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II Circuit-Level Parallelism

Circuit-level specs: most realistic parallel computation model
• Concrete circuit model; incorporates hardware details
• Allows realistic speed and cost comparisons
• Useful for stand-alone systems or acceleration units

Topics in This Part

Chapter 7 Sorting and Selection Networks

Chapter 8A Search Acceleration Circuits

Chapter 8B Arithmetic and Counting Circuits

Chapter 8C Fourier Transform Circuits
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7  Sorting and Selection Networks
Become familiar with the circuit model of parallel processing:

• Go from algorithm to architecture, not vice versa
• Use a familiar problem to study various trade-offs

Topics in This Chapter

7.1 What is a Sorting Network?

7.2 Figures of Merit for Sorting Networks

7.3 Design of Sorting Networks

7.4 Batcher Sorting Networks

7.5 Other Classes of Sorting Networks

7.6 Selection Networks
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7.1  What is a Sorting Network?

Fig. 7.1 An n-input 
sorting network or 
an n-sorter.
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The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1   

Fig. 7.2 Block diagram and four different 
schematic representations for a 2-sorter.
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2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

2-sorter

Building Blocks for Sorting Networks

Fig. 7.3   Parallel and bit-serial hardware realizations of a 2-sorter.
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Proving a Sorting Network Correct

Fig. 7.4    Block diagram and schematic representation of a 4-sorter.

Method 1: Exhaustive test – Try all n! possible input orders

Method 2: Ad hoc proof – for the example above, note that y0 is smallest, 
y3 is largest, and the last comparator sorts the other two outputs

Method 3: Use the zero-one principle – A comparison-based sorting 
algorithm is correct iff it correctly sorts all 0-1 sequences (2n tests)
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Elaboration on the Zero-One Principle

Deriving a 0-1 sequence that is not correctly sorted, given an 
arbitrary sequence that is not correctly sorted.

Let outputs yi and yi+1 be out of order, that is yi > yi+1

Replace inputs that are strictly less than yi with 0s and all others with 1s

The resulting 0-1 sequence will not be correctly sorted either

6-sorter
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7.2  Figures of Merit for Sorting Networks

Delay: Number 
of levels

Cost: Number of 
comparators

Cost  Delay
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In the following example, we have 5 comparators

The following 4-sorter has 3 comparator levels on 
its critical path

The cost-delay product for this example is 15

Fig. 7.4    Block diagram and schematic representation of a 4-sorter.
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Cost as a Figure of Merit

Fig. 7.5 Some low-cost 
sorting networks.

Optimal size is known for n = 1 to 8:      0, 1, 3, 5, 9, 12, 16, 19
n = 10 
29 modules
9 levels
(this one is
incorrect)

n = 12
39 modules 
9 levels

n = 6 
12 modules,
5 levels

n = 9 
25 modules
9 levels

n = 13 
45 modules
10 levels

n = 16 
60 modules
10 levels

This figure has been updated from 
Fig. 49, p. 227, in the 1998 edition 
of Donald Knuth’s The Art of 
Computer Programming, Vol. 3
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Delay as a Figure of Merit
Optimal delay is known for n = 1 to 10:      0, 1, 3, 3, 5, 5, 6, 6, 7, 7

n = 9 
25 modules
8 levels
(this one is 
incorrect)

n = 10
31 modules 
7 levels

n = 12 
40 modules
8 levels

n = 16 
61 modules
9 levels

n = 6 
12 modules,
5 levels

Fig. 7.6 Some fast 
sorting networks.

This figure has been updated from 
Fig. 51, p. 229, in the 1998 edition 
of Donald Knuth’s The Art of 
Computer Programming, Vol. 3

These 3 comparators 
constitute one level

7
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Best Sorting Networks Known

References:

[10] Codish, Michael, Luis Cruz-Filipe, Thorsten Ehlers, Mike Müller, and Peter Schneider-Kamp, 
“Sorting Networks: To the End and Back Again,” 2015, arXiv:1507.01428

[11] Codish, Michael, Luis Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp, “Twenty-Five 
Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten),” Proc. Int'l Conf. Tools 
with AI, pp. 186-193, 2014. arXiv:1405.5754

Source: Wikipedia

The problem of determining whether a given candidate network 
is a sorting network is co-NP-complete

[13] Parberry, Ian, On the Computational Complexity of Optimal Sorting Network Verification, Proc. 
PARLE '91: Parallel Architectures and Languages Europe, Volume I: Parallel Architectures and 
Algorithms, 1991, pp. 252-269.

43 47 51 55 60
[2021 updates]
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Cost-Delay Product as a Figure of Merit

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

Fast 10-sorter from Fig. 7.6

n = 10, 29 modules, 9 levels

n = 16, 60 modules, 10 levels

Low-cost 10-sorter from Fig. 7.5

CostDelay = 299 = 261 CostDelay = 317 = 217

The most cost-effective n-sorter may be neither 
the fastest design, nor the lowest-cost design
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7.3  Design of Sorting Networks

Fig. 7.7   Brick-wall 6-sorter based on odd–even transposition. 

