
Winter 2021 Parallel Processing, Fundamental Concepts Slide 1

Part I
Fundamental Concepts

Winter 2021 Parallel Processing, Fundamental Concepts Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by
the author in connection with teaching the graduate-level course
ECE 254B: Advanced Computer Architecture: Parallel Processing,
at the University of California, Santa Barbara. Instructors can use
these slides in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019 Winter 2020 Winter 2021

Winter 2021 Parallel Processing, Fundamental Concepts Slide 3

The Two Web Pages You Will Need

Winter 2021 Parallel Processing, Fundamental Concepts Slide 4

I Fundamental Concepts

Provide motivation, paint the big picture, introduce the 3 Ts:
• Taxonomy (basic terminology and models)
• Tools for evaluation or comparison
• Theory to delineate easy and hard problems

Topics in This Part

Chapter 1 Introduction to Parallelism

Chapter 2 A Taste of Parallel Algorithms

Chapter 3 Parallel Algorithm Complexity

Chapter 4 Models of Parallel Processing

Winter 2021 Parallel Processing, Fundamental Concepts Slide 5

1 Introduction to Parallelism

Set the stage for presenting the course material, including:
• Challenges in designing and using parallel systems
• Metrics to evaluate the effectiveness of parallelism

Topics in This Chapter

1.1 Why Parallel Processing?

1.2 A Motivating Example

1.3 Parallel Processing Ups and Downs

1.4 Types of Parallelism: A Taxonomy

1.5 Roadblocks to Parallel Processing

1.6 Effectiveness of Parallel Processing

Winter 2021 Parallel Processing, Fundamental Concepts Slide 6

Some Resources

Our textbook; followed closely in lectures
Parhami, B., Introduction to Parallel Processing:
Algorithms and Architectures, Plenum Press, 1999

Recommended book; complementary software topics
Rauber, T. and G. Runger, Parallel Programming for
Multicore and Cluster Systems, 2nd ed., Springer, 2013

Free on-line book (Creative Commons License)
Matloff, N., Programming on Parallel Machines: GPU,
Multicore, Clusters and More, 341 pp., PDF file
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

Useful free on-line course, sponsored by NVIDIA
“Introduction to Parallel Programming,” CPU/GPU-CUDA
https://developer.nvidia.com/udacity-cs344-intro-parallel-programming

1

2

3

4

Complete
Unified
Device
Architecture

Winter 2021 Parallel Processing, Fundamental Concepts Slide 7

1.1 Why Parallel Processing?

Fig. 1.1 The exponential growth of microprocessor performance,
known as Moore’s Law, shown over the past two decades (extrapolated).

1990 1980 2000 2010
KIPS

MIPS

GIPS

TIPS
P

ro
ce

ss
o

r
pe

rf
o

rm
a

nc
e

Calendar year

80286
68000

80386

80486
68040

Pentium

Pentium II R10000

1.6 / yr

2020

Projection,
circa 1998

Projection,
circa 2012

The number of cores
has been increasing
from a few in 2005
to the current 10s,
and is projected to
reach 100s by 2020

Cores

1000

100

10

1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 8

From:
“Robots After All,”
by H. Moravec,

CACM, pp. 90-97,
October 2003.

Mental power in four scales

Evolution of Computer Performance/Cost

Winter 2021 Parallel Processing, Fundamental Concepts Slide 9

The Semiconductor Technology Roadmap

From the 2001 edition of the roadmap [Alla02]

Calendar year 2001 2004 2007 2010 2013 2016

Halfpitch (nm) 140 90 65 45 32 22

Clock freq. (GHz) 2 4 7 12 20 30

Wiring levels 7 8 9 10 10 10

Power supply (V) 1.1 1.0 0.8 0.7 0.6 0.5

Max. power (W) 130 160 190 220 250 290

Factors contributing to the validity of Moore’s law
Denser circuits; Architectural improvements

Measures of processor performance
Instructions/second (MIPS, GIPS, TIPS, PIPS)
Floating-point operations per second

(MFLOPS, GFLOPS, TFLOPS, PFLOPS)
Running time on benchmark suites 1990 1980 2000 2010

KIPS

MIPS

GIPS

TIPS

P
ro

ce
ss

o
r

pe
rf

o
rm

a
nc

e

Calendar year

80286
68000

80386

80486
68040

Pentium

Pentium II R10000

1.6 / yr

2015 2020 2025

19 12 8

4.4 5.3 6.5

0.6

From the 2011 edition
(Last updated in 2013)

3.6 4.1 4.6

Actual halfpitch (Wikipedia, 2019): 2001, 130; 2010, 32; 2014, 14; 2018, 7

Winter 2021 Parallel Processing, Fundamental Concepts Slide 10

NRC Report (2011): The Future of Computing Performance: Game Over or Next Level?

Trends in Processor Chip Density, Performance,
Clock Speed, Power, and Number of Cores

Perfor-
mance

Power

Cores

Clock

Density
Transistors per chip (1000s)
Relative performance
Clock speed (MHz)
Power dissipation (W)
Number of cores per chip

Year of Introduction

Winter 2021 Parallel Processing, Fundamental Concepts Slide 11

Original data up to 2010 collected/plotted by M. Horowitz et al.; Data for 2010-2017 extension collected by K. Rupp

Trends in Processor Chip Density, Performance,
Clock Speed, Power, and Number of Cores

Year of Introduction

Winter 2021 Parallel Processing, Fundamental Concepts Slide 12

Source: [DANO12] “CPU DB: Recording Microprocessor History,” CACM, April 2012.

Feature Size (mm)

Overall Performance Improvement
(SPECINT, relative to 386)

Gate Speed Improvement
(FO4, relative to 386)

~1985 ~2010--------- 1995-2000 ---------
Much of arch. improvements already achieved

Shares of Technology and Architecture in Processor
Performance Improvement

~2005

Winter 2021 Parallel Processing, Fundamental Concepts Slide 13

Why High-Performance Computing?

Higher speed (solve problems faster)
Important when there are “hard” or “soft” deadlines;
e.g., 24-hour weather forecast

Higher throughput (solve more problems)
Important when we have many similar tasks to perform;
e.g., transaction processing

Higher computational power (solve larger problems)
e.g., weather forecast for a week rather than 24 hours,
or with a finer mesh for greater accuracy

Categories of supercomputers
Uniprocessor; aka vector machine
Multiprocessor; centralized or distributed shared memory
Multicomputer; communicating via message passing
Massively parallel processor (MPP; 1K or more processors)

1

2

3

Winter 2021 Parallel Processing, Fundamental Concepts Slide 14

The Speed-of-Light Argument

The speed of light is about 30 cm/ns.

Signals travel at 40-70% speed of light (say, 15 cm/ns).

If signals must travel 1.5 cm during the execution of an
instruction, that instruction will take at least 0.1 ns;
thus, performance will be limited to 10 GIPS.

This limitation is eased by continued miniaturization,
architectural methods such as cache memory, etc.;
however, a fundamental limit does exist.

How does parallel processing help? Wouldn’t multiple
processors need to communicate via signals as well?

