Part I
 Fundamental Concepts

Introduction to Parallel Processing

Algorithms and Architectures

Behrooz Parhami

Slide 1

About This Presentation

This presentation is intended to support the use of the textbook Introduction to Parallel Processing: Algorithms and Architectures (Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by the author in connection with teaching the graduate-level course ECE 254B: Advanced Computer Architecture: Parallel Processing, at the University of California, Santa Barbara. Instructors can use these slides in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Spring 2005	Spring 2006	Fall 2008	Fall 2010
		Winter 2013	Winter 2014	Winter 2016
		Winter 2019	Winter 2020	Winter 2021

The Two Web Pages You Will Need

I Fundamental Concepts

Provide motivation, paint the big picture, introduce the 3 Ts:

- Taxonomy (basic terminology and models)
- Tools for evaluation or comparison
- Theory to delineate easy and hard problems

Topics in This Part

Chapter 1 Introduction to Parallelism
Chapter 2 A Taste of Parallel Algorithms
Chapter 3 Parallel Algorithm Complexity
Chapter 4 Models of Parallel Processing

1 Introduction to Parallelism

Set the stage for presenting the course material, including:

- Challenges in designing and using parallel systems
- Metrics to evaluate the effectiveness of parallelism

```
Topics in This Chapter
1.1 Why Parallel Processing?
1.2 A Motivating Example
1.3 Parallel Processing Ups and Downs
1.4 Types of Parallelism: A Taxonomy
1.5 Roadblocks to Parallel Processing
1.6 Effectiveness of Parallel Processing
```


Some Resources

Our textbook; followed closely in lectures Parhami, B., Introduction to Parallel Processing: Algorithms and Architectures, Plenum Press, 1999

Recommended book; complementary software topics Rauber, T. and G. Runger, Parallel Programming for Multicore and Cluster Systems, 2nd ed., Springer, 2013

Free on-line book (Creative Commons License) Matloff, N., Programming on Parallel Machines: GPU, Multicore, Clusters and More, 341 pp., PDF file http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf "Introduction to Parallel Programming," CPU/GPU-CUDA https://developer.nvidia.com/udacity-cs344-intro-parallel-programming

1.1 Why Parallel Processing?

Fig. 1.1 The exponential growth of microprocessor performance, known as Moore's Law, shown over the past two decades (extrapolated).

Parallel Processing, Fundamental Concepts
Slide 7

Evolution of Computer Performance/Cost

The Semiconductor Technology Roadmap

Calendar year \rightarrow	2001	2004	2007	2010	2013	2016
Halfpitch (nm)	140	90	65	45	32	22
Clock freq. (GHz)	2	4	7	3.612	4.120	4.630
Wiring levels	7	8	9	10	10	10
Power supply (V)	1.1	1.0	0.8	0.7	0.6	0.5
Max. power (W)	130	160	190	220	250	290

2015	2020	2025
19	12	8
4.4	5.3	6.5
		0.6

From the 2001 edition of the roadmap [Alla02]
Actual halfpitch (Wikipedia, 2019): 2001, 130; 2010, 32; 2014, 14; 2018, 7
Factors contributing to the validity of Moore's law Denser circuits; Architectural improvements
Measures of processor performance Instructions/second (MIPS, GIPS, TIPS, PIPS) Floating-point operations per second
(MFLOPS, GFLOPS, TFLOPS, PFLOPS) Running time on benchmark suites

From the 2011 edition (Last updated in 2013)

Trends in Processor Chip Density, Performance, Clock Speed, Power, and Number of Cores

NRC Report (2011): The Future of Computing Performance: Game Over or Next Level?

Trends in Processor Chip Density, Performance, Clock Speed, Power, and Number of Cores

Original data up to 2010 collected/plotted by M. Horowitz et al.; Data for 2010-2017 extension collected by K. Rupp
Parallel Processing, Fundamental Concepts

Slide 11

Shares of Technology and Architecture in Processor Performance Improvement

Source: [DANO12] "CPU DB: Recording Microprocessor History," CACM, April 2012.
Parallel Processing, Fundamental Concepts

Why High-Performance Computing?

Higher speed (solve problems faster)
1 Important when there are "hard" or "soft" deadlines; e.g., 24-hour weather forecast

Higher throughput (solve more problems)
2 Important when we have many similar tasks to perform; e.g., transaction processing

Higher computational power (solve larger problems)
3 e.g., weather forecast for a week rather than 24 hours, or with a finer mesh for greater accuracy

Categories of supercomputers

Uniprocessor; aka vector machine
Multiprocessor; centralized or distributed shared memory
Multicomputer; communicating via message passing
Massively parallel processor (MPP; 1K or more processors)

The Speed-of-Light Argument

The speed of light is about $30 \mathrm{~cm} / \mathrm{ns}$.
Signals travel at 40-70\% speed of light (say, $15 \mathrm{~cm} / \mathrm{ns}$).
If signals must travel 1.5 cm during the execution of an instruction, that instruction will take at least 0.1 ns ; thus, performance will be limited to 10 GIPS.

This limitation is eased by continued miniaturization, architectural methods such as cache memory, etc.; however, a fundamental limit does exist.

How does parallel processing help? Wouldn't multiple processors need to communicate via signals as well?

Interesting Quotes about Parallel Programming

"There are 3 rules to follow when parallelizing large codes.
Unfortunately, no one knows what these rules are."
\sim W. Somerset Maugham, Gary Montry
"The wall is there. We probably won't have any more products without multicore processors [but] we see a lot of problems in parallel programming." ~ Alex Bachmutsky
"We can solve [the software crisis in parallel computing],
3 but only if we work from the algorithm down to the hardware - not the traditional hardware-first mentality."
~ Tim Mattson
4
"[The processor industry is adding] more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight, forget it." ~ Steve Jobs

The Three Walls of High-Performance Computing

 Memory-wall challenge: Memory already limits single-processor performance. How can we design a memory system that provides a bandwidth of several terabytes/s for data-intensive high-performance applications?2 Power-wall challenge:
When there are millions of processing nodes, each drawing a few watts of power, we are faced with the energy bill and cooling challenges of MWs of power dissipation, even ignoring the power needs of the interconnection network and peripheral devices

3 Reliability-wall challenge:
Ensuring continuous and correct functioning of a system with many thousands or even millions of processing nodes is non-trivial, given that a few of the nodes are bound to malfunction at an given time

Power-Dissipation Challenge

A challenge at both ends:

- Supercomputers
- Personal electronics

Koomey's Law:

Exponential improvement in energy-efficient computing, with computations performed per KWh doubling every 1.57 years

How long will Koomey's law be in effect? It will come to an end, like Moore's Law
https://cacm.acm.org/magazines/2017/1/211094-exponential-laws-of-computing-growth/fulltext

Why Do We Need TIPS or TFLOPS Performance?

