
Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 1

Part II
Shared-Memory Parallelism

Part II
Shared-Memory

Parallelism

5. PRAM and Basic Algorithms
6A. More Shared-Memory Algorithms
6B. Implementation of Shared Memory
6C, Shared-Memory Abstractions

Shared-Memory
Algorithms

Implementations
and Models

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by
the author in connection with teaching the graduate-level course
ECE 254B: Advanced Computer Architecture: Parallel Processing,
at the University of California, Santa Barbara. Instructors can use
these slides in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019 Winter 2020 Winter 2021

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 3

II Shared-Memory Parallelism

Shared memory is the most intuitive parallel user interface:
• Abstract SM (PRAM); ignores implementation issues
• Implementation w/o worsening the memory bottleneck
• Shared-memory models and their performance impact

Topics in This Part

Chapter 5 PRAM and Basic Algorithms

Chapter 6A More Shared-Memory Algorithms

Chapter 6B Implementation of Shared Memory

Chapter 6C Shared-Memory Abstractions

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 4

5 PRAM and Basic Algorithms

PRAM, a natural extension of RAM (random-access machine):
• Present definitions of model and its various submodels
• Develop algorithms for key building-block computations

Topics in This Chapter

5.1 PRAM Submodels and Assumptions

5.2 Data Broadcasting

5.3 Semigroup or Fan-in Computation

5.4 Parallel Prefix Computation

5.5 Ranking the Elements of a Linked List

5.6 Matrix Multiplication

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 5

Why Start with Shared Memory?

Study one extreme of parallel computation models:
• Abstract SM (PRAM); ignores implementation issues
• This abstract model is either realized or emulated
• In the latter case, benefits are similar to those of HLLs

In Part II, we will study the other extreme case of models:
• Concrete circuit model; incorporates hardware details
• Allows explicit latency/area/energy trade-offs
• Facilitates theoretical studies of speed-up limits

Everything else falls between these two extremes

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 6

5.1 PRAM Submodels and Assumptions

Fig. 4.6 Conceptual view of a parallel
random-access machine (PRAM).

Processors

.

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Processor i can do
the following in three
phases of one cycle:

1. Fetch a value
from address si

in shared
memory

2. Perform
computations on
data held in local
registers

3. Store a value
into address di in
shared memory

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 7

Types of PRAM

Fig. 5.1 Submodels of the PRAM model.

EREW
Least “powerful”,
most “realistic”

CREW
Default

ERCW
Not useful

CRCW
Most “powerful”,

further subdivided

Reads from same location
W

ri
te

s
to

 s
a

m
e

 lo
ca

tio
n

Exclusive

C
o

nc
ur

re
nt

Concurrent

E
xc

lu
si

ve

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 8

Examples of Exclusive/Concurrent Reads/Writes

Exclusive read:
for 0  i < p processor i read from location i

Exclusive write:
for 0  i < p processor i write into location i + 1 mod p

Concurrent read:
for 0  i < p processor i read from location i mod 2

Concurrent write:
for 0  i < p processor i write into location di

Exclusivity not enforced by hardware; rather, it’s done by the programmer

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 9

Types of CRCW PRAM

Undefined: The value written is undefined (CRCW-U)

Detecting: A special code for “detected collision” is written (CRCW-D)

Common: Allowed only if they all store the same value (CRCW-C)
[This is sometimes called the consistent-write submodel]

Random: The value is randomly chosen from those offered (CRCW-R)

Priority: The processor with the lowest index succeeds (CRCW-P)

Max / Min: The largest / smallest of the values is written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S),
logical AND (CRCW-A),
logical XOR (CRCW-X),
or another combination of values is written

CRCW submodels are distinguished by the way they treat multiple writes:

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 10

Power of CRCW PRAM Submodels

Theorem 5.1: A p-processor CRCW-P (priority) PRAM can be simulated
(emulated) by a p-processor EREW PRAM with slowdown factor Q(log p).