Winter 2021 Parallel Processing, Fundamental Concepts Slide 15

Interesting Quotes about Parallel Programming

“There are 3 rules to follow when parallelizing large codes.
Unfortunately, no one knows what these rules are.”
~ W. Somerset Maugham, Gary Montry

“The wall is there. We probably won’t have any more
products without multicore processors [but] we see a lot of
problems in parallel programming.” ~ Alex Bachmutsky

“We can solve [the software crisis in parallel computing],
but only if we work from the algorithm down to the
hardware — not the traditional hardware-first mentality.”
~ Tim Mattson

“[The processor industry is adding] more and more cores,
but nobody knows how to program those things. I mean,
two, yeah; four, not really; eight, forget it.” ~ Steve Jobs

1

2

3

4

Winter 2021 Parallel Processing, Fundamental Concepts Slide 16

The Three Walls of High-Performance Computing
Memory-wall challenge:
Memory already limits single-processor performance.
How can we design a memory system that provides
a bandwidth of several terabytes/s for data-intensive
high-performance applications?

Power-wall challenge:
When there are millions of processing nodes, each
drawing a few watts of power, we are faced with the
energy bill and cooling challenges of MWs of power
dissipation, even ignoring the power needs of the
interconnection network and peripheral devices

Reliability-wall challenge:
Ensuring continuous and correct functioning of a
system with many thousands or even millions of
processing nodes is non-trivial, given that a few of
the nodes are bound to malfunction at an given time

1

2

3

Winter 2021 Parallel Processing, Fundamental Concepts Slide 17

Power-Dissipation
Challenge

Koomey’s Law:
Exponential improvement in
energy-efficient computing,
with computations
performed per KWh
doubling every 1.57 years

How long will Koomey’s law
be in effect? It will come to
an end, like Moore’s Law

A challenge at both ends:
- Supercomputers
- Personal electronics

https://cacm.acm.org/magazines/2017/1/211094-
exponential-laws-of-computing-growth/fulltext

Winter 2021 Parallel Processing, Fundamental Concepts Slide 18

Why Do We Need TIPS or TFLOPS Performance?

Reasonable running time = Fraction of hour to several hours (103-104 s)
In this time, a TIPS/TFLOPS machine can perform 1015-1016 operations

Example 2: Fluid dynamics calculations (1000  1000  1000 lattice)
109 lattice points  1000 FLOP/point  10 000 time steps = 1016 FLOP

Example 3: Monte Carlo simulation of nuclear reactor
1011 particles to track (for 1000 escapes)  104 FLOP/particle = 1015 FLOP

Decentralized supercomputing: A grid of tens of thousands networked
computers discovered the Mersenne prime 282 589 933 – 1 as the largest
known prime number as of Jan. 2021 (it has 24 862 048 digits in decimal)

Example 1: Southern oceans heat Modeling
(10-minute iterations)
300 GFLOP per iteration 
300 000 iterations per 6 yrs =
1016 FLOP

Winter 2021 Parallel Processing, Fundamental Concepts Slide 19

Supercomputer Performance Growth

Fig. 1.2 The exponential growth in supercomputer performance over
the past two decades (from [Bell92], with ASCI performance goals and
microprocessor peak FLOPS superimposed as dotted lines).

1990 1980 2000 2010
MFLOPS

S
u

pe
rc

o
m

p
ut

e
r

pe
rf

o
rm

a
nc

e

Calendar year

Cray
X-MP

Y-MP

CM-2

GFLOPS

TFLOPS

PFLOPS

Vector supers

CM-5

CM-5

$240M MPPs

$30M MPPs

ASCI goals

 Micros

 80386

 80860

 A lpha

Winter 2021 Parallel Processing, Fundamental Concepts Slide 20

The ASCI Program

2000 1995 2005 2010

P
e

rf
o

rm
a

nc
e

 (
T

F
L

O
P

S
)

Calendar year

ASCI Red

ASCI Blue

ASCI White

1+ TFLOPS, 0.5 TB

3+ TFLOPS, 1.5 TB

10+ TFLOPS, 5 TB

30+ TFLOPS, 10 TB

100+ TFLOPS, 20 TB

1

10

100

1000 Plan Develop Use

ASCI

ASCI Purple

ASCI Q

Fig. 24.1 Milestones in the Accelerated Strategic (Advanced Simulation &)
Computing Initiative (ASCI) program, sponsored by the US Department of
Energy, with extrapolation up to the PFLOPS level.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 21

The Quest for Higher Performance

1. IBM Blue Gene/L 2. SGI Columbia 3. NEC Earth Sim

LLNL, California NASA Ames, California Earth Sim Ctr, Yokohama

Material science,
nuclear stockpile sim

Aerospace/space sim,
climate research

Atmospheric, oceanic,
and earth sciences

32,768 proc’s, 8 TB,
28 TB disk storage

10,240 proc’s, 20 TB,
440 TB disk storage

5,120 proc’s, 10 TB,
700 TB disk storage

Linux + custom OS Linux Unix

71 TFLOPS, $100 M 52 TFLOPS, $50 M 36 TFLOPS*, $400 M?

Dual-proc Power-PC
chips (10-15 W power)

20x Altix (512 Itanium2)
linked by Infiniband

Built of custom vector
microprocessors

Full system: 130k-proc,
360 TFLOPS (est)

Volume = 50x IBM,
Power = 14x IBM
* Led the top500 list for 2.5 yrs

Top Three Supercomputers in 2005 (IEEE Spectrum, Feb. 2005, pp. 15-16)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 22

The Quest for Higher Performance: 2008 Update

1. IBM Roadrunner 2. IBM Blue Gene/L 3. Sun Blade X6420

LANL, New Mexico LLNL, California U Texas Austin

Nuclear stockpile
calculations, and more

Advanced scientific
simulations

Open science research

122,400 proc’s, 98 TB,
0.4 TB/s file system I/O

212,992 proc’s, 74 TB,
2 PB disk storage

62,976 proc’s, 126 TB

Red Hat Linux CNK/SLES 9 Linux

1.38 PFLOPS, $130M 0.596 PFLOPS, $100M 0.504 PFLOPS*

PowerXCell 8i 3.2 GHz,
AMD Opteron (hybrid)

PowerPC 440 700 MHz AMD X86-64 Opteron
quad core 2 GHz

2.35 MW power,
expands to 1M proc’s

1.60 MW power,
expands to 0.5M proc’s

2.00 MW power,
Expands to 0.3M proc’s

Top Three Supercomputers in June 2008 (http://www.top500.org)

* Actually 4th on top-500 list, with the 3rd being another IBM Blue Gene system at 0.557 PFLOPS

Winter 2021 Parallel Processing, Fundamental Concepts Slide 23

The Quest for Higher Performance: 2012 Update

1. Cray Titan 2. IBM Sequoia 3. Fujitsu K Computer

ORNL, Tennessee LLNL, California RIKEN AICS, Japan

XK7 architecture Blue Gene/Q arch RIKEN architecture

560,640 cores,
710 TB, Cray Linux

1,572,864 cores,
1573 TB, Linux

705,024 cores,
1410 TB, Linux

Cray Gemini interconn’t Custom interconnect Tofu interconnect

17.6/27.1 PFLOPS* 16.3/20.1 PFLOPS* 10.5/11.3 PFLOPS*

AMD Opteron, 16-core,
2.2 GHz, NVIDIA K20x

Power BQC, 16-core,
1.6 GHz

SPARC64 VIIIfx,
2.0 GHz

8.2 MW power 7.9 MW power 12.7 MW power

Top Three Supercomputers in November 2012 (http://www.top500.org)

* max/peak performance
In the top 10, IBM also occupies ranks 4-7 and 9-10. Dell and NUDT (China) hold ranks 7-8.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 24

The Quest for Higher Performance: 2018 Update
Top Three Supercomputers in November 2018 (http://www.top500.org)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 25

The Quest for Higher Performance: 2020 Update
Top Five Supercomputers in November 2020 (http://www.top500.org)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 26

Top 500 Supercomputers in the World

20202014 2016 2018

Winter 2021 Parallel Processing, Fundamental Concepts Slide 27

What Exactly is Parallel Processing?