Reasonable running time $=$ Fraction of hour to several hours $\left(10^{3}-10^{4} \mathrm{~s}\right)$ In this time, a TIPS/TFLOPS machine can perform $10^{15}-10^{16}$ operations

Example 2: Fluid dynamics calculations ($1000 \times 1000 \times 1000$ lattice) 10^{9} lattice points $\times 1000$ FLOP/point $\times 10000$ time steps $=10^{16}$ FLOP

Example 3: Monte Carlo simulation of nuclear reactor

 10^{11} particles to track (for 1000 escapes) $\times 10^{4}$ FLOP/particle $=10^{15} \mathrm{FLOP}$Decentralized supercomputing: A grid of tens of thousands networked computers discovered the Mersenne prime $2^{82589} 933$ - 1 as the largest known prime number as of Jan. 2021 (it has 24862048 digits in decimal)

Fig. 1.2 The exponential growth in supercomputer performance over the past two decades (from [Bell92], with ASCI performance goals and microprocessor peak FLOPS superimposed as dotted lines).

The ASCI Program

Fig. 24.1 Milestones in the Accelerated Strategic (Advanced Simulation \&) Computing Initiative (ASCI) program, sponsored by the US Department of Energy, with extrapolation up to the PFLOPS level.

The Quest for Higher Performance

Top Three Supercomputers in 2005 (IEEE Spectrum, Feb. 2005, pp. 15-16)

1. IBM Blue Gene/L	2. SGI Columbia	3. NEC Earth Sim
LLNL, California	NASA Ames, California	Earth Sim Ctr, Yokohama
Material science, nuclear stockpile sim	Aerospace/space sim, climate research	Atmospheric, oceanic, and earth sciences
32,768 proc's, 8 TB, 28 TB disk storage	10,240 proc's, 20 TB, 440 TB disk storage	5,120 proc's, 10 TB , 700 TB disk storage
Linux + custom OS	Linux	Unix
71 TFLOPS, \$100 M	52 TFLOPS, \$50 M	36 TFLOPS*, \$400 M?
Dual-proc Power-PC chips (10-15 W power)	20x Altix (512 Itanium2) linked by Infiniband	Built of custom vector microprocessors
Full system: 130k-proc, 360 TFLOPS (est)		$\begin{aligned} & \text { Volume = 50x IBM, } \\ & \text { Power = 14x IBM } \end{aligned}$
Winter 2021 \qquad	Paralel Processing, Fundamental Concepts	

The Quest for Higher Performance: 2008 Update

Top Three Supercomputers in June 2008 (http://www.top500.org)

1. IBM Roadrunner	2. IBM Blue Gene/L	3. Sun Blade X6420
LANL, New Mexico	LLNL, California	U Texas Austin
Nuclear stockpile calculations, and more	Advanced scientific simulations	Open science research
122,400 proc's, 98 TB, 0.4 TB/s file system I/O	212,992 proc's, 74 TB, ≈ 2 PB disk storage	62,976 proc's, 126 TB
Red Hat Linux	CNK/SLES 9	Linux
1.38 PFLOPS, \$130M	$\mathbf{0 . 5 9 6 ~ P F L O P S , ~ \$ 1 0 0 M ~}$	$\mathbf{0 . 5 0 4 ~ P F L O P S * ~}$
PowerXCell 8i 3.2 GHz, AMD Opteron (hybrid)	PowerPC 440 700 MHz	AMD X86-64 Opteron quad core 2 GHz
2.35 MW power, expands to 1M proc's	1.60 MW power, expands to 0.5M proc's	2.00 MW power, Expands to 0.3M proc's

[^0]
The Quest for Higher Performance: 2012 Update

Top Three Supercomputers in November 2012 (http://www.top500.org)

1. Cray Titan	2. IBM Sequoia	3. Fujitsu K Computer
ORNL, Tennessee	LLNL, California	RIKEN AICS, Japan
XK7 architecture	Blue Gene/Q arch	RIKEN architecture
560,640 cores, 710 TB, Cray Linux	$1,572,864$ cores, 1573 TB, Linux	705,024 cores, 1410 TB, Linux
Cray Gemini interconn't	Custom interconnect	Tofu interconnect
$\mathbf{1 7 . 6 / 2 7 . 1 ~ P F L O P S * ~}$	$\mathbf{1 6 . 3 / 2 0 . 1 ~ P F L O P S * ~}$	$\mathbf{1 0 . 5 / 1 1 . 3 ~ P F L O P S *}$
AMD Opteron, 16-core, 2.2 GHz, NVIDIA K20x	Power BQC, 16-core, 1.6 GHz	SPARC64 VIIIfx, 2.0 GHz
8.2 MW power	7.9 MW power	12.7 MW power

* max/peak performance

In the top 10, IBM also occupies ranks 4-7 and 9-10. Dell and NUDT (China) hold ranks 7-8.

