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II Shared-Memory Parallelism

Shared memory is the most intuitive parallel user interface:
• Abstract SM (PRAM); ignores implementation issues
• Implementation w/o worsening the memory bottleneck
• Shared-memory models and their performance impact

Topics in This Part

Chapter 5 PRAM and Basic Algorithms

Chapter 6A More Shared-Memory Algorithms

Chapter 6B Implementation of Shared Memory

Chapter 6C Shared-Memory Abstractions
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5  PRAM and Basic Algorithms

PRAM, a natural extension of RAM (random-access machine):
• Present definitions of model and its various submodels
• Develop algorithms for key building-block computations

Topics in This Chapter

5.1 PRAM Submodels and Assumptions

5.2 Data Broadcasting

5.3 Semigroup or Fan-in Computation

5.4 Parallel Prefix Computation

5.5 Ranking the Elements of a Linked List

5.6 Matrix Multiplication
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Why Start with Shared Memory?

Study one extreme of parallel computation models:
• Abstract SM (PRAM); ignores implementation issues
• This abstract model is either realized or emulated
• In the latter case, benefits are similar to those of HLLs

In Part II, we will study the other extreme case of models:
• Concrete circuit model; incorporates hardware details
• Allows explicit latency/area/energy trade-offs
• Facilitates theoretical studies of speed-up limits

Everything else falls between these two extremes
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5.1  PRAM Submodels and Assumptions

Fig. 4.6    Conceptual view of a parallel 
random-access machine (PRAM). 
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Types of PRAM

Fig. 5.1   Submodels of the PRAM model.
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Examples of Exclusive/Concurrent Reads/Writes 

Exclusive read:
for 0  i < p processor i read from location i

Exclusive write:
for 0  i < p processor i write into location i + 1 mod p

Concurrent read:
for 0  i < p processor i read from location i mod 2

Concurrent write:
for 0  i < p processor i write into location di

Exclusivity not enforced by hardware; rather, it’s done by the programmer 
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Types of CRCW PRAM 

Undefined: The value written is undefined (CRCW-U)

Detecting: A special code for “detected collision” is written (CRCW-D)

Common: Allowed only if they all store the same value (CRCW-C) 
[This is sometimes called the consistent-write submodel ]

Random: The value is randomly chosen from those offered (CRCW-R)

Priority: The processor with the lowest index succeeds (CRCW-P)

Max / Min: The largest / smallest of the values is written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S), 
logical AND (CRCW-A), 
logical XOR (CRCW-X), 
or another combination of values is written 

CRCW submodels are distinguished by the way they treat multiple writes: 
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Power of CRCW PRAM Submodels 

Theorem 5.1: A p-processor CRCW-P (priority) PRAM can be simulated 
(emulated) by a p-processor EREW PRAM with slowdown factor Q(log p).

Intuitive justification for concurrent read emulation (write is similar):

Write the p memory addresses in a list
Sort the list in ascending order of addresses
Remove all duplicate addresses
Access data at desired addresses
Replicate data via parallel prefix computation

Each step requires constant or O(log p) time 

Model U is more powerful than model V if TU(n)=o(TV(n)) for some problem

EREW  <  CREW  <  CRCW-D   <  CRCW-C  <  CRCW-R  <  CRCW-P 
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Implications of the CRCW Hierarchy of Submodels

Our most powerful PRAM CRCW submodel can be emulated by the 
least powerful submodel with logarithmic slowdown

Efficient parallel algorithms have polylogarithmic running times

Running time still polylogarithmic after slowdown due to emulation

A p-processor CRCW-P (priority) PRAM can be simulated (emulated) 
by a p-processor EREW PRAM with slowdown factor Q(log p).

EREW  <  CREW  <  CRCW-D   <  CRCW-C  <  CRCW-R  <  CRCW-P 

We need not be too concerned with the CRCW submodel used

Simply use whichever submodel is most natural or convenient
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Some Elementary PRAM Computations 

Initializing an n-vector (base address = B) to all 0s:

for j = 0 to n/p – 1 processor i do
h = jp + i
if h < n then M[B + h] := 0

endfor

Adding two n-vectors and storing the results in a third
(base addresses B, B, B)

Convolution of two n-vectors: Wk = i+j=k Ui  Vj

(base addresses BW, BU, BV)

n / p
segments

p
elements
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5.2  Data 
Broadcasting

Fig. 5.2 Data broadcasting in EREW PRAM 
via recursive doubling. 

Making p copies of B[0] 
by recursive doubling
for k = 0 to log2p – 1    

Proc j, 0  j < p, do
Copy B[j] into B[j + 2k] 

endfor 
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Fig. 5.3 EREW PRAM data broadcasting 
without redundant copying. 
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Can modify the algorithm 
so that redundant copying 
does not occur and array 
bound is not exceeded
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Class Participation: Broadcast-Based Sorting 

Each person write down an arbitrary nonnegative 
integer with 3 or fewer digits on a piece of paper

Students take turn broadcasting their numbers by 
calling them out aloud

Each student puts an X on paper for every number 
called out that is smaller than his/her own number, or is 
equal but was called out before the student’s own value

j

Each student counts the number of Xs on paper to determine 
the rank of his/her number

p – 1

0

Students call out their numbers in order of the computed rank
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All-to-All Broadcasting on EREW PRAM 

EREW PRAM algorithm for all-to-all broadcasting
Processor j, 0  j < p, write own data value into B[j]
for k = 1 to p – 1 Processor j, 0  j < p, do

Read the data value in B[(j + k) mod p]
endfor 

This O(p)-step algorithm is time-optimal 

Naive EREW PRAM sorting algorithm (using all-to-all broadcasting)
Processor j, 0  j < p, write 0 into R[ j ] 
for k = 1 to p – 1 Processor j, 0  j < p, do

l := (j + k) mod p
if S[ l ] < S[ j ] or S[ l ] = S[ j ] and l < j
then R[ j ] := R[ j ] + 1
endif

endfor
Processor j, 0  j < p, write S[ j ] into S[R[ j ]] 

j

This O(p)-step sorting 
algorithm is far from 
optimal; sorting is possible 
in O(log p) time

p – 1

0
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5.3  Semigroup or Fan-in Computation

