decades (from [Bell92], with ASCI performance goals and 
microprocessor peak FLOPS superimposed as dotted lines). 
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The ASCI Program
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Fig. 24.1   Milestones in the Accelerated Strategic (Advanced Simulation &) 
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The Quest for Higher Performance

1. IBM Blue Gene/L 2. SGI Columbia 3. NEC Earth Sim

LLNL, California NASA Ames, California Earth Sim Ctr, Yokohama

Material science, 
nuclear stockpile sim

Aerospace/space sim, 
climate research

Atmospheric, oceanic, 
and earth sciences

32,768 proc’s,  8 TB,  
28 TB disk storage

10,240 proc’s,  20 TB,  
440 TB disk storage

5,120 proc’s,  10 TB,  
700 TB disk storage

Linux + custom OS Linux Unix

71 TFLOPS, $100 M 52 TFLOPS, $50 M 36 TFLOPS*, $400 M?

Dual-proc Power-PC 
chips (10-15 W power)

20x Altix (512 Itanium2) 
linked by Infiniband

Built of custom vector 
microprocessors

Full system: 130k-proc, 
360 TFLOPS (est)

Volume = 50x IBM, 
Power = 14x IBM
* Led the top500 list for 2.5 yrs

Top Three Supercomputers in 2005 (IEEE Spectrum, Feb. 2005, pp. 15-16)
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The Quest for Higher Performance: 2008 Update

1. IBM Roadrunner 2. IBM Blue Gene/L 3. Sun Blade X6420

LANL, New Mexico LLNL, California U Texas Austin

Nuclear stockpile 
calculations, and more

Advanced scientific 
simulations

Open science research

122,400 proc’s,  98 TB,  
0.4 TB/s file system I/O

212,992 proc’s,  74 TB,  
2 PB disk storage

62,976 proc’s,  126 TB

Red Hat Linux CNK/SLES 9 Linux

1.38 PFLOPS, $130M 0.596 PFLOPS, $100M 0.504 PFLOPS*

PowerXCell 8i 3.2 GHz, 
AMD Opteron (hybrid)

PowerPC 440 700 MHz AMD X86-64 Opteron 
quad core 2 GHz

2.35 MW power, 
expands to 1M proc’s

1.60 MW power, 
expands to 0.5M proc’s

2.00 MW power, 
Expands to 0.3M proc’s

Top Three Supercomputers in June 2008 (http://www.top500.org)

* Actually 4th on top-500 list, with the 3rd being another IBM Blue Gene system at 0.557 PFLOPS
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The Quest for Higher Performance: 2012 Update

1. Cray Titan 2. IBM Sequoia 3. Fujitsu K Computer

ORNL, Tennessee LLNL, California RIKEN AICS, Japan

XK7 architecture Blue Gene/Q arch RIKEN architecture

560,640 cores,          
710 TB,  Cray Linux

1,572,864 cores,    
1573 TB,  Linux

705,024 cores,       
1410 TB, Linux

Cray Gemini interconn’t Custom interconnect Tofu interconnect

17.6/27.1 PFLOPS* 16.3/20.1 PFLOPS* 10.5/11.3 PFLOPS*

AMD Opteron, 16-core, 
2.2 GHz, NVIDIA K20x

Power BQC, 16-core, 
1.6 GHz

SPARC64 VIIIfx,          
2.0 GHz

8.2 MW power 7.9 MW power 12.7 MW power

Top Three Supercomputers in November 2012 (http://www.top500.org)

* max/peak performance
In the top 10, IBM also occupies ranks 4-7 and 9-10. Dell and NUDT (China) hold ranks 7-8.



Winter 2021 Parallel Processing, Fundamental Concepts Slide 24

The Quest for Higher Performance: 2018 Update
Top Three Supercomputers in November 2018 (http://www.top500.org)
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The Quest for Higher Performance: 2020 Update
Top Five Supercomputers in November 2020 (http://www.top500.org)
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Top 500 Supercomputers in the World

20202014 2016 2018
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What Exactly is Parallel Processing?

Parallelism = Concurrency
Doing more than one thing at a time

Has been around for decades, since early computers

I/O channels, DMA, device controllers, multiple ALUs

The sense in which we use it in this course

Multiple agents (hardware units, software processes) 
collaborate to perform our main computational task

- Multiplying two matrices
- Breaking a secret code
- Deciding on the next chess move
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1.2  A Motivating 
Example

Fig. 1.3 The sieve of 
Eratosthenes yielding a 
list of 10 primes for n = 30. 
Marked elements have 
been distinguished by 
erasure from the list. 

Init. Pass 1 Pass 2 Pass 3

2m 2 2 2
3 3m 3 3
4
5 5 5m 5
6
7 7 7 7  m
8
9 9

10
11 11 11 11
12
13 13 13 13
14
15 15
16
17 17 17 17
18
19 19 19 19
20
21 21
22
23 23 23 23
24
25 25 25
26
27 27
28
29 29 29 29
30

Any composite number 
has a prime factor 
that is no greater than 
its square root.
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Single-Processor Implementation of the Sieve

Fig. 1.4 Schematic representation of single-processor 
solution for the sieve of Eratosthenes. 

1 2 n

Current Prime Index
P

Bit-vector
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Control-Parallel Implementation of the Sieve

1 2 n

Current Prime

Index
P1

Index
P2

Index
Pp...