The Quest for Higher Performance: 2018 Update

Top Three Supercomputers in November 2018 (http://www.top500.org)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07 GHz , NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7.438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45 GHz , Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371

The Quest for Higher Performance: 2020 Update

Top Five Supercomputers in November 2020 (http://www.top500.org)

$\begin{gathered} \text { Rank } \\ \text { (previous) } \end{gathered}$	Rmax Rpeak (PFLOPS)	Name *	Model \uparrow	CPU cores -	Accelerator $\begin{aligned} & \text { (e.g. GPU) } \\ & \text { cores } \end{aligned}$	Interconnect *	Manufacturer ${ }^{\text {- }}$
1	$\begin{aligned} & 442.010 \\ & 537.212 \end{aligned}$	Fugaku	Supercomputer Fugaku	$\begin{aligned} & 158,976 \times 48 \\ & \text { A64FX } \\ & @ 2.2 \mathrm{GHz} \end{aligned}$	0	Tofu interconnect D	Fujitsu
2\% (1)	$\begin{aligned} & 148.600 \\ & 200.795 \end{aligned}$	Summit	IBM Power System AC922	$9,216 \times 22$ POWER9 @ 3.07 GHz	$\begin{aligned} & 27,648 \times 80 \\ & \text { Tesla V100 } \end{aligned}$	InfiniBand EDR	IBM
$37(2)$	$\begin{gathered} 94.640 \\ 125.712 \end{gathered}$	Sierra	IBM Power System S922LC	$8,640 \times 22$ POWER9 @3.1 GHz	$17,280 \times 80$ Tesla V100	InfiniBand EDR	IBM
4∇ (3)	$\begin{gathered} 93.015 \\ 125.436 \end{gathered}$	Sunway TaihuLight	Sunway MPP	$40,960 \times 260$ SW26010 @1.45 GHz	0	Sunway ${ }^{[26]}$	NRCPC
5- (7)	$\begin{aligned} & 63.460 \\ & 79.215 \end{aligned}$	Selene	Nvidia	$1,120 \times 64$ Epyc 7742 @ 2.25 GHz	$\begin{aligned} & 4,480 \times 108 \\ & \text { Ampere A100 } \end{aligned}$	Mellanox HDR Infiniband	Nvidia
Winter 2021			Parallel Processing, Fundamental Concepts				Slide 25

Top 500 Supercomputers in the World

Winter 2021 PCSB Parallel Processing, Fundamental Concepts 26

What Exactly is Parallel Processing?

Parallelism = Concurrency Doing more than one thing at a time

Has been around for decades, since early computers
I/O channels, DMA, device controllers, multiple ALUs
The sense in which we use it in this course
Multiple agents (hardware units, software processes) collaborate to perform our main computational task

- Multiplying two matrices
- Breaking a secret code
- Deciding on the next chess move

1.2 A Motivating Example

Fig. 1.3 The sieve of Eratosthenes yielding a list of 10 primes for $n=30$. Marked elements have been distinguished by erasure from the list.

Any composite number has a prime factor that is no greater than its square root.

Single-Processor Implementation of the Sieve

Fig. 1.4 Schematic representation of single-processor solution for the sieve of Eratosthenes.

Control-Parallel Implementation of the Sieve

Fig. 1.5 Schematic representation of a control-parallel solution for the sieve of Eratosthenes.

Parallel Processing, Fundamental Concepts

Running Time of the Sequential/Parallel Sieve

Fig. 1.6 Control-parallel realization of the sieve of Eratosthenes with $n=1000$ and $1 \leq p \leq 3$.

Data-Parallel Implementation of the Sieve

Fig. 1.7 Data-parallel realization of the sieve of Eratosthenes.

Parallel Processing, Fundamental Concepts

One Reason for Sublinear Speedup: Communication Overhead

Number of processors

Number of processors

Fig. 1.8 Trade-off between communication time and computation time in the data-parallel realization of the sieve of Eratosthenes.

Another Reason for Sublinear Speedup: Input/Output Overhead

Number of processors

Number of processors

Fig. 1.9 Effect of a constant I/O time on the data-parallel realization of the sieve of Eratosthenes.

1.3 Parallel Processing Ups and Downs

Fig. 1.10 Richardson's circular theater for weather forecasting calculations.

Using thousands of "computers" (humans + calculators) for 24-hr weather prediction in a few hours

> 1960s: ILLIAC IV (U Illinois) four 8×8 mesh quadrants, SIMD

1980s: Commercial interest technology was driven by government grants \& contracts. Once funding dried up, many companies went bankrupt

2000s: Internet revolution info providers, multimedia, data mining, etc. need lots of power

2020s: Cloud, big-data, AI/ML

Parallel Processing, Fundamental Concepts

Trends in High-Technology Development

Development of some technical fields into $\$ 1 \mathrm{~B}$ businesses and the roles played by government research and industrial R\&D over time (IEEE Computer, early 90s?).

Parallel Processing, Fundamental Concepts

Source: From [6], reprinted with permission from the National Academy of Sclences, courtesy of the National Academies Press, Washington D.C. 02003.

Status of Computing Power (circa 20102020

TELOPS PFLOPS (Peta $=10^{15}$)
GFLOPS on desktop: Apple Macintosh, with G4 processor PELOPS EFLOPS (Exa = 1018)
TFLOPS in supercomputer center:
1152-processor IBM RS/6000 SP (switch-based network)
Cray T3E, torus-connected
EFLOPS ZFLOPS (Zeta = 1021)
PELOPS on the drawing board:
1M-processor IBM Blue Gene (2005?)
32 proc's/chip, 64 chips/board, 8 boards/tower, 64 towers Processor: 8 threads, on-chip memory, no data cache Chip: defect-tolerant, row/column rings in a 6×6 array Board: 8×8 chip grid organized as $4 \times 4 \times 4$ cube Tower: Boards linked to 4 neighbors in adjacent towers System: $32 \times 32 \times 32$ cube of chips, 1.5 MW (water-cooled)

1.4 Types of Parallelism: A Taxonomy

Fig. 1.11 The Flynn-Johnson classification of computer systems.

1.5 Roadblocks to Parallel Processing

- Grosch's law: Economy of scale applies, or power $=\operatorname{cost}^{2}$

No longer valid; in fact we can get more bang per buck in micros

- Minsky's conjecture: Speedup tends to be proportional to $\log p$

Has roots in analysis of memory bank conflicts; can be overcome

- Tyranny of IC technology: Uniprocessors suffice (x10 faster/5 yrs)

Faster ICs make parallel machines faster too; what about $\times 1000$?