Rotate 
by 90 
degrees

Rotate by 
90 degrees 
to see the 
odd-even 
exchange 
patterns  

C(n) =    n(n – 1)/2
D(n ) =    n

Cost  Delay  =    n2(n – 1)/2  =  Q(n3) 
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Insertion Sort and Selection Sort

Fig. 7.8   Sorting network based on insertion sort or selection sort. 
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Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

C(n)  = n(n – 1)/2
D(n ) = 2n – 3 
Cost  Delay 

= Q(n3) 



Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 16

Theoretically Optimal Sorting Networks

AKS sorting network
(Ajtai, Komlos, Szemeredi: 1983)
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The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1   

O(log n) depth

O(n log n)
size

Unfortunately, AKS networks are not practical owing to large (4-digit) 
constant factors involved; improvements since 1983 not enough

Note that even for these 
optimal networks, delay-cost 
product is suboptimal; but 
this is the best we can do

Existing sorting networks 
have O(log2 n) latency and 
O(n log2 n) cost

Given that log2 n is only 20 
for n = 1 000 000, the latter 
are more practical
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7.4  Batcher Sorting Networks

Fig. 7.9 Batcher’s even–odd merging network for 4 + 7 inputs. 
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Proof of Batcher’s Even-Odd Merge
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First 
sorted 
sequ- 
ence x

Second 
sorted 
sequ- 
ence y

Use the zero-one principle

Assume: x has k 0s
y has k  0s

Case a: keven = kodd v 0    0    0    0    0    0    1    1    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Case b: keven = kodd+1 v 0    0    0    0    0    0    0    1    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Case c: keven = kodd+2 v 0    0    0    0    0    0    0    0    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Out  of order

v has keven = k/2 + k /2 0s

w has kodd = k/2 + k /2 0s
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Batcher’s Even-Odd Merge Sorting
Batcher’s (m, m) even-odd merger, 
for m a power of 2:  

C(m) =  2C(m/2) + m – 1 
= (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .  
= m log2m + 1

D(m) = D(m/2) + 1 =  log2 m + 1

Cost  Delay  =  Q(m log2 m)

Batcher sorting networks based on the 
even-odd merge technique:  

C(n)  =  2C(n/2) + (n/2)(log2(n/2)) + 1  
 n(log2n)2/ 2 

D(n)  =  D(n/2) + log2(n/2) + 1 
= D(n/2) + log2n
=  log2n (log2n + 1)/2

Cost  Delay = Q(n log4n) 

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger
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Fig. 7.10    The recursive 
structure of Batcher’s even–
odd merge sorting network. 
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Example Batcher’s Even-Odd 8-Sorter

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger
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4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

Fig. 7.11    Batcher’s even-odd merge 
sorting network for eight inputs . 
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Bitonic-Sequence Sorter

Fig. 14.2    Sorting a bitonic 
sequence on a linear array. 

Shift right half of 
data to left half 
(superimpose the 
two halves) 

In each position, 
keep the smaller 
value of each pair 
and ship the larger 
value to the right 

Each half is a bitonic 
sequence that can be 
sorted independently 

0 1 2 n–1 

0 1 2 n–1 

.   .   . 

.   .   . 

Bitonic 
sequence 

Shifted 
right half 

n/2 

n/2 

.   .   . 

.   .   . 

Bitonic sequence:

1  3  3  4  6  6  6  2  2  1  0  0      
Rises, then falls

8  7  7  6  6  6  5  4  6  8  8  9      
Falls, then rises

8  9  8  7  7  6  6  6  5  4  6  8     
The previous sequence, 
right-rotated by 2 
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Batcher’s Bitonic Sorting Networks

Fig. 7.12    The recursive 
structure of Batcher’s 
bitonic sorting network. 
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Fig. 7.13    Batcher’s 
bitonic sorting network 
for eight inputs. 
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7.5  Other Classes of Sorting Networks

Fig. 7.14    Periodic balanced 
sorting network for eight inputs. 

Desirable properties:
a.  Regular / modular 
(easier VLSI layout).
b.  Simpler circuits via 
reusing the blocks
c.  With an extra block 
tolerates some faults 
(missed exchanges)
d.  With 2 extra blocks 
provides tolerance to 
single faults (a missed 
or incorrect exchange)
e.  Multiple passes 
through faulty network 
(graceful degradation)
f.  Single-block design 
becomes fault-tolerant 
by using an extra stage
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Shearsort-Based Sorting Networks (1)

Fig. 7.15    Design of an 8-sorter based on shearsort on 24 mesh. 
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Shearsort-Based Sorting Networks (2)

Fig. 7.16    Design of an 8-sorter based on shearsort on 24 mesh. 
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54
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Corresponding 
2-D mesh

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Some of the same
advantages as
periodic balanced
sorting networks
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7.6  Selection Networks
Direct design may 
yield simpler/faster 
selection networks

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

3rd smallest element 

Can remove 
this block if 
smallest three 
inputs needed 

Can remove 
these four 
comparators 

Deriving an (8, 3)-selector from Batcher’s even-odd merge 8-sorter. 
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Categories of Selection Networks

Unfortunately we know even less about selection networks 
than we do about sorting networks.