EREW PRAM semigroup 
computation algorithm
Proc j, 0 j<p, copy X[j] into S[j]
s := 1
while s<p Proc j, 0 j <p–s, do

S[j + s] := S[j]  S[j + s]
s := 2s

endwhile
Broadcast S[p – 1] to all proc’s 

If we use p processors on a list 
of size n = O(p log p), then optimal 
speedup can be achieved

This algorithm is optimal for PRAM, 
but its speedup of O(p / log p) is not

Fig. 5.4   Semigroup computation 
in EREW PRAM.
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Fig. 5.5   Intuitive justification of why 
parallel slack helps improve the efficiency.
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near the leaves
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5.4  Parallel Prefix Computation

Fig. 5.6    Parallel prefix computation in EREW PRAM 
via recursive doubling. 
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A Divide-and-Conquer Parallel-Prefix Algorithm 

Fig. 5.7    Parallel prefix computation using a divide-and-conquer scheme. 
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Another Divide-and-Conquer Algorithm 

Fig. 5.8  Another divide-and-conquer scheme for parallel prefix computation. 
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5.5  Ranking the Elements of a Linked List

C F A E B D

Rank:   5           4           3          2           1           0

info  next
head

Terminal element

(or distance from terminal)

Distance from head:
1           2           3          4           5           6

Fig. 5.9     Example linked list and the ranks of its elements.

Fig. 5.10   PRAM data structures 
representing a linked list and the 
ranking results. 
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List ranking appears to be 
hopelessly sequential; 
one cannot get to a list 
element except through 
its predecessor!
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List Ranking via Recursive Doubling

Fig. 5.11   Element ranks initially and after each of the three iterations. 

Many problems 
that appear to be 
unparallelizable 
to the uninitiated 
are  parallelizable;
Intuition can be 
quite misleading!
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PRAM List Ranking Algorithm

Question: Which PRAM 
submodel is implicit in 
this algorithm?

If we do not 
want to modify 
the original list, 
we simply make 
a copy of it first, 
in constant time

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

PRAM list ranking algorithm (via pointer jumping)
Processor j, 0 j <p, do {initialize the partial ranks}
if next [ j ] = j
then rank[ j ] := 0 
else  rank[ j ] := 1 
endif
while rank[next[head]]  0 Processor j, 0  j < p, do

rank[ j ] := rank[ j ] + rank[next [ j ]]
next [ j ] := next [next [ j ]]

endwhile

Answer: CREW
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5.6  Matrix Multiplication

Sequential matrix multiplication
for i = 0 to m – 1 do

for j = 0 to m – 1 do
t := 0
for k = 0 to m – 1 do

t := t + aikbkj

endfor
cij := t

endfor
endfor 

=
i

j

ij

A B C

cij :=Sk=0 to m–1 aikbkj

PRAM solution with 
m3 processors: 
each processor does 
one multiplication 
(not very efficient)

m  m
matrices
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PRAM Matrix Multiplication with m2 Processors

Fig. 5.12    PRAM matrix multiplication; p = m2 processors.

=
i

j

ij

PRAM matrix multiplication using m2 processors
Proc (i, j), 0  i, j < m, do
begin

t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

end 

Q(m) steps: Time-optimal

CREW model is implicit

Processors are numbered (i, j), 
instead of 0 to m2 – 1

A B C
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PRAM Matrix Multiplication with m Processors

PRAM matrix multiplication using m processors
for j = 0 to m – 1 Proc i, 0  i < m, do

t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

endfor 

=
i

j

ij

Q(m2) steps: Time-optimal

CREW model is implicit

Because the order of multiplications 
is immaterial, accesses to B can be 
skewed to allow the EREW model

A B C
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PRAM Matrix Multiplication with Fewer Processors

Algorithm is similar, except that 
each processor is in charge of 
computing m /p rows of C

Q(m3/p) steps: Time-optimal

EREW model can be used

A drawback of all algorithms thus far is that only two arithmetic 
operations (one multiplication and one addition) are performed 
for each memory access. 

This is particularly costly for NUMA shared-memory machines.

=
i

j

ij m / p 
rows

B CA
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More Efficient Matrix Multiplication (for NUMA)

Fig. 5.13    Partitioning the matrices 
for block matrix multiplication .

A B 

C D 

AE+BG AF+BH E F 

G H CE+DG CF+DH 

= 

Block matrix multiplication 
follows the same algorithm as 
simple matrix multiplication.

=
i

j

ij
BlockBlock- 

band

Block-band

1 2 ¦p

1

2

¦p

One processor  
computes these  
elements of C  
that it holds in  
local memory

q

q=m/¦p

p

p

q=m/p

Partition the matrices
into p square blocks



Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 28

Details of Block Matrix Multiplication

Fig. 5.14    How Processor (i, j) operates on an element of A
and one block-row of B to update one block-row of C.

A multiply-add 
computation 
on q  q blocks 
needs 
2q 2 = 2m 2/p
memory 
accesses and 
2q 3 arithmetic 
operations

So, q arithmetic 
operations are 
done per 
memory access iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + b jq + q - 1 

kq + c 

kq + c 

iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + 1 jq + b jq + q - 1 

Multiply 

Add 
Elements of 
block (i, j)  
in matrix C 

Elements of 
block (k, j) 
in matrix B  

Element of 
block (i, k) 
in matrix A  

jq + 1 
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6A  More Shared-Memory Algorithms

Develop PRAM algorithm for more complex problems:
• Searching, selection, sorting, other nonnumerical tasks
• Must present background on the problem in some cases

Topics in This Chapter

6A.1 Parallel Searching Algorithms

6A.2 Sequential Rank-Based Selection

6A.3 A Parallel Selection Algorithm

6A.4 A Selection-Based Sorting Algorithm

6A.5 Alternative Sorting Algorithms

6A.6 Convex Hull of a 2D Point Set
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6A.1  Parallel Searching Algorithms
Example: n = 24, p = 4

Searching an unordered list in PRAM

Sequential time: n worst-case
n/2 on average

Divide the list of n items into p segments of 
n / p items (last segment may have fewer)

Processor i will be in charge of n / p list 
elements, beginning at address i n / p

Parallel time: n / p worst-case
???  on average

Perfect speed-up of p with p processors?

