
Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 1

Part II
Circuit-Level Parallelism

Part II
Circuit-Level
Parallelism

7. Sorting and Selection Networks
8A. Search Acceleration Circuits
6B. Arithmetic and Counting Circuits
6C. Fourier Transform Circuits

Sorting and
Searching

Numerical
Computations

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by
the author in connection with teaching the graduate-level course
ECE 254B: Advanced Computer Architecture: Parallel Processing,
at the University of California, Santa Barbara. Instructors can use
these slides in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019 Winter 2020 Winter 2021

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 3

II Circuit-Level Parallelism

Circuit-level specs: most realistic parallel computation model
• Concrete circuit model; incorporates hardware details
• Allows realistic speed and cost comparisons
• Useful for stand-alone systems or acceleration units

Topics in This Part

Chapter 7 Sorting and Selection Networks

Chapter 8A Search Acceleration Circuits

Chapter 8B Arithmetic and Counting Circuits

Chapter 8C Fourier Transform Circuits

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 4

7 Sorting and Selection Networks
Become familiar with the circuit model of parallel processing:

• Go from algorithm to architecture, not vice versa
• Use a familiar problem to study various trade-offs

Topics in This Chapter

7.1 What is a Sorting Network?

7.2 Figures of Merit for Sorting Networks

7.3 Design of Sorting Networks

7.4 Batcher Sorting Networks

7.5 Other Classes of Sorting Networks

7.6 Selection Networks

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 5

7.1 What is a Sorting Network?

Fig. 7.1 An n-input
sorting network or
an n-sorter.

x

x

x

x

.

.

.

.

.

.

n-sorter

0

1

2

n–1

y

y

y

y

0

1

2

n–1

The outputs are a
permutation of the
inputs satisfying
y Š y Š ... Š y
(non-descending)

0 1 n–1  

Fig. 7.2 Block diagram and four different
schematic representations for a 2-sorter.

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 6

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

2-sorter

Building Blocks for Sorting Networks

Fig. 7.3 Parallel and bit-serial hardware realizations of a 2-sorter.

 Q
 R

 S

Com-
pare

1

0

1

0

k

k

k

k

min(a, b)

max(a, b)

 b<a?

a

b

 Q
 R

 S

1

0

1

0

min(a, b)

max(a, b)

 b<a?

a

b
M

S
B

-f
irs

t s
er

ia
l i

np
ut

s

 a<b?

Reset

Implementation with
bit-parallel inputs

Implementation with
bit-serial inputs

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 7

Proving a Sorting Network Correct

Fig. 7.4 Block diagram and schematic representation of a 4-sorter.

Method 1: Exhaustive test – Try all n! possible input orders

Method 2: Ad hoc proof – for the example above, note that y0 is smallest,
y3 is largest, and the last comparator sorts the other two outputs

Method 3: Use the zero-one principle – A comparison-based sorting
algorithm is correct iff it correctly sorts all 0-1 sequences (2n tests)

x0
x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 8

Elaboration on the Zero-One Principle

Deriving a 0-1 sequence that is not correctly sorted, given an
arbitrary sequence that is not correctly sorted.

Let outputs yi and yi+1 be out of order, that is yi > yi+1

Replace inputs that are strictly less than yi with 0s and all others with 1s

The resulting 0-1 sequence will not be correctly sorted either

6-sorter

1
3
6*
5*
8
9

3
6
9
1
8
5

Invalid

0
1
1
0
1
0

0
0
1
0
1
1

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 9

7.2 Figures of Merit for Sorting Networks

Delay: Number
of levels

Cost: Number of
comparators

Cost  Delay

x0
x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

In the following example, we have 5 comparators

The following 4-sorter has 3 comparator levels on
its critical path

The cost-delay product for this example is 15

Fig. 7.4 Block diagram and schematic representation of a 4-sorter.

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 10

Cost as a Figure of Merit

Fig. 7.5 Some low-cost
sorting networks.

Optimal size is known for n = 1 to 8: 0, 1, 3, 5, 9, 12, 16, 19
n = 10
29 modules
9 levels
(this one is
incorrect)

n = 12
39 modules
9 levels

n = 6
12 modules,
5 levels

n = 9
25 modules
9 levels

n = 13
45 modules
10 levels

n = 16
60 modules
10 levels

This figure has been updated from
Fig. 49, p. 227, in the 1998 edition
of Donald Knuth’s The Art of
Computer Programming, Vol. 3

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 11

Delay as a Figure of Merit
Optimal delay is known for n = 1 to 10: 0, 1, 3, 3, 5, 5, 6, 6, 7, 7

n = 9
25 modules
8 levels
(this one is
incorrect)

n = 10
31 modules
7 levels

n = 12
40 modules
8 levels

n = 16
61 modules
9 levels

n = 6
12 modules,
5 levels

Fig. 7.6 Some fast
sorting networks.

This figure has been updated from
Fig. 51, p. 229, in the 1998 edition
of Donald Knuth’s The Art of
Computer Programming, Vol. 3

These 3 comparators
constitute one level

7

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 12

Best Sorting Networks Known

References:

[10] Codish, Michael, Luis Cruz-Filipe, Thorsten Ehlers, Mike Müller, and Peter Schneider-Kamp,
“Sorting Networks: To the End and Back Again,” 2015, arXiv:1507.01428

[11] Codish, Michael, Luis Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp, “Twenty-Five
Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten),” Proc. Int'l Conf. Tools
with AI, pp. 186-193, 2014. arXiv:1405.5754

Source: Wikipedia

The problem of determining whether a given candidate network
is a sorting network is co-NP-complete

[13] Parberry, Ian, On the Computational Complexity of Optimal Sorting Network Verification, Proc.
PARLE '91: Parallel Architectures and Languages Europe, Volume I: Parallel Architectures and
Algorithms, 1991, pp. 252-269.