One can define three selection problems [Knut81]:

I. Select the k smallest values; present in sorted order
II. Select kth smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest 

Type-I

8 inputs (8, 4)-selector

Smallest
2nd smallest
3rd smallest
4th smallest 4th smallest

Type-II
The 4 
smallest
In any 
order  

Type-III
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Type-III Selection Networks
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[1,3]

[1,5]
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[4,6][2,6]

[2,6]
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Figure 7.17    A type III (8, 4)-selector. 8-Classifier
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Classifier Networks

Use of classifiers for building sorting networks

Classifiers:
Selectors that separate 
the smaller half of values 
from the larger half

Smaller
4 values

Larger
4 values

8 inputs 8-Classifier

8-Classifier

4-Classifier

4-Classifier

2-Classifier

2-Classifier

2-Classifier

2-Classifier

Problem: Given O(log n)-time and O(n log n)-cost n-classifier designs, 
what are the delay and cost of the resulting sorting network?
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8A  Search Acceleration Circuits
Much of sorting is done to facilitate/accelerate searching

• Simple search can be speeded up via special circuits
• More complicated searches: range, approximate-match

Topics in This Chapter

8A.1 Systolic Priority Queues

8A.2 Searching and Dictionary Operations

8A.3 Tree-Structured Dictionary Machines

8A.4 Associative Memories

8A.5 Associative Processors

8A.6 VLSI Trade-offs in Search Processors
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8A.1  Systolic Priority Queues

Problem: We want to maintain a large list of keys, so that we can 
add new keys into it (insert operation) and obtain the smallest key 
(extract operation) whenever desired. 

Unsorted list: Constant-time insertion / Linear-time extraction

Sorted list: Linear-time insertion / Constant-time extraction

Can both insert and extract operations (priority-queue operations) 
be performed in constant time, independent of the size of the list?

Priority queue

3   7   9   1   4
5   2   8   6 1
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5  2  8  6  3  7  9  1  4

5  2  8  6  3  7  9  1 4

1

1 4

5  2  8  6  3  7  9

1 4

4

1 4 9

95  2  8  6  3  7

1 3 7

9

1 3 4 9

75  2  8  6  3

1 3 4 78

1 2 4 6 9

9

1 2 3 6 7

1 2 3 4 7 9

1 2 3 4 6 8

1 2 3 4 5 7 9

1 2 3 4 5 6 8

1 2 3 4 5 6 7 9

9

5  2  8  6

First Attempt: 
Via a Linear-
Array Sorter

Insertion of new keys and 
read-out of the smallest 
key value can be done in 
constant time, but the 
“hole” created by the 
extracted value cannot be 
filled in constant time

3 7

8 6

6 45  2  8
75  2

5 2 6

3 8 75

4 8 95

6 85

7 95

8

7 9

6

8Fig. 2.9
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Operating on 
every other 
clock cycle, 
allows holes 
to be filled

A Viable 
Systolic 
Priority 
Queue

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1 -- 4

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1 --

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1

4

4

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 -- 1

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 9 1 4

4

5 -- 2 -- 8 -- 6 -- 3 -- 7 -- 1 49

5 -- 2 -- 8 -- 6 -- 3 -- 7 1 4 9

5 -- 2 -- 8 -- 6 -- 3 -- 1 4 97

5 -- 2 -- 8 -- 6 -- 3 1 4 97

Extract              1 4 7 9

4 7 9

Extract              4 7 9

7 9

Extract              7 9

95 -- 2 -- 8 -- 6 -- 3

3 95 -- 2 -- 8 -- 6 --
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Systolic Data Structures

Fig. 8.3    Systolic data structure 
for minimum, maximum, 

and median finding.

Each node holds the smallest (S), 
median (M),and largest (L)
value in its subtree

Each subtree is balanced 
or has one fewer element on the 

left (root flag shows this)

[5, 87] [87, 176]
Insert  2 
Insert  20 
Insert  127 
Insert  195

Extractmin 
Extractmed 
Extractmax19 or 20 

items 20 items

1765
87

Update/access 
examples for the 
systolic data 
structure of Fig. 8.3

Example: 20 elements,
3 in root, 8 on left, 

and 9 on right

8 elements:
3 + 2 + 3
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8A.2  Searching and Dictionary Operations

Example:
n = 26, p = 2

P0

P1

0 
1 
2 

25

8

17

P0

P1P0P1

Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0

A single search in a sorted list 
can’t be significantly speeded up 
through parallel processing, 
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups) 

Parallel (p + 1)-ary search on PRAM

logp+1(n + 1) 
= log2(n + 1) / log2(p + 1)
= Q(log n / log p) steps 

Speedup  log p 

Optimal: no comparison-based 
search algorithm can be faster 
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Dictionary Operations
Basic dictionary operations: record keys x0, x1, . . . , xn–1

search(y) Find record with key y; return its associated data
insert(y, z) Augment list with a record: key = y, data = z
delete(y) Remove record with key y; return its associated data