Intuitive justification for concurrent read emulation (write is similar):

Write the p memory addresses in a list
Sort the list in ascending order of addresses
Remove all duplicate addresses
Access data at desired addresses
Replicate data via parallel prefix computation

Each step requires constant or O(log p) time

Model U is more powerful than model V if TU(n)=o(TV(n)) for some problem

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

0,1
1,6
2,5
3,2
4,3
5,6
6,1
7,1
8,2

0,1
6,1
7,1
3,2
8,2
4,3
2,5
1,6
5,6

0,1

3,2

4,3
2,5
1,6

Proc Addr

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 11

Implications of the CRCW Hierarchy of Submodels

Our most powerful PRAM CRCW submodel can be emulated by the
least powerful submodel with logarithmic slowdown

Efficient parallel algorithms have polylogarithmic running times

Running time still polylogarithmic after slowdown due to emulation

A p-processor CRCW-P (priority) PRAM can be simulated (emulated)
by a p-processor EREW PRAM with slowdown factor Q(log p).

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

We need not be too concerned with the CRCW submodel used

Simply use whichever submodel is most natural or convenient

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 12

Some Elementary PRAM Computations

Initializing an n-vector (base address = B) to all 0s:

for j = 0 to n/p – 1 processor i do
h = jp + i
if h < n then M[B + h] := 0

endfor

Adding two n-vectors and storing the results in a third
(base addresses B, B, B)

Convolution of two n-vectors: Wk = i+j=k Ui  Vj

(base addresses BW, BU, BV)

n / p
segments

p
elements

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 13

5.2 Data
Broadcasting

Fig. 5.2 Data broadcasting in EREW PRAM
via recursive doubling.

Making p copies of B[0]
by recursive doubling
for k = 0 to log2p – 1

Proc j, 0  j < p, do
Copy B[j] into B[j + 2k]

endfor

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Fig. 5.3 EREW PRAM data broadcasting
without redundant copying.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Can modify the algorithm
so that redundant copying
does not occur and array
bound is not exceeded

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 14

Class Participation: Broadcast-Based Sorting

Each person write down an arbitrary nonnegative
integer with 3 or fewer digits on a piece of paper

Students take turn broadcasting their numbers by
calling them out aloud

Each student puts an X on paper for every number
called out that is smaller than his/her own number, or is
equal but was called out before the student’s own value

j

Each student counts the number of Xs on paper to determine
the rank of his/her number

p – 1

0

Students call out their numbers in order of the computed rank

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 15

All-to-All Broadcasting on EREW PRAM

EREW PRAM algorithm for all-to-all broadcasting
Processor j, 0  j < p, write own data value into B[j]
for k = 1 to p – 1 Processor j, 0  j < p, do

Read the data value in B[(j + k) mod p]
endfor

This O(p)-step algorithm is time-optimal

Naive EREW PRAM sorting algorithm (using all-to-all broadcasting)
Processor j, 0  j < p, write 0 into R[j]
for k = 1 to p – 1 Processor j, 0  j < p, do

l := (j + k) mod p
if S[l] < S[j] or S[l] = S[j] and l < j
then R[j] := R[j] + 1
endif

endfor
Processor j, 0  j < p, write S[j] into S[R[j]]

j

This O(p)-step sorting
algorithm is far from
optimal; sorting is possible
in O(log p) time

p – 1

0

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 16

5.3 Semigroup or Fan-in Computation

EREW PRAM semigroup
computation algorithm
Proc j, 0 j<p, copy X[j] into S[j]
s := 1
while s<p Proc j, 0 j <p–s, do

S[j + s] := S[j]  S[j + s]
s := 2s

endwhile
Broadcast S[p – 1] to all proc’s

If we use p processors on a list
of size n = O(p log p), then optimal
speedup can be achieved

This algorithm is optimal for PRAM,
but its speedup of O(p / log p) is not

Fig. 5.4 Semigroup computation
in EREW PRAM.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Fig. 5.5 Intuitive justification of why
parallel slack helps improve the efficiency.