43 47 51 55 60
[2021 updates]

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 13

Cost-Delay Product as a Figure of Merit

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

Fast 10-sorter from Fig. 7.6

n = 10, 29 modules, 9 levels

n = 16, 60 modules, 10 levels

Low-cost 10-sorter from Fig. 7.5

CostDelay = 299 = 261 CostDelay = 317 = 217

The most cost-effective n-sorter may be neither
the fastest design, nor the lowest-cost design

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 14

7.3 Design of Sorting Networks

Fig. 7.7 Brick-wall 6-sorter based on odd–even transposition.

Rotate
by 90
degrees

Rotate by
90 degrees
to see the
odd-even
exchange
patterns

C(n) = n(n – 1)/2
D(n) = n

Cost  Delay = n2(n – 1)/2 = Q(n3)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 15

Insertion Sort and Selection Sort

Fig. 7.8 Sorting network based on insertion sort or selection sort.

x

x

x

x

.

.

.

(n–1)-sorter

0

1

2

n–2

y

y

y

y

0

1

2

n–2

xn–1

.

.

.

yn–1

x

x

x

x

.

.

.

(n–1)-sorter

0

1

2

n–2

y

y

y

y

0

1

2

n–2

xn–1

.

.

.

yn–1

.

.

.

Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

C(n) = n(n – 1)/2
D(n) = 2n – 3
Cost  Delay

= Q(n3)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 16

Theoretically Optimal Sorting Networks

AKS sorting network
(Ajtai, Komlos, Szemeredi: 1983)

x

x

x

x

.

.

.

.

.

.

n-sorter

0

1

2

n–1

y

y

y

y

0

1

2

n–1

The outputs are a
permutation of the
inputs satisfying
y Š y Š ... Š y
(non-descending)

0 1 n–1  

O(log n) depth

O(n log n)
size

Unfortunately, AKS networks are not practical owing to large (4-digit)
constant factors involved; improvements since 1983 not enough

Note that even for these
optimal networks, delay-cost
product is suboptimal; but
this is the best we can do

Existing sorting networks
have O(log2 n) latency and
O(n log2 n) cost

Given that log2 n is only 20
for n = 1 000 000, the latter
are more practical

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 17

7.4 Batcher Sorting Networks

Fig. 7.9 Batcher’s even–odd merging network for 4 + 7 inputs.

x

x

x

x

y

y

y

y

y

y

y v

v

v

v

v

v

0

1

2

3

0

1

2

3

4

5

6

0

1

2

3

4

5

w

w

w

w

w

0

1

2

3

4

(2, 4)-merger (2, 3)-merger

First
sorted
sequ-
ence x

Second
sorted
sequ-
ence y

(2, 3)-merger
a0
a1

b0
b1
b2

(1, 2)-merger
c0

d0
d1

(1, 1) (1, 2)

(1, 1)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 18

Proof of Batcher’s Even-Odd Merge
x

x

x

x

y

y

y

y

y

y

y v

v

v

v

v

v

0

1

2

3

0

1

2

3

4

5

6

0

1

2

3

4

5

w

w

w

w

w

0

1

2

3

4

(2, 4)-merger (2, 3)-merger

First
sorted
sequ-
ence x

Second
sorted
sequ-
ence y

Use the zero-one principle

Assume: x has k 0s
y has k  0s

Case a: keven = kodd v 0 0 0 0 0 0 1 1 1 1 1 1
w 0 0 0 0 0 0 1 1 1 1 1

Case b: keven = kodd+1 v 0 0 0 0 0 0 0 1 1 1 1 1
w 0 0 0 0 0 0 1 1 1 1 1

Case c: keven = kodd+2 v 0 0 0 0 0 0 0 0 1 1 1 1
w 0 0 0 0 0 0 1 1 1 1 1

Out of order

v has keven = k/2 + k /2 0s

w has kodd = k/2 + k /2 0s

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 19

Batcher’s Even-Odd Merge Sorting
Batcher’s (m, m) even-odd merger,
for m a power of 2:

C(m) = 2C(m/2) + m – 1
= (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .
= m log2m + 1

D(m) = D(m/2) + 1 = log2 m + 1

Cost  Delay = Q(m log2 m)

Batcher sorting networks based on the
even-odd merge technique:

C(n) = 2C(n/2) + (n/2)(log2(n/2)) + 1
 n(log2n)2/ 2

D(n) = D(n/2) + log2(n/2) + 1
= D(n/2) + log2n
= log2n (log2n + 1)/2

Cost  Delay = Q(n log4n)

n/2-sorter

n/2-sorter

(n/2, n/2)-
merger

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 7.10 The recursive
structure of Batcher’s even–
odd merge sorting network.

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 20

Example Batcher’s Even-Odd 8-Sorter

n/2-sorter

n/2-sorter

(n/2, n/2)-
merger

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4-sorters Even
(2,2)-merger

Odd
(2,2)-merger

Fig. 7.11 Batcher’s even-odd merge
sorting network for eight inputs .

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 21

Bitonic-Sequence Sorter

Fig. 14.2 Sorting a bitonic
sequence on a linear array.

Shift right half of
data to left half
(superimpose the
two halves)

In each position,
keep the smaller
value of each pair
and ship the larger
value to the right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2 n–1

0 1 2 n–1

. . .

. . .

Bitonic
sequence

Shifted
right half

n/2

n/2

. . .

. . .

Bitonic sequence:

1 3 3 4 6 6 6 2 2 1 0 0
Rises, then falls

8 7 7 6 6 6 5 4 6 8 8 9
Falls, then rises

8 9 8 7 7 6 6 6 5 4 6 8
The previous sequence,
right-rotated by 2

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 22

Batcher’s Bitonic Sorting Networks

Fig. 7.12 The recursive
structure of Batcher’s
bitonic sorting network.

n/2-sorter

n/2-sorter

n-input bitonic-
sequence sorter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bitonic
sequence

.
 .
 .

.
 .
 .

Fig. 7.13 Batcher’s
bitonic sorting network
for eight inputs.