Some or all of the following operations might also be of interest:

findmin Find record with smallest key; return data
findmax Find record with largest key; return data
findmed Find record with median key; return data
findbest(y) Find record with key “nearest” to y
findnext(y) Find record whose key is right after y in sorted order
findprev(y) Find record whose key is right before y in sorted order
extractmin Remove record(s) with min key; return data
extractmax Remove record(s) with max key; return data
extractmed Remove record(s) with median key value; return data

Priority queue operations: findmin, extractmin (or findmax, extractmax)
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8A.3  Tree-Structured Dictionary Machines

Fig. 8.1 A tree-structured dictionary machine.

x

Input Root

Output Root

"Circle" 
  Tree

"Triangle" 
    Tree

0 x1 x2 x4x3 x5 x6 x7

Combining in the 
triangular nodes

search(y): Pass OR 
of match signals & 
data from “yes” side

findmin / findmax: 
Pass smaller / larger 
of two keys & data

findmed:
Not supported here

findbest(y): Pass 
the larger of two 
match-degree 
indicators along with 
associated record

Search 1

Search 2 Pipelined
search
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Insertion and Deletion in the Tree Machine

Figure 8.2    Tree machine storing 5 records and containing 3 free slots.

*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

Counters keep track 
of the vacancies 
in each subtree

Deletion needs second 
pass to update the 
vacancy counters

Redundant 
insertion (update?) 
and deletion (no-op?)

Implementation:
Merge the circle and 

triangle trees by folding
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Physical Realization of a Tree Machine

Tree machine in folded form

Leaf node

Inner node
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VLSI Layout of a Tree

H-tree layout (used, e.g., for clock distribution network in high-performance microchips)

A clock
domain
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8A.4  Associative Memories

Associative or content-addressable memories (AMs, CAMs) 
Binary (BCAM) vs. ternary (TCAM)

Image source: http://www.pagiamtzis.com/cam/camintro.html

Mismatch in cell connects the match line (ml) to ground
If all cells in the word match the input pattern, a word match is indicated

d d
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Word Match Circuitry

The match line is precharged and then pulled down by any mismatch

Image source: http://www.pagiamtzis.com/cam/camintro.html

Note that each CAM cell is nearly twice as complex as an SRAM cell
More transistors, more wires
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CAM Array Operation

Image source: http://www.pagiamtzis.com/cam/camintro.html
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Current CAM Applications

Packet forwarding
Routing tables specify the path to be taken by matching an incoming 

destination address with stored address prefixes
Prefixes must be stored in order of decreasing length (difficult updating)

Packet classification
Determine packet category based on information in multiple fields
Different classes of packets may be treated differently

Associative caches / TLBs
Main processor caches are usually not fully associative (too large)
Smaller specialized caches and TLBs benefit from full associativity

Data compression
Frequently used substrings are identified and replaced by short codes
Substring matching is accelerated by CAM
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History of Associative Processing

Table 4.1      Entering the second half-century of associative processing
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Decade Events and Advances Technology Performance

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1940s Formulation of need & concept Relays
1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS
1960s Introduction of basic architectures Transistors
1970s Commercialization & applications ICs Giga-bit-OPS
1980s Focus on system/software issues VLSI Tera-bit-OPS
1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Associative memory
Parallel masked search of all words
Bit-serial implementation with RAM

Associative processor
Add more processing logic to PEs

100111010110001101000 Comparand
Mask

Memory 
array with 
comparison 
logic
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8A.5  Associative Processors

Fig. 23.1    
Functional view of 
an associative 
memory/processor.

.

.

.

Global Operations Control & Response

Cell 0

Cell 1

Cell 2

Cell m–1

  Data and 
Commands 
 Broadcast

Read 
Lines Response 

   Store 
  (Tags)

Global Tag 
Operations 
     Unit

Control 
  Unit

Comparand

Mask

tm–1

t2

t1

t 0

Associative or 
content-addressable 
memories/processors 
constituted early 
forms of SIMD 
parallel processing
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Search Functions in Associative Devices

Exact match: Locating data based on partial knowledge of contents

Inexact match: Finding numerically or logically proximate values

Membership: Identifying all members of a specified set

Relational: Determining values that are less than, less than or equal, etc.

Interval: Marking items that are between or outside given limits

Extrema: Finding the maximum, minimum, next higher, or next lower

Rank-based: Selecting kth or k largest/smallest elements

Ordered retrieval: Repeated max- or min-finding with elimination (sorting)
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Classification of Associative Devices

WPBP:
Fully 

parallel

WPBS:
Bit-

serial

WSBS:
Fully 
serial

WSBP:
Word-
serial

Handling 
of words

Parallel

Serial

Handling of bits
within words

Parallel Serial
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WSBP: Word-Serial Associative Devices

One word

Superhigh-speed shift registers

Processing 
logic

F
ro

m
 p

ro
ce

ss
in

g 
lo

gi
c

Strictly speaking, this is not a parallel processor, but with superhigh-speed 
shift registers and deeply pipelined processing logic, it behaves like one
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WPBS: Bit-Serial Associative Devices