Higher degree
of parallelism
near the leaves

Lower degree
of parallelism
near the root

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 17

5.4 Parallel Prefix Computation

Fig. 5.6 Parallel prefix computation in EREW PRAM
via recursive doubling.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Same as the first part of semigroup computation (no final broadcasting)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 18

A Divide-and-Conquer Parallel-Prefix Algorithm

Fig. 5.7 Parallel prefix computation using a divide-and-conquer scheme.

    

   

x 0 x 1 x 2 x 3 x n-1 x n-2

0:0
0:1

0:2
0:3

0:n-2
0:n-1

Parallel prefix
computation
of size n/2

In hardware,
this is the basis
for Brent-Kung
carry-lookahead
adder

T(p) = T(p/2) + 2

T(p)  2 log2 p

Each vertical
line represents
a location in
shared memory

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 19

Another Divide-and-Conquer Algorithm

Fig. 5.8 Another divide-and-conquer scheme for parallel prefix computation.

Strictly optimal
algorithm, but
requires
commutativity

x 0 x 1 x 2 x 3 x n-1 x n-2

0:0
0:1

0:2
0:3

0:n-2
0:n-1

Parallel prefix
computation on n/2
odd-indexed inputs

Paral lel prefix
computation on n/2
even-indexed inputs

         

T(p) = T(p/2) + 1

T(p) = log2 p

Each vertical
line represents
a location in
shared memory

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 20

5.5 Ranking the Elements of a Linked List

C F A E B D

Rank: 5 4 3 2 1 0

info next
head

Terminal element

(or distance from terminal)

Distance from head:
1 2 3 4 5 6

Fig. 5.9 Example linked list and the ranks of its elements.

Fig. 5.10 PRAM data structures
representing a linked list and the
ranking results.

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

List ranking appears to be
hopelessly sequential;
one cannot get to a list
element except through
its predecessor!

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 21

List Ranking via Recursive Doubling

Fig. 5.11 Element ranks initially and after each of the three iterations.

Many problems
that appear to be
unparallelizable
to the uninitiated
are parallelizable;
Intuition can be
quite misleading!

1 1 1 1 1 0

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

A

B

C

D

E

F

4

3

5

3

1

0

info next

0

1

2

3

4

5

head

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 22

PRAM List Ranking Algorithm

Question: Which PRAM
submodel is implicit in
this algorithm?

If we do not
want to modify
the original list,
we simply make
a copy of it first,
in constant time

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

PRAM list ranking algorithm (via pointer jumping)
Processor j, 0 j <p, do {initialize the partial ranks}
if next [j] = j
then rank[j] := 0
else rank[j] := 1
endif
while rank[next[head]]  0 Processor j, 0  j < p, do

rank[j] := rank[j] + rank[next [j]]
next [j] := next [next [j]]

endwhile

Answer: CREW

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 23

5.6 Matrix Multiplication

Sequential matrix multiplication
for i = 0 to m – 1 do

for j = 0 to m – 1 do
t := 0
for k = 0 to m – 1 do

t := t + aikbkj

endfor
cij := t

endfor
endfor

=
i

j

ij

A B C

cij :=Sk=0 to m–1 aikbkj

PRAM solution with
m3 processors:
each processor does
one multiplication
(not very efficient)

m  m
matrices

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 24

PRAM Matrix Multiplication with m2 Processors

Fig. 5.12 PRAM matrix multiplication; p = m2 processors.

=
i

j

ij

PRAM matrix multiplication using m2 processors
Proc (i, j), 0  i, j < m, do
begin

t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

end

Q(m) steps: Time-optimal

CREW model is implicit

Processors are numbered (i, j),
instead of 0 to m2 – 1

A B C

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 25

PRAM Matrix Multiplication with m Processors

PRAM matrix multiplication using m processors
for j = 0 to m – 1 Proc i, 0  i < m, do

t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

endfor

=
i

j

ij

Q(m2) steps: Time-optimal

CREW model is implicit

Because the order of multiplications
is immaterial, accesses to B can be
skewed to allow the EREW model

A B C

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 26

PRAM Matrix Multiplication with Fewer Processors

Algorithm is similar, except that
each processor is in charge of
computing m /p rows of C

Q(m3/p) steps: Time-optimal

EREW model can be used

A drawback of all algorithms thus far is that only two arithmetic
operations (one multiplication and one addition) are performed
for each memory access.