8-input bitonic-
sequence sorter

4-input bitonic-
sequence sorters

2-input
sorters

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 23

7.5 Other Classes of Sorting Networks

Fig. 7.14 Periodic balanced
sorting network for eight inputs.

Desirable properties:
a. Regular / modular
(easier VLSI layout).
b. Simpler circuits via
reusing the blocks
c. With an extra block
tolerates some faults
(missed exchanges)
d. With 2 extra blocks
provides tolerance to
single faults (a missed
or incorrect exchange)
e. Multiple passes
through faulty network
(graceful degradation)
f. Single-block design
becomes fault-tolerant
by using an extra stage

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 24

Shearsort-Based Sorting Networks (1)

Fig. 7.15 Design of an 8-sorter based on shearsort on 24 mesh.

0 1 2 3

4567

Snake-like
row sorts

Column
sorts

0
1
2
3
4
5
6
7

Snake-like
row sorts

Corresponding
2-D mesh

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 25

Shearsort-Based Sorting Networks (2)

Fig. 7.16 Design of an 8-sorter based on shearsort on 24 mesh.

0
1
2
3
4
5
6
7

0 1

3 2

54

7 6

Corresponding
2-D mesh

Left
column
sort

Right
column
sort

Snake-like row sort

Left
column
sort

Right
column
sort

Snake-like row sort

Some of the same
advantages as
periodic balanced
sorting networks

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 26

7.6 Selection Networks
Direct design may
yield simpler/faster
selection networks

4-sorters Even
(2,2)-merger

Odd
(2,2)-merger

3rd smallest element

Can remove
this block if
smallest three
inputs needed

Can remove
these four
comparators

Deriving an (8, 3)-selector from Batcher’s even-odd merge 8-sorter.

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 27

Categories of Selection Networks

Unfortunately we know even less about selection networks
than we do about sorting networks.

One can define three selection problems [Knut81]:

I. Select the k smallest values; present in sorted order
II. Select kth smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest

Type-I

8 inputs (8, 4)-selector

Smallest
2nd smallest
3rd smallest
4th smallest 4th smallest

Type-II
The 4
smallest
In any
order

Type-III

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 28

Type-III Selection Networks

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,6]

[1,7]

[0,6]

[0,6]

[0,6]

[1,7]

[1,7]

[1,7]

[1,6]

[1,6]

[1,6]

[1,6]

[0,3]

[0,4]

[0,4]

[0,4]

[0,4] [0,3]

[3,7]

[4,7][3,7][3,7]

[3,7]

[4,7]

[1,3]

[1,5]

[1,5] [1,3]

[4,6][2,6]

[2,6]

[4,6]

Figure 7.17 A type III (8, 4)-selector. 8-Classifier

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 29

Classifier Networks

Use of classifiers for building sorting networks

Classifiers:
Selectors that separate
the smaller half of values
from the larger half

Smaller
4 values

Larger
4 values

8 inputs 8-Classifier

8-Classifier

4-Classifier

4-Classifier

2-Classifier

2-Classifier

2-Classifier

2-Classifier

Problem: Given O(log n)-time and O(n log n)-cost n-classifier designs,
what are the delay and cost of the resulting sorting network?

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 30

8A Search Acceleration Circuits
Much of sorting is done to facilitate/accelerate searching

• Simple search can be speeded up via special circuits
• More complicated searches: range, approximate-match

Topics in This Chapter

8A.1 Systolic Priority Queues

8A.2 Searching and Dictionary Operations

8A.3 Tree-Structured Dictionary Machines

8A.4 Associative Memories

8A.5 Associative Processors

8A.6 VLSI Trade-offs in Search Processors

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 31

8A.1 Systolic Priority Queues

Problem: We want to maintain a large list of keys, so that we can
add new keys into it (insert operation) and obtain the smallest key
(extract operation) whenever desired.

Unsorted list: Constant-time insertion / Linear-time extraction

Sorted list: Linear-time insertion / Constant-time extraction

Can both insert and extract operations (priority-queue operations)
be performed in constant time, independent of the size of the list?

Priority queue

3 7 9 1 4
5 2 8 6 1

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 32

5 2 8 6 3 7 9 1 4

5 2 8 6 3 7 9 1 4

1

1 4

5 2 8 6 3 7 9

1 4

4

1 4 9

95 2 8 6 3 7

1 3 7

9

1 3 4 9

75 2 8 6 3

1 3 4 78

1 2 4 6 9

9

1 2 3 6 7

1 2 3 4 7 9

1 2 3 4 6 8

1 2 3 4 5 7 9

1 2 3 4 5 6 8

1 2 3 4 5 6 7 9

9

5 2 8 6

First Attempt:
Via a Linear-
Array Sorter

Insertion of new keys and
read-out of the smallest
key value can be done in
constant time, but the
“hole” created by the
extracted value cannot be
filled in constant time

3 7

8 6

6 45 2 8
75 2

5 2 6

3 8 75

4 8 95

6 85

7 95

8

7 9

6

8Fig. 2.9

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 33

Operating on
every other
clock cycle,
allows holes
to be filled

A Viable
Systolic
Priority
Queue

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1 -- 4

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1 --

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1

4

4

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 1 4

4

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 1 49

5 -- 2 -- 8 -- 6 -- 3 -- 7 1 4 9

5 -- 2 -- 8 -- 6 -- 3 -- 1 4 97

5 -- 2 -- 8 -- 6 -- 3 1 4 97

Extract 1 4 7 9

4 7 9

Extract 4 7 9

7 9

Extract 7 9

95 -- 2 -- 8 -- 6 -- 3

3 95 -- 2 -- 8 -- 6 --

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 34

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

Systolic Data Structures

Fig. 8.3 Systolic data structure
for minimum, maximum,

and median finding.