Shared 
Memory I/O Device

(b)

Fig. 1.5 Schematic representation of a control-parallel 
solution for the sieve of Eratosthenes. 
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Running Time of the Sequential/Parallel Sieve

Fig. 1.6 Control-parallel realization of the sieve of 
Eratosthenes with n = 1000 and 1  p  3. 
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Data-Parallel Implementation of the Sieve

Fig. 1.7 Data-parallel realization of the sieve of Eratosthenes. 

1 2

Current PrimeP1 Index

n/p

n/p+1

Current PrimeP2 Index

2n/p

Current PrimeP p Index

Communi- 
  cation

n–n/p+1 n

Assume at most n processors, 
so that all prime factors dealt with 
are in P1 (which broadcasts them)

 n < n / p
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One Reason for Sublinear Speedup:
Communication Overhead

Fig. 1.8 Trade-off between communication time and computation 
time in the data-parallel realization of the sieve of Eratosthenes. 
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Solution time 

Ideal speedup 

Number of processors 

Actual speedup 
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Another Reason for Sublinear Speedup:
Input/Output Overhead

Fig. 1.9 Effect of a constant I/O time on the data-parallel 
realization of the sieve of Eratosthenes. 
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1.3  Parallel Processing Ups and Downs
Using thousands of “computers” 
(humans + calculators) for 24-hr 
weather prediction in a few hours
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1960s: ILLIAC IV (U Illinois) –
four 8  8 mesh quadrants, SIMD

2000s: Internet revolution –
info providers, multimedia, data 
mining, etc. need lots of power

1980s: Commercial interest –
technology was driven by 
government grants & contracts. 
Once funding dried up, 
many companies went bankrupt

Fig. 1.10   Richardson’s circular 
theater for weather forecasting 
calculations.

2020s: Cloud, big-data, AI/ML
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Trends in High-Technology Development

Development of some technical fields into $1B businesses and the roles played by 
government research and industrial R&D over time (IEEE Computer, early 90s?).

1960 1970 1980 1990 2000 
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Transfer of 
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Evolution of parallel processing has been 
quite different from other high tech fields
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Trends in Hi-Tech Development (2003)
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Status of Computing Power (circa 2000)

GFLOPS on desktop: Apple Macintosh, with G4 processor

TFLOPS in supercomputer center:
1152-processor IBM RS/6000 SP (switch-based network)
Cray T3E, torus-connected

PFLOPS on the drawing board:
1M-processor IBM Blue Gene (2005?)
32 proc’s/chip, 64 chips/board, 8 boards/tower, 64 towers
Processor: 8 threads, on-chip memory, no data cache
Chip: defect-tolerant, row/column rings in a 6  6 array
Board: 8  8 chip grid organized as 4  4  4 cube
Tower: Boards linked to 4 neighbors in adjacent towers 
System: 323232 cube of chips, 1.5 MW (water-cooled)

2010

TFLOPS

PFLOPS

EFLOPS

2020

EFLOPS (Exa = 1018)

ZFLOPS (Zeta = 1021)

PFLOPS (Peta = 1015)
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1.4  Types of Parallelism: A Taxonomy

Fig. 1.11    The Flynn-Johnson classification of computer systems. 
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 Grosch’s law: Economy of scale applies, or power = cost2

 Minsky’s conjecture: Speedup tends to be proportional to log p

 Tyranny of IC technology: Uniprocessors suffice (x10 faster/5 yrs)

 Tyranny of vector supercomputers: Familiar programming model

 Software inertia: Billions of dollars investment in software

 Amdahl’s law: Unparallelizable code severely limits the speedup

1.5  Roadblocks to Parallel Processing

No longer valid; in fact we can get more bang per buck in micros

Has roots in analysis of memory bank conflicts; can be overcome

Faster ICs make parallel machines faster too; what about  x1000?

Not all computations involve vectors; parallel vector machines

New programs; even uniprocessors benefit from parallelism spec
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Amdahl’s Law

Fig. 1.12   Limit on speed-up according to Amdahl’s law. 
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1.6  Effectiveness of Parallel Processing

p Number of processors

W(p) Work performed by p processors

T(p) Execution time with p processors
T(1) = W(1);   T(p)  W(p)

S(p) Speedup = T(1) / T(p)

E(p) Efficiency = T(1) / [p T(p)]

R(p) Redundancy = W(p) / W(1)

U(p) Utilization = W(p) / [p T(p)]

Q(p) Quality = T3(1) / [p T2(p) W(p)]

1

2

3

4

5

67

8

9
10

11

12

13

Fig. 1.13     
Task graph 
exhibiting 
limited 
inherent 

parallelism.

W(1) = 13

T(1)  = 13

T() = 8
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Reduction or Fan-in Computation

Fig. 1.14     Computation graph for finding the sum of 16 numbers .

 -----------  16 numbers to be added  -----------

Sum

+ + ++++ ++

++

+

++

+

+

Example: Adding 16 numbers, 8 processors, unit-time additions

Zero-time communication

E(8) = 15 / (8  4) = 47% 
S(8) = 15 / 4 = 3.75
R(8) = 15 / 15 = 1
Q(8) = 1.76

Unit-time communication

E(8) = 15 / (8  7) = 27% 
S(8) = 15 / 7 = 2.14
R(8) = 22 / 15 = 1.47
Q(8) = 0.39
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ABCs of Parallel Processing in One Slide
A Amdahl’s Law (Speedup Formula)

Bad news – Sequential overhead will kill you, because:
Speedup  =  T1/Tp  1/[f + (1 – f)/p]  min(1/f, p)

Morale: For f = 0.1, speedup is at best 10, regardless of peak OPS.