This is particularly costly for NUMA shared-memory machines.

=
i

j

ij m / p
rows

B CA

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 27

More Efficient Matrix Multiplication (for NUMA)

Fig. 5.13 Partitioning the matrices
for block matrix multiplication .

A B

C D

AE+BG AF+BH E F

G H CE+DG CF+DH

= 

Block matrix multiplication
follows the same algorithm as
simple matrix multiplication.

=
i

j

ij
BlockBlock-

band

Block-band

1 2 ¦p

1

2

¦p

One processor
computes these
elements of C
that it holds in
local memory

q

q=m/¦p

p

p

q=m/p

Partition the matrices
into p square blocks

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 28

Details of Block Matrix Multiplication

Fig. 5.14 How Processor (i, j) operates on an element of A
and one block-row of B to update one block-row of C.

A multiply-add
computation
on q  q blocks
needs
2q 2 = 2m 2/p
memory
accesses and
2q 3 arithmetic
operations

So, q arithmetic
operations are
done per
memory access iq + q - 1

iq + a

iq + 1

iq

jq jq + b jq + q - 1

kq + c

kq + c

iq + q - 1

iq + a

iq + 1

iq

jq jq + 1 jq + b jq + q - 1

Multiply

Add
Elements of
block (i, j)
in matrix C

Elements of
block (k, j)
in matrix B

Element of
block (i, k)
in matrix A

jq + 1

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 29

6A More Shared-Memory Algorithms

Develop PRAM algorithm for more complex problems:
• Searching, selection, sorting, other nonnumerical tasks
• Must present background on the problem in some cases

Topics in This Chapter

6A.1 Parallel Searching Algorithms

6A.2 Sequential Rank-Based Selection

6A.3 A Parallel Selection Algorithm

6A.4 A Selection-Based Sorting Algorithm

6A.5 Alternative Sorting Algorithms

6A.6 Convex Hull of a 2D Point Set

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 30

6A.1 Parallel Searching Algorithms
Example: n = 24, p = 4

Searching an unordered list in PRAM

Sequential time: n worst-case
n/2 on average

Divide the list of n items into p segments of
n / p items (last segment may have fewer)

Processor i will be in charge of n / p list
elements, beginning at address i n / p

Parallel time: n / p worst-case
??? on average

Perfect speed-up of p with p processors?

Pre- and postprocessing overheads

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A0

A1

A2

A3

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 31

Parallel (p + 1)-ary Search on PRAM

Example:
n = 26, p = 2

P0

P1

0
1
2

25

8

17

P0

P1P0P1

Example:

n = 26

p = 2

Step
2

Step
1

Step
0

A single search in a sorted list
can’t be significantly speeded up
through parallel processing,
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups)

p probes, rather than 1, per step

logp+1(n + 1)
= log2(n + 1) / log2(p + 1)
= Q(log n / log p) steps

Speedup  log p

Optimal: no comparison-based
search algorithm can be faster

From
Sec. 8.1

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 32

6A.2 Sequential Ranked-Based Selection

Selection: Find the (or a) kth smallest among n elements

Example: 5th smallest element in the following list is 1:
6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 1 4 5 4 9 5