Each node holds the smallest (S),
median (M),and largest (L)
value in its subtree

Each subtree is balanced
or has one fewer element on the

left (root flag shows this)

[5, 87] [87, 176]
Insert 2
Insert 20
Insert 127
Insert 195

Extractmin
Extractmed
Extractmax19 or 20

items 20 items

1765
87

Update/access
examples for the
systolic data
structure of Fig. 8.3

Example: 20 elements,
3 in root, 8 on left,

and 9 on right

8 elements:
3 + 2 + 3

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 35

8A.2 Searching and Dictionary Operations

Example:
n = 26, p = 2

P0

P1

0
1
2

25

8

17

P0

P1P0P1

Example:

n = 26

p = 2

Step
2

Step
1

Step
0

A single search in a sorted list
can’t be significantly speeded up
through parallel processing,
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups)

Parallel (p + 1)-ary search on PRAM

logp+1(n + 1)
= log2(n + 1) / log2(p + 1)
= Q(log n / log p) steps

Speedup  log p

Optimal: no comparison-based
search algorithm can be faster

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 36

Dictionary Operations
Basic dictionary operations: record keys x0, x1, . . . , xn–1

search(y) Find record with key y; return its associated data
insert(y, z) Augment list with a record: key = y, data = z
delete(y) Remove record with key y; return its associated data

Some or all of the following operations might also be of interest:

findmin Find record with smallest key; return data
findmax Find record with largest key; return data
findmed Find record with median key; return data
findbest(y) Find record with key “nearest” to y
findnext(y) Find record whose key is right after y in sorted order
findprev(y) Find record whose key is right before y in sorted order
extractmin Remove record(s) with min key; return data
extractmax Remove record(s) with max key; return data
extractmed Remove record(s) with median key value; return data

Priority queue operations: findmin, extractmin (or findmax, extractmax)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 37

8A.3 Tree-Structured Dictionary Machines

Fig. 8.1 A tree-structured dictionary machine.

x

Input Root

Output Root

"Circle"
 Tree

"Triangle"
 Tree

0 x1 x2 x4x3 x5 x6 x7

Combining in the
triangular nodes

search(y): Pass OR
of match signals &
data from “yes” side

findmin / findmax:
Pass smaller / larger
of two keys & data

findmed:
Not supported here

findbest(y): Pass
the larger of two
match-degree
indicators along with
associated record

Search 1

Search 2 Pipelined
search

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 38

Insertion and Deletion in the Tree Machine

Figure 8.2 Tree machine storing 5 records and containing 3 free slots.

*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

Counters keep track
of the vacancies
in each subtree

Deletion needs second
pass to update the
vacancy counters

Redundant
insertion (update?)
and deletion (no-op?)

Implementation:
Merge the circle and

triangle trees by folding

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 39

Physical Realization of a Tree Machine

Tree machine in folded form

Leaf node

Inner node

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 40

VLSI Layout of a Tree

H-tree layout (used, e.g., for clock distribution network in high-performance microchips)

A clock
domain

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 41

8A.4 Associative Memories

Associative or content-addressable memories (AMs, CAMs)
Binary (BCAM) vs. ternary (TCAM)

Image source: http://www.pagiamtzis.com/cam/camintro.html

Mismatch in cell connects the match line (ml) to ground
If all cells in the word match the input pattern, a word match is indicated

d d

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 42

Word Match Circuitry

The match line is precharged and then pulled down by any mismatch

Image source: http://www.pagiamtzis.com/cam/camintro.html

Note that each CAM cell is nearly twice as complex as an SRAM cell
More transistors, more wires

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 43

CAM Array Operation

Image source: http://www.pagiamtzis.com/cam/camintro.html

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 44

Current CAM Applications

Packet forwarding
Routing tables specify the path to be taken by matching an incoming

destination address with stored address prefixes
Prefixes must be stored in order of decreasing length (difficult updating)

Packet classification
Determine packet category based on information in multiple fields
Different classes of packets may be treated differently

Associative caches / TLBs
Main processor caches are usually not fully associative (too large)
Smaller specialized caches and TLBs benefit from full associativity

Data compression
Frequently used substrings are identified and replaced by short codes
Substring matching is accelerated by CAM

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 45

History of Associative Processing

Table 4.1 Entering the second half-century of associative processing
–––
Decade Events and Advances Technology Performance

–––
1940s Formulation of need & concept Relays
1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS
1960s Introduction of basic architectures Transistors
1970s Commercialization & applications ICs Giga-bit-OPS
1980s Focus on system/software issues VLSI Tera-bit-OPS
1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS

–––

Associative memory
Parallel masked search of all words
Bit-serial implementation with RAM

Associative processor
Add more processing logic to PEs

100111010110001101000 Comparand
Mask

Memory
array with
comparison
logic

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 46

8A.5 Associative Processors

Fig. 23.1
Functional view of
an associative
memory/processor.

.

.

.

Global Operations Control & Response

Cell 0

Cell 1

Cell 2

Cell m–1

 Data and
Commands
 Broadcast

Read
Lines Response

 Store
 (Tags)

Global Tag
Operations
 Unit

Control
 Unit

Comparand

Mask

tm–1

t2

t1

t 0

Associative or
content-addressable
memories/processors
constituted early
forms of SIMD
parallel processing

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 47

Search Functions in Associative Devices

Exact match: Locating data based on partial knowledge of contents

Inexact match: Finding numerically or logically proximate values

Membership: Identifying all members of a specified set

Relational: Determining values that are less than, less than or equal, etc.