B Brent’s Scheduling Theorem
Good news – Optimal scheduling is very difficult, but even a naive
scheduling algorithm can ensure:

T1/p  Tp  T1/p + T =  (T1/p)[1 + p/(T1/T)]
Result: For a reasonably parallel task (large T1/T), or for a suitably
small p (say, p  T1/T), good speedup and efficiency are possible.

C Cost-Effectiveness Adage
Real news – The most cost-effective parallel solution may not be
the one with highest peak OPS (communication?), greatest speed-up 
(at what cost?), or best utilization (hardware busy doing what?).
Analogy: Mass transit might be more cost-effective than private cars
even if it is slower and leads to many empty seats. 
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2  A Taste of Parallel Algorithms

Learn about the nature of parallel algorithms and complexity:
• By implementing 5 building-block parallel computations
• On 4 simple parallel architectures (20 combinations)

Topics in This Chapter

2.1 Some Simple Computations

2.2 Some Simple Architectures

2.3 Algorithms for a Linear Array

2.4 Algorithms for a Binary Tree

2.5 Algorithms for a 2D Mesh

2.6 Algorithms with Shared Variables
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Two Kinds of Parallel Computing/Processing Courses

Centered on Programming and Applications 
Assume language-level facilities for parallel programming

Shared variables and structures
Message passing primitives

Architecture-independent to a large extent
Knowledge of architecture helpful, but not required for decent results
Analogy: Programmer need not know about cache memory, but …

Requires attention to data distribution for optimal performance

Focused on Architectures and Algorithms
Develop algorithms with close attention to low-level hardware support

Data distribution affects algorithm design
Communication with neighboring nodes only

Each architecture needs its own set of algorithms
Building-block computations can be used to save effort

Interconnection topology is the key to high performance

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P1
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P3

P4

P2
P5

P7 P8

P6

P 
1 

P 
2 

P 
3 

P 
4 

P 
5 

P 
6 

P 
7 

P 
8 

P 
0 
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Architecture/Algorithm Combinations

P 
1 

P 
2 

P 
3 

P 
4 

P 
5 

P 
6 

P 
7 

P 
8 

P 
0 

Semi-
group

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

Parallel 
prefix

Packet 
routing

Broad-
casting

Sorting

P1

P0

P3

P4

P2
P5

P7 P8

P6

We will spend more time on 
linear array and binary tree

and less time on mesh and 
shared memory (studied later)
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2.1  Some Simple Computations

Fig. 2.1 Semigroup computation on a uniprocessor. 

x0

identity 
element

x1




x2



xn–2


x



s

. 
     . 
          .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s = x0  x1 
. . .  xn–1
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Parallel Semigroup Computation

Semigroup computation viewed as tree or fan-in computation.

x0 x1



x2



s

x3

  











x4 x5 x6 x7 x8 x9 x10

s = x0  x1 
. . .  xn–1

log2 n levels
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Parallel Prefix Computation

Prefix computation on a uniprocessor.

Parallel version 
much trickier 
compared to that 
of semigroup 
computation

x0

identity 
element

x1




x2



xn–2


x



. 
     . 
          .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s0

s1

s2

sn–2

sn–1

s = x0  x1  x2  . . .  xn–1

Requires a 
minimum of 
log2 n levels
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The Five Building-Block Computations

Reduction computation: aka tree, semigroup, fan-in comp.
All processors to get the result at the end

Scan computation: aka parallel prefix comp.
The ith processor to hold the ith prefix result at the end

Packet routing:
Send a packet from a source to a destination processor

Broadcasting:
Send a packet from a source to all processors

Sorting:
Arrange a set of keys, stored one per processor, so that 
the ith processor holds the ith key in ascending order
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2.2  Some Simple Architectures

Fig. 2.2 A linear array of nine processors and its ring variant.

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

Max node degree d = 2
Network diameter D = p – 1 ( p/2 )
Bisection width B = 1 ( 2 )
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(Balanced) Binary Tree Architecture

Fig. 2.3 A balanced (but incomplete) binary tree of nine processors.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Max node degree d = 3
Network diameter D = 2 log2 p ( - 1 )
Bisection width B = 1 

Complete binary tree
2q – 1 nodes, 2q–1 leaves

Balanced binary tree
Leaf levels differ by 1
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Two-Dimensional (2D) Mesh

Fig. 2.4 2D mesh of 9 processors and its torus variant.

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

Max node degree d = 4
Network diameter D = 2p – 2 ( p )
Bisection width B  p ( 2p )

Nonsquare 
mesh

(r rows, 
p/r col’s) 

also possible
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Shared-Memory Architecture

Fig. 2.5 A shared-variable architecture modeled as a complete graph.