Parallelism = Concurrency
Doing more than one thing at a time

Has been around for decades, since early computers

I/O channels, DMA, device controllers, multiple ALUs

The sense in which we use it in this course

Multiple agents (hardware units, software processes)
collaborate to perform our main computational task

- Multiplying two matrices
- Breaking a secret code
- Deciding on the next chess move

Winter 2021 Parallel Processing, Fundamental Concepts Slide 28

1.2 A Motivating
Example

Fig. 1.3 The sieve of
Eratosthenes yielding a
list of 10 primes for n = 30.
Marked elements have
been distinguished by
erasure from the list.

Init. Pass 1 Pass 2 Pass 3

2m 2 2 2
3 3m 3 3
4
5 5 5m 5
6
7 7 7 7  m
8
9 9

10
11 11 11 11
12
13 13 13 13
14
15 15
16
17 17 17 17
18
19 19 19 19
20
21 21
22
23 23 23 23
24
25 25 25
26
27 27
28
29 29 29 29
30

Any composite number
has a prime factor
that is no greater than
its square root.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 29

Single-Processor Implementation of the Sieve

Fig. 1.4 Schematic representation of single-processor
solution for the sieve of Eratosthenes.

1 2 n

Current Prime Index
P

Bit-vector

Winter 2021 Parallel Processing, Fundamental Concepts Slide 30

Control-Parallel Implementation of the Sieve

1 2 n

Current Prime

Index
P1

Index
P2

Index
Pp...

Shared
Memory I/O Device

(b)

Fig. 1.5 Schematic representation of a control-parallel
solution for the sieve of Eratosthenes.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 31

Running Time of the Sequential/Parallel Sieve

Fig. 1.6 Control-parallel realization of the sieve of
Eratosthenes with n = 1000 and 1  p  3.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2 | 3 | 5 | 7 | 11 |13|17

 2 | 7 |17
 3 5 | 11 |13|

 2 |
| 3 11 | 19 29 31
 5 | 7 13|17 23

19 29
23 31 p = 1, t = 1411

p = 2, t = 706

p = 3, t = 499

19

23 29 31

Winter 2021 Parallel Processing, Fundamental Concepts Slide 32

Data-Parallel Implementation of the Sieve

Fig. 1.7 Data-parallel realization of the sieve of Eratosthenes.

1 2

Current PrimeP1 Index

n/p

n/p+1

Current PrimeP2 Index

2n/p

Current PrimeP p Index

Communi-
 cation

n–n/p+1 n

Assume at most n processors,
so that all prime factors dealt with
are in P1 (which broadcasts them)

 n < n / p

Winter 2021 Parallel Processing, Fundamental Concepts Slide 33

One Reason for Sublinear Speedup:
Communication Overhead

Fig. 1.8 Trade-off between communication time and computation
time in the data-parallel realization of the sieve of Eratosthenes.

Number of processors

Communication

Computation

Solution time

Ideal speedup

Number of processors

Actual speedup

Winter 2021 Parallel Processing, Fundamental Concepts Slide 34

Another Reason for Sublinear Speedup:
Input/Output Overhead

Fig. 1.9 Effect of a constant I/O time on the data-parallel
realization of the sieve of Eratosthenes.

Number of processors

I/O time

Computation

Solution time

Ideal speedup

Number of processors

Actual speedup

Winter 2021 Parallel Processing, Fundamental Concepts Slide 35

1.3 Parallel Processing Ups and Downs
Using thousands of “computers”
(humans + calculators) for 24-hr
weather prediction in a few hours

Conductor









































































1960s: ILLIAC IV (U Illinois) –
four 8  8 mesh quadrants, SIMD

2000s: Internet revolution –
info providers, multimedia, data
mining, etc. need lots of power

1980s: Commercial interest –
technology was driven by
government grants & contracts.
Once funding dried up,
many companies went bankrupt

Fig. 1.10 Richardson’s circular
theater for weather forecasting
calculations.

2020s: Cloud, big-data, AI/ML

Winter 2021 Parallel Processing, Fundamental Concepts Slide 36

Trends in High-Technology Development

Development of some technical fields into $1B businesses and the roles played by
government research and industrial R&D over time (IEEE Computer, early 90s?).

1960 1970 1980 1990 2000

Graphics

Networking

RISC

Parallelism

GovResGovResGovResGovResGovResGovResGovResGovResGovResGovRes

IndResIndResIndResIndResIndResIndResIndResIndResIndResIndRes

IndDevIndDev

GovResGovResGovResG GovResGovResGovResGo

GovResGovResGovResGovResGovResGovResGovResGovResGovResGovRes

IndResIndResIndResIndResIndResIndResIndResIndResIndResIndRes

IndDevIndDev $1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1

IndResIndResIndResIndResIndResIndResIndResIndResIndResIndRes

GovRes

IndDev

IndResIndR

$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1

IndDevIndDev $1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1

$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B

Transfer of
ideas/people

Evolution of parallel processing has been
quite different from other high tech fields

Winter 2021 Parallel Processing, Fundamental Concepts Slide 37

Trends in Hi-Tech Development (2003)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 38

Status of Computing Power (circa 2000)

GFLOPS on desktop: Apple Macintosh, with G4 processor

TFLOPS in supercomputer center:
1152-processor IBM RS/6000 SP (switch-based network)
Cray T3E, torus-connected

PFLOPS on the drawing board:
1M-processor IBM Blue Gene (2005?)
32 proc’s/chip, 64 chips/board, 8 boards/tower, 64 towers
Processor: 8 threads, on-chip memory, no data cache
Chip: defect-tolerant, row/column rings in a 6  6 array
Board: 8  8 chip grid organized as 4  4  4 cube
Tower: Boards linked to 4 neighbors in adjacent towers
System: 323232 cube of chips, 1.5 MW (water-cooled)

2010

TFLOPS

PFLOPS

EFLOPS

2020

EFLOPS (Exa = 1018)

ZFLOPS (Zeta = 1021)

PFLOPS (Peta = 1015)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 39

1.4 Types of Parallelism: A Taxonomy

Fig. 1.11 The Flynn-Johnson classification of computer systems.

SISD

SIMD

MISD

MIMD

GMSV

GMMP

DMSV

DMMP

Single data
stream

Multiple data
streams

S
in

gl
e

in
st

r
st

re
am

M

ul
tip

le
 in

st
r

st
re

am
s

Flynn’s categories

Jo
h

n
so

n
’s

 e
x

pa
n

si
o

n

Shared
variables

Message
passing

G
lo

ba
l

m
e

m
or

y
D

is
tr

ib
ut

ed

m
e

m
or

y

Uniprocessors

Rarely used

Array or vector
processors

Multiproc’s or
multicomputers

Shared-memory
multiprocessors

Rarely used

Distributed
shared memory

Distrib-memory
multicomputers

Winter 2021 Parallel Processing, Fundamental Concepts Slide 40

 Grosch’s law: Economy of scale applies, or power = cost2

 Minsky’s conjecture: Speedup tends to be proportional to log p

 Tyranny of IC technology: Uniprocessors suffice (x10 faster/5 yrs)

 Tyranny of vector supercomputers: Familiar programming model

 Software inertia: Billions of dollars investment in software

 Amdahl’s law: Unparallelizable code severely limits the speedup

1.5 Roadblocks to Parallel Processing

No longer valid; in fact we can get more bang per buck in micros

Has roots in analysis of memory bank conflicts; can be overcome

Faster ICs make parallel machines faster too; what about x1000?