Interval: Marking items that are between or outside given limits

Extrema: Finding the maximum, minimum, next higher, or next lower

Rank-based: Selecting kth or k largest/smallest elements

Ordered retrieval: Repeated max- or min-finding with elimination (sorting)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 48

Classification of Associative Devices

WPBP:
Fully

parallel

WPBS:
Bit-

serial

WSBS:
Fully
serial

WSBP:
Word-
serial

Handling
of words

Parallel

Serial

Handling of bits
within words

Parallel Serial

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 49

WSBP: Word-Serial Associative Devices

One word

Superhigh-speed shift registers

Processing
logic

F
ro

m
 p

ro
ce

ss
in

g
lo

gi
c

Strictly speaking, this is not a parallel processor, but with superhigh-speed
shift registers and deeply pipelined processing logic, it behaves like one

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 50

WPBS: Bit-Serial Associative Devices

One bit-slice

Memory
array

One bit of every word is processed in one device cycle

Advantages: 1. Can be implemented with conventional memory
2. Easy to add other capabilities beyond search

PE

PE

PE

PE

PE

PE

PE

PE

Example: Adding field A to field B in every
word, storing the sum in field S

Loop:
Read next bit slice of A
Read next bit slice of B
(carry from previous slice is in PE flag C)

Find sum bits; store in next bit slice of S
Find new carries; store in PE flag

Endloop

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 51

Goodyear STARAN Associative Processor

First computer
based on
associative
memory (1972)

Aimed at air
traffic control
applications

Aircraft conflict
detection is an
O(n2) operation

AM can do it in
O(n) time 256 PEs

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 52

Flip Network Permutations in the Goodyear STARAN

Figs. in this slide from J. Potter, “The STARAN
Architecture and Its Applications …,” 1978 NCC

The 256 bits in a bit-slice could be routed to 256
PEs in different arrangements (permutations)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 53

Distributed Array Processor (DAP)

Fig. 23.6
The bit-serial
processor of
DAP.

N
E
S
W

From
neighboring
processors

C

Q

Mux

N

S

EW

To neighboring
processors

A

D

S

MuxSum

CarryFull
adder

Row
Col{

From
control
unit

Memory

From south neighbor To north neighbor

To row/col
responses

Condition

N
E
S
W

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 54

DAP’s High-Level Structure

Fig. 23.7 The high-level
architecture of DAP system.

Program
memory

Master
control

unit

Host
interface

unit

Host
work-
station

Array memory
(at least

32K planes)
Local memory
for processor ij

Q plane

C plane

A plane

D plane

 Row i

Column j

Processors Fast I/O

Register Q in
processor ij

One plane
of memory

W

 S

 E

N

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 55

8A.6 VLSI Trade-offs in Search Processors

This section has not been written yet

References:

[Parh90] B. Parhami, "Massively Parallel Search Processors: History and
Modern Trends," Proc. 4th Int'l Parallel Processing Symp., pp. 91-104, 1990.

[Parh91] B. Parhami, "Scalable Architectures for VLSI-Based Associative
Memories," in Parallel Architectures, ed. by N. Rishe, S. Navathe, and D. Tal,
IEEE Computer Society Press, 1991, pp. 181-200.

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 56

8B Arithmetic and Counting Circuits

Many parallel processing techniques originate from, or find
applications in, designing high-speed arithmetic circuits

• Counting, addition/subtraction, multiplication, division
• Limits on performance and various VLSI trade-offs

Topics in This Chapter

8B.1 Basic Addition and Counting

8B.2 Circuits for Parallel Counting

8B.3 Addition as a Prefix Computation

8B.4 Parallel Prefix Networks

8B.5 Multiplication and Squaring Circuits

8B.6 Division and Square-Rooting Circuits

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 57

8B.1 Basic Addition and Counting

Fig. 5.3 (in Computer Arithmetic)
Using full-adders in building
bit-serial and ripple-carry adders.

x y

c

x

s

y

c

x

s

y

c out c in

0 0

0

c 0

31

31

31

31

FA

s

c c

1 1

1

1 2
FA FA

32 . . .

s 32

x

s

y

c c

i i

i

i i+1
FA Carry

FF Shift

Shift

x

y

s

(a) Bit-serial adder.

(b) Ripple-carry adder.

Clock
Ideal latency:
O(log k)

Ideal cost:
O(k)

Can these be
achieved
simultaneously?

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 58

Constant-Time Counters

Any fast adder design can be specialized and optimized to yield
a fast counter (carry-lookahead, carry-skip, etc.)

Fig. 5.12 (in Computer Arithmetic)
Fast (constant-time) three-stage up counter.

Load

Load Increment

Control
 1

Control
 2

Incrementer

1

Incrementer

1

Count register divided into three stages

One can use redundant representation to build a constant-time
counter, but a conversion penalty must be paid during read-out

Counting is
fundamentally
simpler than
addition

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 59

8B.2 Circuits for Parallel Counting

Fig. 8.16 (in Computer Arithmetic)
A 10-input parallel counter also
known as a (10; 4)-counter.

0

1 0 1 0 1 0

2 1 1 0

1

0

2

13 2

3-bit
ripple-carry
adder

FA FA

HA

HA

FA

FAFAFA1-bit full-adder = (3; 2)-counter

Circuit reducing 7 bits to their
3-bit sum = (7; 3)-counter

Circuit reducing n bits to their
log2(n + 1)-bit sum

= (n; log2(n+1))-counter

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 60

Recursive Construction of Parallel Counters

An n-input parallel counting
network (PCN) can be built from
two n/2-bit parallel counting
networks and a log2 n-bit adder

PCN(15) PCN(10)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 61

Accumulative Parallel Counters

Possible application:
Compare Hamming weight
of a vector to a constant

True generalization of
sequential counters

n
increment
signals vi

q-bit final count y = x + Svi

Parallel
incrementer

q-bit initial
count x

Count
register

FA FA FA FA

FA FA FA

FA FA

FAFA

FA FA

FAFA

q-bit
initial

count x

n increment signals vi, 2q–1 < n  2q

q-bit tally of up to 2q – 1
of the increment signals

Ignore, or use
for decision

q-bit final count y

cq

(q + 1)-bit final count y

Latency:
O(log n)
Cost:
O(n)

Recursively-
built
parallel
counter

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 62

Threshold Counting Networks

At-least-l-out-of-n
threshold counting
network built from a
multiplexer and two
smaller threshold
counting networks

Recursively-built
5-out-of-9 voter

x1, x2, x3

x1, x2, x3

x1, x2, x3

x4

x4

x9

x6

x6
x8

x8

x4

x4

x5

x5

x5

x5

x5

x6

x6

x7

x7

x7

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 63

8B.3 Addition as a Prefix Computation

Fig. 8.4 Prefix computation using a latched or pipelined function unit.


x i

s i
x i

s i

Latches Four-stage pipeline Function unit

Example: Prefix sums
x0 x1 x2 . . . xi

x0 x0 + x1 x0 + x1 + x2 . . . x0 + x1 + . . . + xi

s0 s1 s2 . . . si

Sequential time with one processor is O(n)
Simple pipelining does not help

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 64

Improving the Performance with Pipelining

Fig. 8.5 High-throughput prefix computation using a pipelined function unit.