Costly to implement
Not scalable

But . . . 
Conceptually simple
Easy to program

P 
1 

P 
2 

P 
3 

P 
4 

P 
5 

P 
6 

P 
7 

P 
8 

P 
0 

Max node degree d = p – 1
Network diameter D = 1
Bisection width B = p/2 p/2
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2.3  Algorithms for a Linear Array

Fig. 2.6 Maximum-finding on a linear array of nine processors.

 5    2    8    6    3    7    9    1    4 
 5    8    8    8    7    9    9    9    4 
 8    8    8    8    9    9    9    9    9 
 8    8    8    9    9    9    9    9    9 
 8    8    9    9    9    9    9    9    9 
 8    9    9    9    9    9    9    9    9 
 9    9    9    9    9    9    9    9    9 

Initial 
values 

Maximum 
identified 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

For general semigroup computation:
Phase 1: Partial result is propagated from left to right
Phase 2: Result obtained by processor p – 1 is broadcast leftward
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Linear Array Prefix Sum Computation

Fig. 2.7 Computing prefix sums on a linear array of nine processors.

 5    2    8    6    3    7    9    1    4 
 5    7    8    6    3    7    9    1    4 
 5    7   15    6    3    7    9    1    4 
 5    7   15   21    3    7    9    1    4 
 5    7   15   21   24    7    9    1    4 
 5    7   15   21   24   31    9    1    4 
 5    7   15   21   24   31   40    1    4 
 5    7   15   21   24   31   40   41    4 
 5    7   15   21   24   31   40   41   45 

Initial 
values 

Final 
results 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

Diminished parallel prefix computation:
The ith processor obtains the result up to element i – 1 
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Linear-Array Prefix Sum Computation

Fig. 2.8 Computing prefix sums on a linear array 
with two items per processor.

5    2    8    6    3    7    9    1    4 
  1    6    3    2    5    3    6    7    5 
  
5    2    8    6    3    7    9    1    4 
  6    8   11    8    8   10   15    8    9 
                + 
  0    6   14   25   33   41   51   66   74 
                = 
5    8   22   31   36   48   60   67   78 
  6   14   25   33   41   51   66   74   83 

Initial 
values 

Final 
results 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

Local 
prefixes 

Diminished 
prefixes 
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Linear Array Routing and Broadcasting

Routing and broadcasting on a linear array of nine processors.

To route from processor i to processor j:
Compute j – i to determine distance and direction

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

Right-moving packets 

Left-moving packets 

To broadcast from processor i:
Send a left-moving and a right-moving broadcast message
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Linear Array 
Sorting 

(Externally 
Supplied Keys)

Fig. 2.9 Sorting on a 
linear array with the 
keys input sequentially 
from the left.
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Linear Array Sorting (Internally Stored Keys)

Fig. 2.10    Odd-even transposition sort on a linear array.

5    2    8    6    3    7    9    1    4 
5    2    8    3    6    7    9    1    4 
2    5    3    8    6    7    1    9    4 
2    3    5    6    8    1    7    4    9 
2    3    5    6    1    8    4    7    9 
2    3    5    1    6    4    8    7    9 
2    3    1    5    4    6    7    8    9 
2    1    3    4    5    6    7    8    9 
1    2    3    4    5    6    7    8    9 

In odd steps, 
1, 3, 5, etc., 
odd-
numbered 
processors 
exchange 
values with 
their right 
neighbors 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

T(1) = W(1) = p log2 p T(p) = p W(p)  p2/2

S(p) = log2 p (Minsky’s conjecture?) R(p) = p/(2 log2 p)
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2.4  Algorithms for a Binary Tree

Reduction computation and broadcasting on a binary tree.

P1

P0

P3

P4

P2
P5

P7 P8

P6

P1

P0

P3

P4

P2
P5

P7 P8

P6
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Binary Tree 
Scan 

Computation

Fig. 2.11   Scan 
computation on a 
binary tree of 
processors. 

x x x
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x     x 
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x     x 43
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3 4

0
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x     x 10 x   2

x0 x     x 0
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x     x 10 x     x 32

x     x 10 x     x 32 x   4

Results
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Identity
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Node Function in Binary Tree Scan Computation

Two binary operations: 
one during the upward 
propagation phase, 
and another during 
downward propagation 

Upward
propagation

Downward
propagation




[i, j – 1]

[0, i – 1] [ j, k]

[0, j – 1]

[i, k] [0, i – 1]

Insert latches for 
systolic operation 
(no long wires or 
propagation path)
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Usefulness of Scan Computation

Ranks of 1s in a list of 0s/1s:
Data: 0     0     1     0     1     0     0     1     1     1     0
Prefix sums: 0     0     1     1     2     2     2     3     4     5     5
Ranks of 1s: 1            2                   3     4     5

Priority arbitration circuit:
Data: 0     0     1     0     1     0     0     1     1     1     0
Dim’d prefix ORs: 0 0 0 1 1 1 1 1 1 1 1
Complement: 1 1 1 0 0 0 0 0 0 0 0
AND with data: 0 0 1 0 0 0 0 0 0 0 0

Carry-lookahead network:
p     g     a     g     g     p     p     p     g     a     cin

 g or a
Direction of indexing

p ¢ x = x
a ¢ x = a
g ¢ x = g



Winter 2021 Parallel Processing, Fundamental Concepts Slide 66

Binary Tree Packet Routing

Packet routing on a binary tree with two indexing schemes.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Preorder 
indexing

XXX

LXX RXX

LLX
RLXLRX

RRX

RRRRRL

Node index is a representation 
of the path from the tree root
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Binary Tree Sorting

Fig. 2.12    The first few steps of the sorting algorithm on a binary tree. 