Not all computations involve vectors; parallel vector machines

New programs; even uniprocessors benefit from parallelism spec

Winter 2021 Parallel Processing, Fundamental Concepts Slide 41

Amdahl’s Law

Fig. 1.12 Limit on speed-up according to Amdahl’s law.

0

10

20

30

40

50

0 10 20 30 40 50
Enhancement factor (p)

S
p

e
e

d
u

p
 (

s
)

f = 0

f = 0.1

f = 0.05

f = 0.02

f = 0.01

s =

 min(p, 1/f)

1
f+ (1– f)/p

f = fraction
unaffected

p = speedup
of the rest

Winter 2021 Parallel Processing, Fundamental Concepts Slide 42

1.6 Effectiveness of Parallel Processing

p Number of processors

W(p) Work performed by p processors

T(p) Execution time with p processors
T(1) = W(1); T(p)  W(p)

S(p) Speedup = T(1) / T(p)

E(p) Efficiency = T(1) / [p T(p)]

R(p) Redundancy = W(p) / W(1)

U(p) Utilization = W(p) / [p T(p)]

Q(p) Quality = T3(1) / [p T2(p) W(p)]

1

2

3

4

5

67

8

9
10

11

12

13

Fig. 1.13
Task graph
exhibiting
limited
inherent

parallelism.

W(1) = 13

T(1) = 13

T() = 8

Winter 2021 Parallel Processing, Fundamental Concepts Slide 43

Reduction or Fan-in Computation

Fig. 1.14 Computation graph for finding the sum of 16 numbers .

 ----------- 16 numbers to be added -----------

Sum

+ + ++++ ++

++

+

++

+

+

Example: Adding 16 numbers, 8 processors, unit-time additions

Zero-time communication

E(8) = 15 / (8  4) = 47%
S(8) = 15 / 4 = 3.75
R(8) = 15 / 15 = 1
Q(8) = 1.76

Unit-time communication

E(8) = 15 / (8  7) = 27%
S(8) = 15 / 7 = 2.14
R(8) = 22 / 15 = 1.47
Q(8) = 0.39

Winter 2021 Parallel Processing, Fundamental Concepts Slide 44

ABCs of Parallel Processing in One Slide
A Amdahl’s Law (Speedup Formula)

Bad news – Sequential overhead will kill you, because:
Speedup = T1/Tp  1/[f + (1 – f)/p]  min(1/f, p)

Morale: For f = 0.1, speedup is at best 10, regardless of peak OPS.

B Brent’s Scheduling Theorem
Good news – Optimal scheduling is very difficult, but even a naive
scheduling algorithm can ensure:

T1/p  Tp  T1/p + T = (T1/p)[1 + p/(T1/T)]
Result: For a reasonably parallel task (large T1/T), or for a suitably
small p (say, p  T1/T), good speedup and efficiency are possible.

C Cost-Effectiveness Adage
Real news – The most cost-effective parallel solution may not be
the one with highest peak OPS (communication?), greatest speed-up
(at what cost?), or best utilization (hardware busy doing what?).
Analogy: Mass transit might be more cost-effective than private cars
even if it is slower and leads to many empty seats.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 45

2 A Taste of Parallel Algorithms

Learn about the nature of parallel algorithms and complexity:
• By implementing 5 building-block parallel computations
• On 4 simple parallel architectures (20 combinations)

Topics in This Chapter

2.1 Some Simple Computations

2.2 Some Simple Architectures

2.3 Algorithms for a Linear Array

2.4 Algorithms for a Binary Tree

2.5 Algorithms for a 2D Mesh

2.6 Algorithms with Shared Variables

Winter 2021 Parallel Processing, Fundamental Concepts Slide 46

Two Kinds of Parallel Computing/Processing Courses

Centered on Programming and Applications
Assume language-level facilities for parallel programming

Shared variables and structures
Message passing primitives

Architecture-independent to a large extent
Knowledge of architecture helpful, but not required for decent results
Analogy: Programmer need not know about cache memory, but …

Requires attention to data distribution for optimal performance

Focused on Architectures and Algorithms
Develop algorithms with close attention to low-level hardware support

Data distribution affects algorithm design
Communication with neighboring nodes only

Each architecture needs its own set of algorithms
Building-block computations can be used to save effort

Interconnection topology is the key to high performance

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P1

P0

P3

P4

P2
P5

P7 P8

P6

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Winter 2021 Parallel Processing, Fundamental Concepts Slide 47

Architecture/Algorithm Combinations

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Semi-
group

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Parallel
prefix

Packet
routing

Broad-
casting

Sorting

P1

P0

P3

P4

P2
P5

P7 P8

P6

We will spend more time on
linear array and binary tree

and less time on mesh and
shared memory (studied later)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 48

2.1 Some Simple Computations

Fig. 2.1 Semigroup computation on a uniprocessor.

x0

identity
element

x1




x2



xn–2


x



s

.
 .
 .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s = x0  x1 
. . .  xn–1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 49

Parallel Semigroup Computation

Semigroup computation viewed as tree or fan-in computation.

x0 x1



x2



s

x3

  











x4 x5 x6 x7 x8 x9 x10

s = x0  x1 
. . .  xn–1

log2 n levels

Winter 2021 Parallel Processing, Fundamental Concepts Slide 50

Parallel Prefix Computation

Prefix computation on a uniprocessor.

Parallel version
much trickier
compared to that
of semigroup
computation

x0

identity
element

x1




x2



xn–2


x



.
 .
 .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s0

s1

s2

sn–2

sn–1

s = x0  x1  x2  . . .  xn–1

Requires a
minimum of
log2 n levels

Winter 2021 Parallel Processing, Fundamental Concepts Slide 51

The Five Building-Block Computations

Reduction computation: aka tree, semigroup, fan-in comp.
All processors to get the result at the end

Scan computation: aka parallel prefix comp.
The ith processor to hold the ith prefix result at the end

Packet routing:
Send a packet from a source to a destination processor

Broadcasting:
Send a packet from a source to all processors

Sorting:
Arrange a set of keys, stored one per processor, so that
the ith processor holds the ith key in ascending order

Winter 2021 Parallel Processing, Fundamental Concepts Slide 52

2.2 Some Simple Architectures

Fig. 2.2 A linear array of nine processors and its ring variant.

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

Max node degree d = 2
Network diameter D = p – 1 (p/2)
Bisection width B = 1 (2)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 53

(Balanced) Binary Tree Architecture

Fig. 2.3 A balanced (but incomplete) binary tree of nine processors.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Max node degree d = 3
Network diameter D = 2 log2 p (- 1)
Bisection width B = 1

Complete binary tree
2q – 1 nodes, 2q–1 leaves

Balanced binary tree
Leaf levels differ by 1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 54

Two-Dimensional (2D) Mesh

Fig. 2.4 2D mesh of 9 processors and its torus variant.

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Max node degree d = 4
Network diameter D = 2p – 2 (p)
Bisection width B  p (2p)

Nonsquare
mesh

(r rows,
p/r col’s)

also possible

Winter 2021 Parallel Processing, Fundamental Concepts Slide 55

Shared-Memory Architecture

Fig. 2.5 A shared-variable architecture modeled as a complete graph.