Pre- and postprocessing overheads

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A0

A1

A2

A3
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Parallel (p + 1)-ary Search on PRAM

Example:
n = 26, p = 2

P0

P1

0 
1 
2 

25

8

17

P0

P1P0P1

Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0

A single search in a sorted list 
can’t be significantly speeded up 
through parallel processing, 
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups) 

p probes, rather than 1, per step

logp+1(n + 1) 
= log2(n + 1) / log2(p + 1)
= Q(log n / log p) steps 

Speedup  log p 

Optimal: no comparison-based 
search algorithm can be faster 

From
Sec. 8.1
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6A.2  Sequential Ranked-Based Selection

Selection: Find the (or a) kth smallest among n elements

Example: 5th smallest element in the following list is 1:
6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5

Naive solution 
through sorting, 
O(n log n) time 

But linear-time 
sequential 
algorithm can 
be developed

Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

max(|L|, |G|)  3n/4
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Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

Linear-Time Sequential Selection Algorithm

Sequential rank-based selection algorithm select(S, k)
1.  if |S| < q {q is a small constant}

then sort S and return the kth smallest element of S
else divide S into |S|/q subsequences of size q

Sort each subsequence and find its median
Let the |S|/q medians form the sequence T

endif
2.  m = select(T, |T|/2)    {find the median m of the |S|/q medians}
3.  Create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4.  if |L|  k
then return select(L, k)
else if |L| + |E|  k

then return m
else return select(G, k – |L| – |E|)
endif

endif 

O(n)

T(n/q)

T(3n/4)

O(n)

To be
justified
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Algorithm Complexity and Examples

We must have q  5; 
for q = 5, the solution is T(n) = 20cnT(n) = T(n /q) + T(3n /4) + cn

------------ n/q sublists of q elements -------------
S 6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5 

--------- --------- --------- --------- ---------
T 6        3          3        2          5    
m 3                            

1 2 1 0 2 1 1   3 3   6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
------------- --- -------------------------------

L E G
|L| = 7     |E| = 2           |G| = 16

To find the 5th smallest element in S, select the 5th smallest element in L

S 1 2 1 0 2  1 1  
--------- ---

T 1        1    
m 1                            

0   1 1 1 1   2 2
- ------- ---
L E G         

Answer: 1

The 9th smallest element of S is 3. 

The 13th smallest element of S is 
found by selecting the 4th smallest 
element in G. 
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Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

Parallel rank-based selection algorithm PRAMselect(S, k, p)
1.  if |S| < 4          

then sort S and return the kth smallest element of S
else broadcast |S| to all p processors

divide S into |S|/q subsequences S(j) of size q
Processor j, 0  j < p, compute Tj := select(S(j), |S(j)|/2)  

endif
2.  m = PRAMselect(T, |T|/2, p) {median of the medians}
3.  Broadcast m to all processors and create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4.  if |L|  k
then return PRAMselect(L, k, p)
else if |L| + |E|  k

then return m
else return PRAMselect(G, k – |L| – |E|, p)
endif 

endif

O(nx)

T(n1–x,p)

T(3n/4,p)

O(nx)

6A.3  A Parallel Selection Algorithm

Let p = O(n1–x)
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Algorithm Complexity and Efficiency

The solution is O(nx);
verify by substitutionT(n,p) = T(n1–x,p) + T(3n /4,p) + cnx

Speedup = Q(n) / O(nx) = W(n1–x) = W(p)

Efficiency = W(1) 

Work(n, p) = pT(n, p) = Q(n1–x) Q(nx) = Q(n)

What happens if we set x to 1? ( i.e., use one processor)

T(n, 1) = O(n x) = O(n)

What happens if we set x to 0? (i.e., use n processors)

T(n, n) = O(n x) = O(1) ?

Remember
p = O(n1–x)

No, because 
in asymptotic 
analysis,
we ignored 
several 
O(log n) terms 
compared with 
O(nx) terms
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Data Movement in Step 2 of the Algorithm

Consider the sublist L: Processor i contributes ai items to this sublist

Processor 0 starts storing at location 0, processor 1 at location a0, 
processor 2 at location a0 + a1, Processor 3 at location a0 + a1 + a2, …

nx

n

< m

= m

> m

|L|

|E|

|G|

a0 items

b0 items

c0 items

a1

b1

c1 a2

b2

c2

.

.

.
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6A.4  A Selection-Based Sorting Algorithm
Parallel selection-based sort PRAMselectionsort(S, p)
1.  if |S| < k then return quicksort(S)          
2.  for i = 1 to k – 1 do  

mj := PRAMselect(S, i|S|/k, p) {let m0 := –; mk := +}
endfor

3.  for i = 0 to k – 1 do  
make the sublist T(i) from elements of S in (mi, mi+1)

endfor
4.  for i = 1 to k/2 do in parallel  

PRAMselectionsort(T(i), 2p/k)
{p/(k/2) proc’s used for each of the k/2 subproblems}

endfor
5.  for i = k/2 + 1 to k do in parallel  

PRAMselectionsort(T(i), 2p/k)
endfor 

O(nx)

T(n/k,2p/k)

O(1)

O(nx)

.  .  .m m m m

n/k elements n/k n/k n/k

 –  +
1 2 3 k–1   

Fig. 6.1    Partitioning of the sorted list for selection-based sorting. 

T(n/k,2p/k)
Let p = n1–x

and k = 21/x
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Algorithm Complexity and Efficiency

The solution is O(nx log n);
verify by substitutionT(n, p) = 2T(n/k, 2p/k) + cnx

Speedup(n,p) = W(n logn) / O(nx logn) = W(n1–x) = W(p)

Efficiency = speedup / p = W(1) 

Work(n, p) = pT(n, p) = Q(n1–x) Q(nx log n) = Q(n log n)

What happens if we set x to 1? ( i.e., use one processor)

T(n, 1) = O(n x log n) = O(n log n)

Our asymptotic analysis is valid for x > 0 but not for x = 0; 

i.e., PRAMselectionsort cannot sort p keys in optimal O(log p) time.