(a) (b) 

(c) (d) 

5 2 3 
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5 1 3 
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4   
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Small values 
“bubble up,” 
causing the 
root to “see” 
the values in 
ascending 
order

Linear-time 
sorting (no 
better than 
linear array)
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The Bisection-Width Bottleneck in a Binary Tree

Fig. 2.13    The bisection width of a binary tree architecture. 

Bisection Width = 1

Linear-time 
sorting is the 
best possible 
due to B = 1
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2.5  Algorithms for a 2D Mesh

Finding the max value on a 2D mesh.

5 2 8

6 3 7

9 1 4

8 8 8

7 7 7

9 9 9

9 9 9

9 9 9

9 9 9

Row maximums Column maximums

Computing prefix sums on a 2D mesh

5 7

6 9

9

Diminished prefix 
sums in last column

Broadcast in rows 
and combine

15

16

10 14

Row prefix sums

5 7

6 9

9

15

16

10 14

15

31

5 7 150

21 24 31

40 41 45
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Routing and Broadcasting on a 2D Mesh

Routing and broadcasting on a 9-processors 2D mesh or torus

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

Routing: Send along the row to the correct column; route in column

Broadcasting: Broadcast in row; then broadcast in all column

Nonsquare 
mesh

(r rows, 
p/r col’s) 

also possible
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  5   2   8    2   5   8    1   4   3    1   3   4    1   3   2    1   2   3                

  
  6   3   7    7   6   3    2   5   8    8   5   2    6   5   4    4   5   6     

  
  9   1   4    1   4   9    7   6   9    6   7   9    8   7   9    7   

  
         

Initial values Snake-like 
 row sort 

Top-to-bottom  
  column 
sort 

Snake-like 
 row sort 

Top-to-bottom 
  column 
sort 

Phase 
1 

Phase 
2 

  5   2   8    2   5   8    1   4   3    1   3   4    1   3   2    1   2   3                

  6   3   7    7   6   3    2   5   8    8   5   2    6   5   4    4   5   6     

  9   1   4    1   4   9    7   6   9    6   7   9    8   7   9    7   8   9       

Initial values Snake-like 
 row sort 

Top-to-bottom  
  column 
sort 

Snake-like 
 row sort 

Top-to-bottom  
  column 
sort 

Left-to-right  
   row sort 

Phase 
1 

Phase 
2 

Phase 
3 

1 2 3

Fig. 2.14    The shearsort algorithm on a 3  3 mesh. 

Number of iterations = log2 p
Compare-exchange steps in each iteration = 2p
Total steps = (log2 p + 1) p

Sorting on a 2D Mesh Using Shearsort
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2.6  Algorithms with Shared Variables

P 
1 

P 
2 

P 
3 

P 
4 

P 
5 

P 
6 

P 
7 

P 
8 

P 
0 

Reduction computation:
Each processor can perform 
the computation locally

Scan computation: Same as 
reduction, except only data 
from smaller-index processors 
are combined

Packet routing: Trivial

Broadcasting: One step with 
all-port (p – 1 steps with 
single-port) communication

Sorting: Each processor 
determines the rank of its data 
element; followed by routing

3

12

8

5

1

415

10

6

Rank[4] = 2
(1 & 3 smaller)

Rank[15] = 8
(8 others smaller)
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3  Parallel Algorithm Complexity

Review algorithm complexity and various complexity classes:
• Introduce the notions of time and time/cost optimality
• Derive tools for analysis, comparison, and fine-tuning

Topics in This Chapter

3.1 Asymptotic Complexity

3.2 Algorithms Optimality and Efficiency

3.3 Complexity Classes

3.4 Parallelizable Tasks and the NC Class

3.5 Parallel Programming Paradigms

3.6 Solving Recurrences
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3.1  Asymptotic Complexity

Fig. 3.1 Graphical representation of the notions of asymptotic complexity.

n 

c g(n)

g(n)

f(n)

n n 

c g(n)

c' g(n) 

f(n)

n n 

g(n)

c g(n)

f(n)

n 0 0 0 

 f(n) = O(g(n)) f(n) = (g(n)) f(n) = (g(n))

3n log n = O(n2) ½ n log2 n = (n) 3n2 + 200n = (n2)
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Little Oh, Big Oh, and Their Buddies

Notation Growth rate Example of use

f(n) = o(g(n)) strictly less than T(n) = cn2 + o(n2)

f(n) = O(g(n)) no greater than T(n,m)=O(n logn+m)

f(n) = (g(n)) the same as T(n) = (n log n)

f(n) = (g(n)) no less than T(n,m) = (n +m3/2)

f(n) = w(g(n)) strictly greater than T(n) = w(log n)





=



>
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Growth Rates for 
Typical Functions Sublinear       Linear Superlinear

log2n n1/2 n n log2n n3/2

-------- -------- -------- -------- --------

9 3 10 90 30
36 10 100 3.6 K 1 K
81 31 1 K 81 K 31 K

169 100 10 K 1.7 M 1 M
256 316 100 K 26 M 31 M
361 1 K 1 M 361 M 1000 M

Table 3.1   Comparing the 
Growth Rates of Sublinear 
and Superlinear Functions 
(K = 1000, M = 1000000).

n (n/4) log2n n log2n 100n1/2 n3/2

-------- -------- -------- -------- --------
10 20 s 2 min 5 min 30 s

100 15 min 1 hr 15 min 15 min
1 K 6 hr 1 day 1 hr 9 hr

10 K 5 day 20 day 3 hr 10 day
100 K 2 mo 1 yr 9 hr 1 yr

1 M 3 yr 11 yr 1 day 32 yr

Table 3.3   Effect of Constants 
on the Growth Rates of 
Running Times Using Larger 
Time Units and Round Figures. 