Costly to implement
Not scalable

But . . .
Conceptually simple
Easy to program

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Max node degree d = p – 1
Network diameter D = 1
Bisection width B = p/2 p/2

Winter 2021 Parallel Processing, Fundamental Concepts Slide 56

2.3 Algorithms for a Linear Array

Fig. 2.6 Maximum-finding on a linear array of nine processors.

 5 2 8 6 3 7 9 1 4
 5 8 8 8 7 9 9 9 4
 8 8 8 8 9 9 9 9 9
 8 8 8 9 9 9 9 9 9
 8 8 9 9 9 9 9 9 9
 8 9 9 9 9 9 9 9 9
 9 9 9 9 9 9 9 9 9

Initial
values

Maximum
identified

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

For general semigroup computation:
Phase 1: Partial result is propagated from left to right
Phase 2: Result obtained by processor p – 1 is broadcast leftward

Winter 2021 Parallel Processing, Fundamental Concepts Slide 57

Linear Array Prefix Sum Computation

Fig. 2.7 Computing prefix sums on a linear array of nine processors.

 5 2 8 6 3 7 9 1 4
 5 7 8 6 3 7 9 1 4
 5 7 15 6 3 7 9 1 4
 5 7 15 21 3 7 9 1 4
 5 7 15 21 24 7 9 1 4
 5 7 15 21 24 31 9 1 4
 5 7 15 21 24 31 40 1 4
 5 7 15 21 24 31 40 41 4
 5 7 15 21 24 31 40 41 45

Initial
values

Final
results

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Diminished parallel prefix computation:
The ith processor obtains the result up to element i – 1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 58

Linear-Array Prefix Sum Computation

Fig. 2.8 Computing prefix sums on a linear array
with two items per processor.

5 2 8 6 3 7 9 1 4
 1 6 3 2 5 3 6 7 5

5 2 8 6 3 7 9 1 4
 6 8 11 8 8 10 15 8 9
 +
 0 6 14 25 33 41 51 66 74
 =
5 8 22 31 36 48 60 67 78
 6 14 25 33 41 51 66 74 83

Initial
values

Final
results

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Local
prefixes

Diminished
prefixes

Winter 2021 Parallel Processing, Fundamental Concepts Slide 59

Linear Array Routing and Broadcasting

Routing and broadcasting on a linear array of nine processors.

To route from processor i to processor j:
Compute j – i to determine distance and direction

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Right-moving packets

Left-moving packets

To broadcast from processor i:
Send a left-moving and a right-moving broadcast message

Winter 2021 Parallel Processing, Fundamental Concepts Slide 60

Linear Array
Sorting

(Externally
Supplied Keys)

Fig. 2.9 Sorting on a
linear array with the
keys input sequentially
from the left.

5 2 8 6 3 7 9 1

 5 2 8 6 3 7 9

 5 2 8 6 3 7

 5 2 8 6 3

 5 2 8 6

 5 2 8

 5 2

 5

5 2 8 6 3 7 9 1 4

4

1 4

4 9
1

1 9 4 7

1 7 4 3 9

1 3

4
7 9

1

1 2

3

3

4 7 6

8

8

6

9

4 6 7 9

1

1

1

4 9
1

1 9 4 7

1

7
3

9

1

3

4 7 9

1

1

2

3

3

4
7 6

8

8

6

9
4

5

6 7
9

5

5

5

5

2

2

2 8

8

6
6

2

2

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

5 6

6

6

6

7

7

7

8

8

8
9

9

7 8

8

9

Winter 2021 Parallel Processing, Fundamental Concepts Slide 61

Linear Array Sorting (Internally Stored Keys)

Fig. 2.10 Odd-even transposition sort on a linear array.

5 2 8 6 3 7 9 1 4
5 2 8 3 6 7 9 1 4
2 5 3 8 6 7 1 9 4
2 3 5 6 8 1 7 4 9
2 3 5 6 1 8 4 7 9
2 3 5 1 6 4 8 7 9
2 3 1 5 4 6 7 8 9
2 1 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

In odd steps,
1, 3, 5, etc.,
odd-
numbered
processors
exchange
values with
their right
neighbors

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

T(1) = W(1) = p log2 p T(p) = p W(p)  p2/2

S(p) = log2 p (Minsky’s conjecture?) R(p) = p/(2 log2 p)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 62

2.4 Algorithms for a Binary Tree

Reduction computation and broadcasting on a binary tree.

P1

P0

P3

P4

P2
P5

P7 P8

P6

P1

P0

P3

P4

P2
P5

P7 P8

P6

Winter 2021 Parallel Processing, Fundamental Concepts Slide 63

Binary Tree
Scan

Computation

Fig. 2.11 Scan
computation on a
binary tree of
processors.

x x x

x x

x x

Upward
Propagation

1 2

3 4

0

10

x x 43

x x 32 x 4

x x 10 x x 32 x 4

x x x

x x

x x

Downward
Propagation

1 2

3 4

0

10

x x 10 x 2

x x 10 x x 32

x0 x x 10

x x 10 x 2

x0 x x 0
x x 10 x 

x x 10 x x 32

x x 10 x x 32 x 4

Results

1
2

Identity

Identity

Identity

Upward
propagation

Downward
propagation

Winter 2021 Parallel Processing, Fundamental Concepts Slide 64

Node Function in Binary Tree Scan Computation

Two binary operations:
one during the upward
propagation phase,
and another during
downward propagation

Upward
propagation

Downward
propagation




[i, j – 1]

[0, i – 1] [j, k]

[0, j – 1]

[i, k] [0, i – 1]

Insert latches for
systolic operation
(no long wires or
propagation path)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 65

Usefulness of Scan Computation

Ranks of 1s in a list of 0s/1s:
Data: 0 0 1 0 1 0 0 1 1 1 0
Prefix sums: 0 0 1 1 2 2 2 3 4 5 5
Ranks of 1s: 1 2 3 4 5

Priority arbitration circuit:
Data: 0 0 1 0 1 0 0 1 1 1 0
Dim’d prefix ORs: 0 0 0 1 1 1 1 1 1 1 1
Complement: 1 1 1 0 0 0 0 0 0 0 0
AND with data: 0 0 1 0 0 0 0 0 0 0 0

Carry-lookahead network:
p g a g g p p p g a cin

 g or a
Direction of indexing

p ¢ x = x
a ¢ x = a
g ¢ x = g

Winter 2021 Parallel Processing, Fundamental Concepts Slide 66

Binary Tree Packet Routing

Packet routing on a binary tree with two indexing schemes.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Preorder
indexing

XXX

LXX RXX

LLX
RLXLRX

RRX

RRRRRL

Node index is a representation
of the path from the tree root

Winter 2021 Parallel Processing, Fundamental Concepts Slide 67

Binary Tree Sorting

Fig. 2.12 The first few steps of the sorting algorithm on a binary tree.

(a) (b)

(c) (d)

5 2 3

1 4 5 2

1 4

3

2

 

 



5 1 3

4  

 



2

5

1

3

4  

 

 



Small values
“bubble up,”
causing the
root to “see”
the values in
ascending
order

Linear-time
sorting (no
better than
linear array)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 68

The Bisection-Width Bottleneck in a Binary Tree

Fig. 2.13 The bisection width of a binary tree architecture.

Bisection Width = 1

Linear-time
sorting is the
best possible
due to B = 1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 69

2.5 Algorithms for a 2D Mesh

Finding the max value on a 2D mesh.