One bit-slice

Memory
array

One bit of every word is processed in one device cycle

Advantages: 1. Can be implemented with conventional memory
2. Easy to add other capabilities beyond search

PE

PE

PE

PE

PE

PE

PE

PE

Example: Adding field A to field B in every 
word, storing the sum in field S

Loop:
Read next bit slice of A
Read next bit slice of B
(carry from previous slice is in PE flag C)

Find sum bits; store in next bit slice of S
Find new carries; store in PE flag

Endloop
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Goodyear STARAN Associative Processor

First computer 
based on 
associative 
memory (1972)

Aimed at air 
traffic control 
applications

Aircraft conflict 
detection is an 
O(n2) operation

AM can do it in 
O(n) time 256 PEs
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Flip Network Permutations in the Goodyear STARAN

Figs. in this slide from J. Potter, “The STARAN 
Architecture and Its Applications …,” 1978 NCC

The 256 bits in a bit-slice could be routed to 256 
PEs in different arrangements (permutations)
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Distributed Array Processor (DAP)

Fig. 23.6   
The bit-serial 
processor of 
DAP. 
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DAP’s High-Level Structure

Fig. 23.7    The high-level 
architecture of DAP system.
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8A.6  VLSI Trade-offs in Search Processors

This section has not been written yet

References:

[Parh90] B. Parhami, "Massively Parallel Search Processors: History and 
Modern Trends," Proc. 4th Int'l Parallel Processing Symp., pp. 91-104, 1990.

[Parh91] B. Parhami, "Scalable Architectures for VLSI-Based Associative 
Memories," in Parallel Architectures, ed. by N. Rishe, S. Navathe, and D. Tal, 
IEEE Computer Society Press, 1991, pp. 181-200.
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8B  Arithmetic and Counting Circuits

Many parallel processing techniques originate from, or find 
applications in, designing high-speed arithmetic circuits

• Counting, addition/subtraction, multiplication, division
• Limits on performance and various VLSI trade-offs

Topics in This Chapter

8B.1 Basic Addition and Counting

8B.2 Circuits for Parallel Counting

8B.3 Addition as a Prefix Computation

8B.4 Parallel Prefix Networks

8B.5 Multiplication and Squaring Circuits

8B.6 Division and Square-Rooting Circuits
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8B.1  Basic Addition and Counting

Fig. 5.3 (in Computer Arithmetic)
Using full-adders in building 
bit-serial and ripple-carry adders.

x y 

c 

x 

s 

y 

c 

x 

s 

y 

c out c in 

0 0 

0 

c 0 
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31 

31 

31 

FA 
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c c 

1 1 

1 

1 2 
FA FA 

32 .  .  . 

s 32 

x 

s 

y 

c c 

i i 

i 

i i+1 
FA Carry 

FF Shift 

Shift 

x 

y 

s 

(a) Bit-serial adder. 

(b) Ripple-carry adder. 

Clock 
Ideal latency: 
O(log k)

Ideal cost: 
O(k)

Can these be 
achieved 
simultaneously?
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Constant-Time Counters

Any fast adder design can be specialized and optimized to yield 
a fast counter (carry-lookahead, carry-skip, etc.)

Fig. 5.12 (in Computer Arithmetic)     
Fast (constant-time) three-stage up counter.

Load

Load Increment

Control 
    1

Control 
    2

Incrementer

1

Incrementer

1

Count register divided into three stages

One can use redundant representation to build a constant-time 
counter, but a conversion penalty must be paid during read-out

Counting is 
fundamentally 
simpler than 
addition
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8B.2  Circuits for  Parallel Counting

Fig. 8.16 (in Computer Arithmetic)   
A 10-input parallel counter also 
known as a (10; 4)-counter.

0

1 0 1 0 1 0

2 1 1 0

1

0

2

13 2

3-bit 
ripple-carry 
adder

FA FA

HA

HA

FA

FAFAFA1-bit full-adder = (3; 2)-counter

Circuit reducing 7 bits to their
3-bit sum = (7; 3)-counter

Circuit reducing n bits to their 
log2(n + 1)-bit sum 

= (n; log2(n+1))-counter
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Recursive Construction of Parallel Counters

An n-input parallel counting 
network (PCN) can be built from 
two n/2-bit parallel counting 
networks and a log2 n-bit adder

PCN(15) PCN(10)
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Accumulative Parallel Counters

Possible application: 
Compare Hamming weight 
of a vector to a constant

True generalization of 
sequential counters

n
increment 
signals vi

q-bit final count y = x + Svi

Parallel 
incrementer

q-bit initial 
count x

Count 
register

FA FA FA FA

FA FA FA

FA FA

FAFA

FA FA

FAFA

q-bit
initial 

count x

n increment signals vi, 2q–1 < n  2q

q-bit tally of up to 2q – 1 
of the increment signals

Ignore, or use 
for decision

q-bit final count y

cq

(q + 1)-bit final count y

Latency: 
O(log n)
Cost: 
O(n)