Warning: Table 3.3 in 
text needs corrections.
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Some Commonly Encountered Growth Rates

Notation Class name Notes

O(1) Constant Rarely practical
O(log log n) Double-logarithmic Sublogarithmic
O(log n) Logarithmic
O(logk n) Polylogarithmic k is a constant
O(na), a < 1 e.g., O(n1/2) or O(n1–e)
O(n / logk n) Still sublinear
-------------------------------------------------------------------------------------------------------------------------------------------------------------------

O(n) Linear
-------------------------------------------------------------------------------------------------------------------------------------------------------------------

O(n logk n) Superlinear
O(nc), c > 1 Polynomial e.g., O(n1+e) or O(n3/2)
O(2n) Exponential Generally intractable
O(22n

) Double-exponential Hopeless!
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3.2  Algorithm Optimality and Efficiency

Fig. 3.2 Upper and lower bounds may tighten over time.

Upper bounds: Deriving/analyzing 
algorithms and proving them correct

Lower bounds: Theoretical arguments 
based on bisection width, and the like

Typical complexity classes 

Improving upper bounds Shifting lower bounds 

log n log n 2 n / log n n n log log n n log n n 2 

1988 
Zak’s thm. 
(log n) 

1994 
Ying’s thm. 
(log n) 2 

1996 
Dana’s alg. 

O(n) 

1991 
Chin’s alg.  

O(n log log n) 

1988 
Bert’s alg. 
O(n log n) 

1982 
Anne’s alg. 

O(n  ) 2 

Optimal 
algorithm? 

Sublinear 
Linear 

Superlinear 
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Complexity History of Some Real Problems

Examples from the book Algorithmic Graph Theory and Perfect Graphs [GOLU04]:

Complexity of determining whether an n-vertex graph is planar

Exponential Kuratowski 1930

O(n3) Auslander and Porter 1961
Goldstein 1963
Shirey 1969

O(n2) Lempel, Even, and Cederbaum 1967

O(n log n) Hopcroft and Tarjan 1972

O(n) Hopcroft and Tarjan 1974
Booth and Leuker 1976

A second, more complex example: Max network flow, n vertices, e edges:
ne2  n2e  n3  n2e1/2  n5/3e2/3  ne log2 n  ne log(n2/e) 

 ne + n2+e  ne loge/(n log n) n  ne loge/n n + n2 log2+e n
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Some Notions of Algorithm Optimality

Time optimality (optimal algorithm, for short)

T(n, p) = g(n, p), where g(n, p) is an established lower bound

Cost-time optimality (cost-optimal algorithm, for short)

pT(n, p) = T(n, 1); i.e., redundancy = utilization = 1

Cost-time efficiency (efficient algorithm, for short)

pT(n, p) = (T(n, 1)); i.e., redundancy = utilization = (1)

Problem size Number of processors
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Beware of Comparing Step Counts

Fig. 3.2 Five times fewer steps does not 
necessarily mean five times faster.

Machine or 
algorithm A 

Machine or 
algorithm B 

4 steps 

Solution 

20 steps 

For example, one algorithm may 
need 20 GFLOP, another 4 GFLOP 
(but float division is a factor of 10 
slower than float multiplication
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3.3  Complexity Classes

Conceptual view of the P, NP, NP-complete, and NP-hard classes. 

P = NP
?

Nondeterministic 
     Polynomial

NP

NP-complete
(e.g. the subset sum problem) 
     

(Intractable?)
NP-hard

(Tractable)
 Polynomial

P

This diagram 
has been replaced 
with a more 
complete one
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Computational Complexity Classes

Conceptual view of the P, NP, NP-complete, and NP-hard classes. 

The Aug. 2010 
claim that P  NP 
by V. Deolalikar 
was found to be 
erroneous
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Some NP-Complete Problems

Subset sum problem: Given a set of n integers and a target 
sum s, determine if a subset of the integers adds up to s.

Satisfiability: Is there an assignment of values to variables in 
a product-of-sums Boolean expression that makes it true?
(Is in NP even if each OR term is restricted to have exactly three literals)

Circuit satisfiability: Is there an assignment of 0s and 1s to 
inputs of a logic circuit that would make the circuit output 1?

Hamiltonian cycle: Does an arbitrary graph contain a cycle 
that goes through all of its nodes?

Traveling salesperson: Find a lowest-cost or shortest tour of 
a number of cities, given travel costs or distances.
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3.4  Parallelizable Tasks and the NC Class

Fig. 3.4 A conceptual view of complexity classes and their relationships.

NC (Nick’s class): 
Subset of problems 
in P for which there 
exist parallel 
algorithms using 
p = nc processors 
(polynomially many) 
that run in O(logk n) 
time (polylog time).