Remember
p = O(n1–x)
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Example of Parallel Sorting

S: 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5

Threshold values for k = 4 (i.e., x = ½ and p = n1/2 processors):
m0 = –

n/k = 25/4  6    m1 = PRAMselect(S, 6, 5) = 2
2n/k = 50/4  13     m2 = PRAMselect(S, 13, 5) = 4
3n/k = 75/4  19    m3 = PRAMselect(S, 19, 5) = 6

m4 = +

m0 m1 m2 m3                                      m4

T: - - - - - 2|- - - - - - 4|- - - - - 6|- - - - - -

T: 0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9
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6A.5  Alternative Sorting Algorithms

Parallel randomized sort PRAMrandomsort(S, p)
1.  Processor j, 0  j < p, pick |S|/p2 random samples of 

its |S|/p elements and store them in its corresponding
section of a list T of length |S|/p

2.  Processor 0 sort the list T
{comparison threshold mi is the (i |S| /p2)th element of T}

3.  Processor j, 0  j < p, store its elements falling 
in (mi, mi+1) into T(i)

4.  Processor j, 0  j < p, sort the sublist T(j) 

Sorting via random sampling (assume p <<  n)

Given a large list S of inputs, a random sample of the elements    
can be used to find k comparison thresholds 

It is easier if we pick k = p, so that each of the resulting
subproblems is handled by a single processor
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Parallel Binsort or Bucketsort

If the list consists of small range of values (say, numbers 0-9), 
bucketsort can be used to count the number of occurrences of 
each value in O(n) time serially and in O(n/p) time in parallel

Wikipedia images
Suppose input values are in [0, m)

Divide the range into p subranges

[0, m/p), [m/p, 2m/p), ….

Processor j sorts the elements in the 
jth subrange

If values are uniformly distributed, 
each processor gets ~n/p values

Avg. time = O(n/p) + O((n/p) log(n/p)
Fill 

buckets
Sort

buckets
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Parallel Radixsort

In binary version of radixsort, we examine every bit of the   
k-bit keys in turn, starting from the LSB 

In Step i, bit i is examined, 0  i < k
Records are stably sorted by the value of the ith key bit

Input Sort by Sort by Sort by
list LSB middle bit MSB
–––––– –––––– –––––– ––––––
5 (101) 4 (100) 4 (100) 1 (001)
7 (111) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010) 1 (001) 2 (010)
1 (001) 5 (101) 2 (010) 3 (011)
4 (100) 7 (111) 2 (010) 4 (100)
2 (010) 3 (011) 7 (111) 5 (101)
7 (111) 1 (001) 3 (011) 7 (111)
2 (010) 7 (111) 7 (111) 7 (111) 

Binary
forms

Question:
How are 
the data 
movements 
performed?
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Data Movements in Parallel Radixsort

Running time consists mainly of the time to perform 2k
parallel prefix computations: O(log p) for k constant 

Input Compl. Diminished Prefix sums Shifted
list of bit 0   prefix sums Bit 0  plus 2 list
–––––– ––– –––––– ––– ––––––––– ––––––
5 (101) 0  – 1 1   +  2  =  3 4 (100)
7 (111) 0  – 1 2   +  2  =  4 2 (010)
3 (011) 0  – 1 3   +  2  =  5 2 (010)
1 (001) 0  – 1 4   +  2  =  6 5 (101)
4 (100) 1 0 0   – 7 (111)
2 (010) 1 1 0   – 3 (011)
7 (111) 0  – 1 5   +  2  = 7 1 (001)
2 (010) 1 2 0   – 7 (111)
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6A.6  Convex Hull of a 2D Point Set

Fig. 6.2    Defining the 
convex hull problem. 
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Fig. 6.3   Illustrating the properties 
of the convex hull. 

x’ 

y’ 

All points 
fall on this 
side of line 

Angle 

0 

1 

7 

11 

15 

Best sequential 
algorithm for p
points: 
W(p log p) steps 
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PRAM Convex Hull Algorithm

Fig. 6.4   Multiway divide and conquer for the convex hull problem 

Parallel convex hull algorithm PRAMconvexhull(S, p)
1.  Sort point set by x coordinates         
2.  Divide sorted list into p subsets Q (i) of size p, 0  i < p
3.  Find convex hull of each subset Q (i) using p processors

4.  Merge p convex hulls CH(Q (i)) into overall hull CH(Q)

x

y y

CH(Q   )(0)
Q(0) Q(1) Q(2) Q(3)

Upper
hull

Lower
hull
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Fig. 6.5    Finding points in a partial hull that belong to the combined hull. 

Analysis:

T(p, p) 
= T(p1/2, p1/2) + c log p
 2c log p

The initial sorting also 
takes O(log p) time 

Merging of Partial Convex Hulls

Tangent lines 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(a) No point of CH(Q(i)) is on CH(Q) 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(b) Points of CH(Q(i)) from A to B are on CH(Q) 

A B 

Tangent lines are 
found through binary 
search in log time
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6B  Implementation of Shared Memory
Main challenge: Easing the memory access bottleneck

• Providing low-latency, high-bandwidth paths to memory 
• Reducing the need for access to nonlocal memory
• Reducing conflicts and sensitivity to memory latency

Topics in This Chapter

6B.1 Processor-Memory Interconnection

6B.2 Multistage Interconnection Networks

6B.3 Cache Coherence Protocols

6B.4 Data Allocation for Conflict-Free Access

6B.5 Distributed Shared Memory

6B.6 Methods for Memory Latency Hiding



Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 49

About the New Chapter 6B

This new chapter incorporates material from the following existing 
sections of the book:

6.6 Some Implementation Aspects

14.4 Dimension-Order Routing

15.3 Plus-or-Minus-2i Network

16.6 Multistage Interconnection Networks

17.2 Distributed Shared Memory

18.1 Data Access Problems and Caching

18.2 Cache Coherence Protocols

18.3 Multithreading and Latency Hiding

20.1 Coordination and Synchronization
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Making PRAM Practical
PRAM needs a read and a write access to memory in every cycle

Even for a sequential computer, memory is tens to hundreds of times 
slower than arithmetic/logic operations; multiple processors accessing 
a shared memory only makes the situation worse

Shared access to a single large physical memory isn’t scalable

Strategies and focal points for making PRAM practical

1. Make memory accesses faster and more efficient (pipelining)

2. Reduce the number of memory accesses (caching, reordering of 
accesses so as to do more computation per item fetched/stored)

3. Reduce synchronization, so that slow memory accesses for one
computation do not slow down others (synch, memory consistency)

4. Distribute the memory and data to make most accesses local

5. Store data structures to reduce access conflicts (skewed storage)
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6B.1  Processor-Memory Interconnection

Fig. 4.3 A parallel processor with global (shared) memory.