Ignoring pipelining overhead, it appears that we
have achieved a speedup of 4 with 3 “processors.”
Can you explain this anomaly? (Problem 8.6a)

a[i]

x[i – 12]
Delay

Delays

a[i–1]

a[i–6] ³ a[i–7]

a[i–4] ³ a[i–5]

a[i–8] ³ a[i–9] ³ a[i–10] ³ a[i–11]

s i–12

xi

Delay

Delays

xi–1

xi–4 xi–5

xi–6 xi–7

xi–8 xi–9 xi–10 xi–11
Function unit

computing

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 65

Carry Determination as a Prefix Computation

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).

Carry network

.

x i y i

g p

s

i i

i

c i
c i+1

c k1

c k

c k2 c 1

c 0

g p 1 1 g p 0 0

g p k2 k2 g p i+1 i+1
g p k1 k1

c 0
.

0 0
0 1
1 0
1 1

annihilated or killed
propagated
generated
(impossible)

Carry is: g i p i

gi = xi yi
pi = xi  yi

. . .
c

1

g

p

1

1

g

p

0

0

c

0
 c

2

. . .
c

k1

c

k
 c

k2

g

p

k2

k2

g

p

k1

k1

g–1= p–1=0

Figure from Computer Arithmetic

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 66

8B.4 Parallel Prefix Networks

Fig. 8.6 Prefix sum network built of one n/2-input network and n – 1 adders.

. . .

Prefix Sum n/2

xn–1 xn–2 x3 x2 x1 x0. . .

s n–1 s n–2 s 3 s 2 s 1 s 0

++

+

+

+

T(n) = T(n/2) + 2
= 2 log2n – 1

C(n) = C(n/2) + n – 1
= 2n – 2 – log2n

This is the Brent-Kung
Parallel prefix network
(its delay is actually
2 log2n – 2)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 67

Example of Brent-Kung Parallel Prefix Network

Fig. 8.8 Brent–Kung parallel prefix graph for n = 16.

x0x1x2x3x4x5x6x7
x

8
x

9
x

10
x

11
x

12
x

13
x

14
x

15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s12s13s14s15

One level
of latency

Originally developed
by Brent and Kung as
part of a VLSI-friendly
carry lookahead adder

T(n) = 2 log2n – 2

C(n) = 2n – 2 – log2n

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 68

Another Divide-and-Conquer Design

Fig. 8.7 Prefix sum network built of two n/2-input networks and n/2 adders.

T(n) = T(n/2) + 1
= log2n

C(n) = 2C(n/2) + n/2
= (n/2) log2n

Simple Ladner-Fisher
Parallel prefix network
(its delay is optimal,
but has fan-out issues
if implemented directly)

.

.

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Ladner-Fischer construction

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 69

Example of Kogge-Stone Parallel Prefix Network

Fig. 8.9 Kogge-Stone parallel prefix graph for n = 16.

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x8x9x10x11
x

12
x

13
x

14
x

15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s

12
s

13
s

14
s
15

T(n) = log2n

C(n) = (n–1) + (n–2)
+ (n–4) + . . . + n/2
= n log2n – n – 1

Optimal in delay,
but too complex
in number of cells
and wiring pattern

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 70

Comparison and Hybrid Parallel Prefix Networks
x0x1x2x3x4x5x6x7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s

12
s

13
s

14
s
15

x0x1x2x3x4x5x6x7
x

8
x

9
x

10
x

11
x12x13x14x15

s0s1s2s3s4s5s6s7
s

8
s

9
s

10
s

11
s12s13s14s15

Fig. 8.10 A hybrid
Brent–Kung /
Kogge–Stone
parallel prefix
graph for n = 16.

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s

12
s

13
s

14
s

15

Brent-
Kung

Brent-
Kung

Kogge-
Stone

Brent/Kung
6 levels
26 cells

Kogge/Stone
4 levels
49 cells

Han/Carlson
5 levels
32 cells

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 71

Linear-Cost, Optimal Ladner-Fischer Networks

Recursive construction of the fastest possible
parallel prefix network (type-0)

.

.

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Type-0 Type-1

Type-0

Define a type-x parallel prefix network as one that:
Produces the leftmost output in optimal log2 n time
Yields all other outputs with at most x additional delay

We are interested in
building a type-0 overall
network, but can use
type-x networks (x > 0)
as component parts

Note that even the
Brent-Kung network
produces the leftmost
output in optimal time

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 72

Examples of Type-0, 1, 2 Parallel Prefix Networks
x0x1x2x3x4x5x6x7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s

12
s

13
s

14
s
15

x0x1x2x3x4x5x6x7
x

8
x

9
x

10
x

11
x12x13x14x15

s0s1s2s3s4s5s6s7
s

8
s

9
s

10
s

11
s12s13s14s15

Fig. 8.10 A hybrid
Brent–Kung /
Kogge–Stone
parallel prefix
graph for n = 16.

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s

12
s

13
s

14
s

15

Brent-
Kung

Brent-
Kung

Kogge-
Stone

Brent/Kung:
16-input type-2

network

Kogge/Stone
16-input type-0

network

Han/Carlson
16-input type-1

network

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 73

8B.5 Multiplication and Squaring Circuits

Notation for our discussion of multiplication algorithms:

a Multiplicand ak–1ak–2 . . . a1a0

x Multiplier xk–1xk–2 . . . x1x0

p Product (a  x) p2k–1p2k–2 . . . p3p2p1p0

Initially, we assume unsigned operands

Fig. 9.1 (in Computer Arithmetic) Multiplication of 4-bit binary numbers.