- Tyranny of vector supercomputers: Familiar programming model

Not all computations involve vectors; parallel vector machines

- Software inertia: Billions of dollars investment in software

New programs; even uniprocessors benefit from parallelism spec

- Amdahl's law: Unparallelizable code severely limits the speedup

Parallel Processing, Fundamental Concepts

Amdahl's Law

Fig. 1.12 Limit on speed-up according to Amdahl's law.

Parallel Processing, Fundamental Concepts

1.6 Effectiveness of Parallel Processing

Fig. 1.13 Task graph exhibiting limited inherent parallelism.
$S(p) \quad$ Speedup $=T(1) / T(p)$
$E(p) \quad$ Efficiency $=T(1) /[p T(p)]$
$R(p)$ Redundancy $=W(p) / W(1)$
$U(p)$ Utilization $=W(p) /[p T(p)]$
$Q(p)$ Quality $=T^{3}(1) /\left[p T^{2}(p) W(p)\right]$

Reduction or Fan-in Computation

Example: Adding 16 numbers, 8 processors, unit-time additions

Zero-time communication

$$
\begin{aligned}
& E(8)=15 /(8 \times 4)=47 \% \\
& S(8)=15 / 4=3.75 \\
& R(8)=15 / 15=1 \\
& Q(8)=1.76
\end{aligned}
$$

Unit-time communication

$$
\begin{aligned}
& E(8)=15 /(8 \times 7)=27 \% \\
& S(8)=15 / 7=2.14 \\
& R(8)=22 / 15=1.47 \\
& Q(8)=0.39
\end{aligned}
$$

Fig. 1.14 Computation graph for finding the sum of 16 numbers .

ABCs of Parallel Processing in One Slide

A Amdahl's Law (Speedup Formula)

Bad news - Sequential overhead will kill you, because:

$$
\text { Speedup }=T_{1} / T_{p} \leq 1 /[f+(1-f) / p] \leq \min (1 / f, p)
$$

Morale: For $f=0.1$, speedup is at best 10 , regardless of peak OPS.
B Brent's Scheduling Theorem
Good news - Optimal scheduling is very difficult, but even a naive scheduling algorithm can ensure:

$$
T_{1} / p \leq T_{p}<T_{1} / p+T_{\infty}=\left(T_{1} / p\right)\left[1+p /\left(T_{1} / T_{\infty}\right)\right]
$$

Result: For a reasonably parallel task (large T_{1} / T_{∞}), or for a suitably small p (say, $p<T_{1} / T_{\infty}$), good speedup and efficiency are possible.
C Cost-Effectiveness Adage
Real news - The most cost-effective parallel solution may not be the one with highest peak OPS (communication?), greatest speed-up (at what cost?), or best utilization (hardware busy doing what?). Analogy: Mass transit might be more cost-effective than private cars even if it is slower and leads to many empty seats.

2 A Taste of Parallel Algorithms

Learn about the nature of parallel algorithms and complexity:

- By implementing 5 building-block parallel computations
- On 4 simple parallel architectures (20 combinations)

Topics in This Chapter

2.1 Some Simple Computations
2.2 Some Simple Architectures
2.3 Algorithms for a Linear Array
2.4 Algorithms for a Binary Tree
2.5 Algorithms for a 2D Mesh
2.6 Algorithms with Shared Variables

Two Kinds of Parallel Computing/Processing Courses

Centered on Programming and Applications
Assume language-level facilities for parallel programming
Shared variables and structures
Message passing primitives
Architecture-independent to a large extent

Knowledge of architecture helpful, but not required for decent resuits Analogy: Programmer need not know about cache memory, but ...
Requires attention to data distribution for optimal performance

Focused on Architectures and Algorithms

Develop algorithms with close attention to low-level hardware support
Data distribution affects algorithm design
Communication with neighboring nodes only
Each architecture needs its own set of algorithms
Building-block computations can be used to save effort Interconnection topology is the key to high performance

Architecture/Algorithm Combinations

Semi- group	Parallel prefix	Packet routing	Broad- casting	Sorting

Parallel Processing, Fundamental Concepts

2.1 Some Simple Computations

$$
s=x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n-1}
$$

Fig. 2.1 Semigroup computation on a uniprocessor.

Parallel Semigroup Computation

Semigroup computation viewed as tree or fan-in computation.

The Five Building-Block Computations

Reduction computation: aka tree, semigroup, fan-in comp. All processors to get the result at the end

Scan computation: aka parallel prefix comp.
The ith processor to hold the ith prefix result at the end

Packet routing:

Send a packet from a source to a destination processor
Broadcasting:
Send a packet from a source to all processors
Sorting:
Arrange a set of keys, stored one per processor, so that the ith processor holds the ith key in ascending order

Parallel Processing, Fundamental Concepts

2.2 Some Simple Architectures

Fig. 2.2 A linear array of nine processors and its ring variant.

Max node degree Network diameter Bisection width

$$
\begin{array}{ll}
d=2 & \\
D=p-1 & (\lfloor p / 2\rfloor) \\
B=1 & (2) \tag{2}
\end{array}
$$

(Balanced) Binary Tree Architecture

Complete binary tree $2^{q}-1$ nodes, 2^{q-1} leaves

Balanced binary tree Leaf levels differ by 1

Fig. 2.3 A balanced (but incomplete) binary tree of nine processors.

Two-Dimensional (2D) Mesh

Max node degree

$$
d=4
$$

Network diameter
Bisection width
(\sqrt{p})
($2 \sqrt{p}$)

Fig. 2.4 2D mesh of 9 processors and its torus variant.

Shared-Memory Architecture

Fig. 2.5 A shared-variable architecture modeled as a complete graph.
Parallel Processing, Fundamental Concepts

2.3 Algorithms for a Linear Array

Fig. 2.6 Maximum-finding on a linear array of nine processors.
For general semigroup computation:
Phase 1: Partial result is propagated from left to right
Phase 2: Result obtained by processor $p-1$ is broadcast leftward

Parallel Processing, Fundamental Concepts

Linear Array Prefix Sum Computation

Fig. 2.7 Computing prefix sums on a linear array of nine processors.
Diminished parallel prefix computation:
The ith processor obtains the result up to element $i-1$

Parallel Processing, Fundamental Concepts

Linear-Array Prefix Sum Computation

Fig. 2.8 Computing prefix sums on a linear array with two items per processor.