0 0 

1 1 

 

Processor-
to-memory 

network 

p-1 m-1 
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to-processor 
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Processors 
Memory 
modules 
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Processor-to-Memory Network

Crossbar switches offer 
full permutation capability 
(they are nonblocking), 
but are complex and 
expensive: O(p2)

An 8  8 crossbar switch

P0

P1

P2

P3

P4

P5

P6

P7

M0 M1 M2 M3 M4 M5 M6 M7
Practical processor-to-
memory networks cannot 
realize all permutations 
(they are blocking) 

Even with a permutation 
network, full PRAM 
functionality is not 
realized: two processors 
cannot access different 
addresses in the same 
memory module
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Bus-Based Interconnections

Memory

Proc Proc Proc Proc.  .  .

I/O

Memory

Proc Proc Proc Proc.  .  .

I/O

Single-bus system:
Bandwidth bottleneck
Bus loading limit
Scalability: very poor
Single failure point
Conceptually simple
Forced serialization

Multiple-bus system:
Bandwidth improved
Bus loading limit
Scalability: poor
More robust
More complex scheduling
Simple serialization
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Back-of-the-Envelope Bus Bandwidth Calculation

Memory

Proc Proc Proc Proc.  .  .

I/O
Single-bus system:
Bus frequency: 0.5 GHz
Data width: 256 b (32 B)
Mem. Access: 2 bus cycles
(0.5G)/2  32 = 8 GB/s

Bus cycle = 2 ns
Memory cycle = 100 ns
1 mem. cycle = 50 bus cycles

Multiple-bus system:
Peak bandwidth multiplied 
by the number of buses
(actual bandwidth is likely 
to be much less)

Mem

Proc Proc Proc Proc.  .  .

I/OMem Mem Mem
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Hierarchical Bus Interconnection

Fig. 4.9 Example of a hierarchical interconnection architecture. 

Low-level 
cluster

Bus switch 
(Gateway)

Heterogeneous system
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Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.

0 0 

1 1 

 

Processor-
to-memory 

network 

p-1 m-1 

Processor-
to-processor 

network 

Processors Caches Memory 
modules 

Parallel I/O 

. . . 

. 

. 

. 

. 

. 

. 

Challenge:
Cache 
coherence



Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 57

Why Data Caching Works

Fig. 18.1    Data storage 
and access in a two-way 
set-associative cache. 

Placement Option 0 Placement Option 1

. 

. 

.
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. 
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Tag Index

Address in

Mux
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=Com- 
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Hit rate r (fraction of 
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satisfied by cache)
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Block length (line width)     
Placement policy 
Replacement policy 
Write policy
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Benefits of Caching Formulated as Amdahl’s Law

Generalized form of Amdahl’s speedup formula:

S =  1/(f1/p1 + f2/p2 + . . . + fm/pm),  with f1 + f2 + . . . + fm = 1

In this case, a fraction 1 – r is slowed down by a factor (Cslow + Cfast) /Cslow, 
and a fraction r is speeded up by a factor Cslow /Cfast

Fig. 18.3 of Parhami’s Computer Architecture text (2005)

Main 
memory 

Register 
file 

Access cabinet  
in 30 s 

Access 
desktop in 2 s 

Access drawer 
in 5 s 

Cache 
memory 

This corresponds to the miss-rate fraction 1 – r of accesses being unaffected 
and the hit-rate fraction r (almost 1) being speeded up by a factor Cslow/Cfast

Hit rate r (fraction of memory 
accesses satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

S    = Cslow /Ceff

1
=  

(1 – r) + Cfast/Cslow
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6B.2  Multistage Interconnection Networks

Fig. 21.5   Key 
elements of 
the Cray Y-MP 
processor. 
Address 
registers, 
address 
function units, 
instruction 
buffers, and 
control not 
shown.
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Cray Y-MP’s Interconnection Network 

Fig. 21.6   The processor-to-memory interconnection network of Cray Y-MP.
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Fig. 6.9    Example of 
a multistage memory 
access network. 

Butterfly Processor-to-Memory Network

Not a full 
permutation network
(e.g., processor 0 
cannot be connected 
to memory bank 2 
alongside the two 
connections shown)

Is self-routing: i.e., 
the bank address 
determines the route

A request going to 
memory bank 3 
(0 0 1 1) is routed:

lower upper upper
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2

Two ways to use the butterfly:
- Edge switches 1 x 2 and 2 x 1
- All switches 2 x 2
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Butterfly as Multistage Interconnection Network

Fig. 6.9    Example of a multistage 
memory access network 

Generalization of the butterfly network
High-radix or m-ary butterfly, built of m  m switches
Has mq rows and q + 1 columns (q if wrapped)
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Fig. 15.8    Butterfly network 
used to connect modules 
that are on the same side 
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Self-Routing on a Butterfly Network

From node 3 to 6: routing tag = 011  110 = 101 “cross-straight-cross”
From node 3 to 5: routing tag = 011  101 = 110 “straight-cross-cross”
From node 6 to 1: routing tag = 110  001 = 111 “cross-cross-cross”

dim 0 dim 1 dim 2 

0        1        2        3 
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5  
  
6  
  
7 

Ascend Descend 

Fig. 14.6   Example 
dimension-order 
routing paths. 

Number of cross 
links taken = length 
of path in hypercube
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Butterfly Is Not a Permutation Network
dim 0 dim 1 dim 2

0        1        2        3
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Fig. 14.7    Packing is a “good” 
routing problem for dimension-
order routing on the hypercube. 
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Fig. 14.8    Bit-reversal permutation is 
a “bad” routing problem for dimension-
order routing on the hypercube. 
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Structure of Butterfly Networks
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The 16-row butterfly network.