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier  Parallel:

O(k2)
circuit
complexity
O(log k)
time

Sequential:
O(k) circuit
complexity
O(k) time with
carry-save
additions

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 74

Divide-and-Conquer (Recursive) Multipliers

Building wide multiplier from narrower ones

Fig. 12.1 (in Computer Arithmetic)
Divide-and-conquer (recursive)
strategy for synthesizing a 2b  2b
multiplier from b  b multipliers.

a



p

Rearranged partial products
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H

a H xL

a L xH

a L xLxHa H

b bits

C(k) = 4C(k/2) + O(k) = O(k2)
T(k) = T(k/2) + O(log k) = O(log2 k)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 75

(Anatoly) Karatsuba Multiplication

2b  2b multiplication requires four b  b multiplications:

(2baH + aL)  (2bxH + xL) = 22baHxH + 2b (aHxL + aLxH) + aLxL

aH aL

xH xL

Karatsuba noted that one of the four multiplications can be removed

at the expense of introducing a few additions:

(2baH + aL)  (2bxH + xL) =

22baHxH + 2b [(aH + aL)  (xH + xL) – aHxH – aLxL] + aLxL

Mult 1 Mult 2Mult 3

Benefit is quite significant for

extremely wide operands

b bits

C(k) = 3C(k/2) + O(k) = O(k1.585)
T(k) = T(k/2) + O(log k) = O(log2 k)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 76

Divide-and-Conquer Squarers

Building wide squarers from narrower ones

Divide-and-conquer (recursive) strategy for synthesizing a
2b  2b squarer from b  b squarers and multiplier.

a



p

Rearranged partial products
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H

a H xL

a L xH

a L xLxHa H

b bits

xLxH

xL
xL xLxH

xL

xH

xH
xH

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 77

VLSI Complexity Issues and Bounds

Any VLSI circuit computing the product of two k-bit integers must
satisfy the following constraints:

AT grows at least as fast as k3/2

AT2 is at least proportional to k2

Array multipliers: O(k2) gate count and area, O(k) time

AT = O(k3) AT2 = O(k4)

Karatsuba multipliers: O(k1.585) gate count, O(log2 k) time

AT = O(k1.585 log2 k) ? AT2 = O(k1.585 log4 k) ???

Discrepancy due to the fact that interconnect area is not taken into
account in our previous analyses

Simple recursive multipliers: O(k2) gate count, O(log2 k) time

AT = O(k2 log2 k) ? AT2 = O(k2 log4 k) ?

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 78

Theoretically Best Multipliers

Arnold Schonhage and Volker Strassen (via FFT); best until 2007

O(log k) time
O(k log k log log k) complexity

It is an open problem whether there exist logarithmic-delay
multipliers with linear cost
(it is widely believed that there are not)

In the absence of a linear cost multiplication circuit, multiplication
must be viewed as a more difficult problem than addition

In 2007, Martin Furer managed to replace the log log k term with
an asymptotically smaller term (for astronomically large numbers)

In 2019, David Harvey and Joris van der Hoeven developed an
O(n log n) multiplication algorithm, which is believed to be the best
possible theoretically (but not practical at present)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 79

8B.6 Division and Square-Rooting Circuits

Division via Newton’s method: O(log k) multiplications

Using Schonhage and Strassen’s FFT-based multiplication, leads to:

O(log2 k) time
O(k log k log log k) complexity

With the multiplication algorithm of Harvey and van der Hoeven:
O(log2 k) time
O(k log k) complexity

Complexity theory results: It is possible to design dividers
with O(log k) latency and O(k4) cost
with O(log k log log k) latency and O(k2) cost

These theoretical constructions have not led to practical designs

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 80

Theoretically Best Dividers
Best known bounds; cannot be achieved at the same time (yet)

O(log k) time
O(k log k) complexity

In 1983, J. H. Reif reduced the time complexity to the current best

O(log k (log log k)2) time

In 1966, S. A. Cook established these simultaneous bounds:

O(log2 k) time
O(k log k log log k) complexity

In 1984, Beame/Cook/Hoover established these simultaneous bounds:

O(log k) time
O(k4) complexity

Given our current state of knowledge, division must be viewed as
a more difficult problem than multiplication

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 81

Implications for Ultrawide High-Radix Arithmetic

Arithmetic results with k-bit binary operands hold with no change
when the k bits are processed as g radix-2h digits (gh = k)

k bits

h-bit
group

g groups

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 82

Another Circuit Model: Artificial Neural Nets

Supervised learning

Inputs Weights

Activation
function

Output

Threshold

Feedforward network
Three layers: input, hidden, output
No feedback

Artificial
neuron

Recurrent network
Simple version due to Elman
Feedback from hidden nodes to special nodes at the input layer

Diagrams from
http://www.learnartificialneuralnetworks.com/

Hopfield network
All connections are bidirectional

Characterized by connection
topology and learning method

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 83

8C Fourier Transform Circuits
Fourier transform is quite important, and it also serves as a
template for other types of arithmetic-intensive computations

• FFT; properties that allow efficient implementation
• General methods of mapping flow graphs to hardware

Topics in This Chapter

8C.1 The Discrete Fourier Transform

8C.2 Fast Fourier Transform (FFT)

8C.3 The Butterfly FFT Network

8C.4 Mapping of Flow Graphs to Hardware

8C.5 The Shuffle-Exchange Network

8C.6 Other Mappings of the FFT Flow Graph

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 84

8C.1 The Discrete Fourier Transform

Other important transforms for discrete signals:

z-transform (generalized form of Fourier transform)

Discrete cosine transform (used in JPEG image compression)

Haar transform (a wavelet transform, which like DFT, has a fast version)

DFT

x0

x1

x2

.