P-complete problem:Given a logic circuit with known inputs, 
determine its output (circuit value problem).

Efficiently 
parallelizable
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3.5  Parallel Programming Paradigms
Divide and conquer
Decompose problem of size n into smaller problems; solve subproblems 
independently; combine subproblem results into final answer  

T(n) = Td(n) + Ts + Tc(n)
Decompose Solve in parallel Combine

Randomization
When it is impossible or difficult to decompose a large problem into 
subproblems with equal solution times, one might use random decisions 
that lead to good results with very high probability.
Example: sorting with random sampling
Other forms: Random search, control randomization, symmetry breaking

Approximation
Iterative numerical methods may use approximation to arrive at solution(s). 
Example: Solving linear systems using Jacobi relaxation. 
Under proper conditions, the iterations converge to the correct solutions; 
more iterations  greater accuracy
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3.6  Solving Recurrences

f(n) =  f(n/2) + 1 {rewrite f(n/2) as f((n/2)/2 + 1}            
=  f(n/4) + 1 + 1
=  f(n/8) + 1 + 1 + 1

. . .

=  f(n/n) + 1 + 1 + 1 + . . . + 1
-------- log2 n times --------

=  log2 n =  (log n)

This method is 
known as unrolling

f(n) =  f(n – 1) + n {rewrite f(n – 1) as f((n – 1) – 1) + n – 1}
=  f(n – 2) + n – 1 + n
=  f(n – 3) + n – 2 + n – 1 + n

. . .

=  f(1) + 2 + 3 + . . . + n – 1 + n
=  n(n + 1)/2 – 1  =  (n2)
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More Example of Recurrence Unrolling

f(n) =  f(n/2) + n
=  f(n/4) + n/2 + n
=  f(n/8) + n/4 + n/2 + n

. . .

=  f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n
=  2n – 2   =   (n)

f(n) =  2f(n/2) + 1                                
=  4f(n/4) + 2 + 1
=  8f(n/8) + 4 + 2 + 1

. . .

=  n f(n/n) + n/2 + . . . + 4 + 2 + 1  
=  n – 1  =   (n)

Solution via guessing:
Guess f(n) = (n) = cn + g(n)
cn + g(n) = cn/2 + g(n/2) + n
Thus, c = 2 and g(n) = g(n/2)
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Still More Examples of Unrolling

f(n) =  f(n/2) + log2 n
=  f(n/4) + log2(n/2) + log2 n
=  f(n/8) + log2(n/4) + log2(n/2) + log2 n

. . .

=  f(n/n) + log2 2 + log2 4 + . . . + log2(n/2) + log2 n
=  1 + 2 + 3 + . . . + log2 n
=  log2 n (log2 n + 1)/2 =   (log2 n)

f(n) =  2f(n/2) + n
=  4f(n/4) + n + n
=  8f(n/8) + n + n + n

. . .

=  n f(n/n) + n + n + n + . . . + n
--------- log2 n times ---------

=  n log2n   =   (n log n)

Alternate solution method:
f(n)/n = f(n/2)/(n/2) + 1
Let f(n)/n = g(n)
g(n) = g(n/2) + 1 = log2 n
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Master Theorem for Recurrences

Theorem 3.1:

Given f(n) = a f(n/b) + h(n); a, b constant, h arbitrary function 

the asymptotic solution to the recurrence is (c = logb a)

f(n) = (n c) if h(n) = O(n c – e) for some e > 0

f(n) = (n c log n) if h(n) = (n c)

f(n) = (h(n)) if h(n) = (n c + e) for some e > 0

Example: f(n) = 2 f(n/2) + 1
a = b = 2; c = logb a = 1
h(n) = 1 = O( n 1 – e)
f(n) = (nc) = (n)
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Intuition Behind the Master Theorem

Theorem 3.1:

Given f(n) = a f(n/b) + h(n); a, b constant, h arbitrary function 

the asymptotic solution to the recurrence is (c = logb a)

f(n) = (n c) if h(n) = O(n c – e) for some e > 0

f(n) = (n c log n) if h(n) = (n c)

f(n) = (h(n)) if h(n) = (n c + e) for some e > 0

f(n) =  2f(n/2) + 1 =  4f(n/4) + 2 + 1 =  .  .  . 
=  n f(n/n) + n/2 + . . . + 4 + 2 + 1

The last term
dominates

f(n) =  2f(n/2) + n =  4f(n/4) + n + n =  .  .  .
=  n f(n/n) + n + n + n + . . . + n

All terms are
comparable

f(n) =  f(n/2) + n =  f(n/4) + n/2 + n =  .  .  .
=  f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n

The first term
dominates
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4  Models of Parallel Processing

Expand on the taxonomy of parallel processing from Chap. 1:
• Abstract models of shared and distributed memory
• Differences between abstract models and real hardware

Topics in This Chapter

4.1 Development of Early Models

4.2 SIMD versus MIMD Architectures

4.3 Global versus Distributed Memory

4.4 The PRAM Shared-Memory Model

4.5 Distributed-Memory or Graph Models

4.6 Circuit Model and Physical Realizations
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4.1  Development of Early Models

Table 4.1      Entering the second half-century of associative processing
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Decade Events and Advances Technology Performance