Linear Array Routing and Broadcasting

Routing and broadcasting on a linear array of nine processors.

To route from processor i to processor j : Compute $j-i$ to determine distance and direction

To broadcast from processor i : Send a left-moving and a right-moving broadcast message

Linear Array Sorting (Externally Supplied Keys)

Fig. 2.9 Sorting on a linear array with the keys input sequentially from the left.

Parallel Processing, Fundamental Concepts

Linear Array Sorting (Internally Stored Keys)

In odd steps, $1,3,5$, etc., oddnumbered processors exchange values with their right neighbors
Fig. 2.10 Odd-even transposition sort on a linear array.

$$
\begin{array}{ll}
T(1)=W(1)=p \log _{2} p r(p)=p & W(p) \cong p^{2} / 2 \\
S(p)=\log _{2} p \text { (Minsky's conjecture?) } & R(p)=p /\left(2 \log _{2} p\right)
\end{array}
$$

2.4 Algorithms for a Binary Tree

Reduction computation and broadcasting on a binary tree.

Binary Tree Scan
 Computation

Fig. 2.11 Scan computation on a binary tree of processors.

Upward propagation

Node Function in Binary Tree Scan Computation

Two binary operations: one during the upward propagation phase, and another during downward propagation

Insert latches for systolic operation (no long wires or propagation path)

Usefulness of Scan Computation

Ranks of 1 s in a list of $0 \mathrm{~s} / 1 \mathrm{~s}$:
$\begin{array}{llllllllllll}\text { Data: } & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \text { Prefix sums: } & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{5} \\ \text { Ranks of 1s: } & & & \mathbf{1} & & \mathbf{2} & & & 3 & \mathbf{4} & \mathbf{5} & \end{array}$

Priority arbitration circuit:

Data:	0	0	1	0	1	0	0	1	1	1	0
Dim'd prefix ORs:	0	0	0	1	1	1	1	1	1	1	1
Complement:	1	1	1	0	0	0	0	0	0	0	0
AND with data:	0	0	1	0	0	0	0	0	0	0	0

Carry-lookahead network:
$p \phi x=x$
$\begin{array}{lllllllllll}p & g & a & g & g & p & p & p & g & a & c_{\text {in }}\end{array}$
$a \phi x=a$
$g \phi x=g$
Direction of indexing

Parallel Processing, Fundamental Concepts

Binary Tree Packet Routing

Packet routing on a binary tree with two indexing schemes.

Parallel Processing, Fundamental Concepts

Binary Tree Sorting

Fig. 2.12 The first few steps of the sorting algorithm on a binary tree.
Parallel Processing, Fundamental Concepts

The Bisection-Width Bottleneck in a Binary Tree

Linear-time sorting is the best possible due to $B=1$

Fig. 2.13 The bisection width of a binary tree architecture.

2.5 Algorithms for a 2D Mesh

Finding the max value on a 2D mesh.

Computing prefix sums on a 2D mesh

Routing and Broadcasting on a 2D Mesh

Routing: Send along the row to the correct column; route in column
Broadcasting: Broadcast in row; then broadcast in all column
Routing and broadcasting on a 9-processors 2D mesh or torus

Sorting on a 2D Mesh Using Shearsort

Number of iterations $=\log _{2} \sqrt{p}$
Compare-exchange steps in each iteration $=2 \sqrt{p}$
Total steps $=\left(\log _{2} p+1\right) \sqrt{p}$
Initial values

Snake-like row sort

Top-to-bottom column

Phase 1

Top-to-bottom Left-to-right colum row sort

Phase 2
Phase 3
Fig. 2.14 The shearsort algorithm on a 3×3 mesh.

2.6 Algorithms with Shared Variables

Reduction computation:
Each processor can perform the computation locally

Scan computation: Same as reduction, except only data from smaller-index processors are combined

Packet routing: Trivial
Broadcasting: One step with all-port ($p-1$ steps with single-port) communication
Sorting: Each processor determines the rank of its data element; followed by routing

3 Parallel Algorithm Complexity

Review algorithm complexity and various complexity classes:

- Introduce the notions of time and time/cost optimality
- Derive tools for analysis, comparison, and fine-tuning

```
Topics in This Chapter
3.1 Asymptotic Complexity
3.2 Algorithms Optimality and Efficiency
3.3 Complexity Classes
3.4 Parallelizable Tasks and the NC Class
3.5 Parallel Programming Paradigms
3.6 Solving Recurrences
```


3.1 Asymptotic Complexity

Fig. 3.1 Graphical representation of the notions of asymptotic complexity.
$3 n \log n=O\left(n^{2}\right)$
$1 / 2 n \log ^{2} n=\Omega(n)$
$3 n^{2}+200 n=\Theta\left(n^{2}\right)$

Parallel Processing, Fundamental Concepts
(0) Deblllll

Little Oh, Big Oh, and Their Buddies

Notation		Growth rate	Example of use
$f(n)=o(g(n))$	<	strictly less than	$T(n)=c n^{2}+o\left(n^{2}\right)$
$f(n)=\mathrm{O}(g(n))$	\leq	no greater than	$T(n, m)=\mathrm{O}(n \log n+m)$
$f(n)=\Theta(g(n))$	$=$	the same as	$T(n)=\Theta(n \log n)$
$f(n)=\Omega(g(n))$	\geq	no less than	$T(n, m)=\Omega\left(\sqrt{n}+m^{3 / 2}\right)$
$f(n)=\omega(g(n))$	>	strictly greater th	$T(n)=\omega(\log n)$

Growth Rates for Typical Functions

Table 3.1 Comparing the Growth Rates of Sublinear and Superlinear Functions ($K=1000, M=1000000$).