Recursively-
built 
parallel 
counter
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Threshold Counting Networks

At-least-l-out-of-n
threshold counting 
network built from a 
multiplexer and two 
smaller threshold 
counting networks

Recursively-built 
5-out-of-9 voter

x1, x2, x3

x1, x2, x3

x1, x2, x3

x4

x4

x9

x6

x6
x8

x8

x4

x4

x5

x5

x5

x5

x5

x6

x6

x7

x7

x7
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8B.3  Addition as a Prefix Computation

Fig. 8.4 Prefix computation using a latched or pipelined function unit.

 
x i 

s i 
x i 

s i 

Latches Four-stage pipeline Function unit 

Example: Prefix sums
x0 x1 x2 .  .  . xi

x0 x0 + x1 x0 + x1 + x2 .  .  . x0 + x1 + . . . + xi

s0 s1 s2 .  .  . si

Sequential time with one processor is O(n)
Simple pipelining does not help



Winter 2021 Parallel Processing, Circuit-Level Parallelism Slide 64

Improving the Performance with Pipelining

Fig. 8.5 High-throughput prefix computation using a pipelined function unit.

Ignoring pipelining overhead, it appears that we 
have achieved a speedup of 4 with 3 “processors.”
Can you explain this anomaly? (Problem 8.6a)
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xi–8 xi–9 xi–10 xi–11
Function unit 

computing
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Carry Determination as a Prefix Computation

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).
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8B.4  Parallel Prefix Networks

Fig. 8.6 Prefix sum network built of one n/2-input network and n – 1 adders. 

. . .

Prefix Sum n/2

xn–1 xn–2 x3 x2 x1 x0. . .

s n–1 s n–2 s 3 s 2 s 1 s 0

++

+

+

+

T(n) = T(n/2) + 2 
= 2 log2n – 1

C(n) = C(n/2) + n – 1 
= 2n – 2 – log2n

This is the Brent-Kung
Parallel prefix network
(its delay is actually 
2 log2n – 2)
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Example of Brent-Kung Parallel Prefix Network

Fig. 8.8 Brent–Kung parallel prefix graph for n = 16. 
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T(n) = 2 log2n – 2

C(n) = 2n – 2 – log2n
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Another Divide-and-Conquer Design

Fig. 8.7 Prefix sum network built of two n/2-input networks and n/2 adders.

T(n) = T(n/2) + 1 
= log2n

C(n) = 2C(n/2) + n/2 
= (n/2) log2n

Simple Ladner-Fisher
Parallel prefix network
(its delay is optimal, 
but has fan-out issues
if implemented directly)

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Ladner-Fischer construction
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Example of Kogge-Stone Parallel Prefix Network

Fig. 8.9 Kogge-Stone parallel prefix graph for n = 16. 
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Comparison and Hybrid Parallel Prefix Networks
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Fig. 8.10 A hybrid 
Brent–Kung / 
Kogge–Stone 
parallel prefix 
graph for n = 16.
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Linear-Cost, Optimal Ladner-Fischer Networks

Recursive construction of the fastest possible 
parallel prefix network (type-0) 

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Type-0 Type-1

Type-0

Define a type-x parallel prefix network as one that:
Produces the leftmost output in optimal log2 n time
Yields all other outputs with at most x additional delay

We are interested in 
building a type-0 overall 
network, but can use 
type-x networks (x > 0) 
as component parts

Note that even the 
Brent-Kung network 
produces the leftmost 
output in optimal time
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Examples of Type-0, 1, 2 Parallel Prefix Networks
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Kogge–Stone 
parallel prefix 
graph for n = 16.
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8B.5  Multiplication and Squaring Circuits

Notation for our discussion of multiplication algorithms:

a Multiplicand ak–1ak–2 . . . a1a0

x Multiplier xk–1xk–2 . . . x1x0

p Product (a  x) p2k–1p2k–2 . . . p3p2p1p0

Initially, we assume unsigned operands

Fig. 9.1  (in Computer Arithmetic) Multiplication of 4-bit binary numbers.
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Multiplicand 
Multiplier  Parallel:

O(k2) 
circuit 
complexity
O(log k) 
time

Sequential:
O(k) circuit 
complexity
O(k) time with 
carry-save 
additions
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Divide-and-Conquer (Recursive) Multipliers

Building wide multiplier from narrower ones

Fig. 12.1 (in Computer Arithmetic)     
Divide-and-conquer (recursive) 
strategy for synthesizing a 2b  2b
multiplier from b  b multipliers.

a



p

Rearranged partial products 
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H

a H xL

a L xH

a L xLxHa H

b bits

 

C(k) = 4C(k/2) + O(k) = O(k2)
T(k) = T(k/2) + O(log k) = O(log2 k)
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(Anatoly) Karatsuba Multiplication

2b  2b multiplication requires four b  b multiplications:

(2baH + aL)  (2bxH + xL) = 22baHxH + 2b (aHxL + aLxH) + aLxL

aH aL

xH xL

Karatsuba noted that one of the four multiplications can be removed

at the expense of introducing a few additions:

(2baH + aL)  (2bxH + xL) =

22baHxH + 2b [(aH + aL)  (xH + xL) – aHxH – aLxL] + aLxL

Mult 1 Mult 2Mult 3

Benefit is quite significant for

extremely wide operands

b bits

C(k) = 3C(k/2) + O(k) = O(k1.585)
T(k) = T(k/2) + O(log k) = O(log2 k)
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Divide-and-Conquer Squarers

Building wide squarers from narrower ones

Divide-and-conquer (recursive) strategy for synthesizing a 
2b  2b squarer from b  b squarers and multiplier.

a



p

Rearranged partial products 
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H
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xLxH

xL
xL xLxH

xL

xH

xH
xH
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VLSI Complexity Issues and Bounds

Any VLSI circuit computing the product of two k-bit integers must 
satisfy the following constraints:

AT grows at least as fast as k3/2

AT2 is at least proportional to k2

Array multipliers: O(k2) gate count and area, O(k) time

AT =    O(k3) AT2 =    O(k4)

Karatsuba multipliers: O(k1.585) gate count, O(log2 k) time

AT =    O(k1.585 log2 k) ? AT2 =    O(k1.585 log4 k)  ???

Discrepancy due to the fact that interconnect area is not taken into 
account in our previous analyses

Simple recursive multipliers: O(k2) gate count, O(log2 k) time

AT =    O(k2 log2 k) ? AT2 =    O(k2 log4 k) ?
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Theoretically Best Multipliers

Arnold Schonhage and Volker Strassen (via FFT); best until 2007

O(log k) time    
O(k log k log log k) complexity  

It is an open problem whether there exist logarithmic-delay 
multipliers with linear cost
(it is widely believed that there are not)

In the absence of a linear cost multiplication circuit, multiplication 
must be viewed as a more difficult problem than addition

In 2007, Martin Furer managed to replace the log log k term with 
an asymptotically smaller term (for astronomically large numbers)

In 2019, David Harvey and Joris van der Hoeven developed an 
O(n log n) multiplication algorithm, which is believed to be the best 
possible theoretically (but not practical at present)
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8B.6  Division and Square-Rooting Circuits

Division via Newton’s method: O(log k) multiplications

Using Schonhage and Strassen’s FFT-based multiplication, leads to:

O(log2 k) time    
O(k log k log log k) complexity  

With the multiplication algorithm of Harvey and van der Hoeven:
O(log2 k) time    
O(k log k) complexity  

Complexity theory results: It is possible to design dividers
with O(log k) latency and O(k4) cost
with O(log k log log k) latency and O(k2) cost

These theoretical constructions have not led to practical designs
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Theoretically Best Dividers
Best known bounds; cannot be achieved at the same time (yet)

O(log k) time    
O(k log k) complexity  

In 1983, J. H. Reif reduced the time complexity to the current best

O(log k (log log k)2) time

In 1966, S. A. Cook established these simultaneous bounds:

O(log2 k) time    
O(k log k log log k) complexity  

In 1984, Beame/Cook/Hoover established these simultaneous bounds:

O(log k) time    
O(k4) complexity 

Given our current state of knowledge, division must be viewed as 
a more difficult problem than multiplication
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Implications for Ultrawide High-Radix Arithmetic

Arithmetic results with k-bit binary operands hold with no change 
when the k bits are processed as g radix-2h digits (gh = k)

k bits

h-bit
group

g groups
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Another Circuit Model: Artificial Neural Nets

Supervised learning

Inputs Weights

Activation 
function

Output

Threshold

Feedforward network 
Three layers: input, hidden, output
No feedback

Artificial 
neuron

Recurrent network 
Simple version due to Elman
Feedback from hidden nodes to special nodes at the input layer

Diagrams from
http://www.learnartificialneuralnetworks.com/

Hopfield network 
All connections are bidirectional

Characterized by connection 
topology and learning method
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8C  Fourier Transform Circuits
Fourier transform is quite important, and it also serves as a 
template for other types of arithmetic-intensive computations

• FFT; properties that allow efficient implementation
• General methods of mapping flow graphs to hardware

Topics in This Chapter

8C.1 The Discrete Fourier Transform

8C.2 Fast Fourier Transform (FFT)

8C.3 The Butterfly FFT Network

8C.4 Mapping of Flow Graphs to Hardware

8C.5 The Shuffle-Exchange Network

8C.6 Other Mappings of the FFT Flow Graph
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8C.1  The Discrete Fourier Transform

Other important transforms for discrete signals:

z-transform (generalized form of Fourier transform)

Discrete cosine transform (used in JPEG image compression)

Haar transform (a wavelet transform, which like DFT, has a fast version)

DFT

x0

x1

x2

.

.

.

xn–1

y0

y1

y2

.

.

.

yn–1

Inv.
DFT

x0

x1

x2

.

.