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1940s Formulation of need & concept Relays
1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS
1960s Introduction of basic architectures Transistors
1970s Commercialization & applications ICs Giga-bit-OPS
1980s Focus on system/software issues VLSI Tera-bit-OPS
1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Associative memory
Parallel masked search of all words
Bit-serial implementation with RAM

Associative processor
Add more processing logic to PEs

100111010110001101000 Comparand
Mask

Memory 
array with 
comparison 
logic
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The Flynn-Johnson Classification Revisited

SISD 
“Uniprocessor” 

SIMD 
“Array processor” 

MISD 
(Rarely used) 

MIMD 
GMSV GMMP 

DMSV DMMP 

“Shared-memory 
multiprocessor” 

“Dis tributed 
shared memory” 

“Dis trib-memory 
multicomputer 

Data stream(s) 
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Communication/
Synchronization 

Shared 
variables 

Message 
passing 

SIMD 
versus 
MIMD 

Global 
versus 

Distributed 
memory 

Fig. 4.1 The Flynn-Johnson classification of computer systems.
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4.2  SIMD versus MIMD Architectures

Most early parallel machines had SIMD designs 
Attractive to have skeleton processors (PEs)
Eventually, many processors per chip
High development cost for custom chips, high cost
MSIMD and SPMD variants 

Most modern parallel machines have MIMD designs 
COTS components (CPU chips and switches)
MPP: Massively or moderately parallel?
Tightly coupled versus loosely coupled
Explicit message passing versus shared memory 

Network-based NOWs and COWs
Networks/Clusters of workstations

Grid computing
Vision: Plug into wall outlets for computing power

1960

1970

1980

1990

2000

2010

ILLIAC IV

TMC CM-2

Goodyear MPP

DAP

MasPar MP-1

Clearspeed
array coproc

SIMD Timeline
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4.3  Global versus Distributed Memory

Fig. 4.3 A parallel processor with global memory.
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Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.
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Distributed Shared Memory

Fig. 4.5 A parallel processor with distributed memory.
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(distributed shared memory)
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4.4  The PRAM Shared-Memory Model

Fig. 4.6 Conceptual view of a parallel random-access machine (PRAM).
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PRAM Implementation and Operation

Fig. 4.7 PRAM with some hardware details shown.

PRAM Cycle:

All processors 
read memory 
locations of their 
choosing

All processors 
compute one step 
independently

All processors 
store results into 
memory locations 
of their choosing

Processors

Memory Access 
    Network &  
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4.5  Distributed-Memory or Graph Models

Fig. 4.8 The sea of interconnection networks.
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Some Interconnection Networks (Table 4.2)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Number Network Bisection   Node Local
Network name(s) of nodes       diameter width degree    links?
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1D mesh (linear array) k k – 1 1 2 Yes
1D torus (ring, loop) k k/2 2 2 Yes
2D Mesh k2 2k – 2 k 4 Yes
2D torus (k-ary 2-cube) k2 k 2k 4 Yes1

3D mesh k3 3k – 3 k2 6 Yes
3D torus (k-ary 3-cube) k3 3k/2 2k2 6 Yes1

Pyramid (4k2 – 1)/3      2 log2 k 2k 9 No
Binary tree 2l – 1 2l – 2 1 3 No
4-ary hypertree 2l(2l+1 – 1)      2l 2l+1 6 No
Butterfly 2l(l + 1) 2l 2l 4 No
Hypercube 2l l 2l–1 l No
Cube-connected cycles 2l l 2l 2l–1 3 No
Shuffle-exchange 2l 2l – 1  2l–1/l 4 unidir.    No
De Bruijn 2l l 2l /l 4 unidir.    No
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 With folded layout
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4.6  Circuit Model and Physical Realizations

Fig. 4.9 Example of a hierarchical interconnection architecture. 

Low-level 
cluster

Bus switch 
(Gateway)

Scalability dictates hierarchical connectivity
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A Million-Server Data Center

Container with 2500 servers
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Warehouse-Scale Supercomputers

This book, authored by three 
Google researchers as part  
of the series
"Synthesis Lectures in 
Computer Architecture,“
explains the concepts in its 
2019 third edition 

The 2013 second edition is 
available on-line:

http://web.eecs.umich.edu/~mosharaf/
Readings/DC-Computer.pdf

Industrial 
installation

Office 
machine

Computer as:
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Fig. 4.10    Intrachip wire delay as a function of wire length.
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Pitfalls of 
Scaling up
(Fig. 4.11)

O(10  )
4

Scaled up ant on the rampage! 
What is wrong with this picture? 

Scaled up ant collapses under own weight. 

O(10  )  4 

Scaled up ant on the rampage! 
What is wrong with this picture? 

Scaled up ant collapses under own weight. 

O(10  )
4

Scaled up ant on the rampage! 
What is wrong with this picture? 

Scaled up ant collapses under own weight. 

O(10  )  4 

Scaled up ant on the rampage! 
What is wrong with this picture? 

Scaled up ant collapses under own weight. 

If the weight 
of ant grows 
by a factor of 
one trillion, 
the thickness 
of its legs 
must grow by 
a factor of 
one million to 
support the 
new weight

Ant scaled up in length 
from 5 mm to 50 m

Leg thickness must grow 
from 0.1 mm to 100 m 