Sublinear Linear Superlinear

$\log ^{2} n$	$n^{1 / 2}$	n	$n \log ^{2} n$	$n^{3 / 2}$
$----{ }^{3 /-}$	-10	90	30	
9	3	10	100	3.6 K
36	10	1 K		
81	31	1 K	81 K	31 K
169	100	10 K	1.7 M	1 M
256	316	100 K	26 M	31 M
361	1 K	1 M	361 M	1000 M

n	$(n / 4) \log ^{2} \mathrm{n}$	$n \log ^{2} \mathrm{n}$	$100 \mathrm{n}^{1 / 2}$	$n^{3 / 2}$	Table 3.3 Effect of Constant
10	20 s	2 min	$5-\mathrm{min}$	30 s	on the Growth Rates of
100	15 min	1 hr	15 min	15 min	Running Times Using Large
1 K	6 hr	1 day	1 hr	9 hr	Time Units and Round Figu
10 K	5 day	20 day	3 hr	10 day	
100 K	2 mo	1 yr	9 hr	1 yr	Warning: Table 3.3 in
1 M	3 yr	11 yr	1 day	32 yr	text needs corrections.

Some Commonly Encountered Growth Rates

$\mathrm{O}\left(n \log ^{k} n\right.$)
$\mathrm{O}\left(n^{c}\right), c>1$
$\mathrm{O}\left(2^{n}\right)$
$\mathrm{O}\left(2^{2^{n}}\right)$

Class name
Constant
Double-logarithmic
Logarithmic
Polylogarithmic

Linear

Polynomial
Exponential
Double-exponential

Notes

Rarely practical
Sublogarithmic
k is a constant
e.g., $O\left(n^{1 / 2}\right)$ or $O\left(n^{1-\varepsilon}\right)$

Still sublinear

Superlinear
e.g., $O\left(n^{1+\varepsilon}\right)$ or $\mathrm{O}\left(n^{3 / 2}\right)$ Generally intractable Hopeless!

Parallel Processing, Fundamental Concepts

3.2 Algorithm Optimality and Efficiency

Lower bounds: Theoretical arguments based on bisection width, and the like

Upper bounds: Deriving/analyzing algorithms and proving them correct

Typical complexity classes
Fig. 3.2 Upper and lower bounds may tighten over time.

Parallel Processing, Fundamental Concepts

Complexity History of Some Real Problems

Examples from the book Algorithmic Graph Theory and Perfect Graphs [GOLU04]: Complexity of determining whether an n-vertex graph is planar

Exponential	Kuratowski	1930
$\mathrm{O}\left(n^{3}\right)$	Auslander and Porter	1961
	Goldstein	1963
	Shirey	1969
$\mathrm{O}\left(n^{2}\right)$	Lempel, Even, and Cederbaum	1967
$\mathrm{O}(n \log n)$	Hopcroft and Tarjan	1972
$\mathrm{O}(\mathrm{n})$	Hopcroft and Tarjan	1974
	Booth and Leuker	1976
A second, more complex example: Max network flow, n vertices, e edges $n e^{2} \rightarrow n^{2} e \rightarrow n^{3} \rightarrow n^{2} e^{1 / 2} \rightarrow n^{5 / 3} e^{2 / 3} \rightarrow n e \log ^{2} n \rightarrow n e \log \left(n^{2} / e\right)$ $\rightarrow n e+n^{2+\varepsilon} \rightarrow n e \log _{e(n \log n)} n \quad \rightarrow n e \log _{e / n} n+n^{2} \log ^{2+\varepsilon} n$		

Some Notions of Algorithm Optimality

Time optimality (optimal algorithm, for short)
$T(n, p)=g(n, p)$, where $g(n, p)$ is an established lower bound

Cost-time optimality (cost-optimal algorithm, for short)
$p T(n, p)=T(n, 1)$; i.e., redundancy $=$ utilization $=1$

Cost-time efficiency (efficient algorithm, for short)
$p T(n, p)=\Theta(T(n, 1))$; i.e., redundancy $=$ utilization $=\Theta(1)$

Beware of Comparing Step Counts

Machine or algorithm A

20 steps
For example, one algorithm may need 20 GFLOP, another 4 GFLOP (but float division is a factor of $\cong 10$ slower than float multiplication

Fig. 3.2 Five times fewer steps does not necessarily mean five times faster.

Parallel Processing, Fundamental Concepts

3.3 Complexity Classes

This diagram has been replaced with a more complete one

Conceptual view of the P, NP, NP-complete, and NP-hard classes.

Parallel Processing, Fundamental Concepts

Computational Complexity Classes

Conceptual view of the P, NP, NP-complete, and NP-hard classes.

Slide 83

Some NP-Complete Problems

Subset sum problem: Given a set of n integers and a target sum s, determine if a subset of the integers adds up to s.

Satisfiability: Is there an assignment of values to variables in a product-of-sums Boolean expression that makes it true?
(Is in NP even if each OR term is restricted to have exactly three literals)
Circuit satisfiability: Is there an assignment of 0 s and 1 s to inputs of a logic circuit that would make the circuit output 1?

Hamiltonian cycle: Does an arbitrary graph contain a cycle that goes through all of its nodes?

Traveling salesperson: Find a lowest-cost or shortest tour of a number of cities, given travel costs or distances.

3.4 Parallelizable Tasks and the NC Class

NC (Nick's class):
Subset of problems in P for which there exist parallel algorithms using $p=n^{c}$ processors (polynomially many) that run in $\mathrm{O}\left(\log ^{k} n\right)$ time (polylog time).

Efficiently parallelizable

P-complete problem: Given a logic circuit with known inputs, determine its output (circuit value problem).