Fig. 15.5    Butterfly network 
with permuted dimensions.
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Switching these 
two row pairs 
converts this to 
the original 
butterfly network. 
Changing the 
order of stages in 
a butterfly is thus 
equi valent to a 
relabeling of the 
rows (in this 
example, row xyz 
becomes row xzy) 
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Beneš Network

Fig. 15.9    Beneš network formed from two back-to-back butterflies.

A 2q-row Beneš network:
Can route any 2q  2q permutation
It is “rearrangeable”
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Routing Paths in a Beneš Network

Fig. 15.10    Another example of a Beneš network.
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Augmented Data 
Manipulator Network

Fig. 15.12   Augmented 
data manipulator network. 

Data manipulator network 
was used in Goodyear 
MPP, an early SIMD 
parallel machine. 

“Augmented” means that 
switches in a column are 
independent, as opposed 
to all being set to same 
state (simplified control).
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Fat Trees

Fig. 15.6    Two representations of a fat tree.
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Fig. 15.7    
Butterfly 
network 
redrawn as 
a fat tree.
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The Sea of Indirect Interconnection Networks

Numerous indirect  or 
multistage interconnection 
networks (MINs) have been 
proposed for, or used in, 
parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes

We have already seen the 
butterfly, hierarchical bus, 
beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect 
interconnection networks.
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Self-Routing Permutation Networks

Do there exist self-routing permutation networks? (The butterfly network 
is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14    Example of sorting on a binary radix sort network.
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Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)

Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)

Baseline: Butterfly network with nodes labeled differently

Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)

Bidelta: A MIN that is a delta network in either direction 

Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)

Data manipulator: Same as ADM, but with switches in a column restricted to same state  

Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1 

for 2  2 switches) and path label, composed of concatenating switch output labels 

leading from an input to an output depends only on the output

Flip: Reverse of the omega network (inputs  outputs)

Indirect cube: Same as butterfly or omega

Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)

Permutation: Any MIN that can realize all permutations

Rearrangeable: Same as permutation network

Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged
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6B.3  Cache Coherence Protocols

Fig. 18.2   Various types of cached data blocks in a parallel processor 
with global memory and processor caches.
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Example: A Bus-Based Snoopy Protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU 
write miss: 
Write back 
the block,  
Put write 
miss on bus

CPU read hit

CPU 
read miss:  
Put read 
miss on bus

Bus write miss for this block: 
Write back the block

Bus write miss for this block

CPU read miss: 
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3   Finite-state control mechanism for a bus-based 
snoopy cache coherence protocol.

Each transition is labeled with the event that triggers it, 
followed by the action(s) that must be taken
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Implementing a Snoopy Protocol

Fig. 27.7 of Parhami’s Computer Architecture text.

A second 
tags/state 
storage unit 
allows 
snooping to 
be done 
concurrently 
with normal 
cache 
operation

Tags 

Cache 
data 
array 

 

Duplicate tags 
and state store 
for snoop side 

CPU 

 

Main tags and 
state store for 
processor side 

=? 

=? 

Processor side 
cache control 

Snoop side 
cache control 

Addr Addr Cmd Cmd Buffer Buffer 
Snoop 
state 

System 
bus 

Tag 

Addr Cmd 

State 

Getting all the 
implementation 
timing and 
details right is 
nontrivial
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Scalable (Distributed) Shared Memory

Fig. 4.5 A parallel processor with distributed memory.
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Memories 
Some Terminology:
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Nonuniform memory access
(distributed shared memory)
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Uniform memory access
(global shared memory)
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Cache-only memory arch
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Example: A Directory-Based Protocol

Fig. 18.4   States and transitions for a directory entry in a directory-based 
coherence protocol (c denotes the cache sending the message).

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation, 
return data value, sharing set = {c}

Read miss: Return data value, 
sharing set = sharing set + {c}

Data write-back: 
Sharing set = { }

Read miss: Return data value, 
sharing set = {c}Write miss: Return data value, 

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},  
return data value

Read miss: Fetch data value, return data value, 
sharing set = sharing set + {c} sharing set +

Correction to text
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Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)

When there are many more nodes (caches) than the typical size of a 
sharing set, a list of sharing units may be maintained in the directory

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Processor 0 Processor 1 Processor 2 Processor 3 

Memory 

Noncoherent  
data blocks Coherent  

data block 

 Cache 0  Cache 1  Cache 2  Cache 3 

Head pointer 

The sharing set can be maintained as a distributed doubly linked list 
(will discuss in Section 18.6 in connection with the SCI standard) 
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6B.4  Data Allocation for Conflict-Free Access

Try to store the data such that parallel accesses are to different banks 

For many data structures, a compiler may perform the memory mapping

Fig. 6.6    Matrix storage in column-major 
order to allow concurrent accesses to rows. 

0,0 
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0,1 
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1,3 
2,3 
3,3 
4,3 
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4,4 
5,4 

0,5 
1,5 
2,5 
3,5 
4,5 
5,5 

Module    0    1    2    3    4    5 

Column 2 

Accessing a column
leads to conflicts

Each matrix column is 
stored in a different 
memory module (bank)
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Fig. 6.7    Skewed matrix storage for 
conflict-free accesses to rows and columns. 

Skewed Storage Format
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Fig. 6.8    A 6  6 matrix viewed, in column-
major order, as a 36-element vector. 

A Unified Theory of Conflict-Free Access

 0 
 1 
 2 
 3 
 4 
 5  

 6 
 7 
 8 
 9 
10 
11  

12 
13 
14 
15 
16 
17  

18 
19 
20 
21 
22 
23  

24 
25 
26 
27 
28 
29  

30 
31 
32 
33 
34 
35  

Vector 
indices  

A    is viewed as vector element i + jm  ij 

Column: k, k+1, k+2, k+3, k+4, k+5 Stride = 1
Row:  k, k+m, k+2m, k+3m, k+4m, k+5m Stride = m
Diagonal: k, k+m+1, k+2(m+1), k+3(m+1), 

k+4(m+1), k+5(m+1) Stride = m + 1
Antidiagonal: k, k+m–1, k+2(m–1), k+3(m–1), 

k+4(m–1), k+5(m–1) Stride = m – 1

A qD array can be 
viewed as a vector,
with “row” / “column” 
accesses associated
with constant strides



Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 82

Fig. 6.8    A 6  6 matrix viewed, in column-
major order, as a 36-element vector. 