5 2 8

6 3 7

9 1 4

8 8 8

7 7 7

9 9 9

9 9 9

9 9 9

9 9 9

Row maximums Column maximums

Computing prefix sums on a 2D mesh

5 7

6 9

9

Diminished prefix
sums in last column

Broadcast in rows
and combine

15

16

10 14

Row prefix sums

5 7

6 9

9

15

16

10 14

15

31

5 7 150

21 24 31

40 41 45

Winter 2021 Parallel Processing, Fundamental Concepts Slide 70

Routing and Broadcasting on a 2D Mesh

Routing and broadcasting on a 9-processors 2D mesh or torus

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Routing: Send along the row to the correct column; route in column

Broadcasting: Broadcast in row; then broadcast in all column

Nonsquare
mesh

(r rows,
p/r col’s)

also possible

Winter 2021 Parallel Processing, Fundamental Concepts Slide 71

 5 2 8 2 5 8 1 4 3 1 3 4 1 3 2 1 2 3

 6 3 7 7 6 3 2 5 8 8 5 2 6 5 4 4 5 6

 9 1 4 1 4 9 7 6 9 6 7 9 8 7 9 7

Initial values Snake-like
 row sort

Top-to-bottom
 column
sort

Snake-like
 row sort

Top-to-bottom
 column
sort

Phase
1

Phase
2

 5 2 8 2 5 8 1 4 3 1 3 4 1 3 2 1 2 3

 6 3 7 7 6 3 2 5 8 8 5 2 6 5 4 4 5 6

 9 1 4 1 4 9 7 6 9 6 7 9 8 7 9 7 8 9

Initial values Snake-like
 row sort

Top-to-bottom
 column
sort

Snake-like
 row sort

Top-to-bottom
 column
sort

Left-to-right
 row sort

Phase
1

Phase
2

Phase
3

1 2 3

Fig. 2.14 The shearsort algorithm on a 3  3 mesh.

Number of iterations = log2 p
Compare-exchange steps in each iteration = 2p
Total steps = (log2 p + 1) p

Sorting on a 2D Mesh Using Shearsort

Winter 2021 Parallel Processing, Fundamental Concepts Slide 72

2.6 Algorithms with Shared Variables

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Reduction computation:
Each processor can perform
the computation locally

Scan computation: Same as
reduction, except only data
from smaller-index processors
are combined

Packet routing: Trivial

Broadcasting: One step with
all-port (p – 1 steps with
single-port) communication

Sorting: Each processor
determines the rank of its data
element; followed by routing

3

12

8

5

1

415

10

6

Rank[4] = 2
(1 & 3 smaller)

Rank[15] = 8
(8 others smaller)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 73

3 Parallel Algorithm Complexity

Review algorithm complexity and various complexity classes:
• Introduce the notions of time and time/cost optimality
• Derive tools for analysis, comparison, and fine-tuning

Topics in This Chapter

3.1 Asymptotic Complexity

3.2 Algorithms Optimality and Efficiency

3.3 Complexity Classes

3.4 Parallelizable Tasks and the NC Class

3.5 Parallel Programming Paradigms

3.6 Solving Recurrences

Winter 2021 Parallel Processing, Fundamental Concepts Slide 74

3.1 Asymptotic Complexity

Fig. 3.1 Graphical representation of the notions of asymptotic complexity.

n

c g(n)

g(n)

f(n)

n n

c g(n)

c' g(n)

f(n)

n n

g(n)

c g(n)

f(n)

n 0 0 0

 f(n) = O(g(n)) f(n) = (g(n)) f(n) = (g(n))

3n log n = O(n2) ½ n log2 n = (n) 3n2 + 200n = (n2)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 75

Little Oh, Big Oh, and Their Buddies

Notation Growth rate Example of use

f(n) = o(g(n)) strictly less than T(n) = cn2 + o(n2)

f(n) = O(g(n)) no greater than T(n,m)=O(n logn+m)

f(n) = (g(n)) the same as T(n) = (n log n)

f(n) = (g(n)) no less than T(n,m) = (n +m3/2)

f(n) = w(g(n)) strictly greater than T(n) = w(log n)





=



>

Winter 2021 Parallel Processing, Fundamental Concepts Slide 76

Growth Rates for
Typical Functions Sublinear Linear Superlinear

log2n n1/2 n n log2n n3/2

-------- -------- -------- -------- --------

9 3 10 90 30
36 10 100 3.6 K 1 K
81 31 1 K 81 K 31 K

169 100 10 K 1.7 M 1 M
256 316 100 K 26 M 31 M
361 1 K 1 M 361 M 1000 M

Table 3.1 Comparing the
Growth Rates of Sublinear
and Superlinear Functions
(K = 1000, M = 1000000).

n (n/4) log2n n log2n 100n1/2 n3/2

-------- -------- -------- -------- --------
10 20 s 2 min 5 min 30 s

100 15 min 1 hr 15 min 15 min
1 K 6 hr 1 day 1 hr 9 hr

10 K 5 day 20 day 3 hr 10 day
100 K 2 mo 1 yr 9 hr 1 yr

1 M 3 yr 11 yr 1 day 32 yr

Table 3.3 Effect of Constants
on the Growth Rates of
Running Times Using Larger
Time Units and Round Figures.

Warning: Table 3.3 in
text needs corrections.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 77

Some Commonly Encountered Growth Rates

Notation Class name Notes

O(1) Constant Rarely practical
O(log log n) Double-logarithmic Sublogarithmic
O(log n) Logarithmic
O(logk n) Polylogarithmic k is a constant
O(na), a < 1 e.g., O(n1/2) or O(n1–e)
O(n / logk n) Still sublinear

O(n) Linear

O(n logk n) Superlinear
O(nc), c > 1 Polynomial e.g., O(n1+e) or O(n3/2)
O(2n) Exponential Generally intractable
O(22n

) Double-exponential Hopeless!

Winter 2021 Parallel Processing, Fundamental Concepts Slide 78

3.2 Algorithm Optimality and Efficiency

Fig. 3.2 Upper and lower bounds may tighten over time.

Upper bounds: Deriving/analyzing
algorithms and proving them correct

Lower bounds: Theoretical arguments
based on bisection width, and the like

Typical complexity classes

Improving upper bounds Shifting lower bounds

log n log n 2 n / log n n n log log n n log n n 2

1988
Zak’s thm.
(log n)

1994
Ying’s thm.
(log n) 2

1996
Dana’s alg.

O(n)

1991
Chin’s alg.

O(n log log n)

1988
Bert’s alg.
O(n log n)

1982
Anne’s alg.

O(n) 2

Optimal
algorithm?

Sublinear
Linear

Superlinear

Winter 2021 Parallel Processing, Fundamental Concepts Slide 79

Complexity History of Some Real Problems

Examples from the book Algorithmic Graph Theory and Perfect Graphs [GOLU04]:

Complexity of determining whether an n-vertex graph is planar

Exponential Kuratowski 1930

O(n3) Auslander and Porter 1961
Goldstein 1963
Shirey 1969

O(n2) Lempel, Even, and Cederbaum 1967

O(n log n) Hopcroft and Tarjan 1972

O(n) Hopcroft and Tarjan 1974
Booth and Leuker 1976

A second, more complex example: Max network flow, n vertices, e edges:
ne2  n2e  n3  n2e1/2  n5/3e2/3  ne log2 n  ne log(n2/e)

 ne + n2+e  ne loge/(n log n) n  ne loge/n n + n2 log2+e n

Winter 2021 Parallel Processing, Fundamental Concepts Slide 80

Some Notions of Algorithm Optimality

Time optimality (optimal algorithm, for short)

T(n, p) = g(n, p), where g(n, p) is an established lower bound

Cost-time optimality (cost-optimal algorithm, for short)

pT(n, p) = T(n, 1); i.e., redundancy = utilization = 1

Cost-time efficiency (efficient algorithm, for short)

pT(n, p) = (T(n, 1)); i.e., redundancy = utilization = (1)

Problem size Number of processors

Winter 2021 Parallel Processing, Fundamental Concepts Slide 81

Beware of Comparing Step Counts

Fig. 3.2 Five times fewer steps does not
necessarily mean five times faster.