Fig. 3.4 A conceptual view of complexity classes and their relationships.
Parallel Processing, Fundamental Concepts

3.5 Parallel Programming Paradigms

Divide and conquer
Decompose problem of size n into smaller problems; solve subproblems independently; combine subproblem results into final answer

$$
T(n) \quad=\underset{\text { Decompose }}{T_{\mathrm{d}}(n)}+\underset{\text { Solve in parallel }}{T_{\mathrm{s}}}+\underset{T_{\mathrm{c}}(n)}{\text { Combine }}
$$

Randomization

When it is impossible or difficult to decompose a large problem into
subproblems with equal solution times, one might use random decisions that lead to good results with very high probability.
Example: sorting with random sampling
Other forms: Random search, control randomization, symmetry breaking

Approximation

Iterative numerical methods may use approximation to arrive at solution(s).
Example: Solving linear systems using Jacobi relaxation.
Under proper conditions, the iterations converge to the correct solutions; more iterations \Rightarrow greater accuracy

3.6 Solving Recurrences

$$
\begin{aligned}
f(n) & =f(n-1)+n \quad\{\text { rewrite } f(n-1) \text { as } f((n-1)-1)+n-1\} \\
& =f(n-2)+n-1+n \\
& =f(n-3)+n-2+n-1+n \\
& =\cdots(1)+2+3+\ldots+n-1+n \quad \text { This method is } \\
& =n(n+1) / 2-1=\Theta\left(n^{2}\right) \quad \text { known as unrolling } \\
& \\
f(n) & =f(n / 2)+1 \quad\{\text { rewrite } f(n / 2) \text { as } f((n / 2) / 2+1\} \\
& =f(n / 4)+1+1 \\
& =f(n / 8)+1+1+1 \\
& =f(n / n)+1+1+1+\ldots+1 \\
& =\log _{2} n=\Theta\left(\log _{2} n \text { times } \ldots\right.
\end{aligned}
$$

Parallel Processing, Fundamental Concepts

More Example of Recurrence Unrolling

$$
\begin{aligned}
f(n) & =2 f(n / 2)+1 \\
& =4 f(n / 4)+2+1 \\
& =8 f(n / 8)+4+2+1 \\
& \ldots \\
& =n f(n / n)+n / 2+\ldots+4+2+1 \\
& =n-1=\Theta(n) \\
& \\
f(n) & =f(n / 2)+n \\
& =f(n / 4)+n / 2+n \\
& =f(n / 8)+n / 4+n / 2+n \quad \text { Solutio } \\
& = \\
& =f(n / n)+2+4+\ldots+n / 4+n / 2+n \\
& =2 n-2=\Theta(n)
\end{aligned}
$$

Still More Examples of Unrolling

$$
\begin{aligned}
& f(n)=2 f(n / 2)+n \\
& =4 f(n / 4)+n+n \\
& =8 f(n / 8)+n+n+n \\
& =n f(n / n)+n+n+n+\ldots+n \\
& \log _{2} n \text { times } \\
& =n \log _{2} n=\Theta(n \log n) \\
& f(n)=f(n / 2)+\log _{2} n \\
& =f(n / 4)+\log _{2}(n / 2)+\log _{2} n \\
& =f(n / 8)+\log _{2}(n / 4)+\log _{2}(n / 2)+\log _{2} n \\
& =f(n / n)+\log _{2} 2+\log _{2} 4+\ldots+\log _{2}(n / 2)+\log _{2} n \\
& =1+2+3+\ldots+\log _{2} n \\
& =\log _{2} n\left(\log _{2} n+1\right) / 2=\Theta\left(\log ^{2} n\right)
\end{aligned}
$$

Master Theorem for Recurrences

Theorem 3.1:

Given $f(n)=a f(n / b)+h(n) ; a, b$ constant, h arbitrary function the asymptotic solution to the recurrence is $\left(c=\log _{b} a\right)$
$f(n)=\Theta\left(n^{c}\right) \quad$ if $h(n)=O\left(n^{c-\varepsilon}\right)$ for some $\varepsilon>0$
$f(n)=\Theta\left(n^{c} \log n\right) \quad$ if $h(n)=\Theta\left(n^{c}\right)$
$f(n)=\Theta(h(n)) \quad$ if $h(n)=\Omega\left(n^{c+\varepsilon}\right)$ for some $\varepsilon>0$

Example: $\quad f(n)=2 f(n / 2)+1$

$$
\begin{aligned}
& a=b=2 ; c=\log _{b} a=1 \\
& h(n)=1=\mathrm{O}\left(n^{1-\varepsilon}\right) \\
& f(n)=\Theta\left(n^{c}\right)=\Theta(n)
\end{aligned}
$$

Parallel Processing, Fundamental Concepts

Intuition Behind the Master Theorem

Theorem 3.1:

Given $f(n)=a f(n / b)+h(n) ; a, b$ constant, h arbitrary function the asymptotic solution to the recurrence is $\left(c=\log _{b} a\right)$

$$
f(n)=\Theta\left(n^{c}\right) \quad \text { if } h(n)=O\left(n^{c-\varepsilon}\right) \text { for some } \varepsilon>0
$$

$$
\begin{aligned}
f(n) & =2 f(n / 2)+1=4 f(n / 4)+2+1= \\
& =n f(n / n)+n / 2+\ldots+4+2+1
\end{aligned}
$$

The last term dominates

$$
\begin{aligned}
& f(n)=\Theta\left(n^{c} \log n\right) \quad \text { if } h(n)=\Theta\left(n^{c}\right) \\
& f(n)=2 f(n / 2)+n=4 f(n / 4)+n+n= \\
& \\
& =n f(n / n)+n+n+n+\ldots+n
\end{aligned}
$$

All terms are comparable

$$
f(n)=\Theta(h(n)) \quad \text { if } h(n)=\Omega\left(n^{c+\varepsilon}\right) \text { for some } \varepsilon>0
$$

$$
\begin{aligned}
f(n) & =f(n / 2)+n=f(n / 4)+n / 2+n=\ldots \\
& =f(n / n)+2+4+\ldots+n / 4+n / 2+n
\end{aligned}
$$

The first term dominates

4 Models of Parallel Processing

Expand on the taxonomy of parallel processing from Chap. 1:

- Abstract models of shared and distributed memory
- Differences between abstract models and real hardware

Topics in This Chapter

4.1 Development of Early Models
4.2 SIMD versus MIMD Architectures
4.3 Global versus Distributed Memory
4.4 The PRAM Shared-Memory Model
4.5 Distributed-Memory or Graph Models
4.6 Circuit Model and Physical Realizations