Linear Skewing Schemes

 0 
 1 
 2 
 3 
 4 
 5 

 6 
 7 
 8 
 9 
10 
11 

12 
13 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 

Vector 
indices 

A    is viewed as vector element i + jm ij 

With a linear skewing scheme, vector elements k, k + s, k  +2s,  . . .  , 
k + (B – 1)s will be assigned to different memory banks iff sb is 
relatively prime with respect to the number B of memory banks. 

A prime value for B ensures this condition, but is not very practical.

Place vector element i
in memory bank 
a + bi mod B
(word address within 
bank is irrelevant to 
conflict-free access;
also, a can be set to 0)
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6B.5  Distributed Shared Memory

Fig. 4.5 A parallel processor with distributed memory.
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Butterfly-Based Distributed Shared Memory

Use hash function to map 
memory locations to modules

p locations  p modules, 
not necessarily distinct

With high probability, at most 
O(log p) of the p locations will 
be in modules located in the 
same row

Average slowdown = O(log p)
Fig. 17.2   Butterfly distributed-memory 
machine emulating the PRAM. 

Randomized 
emulation of the
p-processor PRAM 
on p-node butterfly
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PRAM Emulation with Butterfly MIN

Less efficient than Fig. 17.2, 
which uses a smaller butterfly

Fig. 17.3   Distributed-memory machine, with a butterfly 
multistage interconnection network, emulating the PRAM. 

M
dim 0 dim 1 dim 2

0        1        2        3
q + 1 Columns

0 
 
1 
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4 
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6 
 
7

0 
 
1 
 
2 
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7

2  Rowsq

POne of p =2    
processors

q Memory module 
holding  m/p  
memory locations

Emulation of the p-processor PRAM on (p logp)-node butterfly, with memory 
modules and processors connected to the two sides; O(log p) avg. slowdown

By using p / (log p) physical 
processors to emulate the 
p-processor PRAM, this new 
emulation scheme becomes 
quite efficient (pipeline the 
memory accesses of the log p
virtual processors assigned to 
each physical processor)



Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 86

Deterministic Shared-Memory Emulation

Deterministic emulation 
of p-processor PRAM 
on p-node butterfly

dim 0 dim 1 dim 2 
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q + 1 Columns 
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Store log2 m copies of each of 
the m memory location contents

Time-stamp each updated value

A “write” is complete once a 
majority of copies are updated

A “read” is satisfied when a 
majority of copies are accessed 
and the one with latest time 
stamp is used

Why it works: A few congested 
links won’t delay the operation

Write set Read set

log2 m copies
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PRAM Emulation Using Information Dispersal 

Fig. 17.4   Illustrating the information dispersal approach 
to PRAM emulation with lower data redundancy.

Instead of (log m)-fold replication of data, divide each data element 
into k pieces and encode the pieces using a redundancy factor of 3, 
so that any k / 3 pieces suffice for reconstructing the original data

Recunstruction 
algorithm 

Original data word 
and its k  pieces 

The k  pieces  
after encoding 
(approx. three  
times larger) 

 

Original data word recovered 
from k /3 encoded pieces 

Up-to-date 
pieces 

Possible read set 
of size 2k/3 

Possible update set 
of size 2k/3 
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6B.6  Methods for Memory Latency Hiding
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By assumption, PRAM accesses memory 
locations right when they are needed, so 
processing must stall until data is fetched

Method 1: Predict accesses (prefetch)
Method 2: Pipeline multiple accesses

Not a smart strategy:
Memory access time = 
100s times that of add time

Proc. 0’s access request
Proc. 0’s access response
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6C  Shared-Memory Abstractions
A precise memory view is needed for correct algorithm design

• Sequential consistency facilitates programming
• Less strict consistency models offer better performance

Topics in This Chapter

6C.1 Atomicity in Memory Access

6C.2 Strict and Sequential Consistency

6C.3 Processor Consistency

6C.4 Weak or Synchronization Consistency

6C.5 Other Memory Consistency Models

6C.6 Transactional Memory
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6C.1  Atomicity in Memory Access
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Performance optimization and latency hiding often imply that memory 
accesses are interleaved and perhaps not serviced in the order issued

Proc. 0’s access request
Proc. 0’s access response
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Barrier Synchronization Overhead

Fig. 20.3    The performance benefit of less frequent synchronization.

P1P0 P3P2 P1P0 P3P2

Time

Synchro- 
nization 
overhead

Done

Done

Given that AND 
is a semigroup 
computation, it is 
only a small step 
to generalize it to 
a more flexible 
“global combine” 
operation

Reduction of synchronization overhead:
1. Providing hardware aid to do it faster
2. Using less frequent synchronizations
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Synchronization via Message Passing

Task interdependence is often more complicated than 
the simple prerequisite structure thus far considered
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Fig. 20.1   Automatic synchronization in message-passing systems.
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Synchronization with Shared Memory

Accomplished by accessing specially designated shared control variables 

The fetch-and-add instruction constitutes a useful atomic operation 

If the current value of x is c, fetch-and-add(x, a) returns c to the 
process and overwrites x = c with the value c + a

A second process executing fetch-and-add(x, b) then gets the now current 
value c + a and modifies it to c + a + b

Why atomicity of fetch-and-add is important: With ordinary instructions, 
the 3 steps of fetch-and-add for A and B may be interleaved as follows:

Process A Process B Comments
Time step 1 read x A’s accumulator holds c
Time step 2 read x B’s accumulator holds c
Time step 3 add a A’s accumulator holds c + a
Time step 4 add b B’s accumulator holds c + b
Time step 5 store x x holds c + a
Time step 6 store x x holds c + b (not c + a + b)
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Barrier Synchronization: Implementations

Make each processor, in a designated set, wait at a barrier until all other 
processors have arrived at the corresponding points in their computations

Software implementation via fetch-and-add or similar instruction

Hardware implementation via an AND tree (raise flag, check AND result)

A problem with the AND-tree:
If a processor can be randomly 
delayed between raising it flag 
and checking the tree output, 
some processors might cross 
the barrier and lower their flags 
before others have noticed the 
change in the AND tree output