.

xn–1

x in time domain
y in frequency domain

n–point DFT

Some operations are 
easier in frequency 
domain; hence the 
need for transform
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Defining the DFT and Inverse DFT

DFT yields output sequence yi based on input sequence xi (0  i < n)

yi =  ∑
j=0 ton–1

wn
ij xj                       O(n2)-time naïve algorithm

where wn is the nth primitive root of unity; wn
n = 1, wn

j ≠ 1 (1  j < n)

Examples:  w4 = i

w3 = (1 + i 3)/2 

w8 = 2(1 + i )/2 

The inverse DFT is almost exactly the same computation:

xi = (1/n) ∑
j=0 to n–1

wn
ij yj     

Input seq. xi (0  i < n) is said to be in time domain

Output seq. yi (0  i < n) is the input’s frequency-domain characterization
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DFT of a Cosine Waveform

DFT of a cosine 
with a frequency 
1/10 the sampling 
frequency fs

Frequency fs
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DFT of a Cosine with Varying Resolutions

DFT of a cosine 
with a frequency 
1/10 the sampling 
frequency fs

Frequency fs
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DFT as Vector-Matrix Multiplication

DFT and inverse DFT computable 
via matrix-by-vector multiplication Y = W X

DFT matrix

yi =  ∑
j = 0

wn
ij xj

n – 1 
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DFT Basics and Visualizations

A visual introduction to Fourier transform (21-minute video)
https://www.youtube.com/watch?v=spUNpyF58BY  

Discrete Fourier transform: Introduction (11-minute video)
https://www.youtube.com/watch?v=mkGsMWi_j4Q 

Fourier transform, Fourier series, and frequency spectrum (16-min. video)
https://www.youtube.com/watch?v=r18Gi8lSkfM
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Application of DFT to Smoothing or Filtering

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal
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DFT Application Example

Signal corrupted by 0-mean 
random noise

Source of images:
http://www.mathworks.com/help/techdoc/ref/fft.html

FFT shows strong frequency 
components of 50 and 120

The uncorrupted signal was:

x =  0.7 sin(2p 50t) + sin(2p 120t) 
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Application of DFT to Spectral Analysis

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209 
  Hz

1477  
  Hz

1336  
  Hz

1633  
  Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments 
     for touch-tone dialing

Frequency spectrum of received tone
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8C.2  Fast Fourier Transform
DFT yields output sequence yi based on input sequence xi (0  i < n)

yi =  ∑
j=0 ton–1

wn
ij xj

Fast Fourier Transform (FFT): 

The Cooley-Tukey algorithm

O(n log n)-time DFT algorithm that derives y
from half-length sequences u and v that are DFTs 
of even- and odd-indexed inputs, respectively

yi =  ui + wn
i vi (0  i < n/2)

yi+n/2 =  ui + wn
i+n/2 vi =  ui – wn

i vi

T(n) = 2T(n/2) + n = n log2n sequentially
T(n) =  T(n/2) + 1 = log2n in parallel

Image from Wikipedia
j

i

Butterfly 
operation
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More General Factoring-Based Algorithm

Image from 
Wikipedia
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8C.3  The Butterfly FFT Network
u: DFT of even-indexed inputs
v: DFT of odd-indexed inputs

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Fig. 8.11    Butterfly network for an 8-point FFT. 

yi =  ui + wn
i vi (0  i < n/2)

yi+n/2 =  ui + wn
i+n/2 vi
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Butterfly Processor

Performs a pair of multiply-add operations, 
where the multiplication is by a constant

Design can be optimized 
by merging  the adder 
and subtractor, as they 
receive the same inputs

processor
+

–
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Computation Scheme for 16-Point FFT
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8C.4  Mapping of Flow Graphs to Hardware
Given a computation flow graph, it can be mapped to hardware

Direct 
one-to-one 
mapping 
(possibly 
with 
pipelining)

 

+ 

 

 

 

/  

 

/ 

 

 

+ 

Pipelining period 
Latency 

t = 0 

Latch positions in a four-stage pipeline 

a 
b 

c 
d 

e 
f 

z 

Output  
available 

Time 

(a + b) c d 
e  f 

Fig. 25.6    Parhami’s textbook on computer arithmetic.
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Ad-hoc Scheduling on a Given Set of Resources

Given a computation flow graph, it can be mapped to hardware

Assume: 
tadd = 1
tmult = 3
tdiv = 8
tsqrt = 10

 

+ 

 

 
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/  

 
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 
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Mapping through Projection

Given a flow graph, it can be projected in various directions to obtain 
corresponding hardware realizations

Multiple nodes of a flow graph may map onto a single hardware node

That one hardware node then performs the computations associated 
with the flow graph nodes one by one, according to some timing 
arrangement (schedule)
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8C.5  The Shuffle-Exchange Network
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Fig. 8.12 FFT network variant and its shared-hardware realization.

Variants of the Butterfly Architecture
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8C.6  Other Mappings of the FFT Flow Graph

This section is incomplete at this time
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More 
Economical 

FFT 
Hardware

Fig. 8.13    
Linear array of 
log2n cells for 
n-point FFT 
computation.
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Space-Time Diagram for the Feedback FFT Array

Feedback
butterfly 
processor