4.1 Development of Early Models

Associative memory
Parallel masked search of all words
Bit-serial implementation with RAM
Associative processor
Add more processing logic to PEs

Comparand Mask

Memory array with comparison logic

Table 4.1 Entering the second half-century of associative processing

Decade	Events and Advances	Technology	Performance
1940s	Formulation of need \& concept	Relays	
1950s	Emergence of cell technologies	Magnetic, Cryogenic	Mega-bit-OPS
1960s	Introduction of basic architectures	Transistors	
1970s	Commercialization \& applications	ICs	Giga-bit-OPS
1980s	Focus on system/software issues	VLSI	Tera-bit-OPS
1990s	Scalable \& flexible architectures	ULSI, WSI	Peta-bit-OPS

The Flynn-Johnson Classification Revisited

Data stream(s)

Fig. 4.1 The Flynn-Johnson classification of computer systems.

Parallel Processing, Fundamental Concepts

4.2 SIMD versus MIMD Architectures

Most early parallel machines had SIMD designs Attractive to have skeleton processors (PEs) Eventually, many processors per chip High development cost for custom chips, high cost MSIMD and SPMD variants

Most modern parallel machines have MIMD designs COTS components (CPU chips and switches) MPP: Massively or moderately parallel?
Tightly coupled versus loosely coupled Explicit message passing versus shared memory

Network-based NOWs and COWs
Networks/Clusters of workstations
Grid computing
Vision: Plug into wall outlets for computing power

| SIMD Timeline | |
| :--- | :--- | :--- |
| 1960 | |
| 1970 | ILLIAC IV |
| 1980 | DAP |
| 1990 | Goodyear MPP
 TMC CM-2
 MasPar MP-1 |
| 2000 | Clearspeed
 array coproc |
| 2010 | |

Parallel Processing, Fundamental Concepts

4.3 Global versus Distributed Memory

Fig. 4.3 A parallel processor with global memory.

Parallel Processing, Fundamental Concepts

Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.
Parallel Processing, Fundamental Concepts

Distributed Shared Memory

Some Terminology:

NUMA
Nonuniform memory access (distributed shared memory)

UMA
Uniform memory access (global shared memory)

COMA
Cache-only memory arch

Fig. 4.5 A parallel processor with distributed memory.

Parallel Processing, Fundamental Concepts

4.4 The PRAM Shared-Memory Model

Fig. 4.6 Conceptual view of a parallel random-access machine (PRAM).

PRAM Implementation and Operation

Fig. 4.7 PRAM with some hardware details shown.

Parallel Processing, Fundamental Concepts

4.5 Distributed-Memory or Graph Models

Fig. 4.8 The sea of interconnection networks.

Some Interconnection Networks (Table 4.2)

Network name(s)	Number of nodes	Network diameter	Bisection width	Node degree	Local links?
1D mesh (linear array)	k	$k-1$	1	2	Yes
1D torus (ring, loop)	k	$k / 2$	2	2	Yes
2D Mesh	k^{2}	$2 k-2$	k	4	Yes
2D torus (k-ary 2-cube)	k^{2}	k	$2 k$	4	Yes 1
3D mesh	k^{3}	$3 k-3$	k^{2}	6	Yes
3D torus (k-ary 3-cube)	k^{3}	$3 k / 2$	$2 k^{2}$	6	Yes 1
Pyramid	$\left(4 k^{2}-1\right) / 3$	$2 \log _{2} k$	$2 k$	9	No
Binary tree	$2^{l}-1$	$2 l-2$	1	3	No
4-ary hypertree	$2^{l}\left(2^{l+1}-1\right)$	$2 l$	2^{l+1}	6	No
Butterfly	$2^{l}(l+1)$	$2 l$	2^{l}	4	No
Hypercube	2^{l}	l	2^{l-1}	l	No
Cube-connected cycles	$2^{l} l$	$2 l$	2^{l-1}	3	No
Shuffle-exchange	2^{l}	$2 l-1$	$\geq 2^{l-1 / l}$	4 unidir.	No
De Bruijn	2^{l}	l	$2^{l / l}$	4 unidir.	No

${ }^{1}$ With folded layout
Parallel Processing, Fundamental Concepts

4.6 Circuit Model and Physical Realizations

Fig. 4.9 Example of a hierarchical interconnection architecture.
Parallel Processing, Fundamental Concepts

A Million-Server Data Center

COOLING: High-efficiency water-based cooling systems-less energy-intensive than traditional chillers-circulate cold water through the containers to remove heat, eliminating the need for air-conditioned rooms.

STRUCTURE: A24000-square-meter facility houses 400 containers. Delivered by trucks, the containers attach to a spine infrastructure that feeds network connectivity, power, and water. The data center has no conventional raised floors.

POWER: Two power substations feeda total of 300 megawatts to the data center, with 200 MW used for computing equipment and 100 MW for cooling and electrical losses. Batteries and generators provide backup power.

Warehouse-Scale Supercomputers

MORGAN \&CLAYPOOL PUBLISHERS

The Datacenter as a Computer

This book, authored by three Google researchers as part of the series
"Synthesis Lectures in Computer Architecture," explains the concepts in its 2019 third edition

The 2013 second edition is available on-line:
http://web.eecs.umich.edu/~mosharaf/ Readings/DC-Computer.pdf

Computer as:

Parallel Processing, Fundamental Concepts

Signal Delay on Wires No Longer Negligible

Fig. 4.10 Intrachip wire delay as a function of wire length.

Parallel Processing, Fundamental Concepts

Pitfalls of Scaling up (Fig. 4.11)

If the weight of ant grows by a factor of one trillion, the thickness of its legs must grow by a factor of one million to support the new weight

Scaled up ant collapses under own weight.

Parallel Processing, Fundamental Concepts

[^0]: * Actually $4^{\text {th }}$ on top-500 list, with the $3^{\text {rd }}$ being another IBM Blue Gene system at 0.557 PFLOPS