Solution: Use two AND trees 
for alternating barrier points 

Set 
AND 
tree

fo 
fo 
fo 
 
fo

0 
1 
2 
 
p–1 S

R

Q

Reset 
AND 
tree

fe 
fe 
fe 
 
fe

0 
1 
2 
 
p–1

Barrier 
SignalFlip- 

flop

Fig. 20.4    Example of hardware aid for 
fast barrier synchronization [Hoar96].
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6C.2  Strict and Sequential Consistency
A global notion of time does not exist: The speed of light is finite; 
therefore, we do not become aware of events instantaneously

Suppose a group of people decide to synchronize their watches

One person shouts: On the count of 3, set your watches to 1:00 PM

Not everyone will hear the command at the same time

In physics, we learn that two observers 
do not see the same time

Furthermore, the speed of time passing 
varies for different observers

Conclusion: A universal notion 
of time does not exist!
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Strict Consistency

With strict consistency, a read operation always returns the result of the 
latest write operation on that data object

Strict consistency is impossible to maintain in a distributed system 
which does not have a global clock

While clocks can be synchronized, there is always some error that 
causes trouble in near-simultaneous operations

Example: Three processes sharing variables 1-4 (r = read, w = write)

w1 r2 w2 w3 r1 r2’

w4 r1 r3 r3’ w2

r5 r2 w3 w4 r4 r1r3

Real time

Process A

Process B

Process C
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Sequential Consistency

Sequential consistency (new def.): Write operations on the same data 
object are seen in exactly the same order by all system nodes

Sequential consistency (original def.): The result of any execution is 
the same as if processor operations were executed in some sequential 
order, and the operations of a particular processor appear in the 
sequence specified by the program it runs

w1 r2 w2 w3 r1 r2’

w4 r1 r3 r3’ w2

r5 r2 w3 w4 r4 r1r3 Time

Process A

Process B

Process C

w1 r2 w2 w3 r1 r2w4 r1 r3 r3’ w2r5 r2 w3w4 r4 r1r3A possible ordering

w1 r2 w2 w3 r1 r2w4 r1 r3 r3’ w2r5 r2 w3w4 r4 r1r3A possible ordering
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The Performance Penalty of Sequential Consistency

If a compiler reorders the seemingly independent statements in Thread 1, 
the desired semantics (R1 and R2 not being both 0) is compromised

Initially Thread 1 Thread 2
X = Y = 0 X := 1 Y := 1

R1 := Y R2 :=X

Exec 1 Exec 2 Exec 3
X := 1 Y := 1 X := 1
R1 := Y R2 :=X Y := 1
Y := 1 X := 1 R1 := Y
R2 := X R1 := Y R2 := X

Relaxed consistency (memory model): Ease the requirements on doing 
things in program order and/or write atomicity to gain performance

When maintaining order is absolutely necessary, we use synchronization 
primitives to enforce it
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6C.3  Processor Consistency
Processor consistency: Writes by the same processors are seen by 
all other processors as occurring in the same order; writes by different 
processors may appear in different order at various nodes

Example: Linear array in which changes in values propagate at the rate 
of one node per time step

P0 P1 P2 P3

If P0 and P4 perform two write operations on consecutive time steps, 
then this is how the processors will see them

Step 1 WA -- -- -- WX
Step 2 WB WA -- WX            WY 
Step 3 -- WB          WA, WX         WY             --
Step 4 -- WX WB, WY         WA
Step 5 WX WY -- WB           WA
Step 6 WY -- -- -- WB

P4
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6C.4  Weak or Synchronization Consistency

Weak consistency: Memory accesses are divided into two categories:
(1) Ordinary data accesses (2) Synchronizing accesses
Category-1 accesses can be reordered with no limitation
If ordering of two operations is to be maintained, the programmer must 
specify at least one of them as a synchronizing, or Category-2, access

Access

Shared Private

Competing Noncompeting

Synchronizing Nonsync

Acquire Release

A sync access is performed 
after every preceding write has 
completed and before any new 
data access is allowed
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6C.5  Other Memory Consistency Models

Release consistency: Relaxes synchronization consistency somewhat
(1) A process can access a shared variable only if all of its previous 
acquires have completed successfully
(2) A process can perform a release operation only if all of its previous 
reads and writes have completed
(3) Acquire and release accesses must be sequentially consistent

For more on memory consistency models, see:

Adve, S. V. and K. Gharachorloo, “Shared Memory Consistency Models: 
A Tutorial,” IEEE Computer, Dec. 1996.

Adve, S. V., H.-J. Boehm, “MemoryModels:ACase forRethinkingParallel
LanguagesandHardware,” Communications of the ACM, Aug. 2010.

For general info on memory management, see:

Gaud, F. et al., “Challenges of Memory Management on Modern NUMA 
Systems,” Communications of the ACM, Dec. 2015.
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6C.6  Transactional Memory

TM allows a group of read & write operations to be enclosed in a block, 
so that any changed values become observable to the rest of the system 
only upon the completion of the entire block

TM systems typically provide atomic statements that allow the execution 
of a block of code as an all-or-nothing entity (much like a transaction)

Example of transaction: Transfer $x from account A to Account B
(1) if a  x 

then a := a – x 
else return “insufficient funds”

(2) b := b + x
(3) return “transfer successful”
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Examples of Memory Transactions

w1 r2 w2 w3 r1 r2’

w4 r1 r3 r3’ w2

r5 r2 ra rb wa r1wb

Real time

Process A

Process B

Process C

A group of reads, writes, and intervening operations can be grouped into 
an atomic transaction

Example: If      and      are made part of the same memory transaction, 
every processor will see both changes or neither of them

wa wb
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Implementations of Transactional Memory

For more information on transactional memory, see:

[Laru08]    Larus, J. and C. Kozyrakis,  “Transactional Memory,” 
Communications of the ACM, Vol. 51, No. 7, pp. 80-88, July 2008.

Software: 2-7 times slower than sequential code [Laru08]

Hardware acceleration: Hardware assists for the most time-consuming 
parts of TM operations

e.g., maintenance and validation of read sets

Hardware implementation: All required bookkeeping operations are 
implemented directly in hardware

e.g., by modifying the L1 cache and the coherence protocol