Machine or
algorithm A

Machine or
algorithm B

4 steps

Solution

20 steps

For example, one algorithm may
need 20 GFLOP, another 4 GFLOP
(but float division is a factor of 10
slower than float multiplication

Winter 2021 Parallel Processing, Fundamental Concepts Slide 82

3.3 Complexity Classes

Conceptual view of the P, NP, NP-complete, and NP-hard classes.

P = NP
?

Nondeterministic
 Polynomial

NP

NP-complete
(e.g. the subset sum problem)

(Intractable?)
NP-hard

(Tractable)
 Polynomial

P

This diagram
has been replaced
with a more
complete one

Winter 2021 Parallel Processing, Fundamental Concepts Slide 83

Computational Complexity Classes

Conceptual view of the P, NP, NP-complete, and NP-hard classes.

The Aug. 2010
claim that P  NP
by V. Deolalikar
was found to be
erroneous

Winter 2021 Parallel Processing, Fundamental Concepts Slide 84

Some NP-Complete Problems

Subset sum problem: Given a set of n integers and a target
sum s, determine if a subset of the integers adds up to s.

Satisfiability: Is there an assignment of values to variables in
a product-of-sums Boolean expression that makes it true?
(Is in NP even if each OR term is restricted to have exactly three literals)

Circuit satisfiability: Is there an assignment of 0s and 1s to
inputs of a logic circuit that would make the circuit output 1?

Hamiltonian cycle: Does an arbitrary graph contain a cycle
that goes through all of its nodes?

Traveling salesperson: Find a lowest-cost or shortest tour of
a number of cities, given travel costs or distances.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 85

3.4 Parallelizable Tasks and the NC Class

Fig. 3.4 A conceptual view of complexity classes and their relationships.

NC (Nick’s class):
Subset of problems
in P for which there
exist parallel
algorithms using
p = nc processors
(polynomially many)
that run in O(logk n)
time (polylog time).

P-complete problem:Given a logic circuit with known inputs,
determine its output (circuit value problem).

Efficiently
parallelizable

Winter 2021 Parallel Processing, Fundamental Concepts Slide 86

3.5 Parallel Programming Paradigms
Divide and conquer
Decompose problem of size n into smaller problems; solve subproblems
independently; combine subproblem results into final answer

T(n) = Td(n) + Ts + Tc(n)
Decompose Solve in parallel Combine

Randomization
When it is impossible or difficult to decompose a large problem into
subproblems with equal solution times, one might use random decisions
that lead to good results with very high probability.
Example: sorting with random sampling
Other forms: Random search, control randomization, symmetry breaking

Approximation
Iterative numerical methods may use approximation to arrive at solution(s).
Example: Solving linear systems using Jacobi relaxation.
Under proper conditions, the iterations converge to the correct solutions;
more iterations  greater accuracy

Winter 2021 Parallel Processing, Fundamental Concepts Slide 87

3.6 Solving Recurrences

f(n) = f(n/2) + 1 {rewrite f(n/2) as f((n/2)/2 + 1}
= f(n/4) + 1 + 1
= f(n/8) + 1 + 1 + 1

. . .

= f(n/n) + 1 + 1 + 1 + . . . + 1
-------- log2 n times --------

= log2 n = (log n)

This method is
known as unrolling

f(n) = f(n – 1) + n {rewrite f(n – 1) as f((n – 1) – 1) + n – 1}
= f(n – 2) + n – 1 + n
= f(n – 3) + n – 2 + n – 1 + n

. . .

= f(1) + 2 + 3 + . . . + n – 1 + n
= n(n + 1)/2 – 1 = (n2)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 88

More Example of Recurrence Unrolling

f(n) = f(n/2) + n
= f(n/4) + n/2 + n
= f(n/8) + n/4 + n/2 + n

. . .

= f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n
= 2n – 2 = (n)

f(n) = 2f(n/2) + 1
= 4f(n/4) + 2 + 1
= 8f(n/8) + 4 + 2 + 1

. . .

= n f(n/n) + n/2 + . . . + 4 + 2 + 1
= n – 1 = (n)

Solution via guessing:
Guess f(n) = (n) = cn + g(n)
cn + g(n) = cn/2 + g(n/2) + n
Thus, c = 2 and g(n) = g(n/2)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 89

Still More Examples of Unrolling

f(n) = f(n/2) + log2 n
= f(n/4) + log2(n/2) + log2 n
= f(n/8) + log2(n/4) + log2(n/2) + log2 n

. . .

= f(n/n) + log2 2 + log2 4 + . . . + log2(n/2) + log2 n
= 1 + 2 + 3 + . . . + log2 n
= log2 n (log2 n + 1)/2 = (log2 n)

f(n) = 2f(n/2) + n
= 4f(n/4) + n + n
= 8f(n/8) + n + n + n

. . .

= n f(n/n) + n + n + n + . . . + n
--------- log2 n times ---------

= n log2n = (n log n)

Alternate solution method:
f(n)/n = f(n/2)/(n/2) + 1
Let f(n)/n = g(n)
g(n) = g(n/2) + 1 = log2 n

Winter 2021 Parallel Processing, Fundamental Concepts Slide 90

Master Theorem for Recurrences

Theorem 3.1:

Given f(n) = a f(n/b) + h(n); a, b constant, h arbitrary function

the asymptotic solution to the recurrence is (c = logb a)

f(n) = (n c) if h(n) = O(n c – e) for some e > 0

f(n) = (n c log n) if h(n) = (n c)

f(n) = (h(n)) if h(n) = (n c + e) for some e > 0

Example: f(n) = 2 f(n/2) + 1
a = b = 2; c = logb a = 1
h(n) = 1 = O(n 1 – e)
f(n) = (nc) = (n)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 91

Intuition Behind the Master Theorem

Theorem 3.1:

Given f(n) = a f(n/b) + h(n); a, b constant, h arbitrary function

the asymptotic solution to the recurrence is (c = logb a)

f(n) = (n c) if h(n) = O(n c – e) for some e > 0

f(n) = (n c log n) if h(n) = (n c)

f(n) = (h(n)) if h(n) = (n c + e) for some e > 0

f(n) = 2f(n/2) + 1 = 4f(n/4) + 2 + 1 = . . .
= n f(n/n) + n/2 + . . . + 4 + 2 + 1

The last term
dominates

f(n) = 2f(n/2) + n = 4f(n/4) + n + n = . . .
= n f(n/n) + n + n + n + . . . + n

All terms are
comparable

f(n) = f(n/2) + n = f(n/4) + n/2 + n = . . .
= f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n

The first term
dominates

Winter 2021 Parallel Processing, Fundamental Concepts Slide 92

4 Models of Parallel Processing

Expand on the taxonomy of parallel processing from Chap. 1:
• Abstract models of shared and distributed memory
• Differences between abstract models and real hardware