.

.

xn–1

y0

y1

y2

.

.

.

yn–1

Inv.
DFT

x0

x1

x2

.

.

.

xn–1

x in time domain
y in frequency domain

n–point DFT

Some operations are
easier in frequency
domain; hence the
need for transform

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 85

Defining the DFT and Inverse DFT

DFT yields output sequence yi based on input sequence xi (0  i < n)

yi = ∑
j=0 ton–1

wn
ij xj O(n2)-time naïve algorithm

where wn is the nth primitive root of unity; wn
n = 1, wn

j ≠ 1 (1  j < n)

Examples: w4 = i

w3 = (1 + i 3)/2

w8 = 2(1 + i)/2

The inverse DFT is almost exactly the same computation:

xi = (1/n) ∑
j=0 to n–1

wn
ij yj

Input seq. xi (0  i < n) is said to be in time domain

Output seq. yi (0  i < n) is the input’s frequency-domain characterization

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 86

DFT of a Cosine Waveform

DFT of a cosine
with a frequency
1/10 the sampling
frequency fs

Frequency fs

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 87

DFT of a Cosine with Varying Resolutions

DFT of a cosine
with a frequency
1/10 the sampling
frequency fs

Frequency fs

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 88

DFT as Vector-Matrix Multiplication

DFT and inverse DFT computable
via matrix-by-vector multiplication Y = W X

DFT matrix

yi = ∑
j = 0

wn
ij xj

n – 1

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 89

DFT Basics and Visualizations

A visual introduction to Fourier transform (21-minute video)
https://www.youtube.com/watch?v=spUNpyF58BY

Discrete Fourier transform: Introduction (11-minute video)
https://www.youtube.com/watch?v=mkGsMWi_j4Q

Fourier transform, Fourier series, and frequency spectrum (16-min. video)
https://www.youtube.com/watch?v=r18Gi8lSkfM

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 90

Application of DFT to Smoothing or Filtering

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 91

DFT Application Example

Signal corrupted by 0-mean
random noise

Source of images:
http://www.mathworks.com/help/techdoc/ref/fft.html

FFT shows strong frequency
components of 50 and 120

The uncorrupted signal was:

x = 0.7 sin(2p 50t) + sin(2p 120t)

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 92

Application of DFT to Spectral Analysis

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209
 Hz

1477
 Hz

1336
 Hz

1633
 Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments
 for touch-tone dialing

Frequency spectrum of received tone

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 93

8C.2 Fast Fourier Transform
DFT yields output sequence yi based on input sequence xi (0  i < n)

yi = ∑
j=0 ton–1

wn
ij xj

Fast Fourier Transform (FFT):

The Cooley-Tukey algorithm

O(n log n)-time DFT algorithm that derives y
from half-length sequences u and v that are DFTs
of even- and odd-indexed inputs, respectively

yi = ui + wn
i vi (0  i < n/2)

yi+n/2 = ui + wn
i+n/2 vi = ui – wn

i vi

T(n) = 2T(n/2) + n = n log2n sequentially
T(n) = T(n/2) + 1 = log2n in parallel

Image from Wikipedia
j

i

Butterfly
operation

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 94

More General Factoring-Based Algorithm

Image from
Wikipedia

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 95

8C.3 The Butterfly FFT Network
u: DFT of even-indexed inputs
v: DFT of odd-indexed inputs

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Fig. 8.11 Butterfly network for an 8-point FFT.

yi = ui + wn
i vi (0  i < n/2)

yi+n/2 = ui + wn
i+n/2 vi

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 96

Butterfly Processor

Performs a pair of multiply-add operations,
where the multiplication is by a constant

Design can be optimized
by merging the adder
and subtractor, as they
receive the same inputs

processor
+

–

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 97

Computation Scheme for 16-Point FFT
0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

Bit-reversal
permutation

Butterfly
operation

a
b j

a + bw
a  bw

j
j

0

0

0

0

0

0

0

0

0

4

0

4

0
4

0

4

0

2

4

6

0

2

4

6

0

1

2
3

4

5

6

7

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 98

8C.4 Mapping of Flow Graphs to Hardware
Given a computation flow graph, it can be mapped to hardware

Direct
one-to-one
mapping
(possibly
with
pipelining)



+







/ 



/





+

Pipelining period
Latency

t = 0

Latch positions in a four-stage pipeline

a
b

c
d

e
f

z

Output
available

Time

(a + b) c d
e  f

Fig. 25.6 Parhami’s textbook on computer arithmetic.

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 99

Ad-hoc Scheduling on a Given Set of Resources

Given a computation flow graph, it can be mapped to hardware

Assume:
tadd = 1
tmult = 3
tdiv = 8
tsqrt = 10



+







/ 



/





+

Pipelining period
Latency

t = 0

Latch positions in a four-stage pipeline

a
b

c
d

e
f

z

Output
available

Time

(a + b) c d
e  f

Add

Mult

Div /
Sqrt

Time

+

–




 

0 1 2 3 6 14 24

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 100

Mapping through Projection

Given a flow graph, it can be projected in various directions to obtain
corresponding hardware realizations

Multiple nodes of a flow graph may map onto a single hardware node

That one hardware node then performs the computations associated
with the flow graph nodes one by one, according to some timing
arrangement (schedule)

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Projection direction

Linear array,
with each cell
acting for one
butterfly
network row

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 101

8C.5 The Shuffle-Exchange Network

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 102

Fig. 8.12 FFT network variant and its shared-hardware realization.

Variants of the Butterfly Architecture

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 103

8C.6 Other Mappings of the FFT Flow Graph

This section is incomplete at this time

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 104

More
Economical

FFT
Hardware

Fig. 8.13
Linear array of
log2n cells for
n-point FFT
computation.

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Project

Project

Project

Project

0

1

1

0

 Control

x

b

a

a  b

a + b







w n

 i

y

Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 105

Space-Time Diagram for the Feedback FFT Array

Feedback
butterfly
processor