Topics in This Chapter

4.1 Development of Early Models

4.2 SIMD versus MIMD Architectures

4.3 Global versus Distributed Memory

4.4 The PRAM Shared-Memory Model

4.5 Distributed-Memory or Graph Models

4.6 Circuit Model and Physical Realizations

Winter 2021 Parallel Processing, Fundamental Concepts Slide 93

4.1 Development of Early Models

Table 4.1 Entering the second half-century of associative processing
–––
Decade Events and Advances Technology Performance

–––
1940s Formulation of need & concept Relays
1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS
1960s Introduction of basic architectures Transistors
1970s Commercialization & applications ICs Giga-bit-OPS
1980s Focus on system/software issues VLSI Tera-bit-OPS
1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS

–––

Associative memory
Parallel masked search of all words
Bit-serial implementation with RAM

Associative processor
Add more processing logic to PEs

100111010110001101000 Comparand
Mask

Memory
array with
comparison
logic

Winter 2021 Parallel Processing, Fundamental Concepts Slide 94

The Flynn-Johnson Classification Revisited

SISD
“Uniprocessor”

SIMD
“Array processor”

MISD
(Rarely used)

MIMD
GMSV GMMP

DMSV DMMP

“Shared-memory
multiprocessor”

“Dis tributed
shared memory”

“Dis trib-memory
multicomputer

Data stream(s)

C
o

nt
ro

l s
tr

e
a

m
(s

)

Single Multiple

M
ul

tip
le

S

in
g

le

M
e

m
o

ry

D
is

tr
ib

G

lo
b

al

Communication/
Synchronization

Shared
variables

Message
passing

SIMD
versus
MIMD

Global
versus

Distributed
memory

Fig. 4.1 The Flynn-Johnson classification of computer systems.

Data
In

Data
Out

I

I

I

I

I

1

2

3 4

5

Fig. 4.2

Winter 2021 Parallel Processing, Fundamental Concepts Slide 95

4.2 SIMD versus MIMD Architectures

Most early parallel machines had SIMD designs
Attractive to have skeleton processors (PEs)
Eventually, many processors per chip
High development cost for custom chips, high cost
MSIMD and SPMD variants

Most modern parallel machines have MIMD designs
COTS components (CPU chips and switches)
MPP: Massively or moderately parallel?
Tightly coupled versus loosely coupled
Explicit message passing versus shared memory

Network-based NOWs and COWs
Networks/Clusters of workstations

Grid computing
Vision: Plug into wall outlets for computing power

1960

1970

1980

1990

2000

2010

ILLIAC IV

TMC CM-2

Goodyear MPP

DAP

MasPar MP-1

Clearspeed
array coproc

SIMD Timeline

Winter 2021 Parallel Processing, Fundamental Concepts Slide 96

4.3 Global versus Distributed Memory

Fig. 4.3 A parallel processor with global memory.

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors
Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Options:
Crossbar
Bus(es)
MIN

Bottleneck
Complex
Expensive

Winter 2021 Parallel Processing, Fundamental Concepts Slide 97

Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Challenge:
Cache
coherence

Winter 2021 Parallel Processing, Fundamental Concepts Slide 98

Distributed Shared Memory

Fig. 4.5 A parallel processor with distributed memory.

0

1

Interconnection
network

p-1

Processors

Parallel I/O

.

.

.

.

.

.

Memories
Some Terminology:

NUMA
Nonuniform memory access
(distributed shared memory)

UMA
Uniform memory access
(global shared memory)

COMA
Cache-only memory arch

Winter 2021 Parallel Processing, Fundamental Concepts Slide 99

4.4 The PRAM Shared-Memory Model

Fig. 4.6 Conceptual view of a parallel random-access machine (PRAM).

Processors

.

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 100

PRAM Implementation and Operation

Fig. 4.7 PRAM with some hardware details shown.

PRAM Cycle:

All processors
read memory
locations of their
choosing

All processors
compute one step
independently

All processors
store results into
memory locations
of their choosing

Processors

Memory Access
 Network &
 Controller

Proces-
sor
Control .

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Winter 2021 Parallel Processing, Fundamental Concepts Slide 101

4.5 Distributed-Memory or Graph Models

Fig. 4.8 The sea of interconnection networks.

Winter 2021 Parallel Processing, Fundamental Concepts Slide 102

Some Interconnection Networks (Table 4.2)
–––

Number Network Bisection Node Local
Network name(s) of nodes diameter width degree links?
–––
1D mesh (linear array) k k – 1 1 2 Yes
1D torus (ring, loop) k k/2 2 2 Yes
2D Mesh k2 2k – 2 k 4 Yes
2D torus (k-ary 2-cube) k2 k 2k 4 Yes1

3D mesh k3 3k – 3 k2 6 Yes
3D torus (k-ary 3-cube) k3 3k/2 2k2 6 Yes1

Pyramid (4k2 – 1)/3 2 log2 k 2k 9 No
Binary tree 2l – 1 2l – 2 1 3 No
4-ary hypertree 2l(2l+1 – 1) 2l 2l+1 6 No
Butterfly 2l(l + 1) 2l 2l 4 No
Hypercube 2l l 2l–1 l No
Cube-connected cycles 2l l 2l 2l–1 3 No
Shuffle-exchange 2l 2l – 1  2l–1/l 4 unidir. No
De Bruijn 2l l 2l /l 4 unidir. No
––

1 With folded layout

Winter 2021 Parallel Processing, Fundamental Concepts Slide 103

4.6 Circuit Model and Physical Realizations

Fig. 4.9 Example of a hierarchical interconnection architecture.

Low-level
cluster

Bus switch
(Gateway)

Scalability dictates hierarchical connectivity

Winter 2021 Parallel Processing, Fundamental Concepts Slide 104

A Million-Server Data Center

Container with 2500 servers

Winter 2021 Parallel Processing, Fundamental Concepts Slide 105

Warehouse-Scale Supercomputers

This book, authored by three
Google researchers as part
of the series
"Synthesis Lectures in
Computer Architecture,“
explains the concepts in its
2019 third edition

The 2013 second edition is
available on-line:

http://web.eecs.umich.edu/~mosharaf/
Readings/DC-Computer.pdf

Industrial
installation

Office
machine

Computer as:

Winter 2021 Parallel Processing, Fundamental Concepts Slide 106

Fig. 4.10 Intrachip wire delay as a function of wire length.

Signal Delay on Wires No Longer Negligible

0.5

1.0

1.5

0.0
0 2 4 6

Wire Length (mm)

2-D Mesh
2-D Torus

Hypercube

Wire Length (nm)

W
ire

 D
e

la
y

(n
s)

Winter 2021 Parallel Processing, Fundamental Concepts Slide 107

Pitfalls of
Scaling up
(Fig. 4.11)

O(10)
4

Scaled up ant on the rampage!
What is wrong with this picture?

Scaled up ant collapses under own weight.

O(10) 4

Scaled up ant on the rampage!
What is wrong with this picture?

Scaled up ant collapses under own weight.

O(10)
4

Scaled up ant on the rampage!
What is wrong with this picture?

Scaled up ant collapses under own weight.

O(10) 4

Scaled up ant on the rampage!
What is wrong with this picture?

Scaled up ant collapses under own weight.

If the weight
of ant grows
by a factor of
one trillion,
the thickness
of its legs
must grow by
a factor of
one million to
support the
new weight

Ant scaled up in length
from 5 mm to 50 m

Leg thickness must grow
from 0.1 mm to 100 m