Naive solution
through sorting,
O(n log n) time

But linear-time
sequential
algorithm can
be developed

Median

m = the median
of the medians:
< n/4 elements
> n/4 elements

L

E

G

< m

= m

> m

k < |L|

k > |L| + |E|

q

n/q m n

max(|L|, |G|)  3n/4

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 33

Median

m = the median
of the medians:
< n/4 elements
> n/4 elements

L

E

G

< m

= m

> m

k < |L|

k > |L| + |E|

q

n/q m n

Linear-Time Sequential Selection Algorithm

Sequential rank-based selection algorithm select(S, k)
1. if |S| < q {q is a small constant}

then sort S and return the kth smallest element of S
else divide S into |S|/q subsequences of size q

Sort each subsequence and find its median
Let the |S|/q medians form the sequence T

endif
2. m = select(T, |T|/2) {find the median m of the |S|/q medians}
3. Create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4. if |L|  k
then return select(L, k)
else if |L| + |E|  k

then return m
else return select(G, k – |L| – |E|)
endif

endif

O(n)

T(n/q)

T(3n/4)

O(n)

To be
justified

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 34

Algorithm Complexity and Examples

We must have q  5;
for q = 5, the solution is T(n) = 20cnT(n) = T(n /q) + T(3n /4) + cn

------------ n/q sublists of q elements -------------
S 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 1 4 5 4 9 5

--------- --------- --------- --------- ---------
T 6 3 3 2 5
m 3

1 2 1 0 2 1 1 3 3 6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
------------- --- -------------------------------

L E G
|L| = 7 |E| = 2 |G| = 16

To find the 5th smallest element in S, select the 5th smallest element in L

S 1 2 1 0 2 1 1
--------- ---

T 1 1
m 1

0 1 1 1 1 2 2
- ------- ---
L E G

Answer: 1

The 9th smallest element of S is 3.

The 13th smallest element of S is
found by selecting the 4th smallest
element in G.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 35

Median

m = the median
of the medians:
< n/4 elements
> n/4 elements

L

E

G

< m

= m

> m

k < |L|

k > |L| + |E|

q

n/q m n

Parallel rank-based selection algorithm PRAMselect(S, k, p)
1. if |S| < 4

then sort S and return the kth smallest element of S
else broadcast |S| to all p processors

divide S into |S|/q subsequences S(j) of size q
Processor j, 0  j < p, compute Tj := select(S(j), |S(j)|/2)

endif
2. m = PRAMselect(T, |T|/2, p) {median of the medians}
3. Broadcast m to all processors and create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4. if |L|  k
then return PRAMselect(L, k, p)
else if |L| + |E|  k

then return m
else return PRAMselect(G, k – |L| – |E|, p)
endif

endif

O(nx)

T(n1–x,p)

T(3n/4,p)

O(nx)

6A.3 A Parallel Selection Algorithm

Let p = O(n1–x)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 36

Algorithm Complexity and Efficiency

The solution is O(nx);
verify by substitutionT(n,p) = T(n1–x,p) + T(3n /4,p) + cnx

Speedup = Q(n) / O(nx) = W(n1–x) = W(p)

Efficiency = W(1)

Work(n, p) = pT(n, p) = Q(n1–x) Q(nx) = Q(n)

What happens if we set x to 1? (i.e., use one processor)

T(n, 1) = O(n x) = O(n)

What happens if we set x to 0? (i.e., use n processors)

T(n, n) = O(n x) = O(1) ?

Remember
p = O(n1–x)

No, because
in asymptotic
analysis,
we ignored
several
O(log n) terms
compared with
O(nx) terms

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 37

Data Movement in Step 2 of the Algorithm

Consider the sublist L: Processor i contributes ai items to this sublist

Processor 0 starts storing at location 0, processor 1 at location a0,
processor 2 at location a0 + a1, Processor 3 at location a0 + a1 + a2, …

nx

n

< m

= m

> m

|L|

|E|

|G|

a0 items

b0 items

c0 items

a1

b1

c1 a2

b2

c2

.

.

.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 38

6A.4 A Selection-Based Sorting Algorithm
Parallel selection-based sort PRAMselectionsort(S, p)
1. if |S| < k then return quicksort(S)
2. for i = 1 to k – 1 do

mj := PRAMselect(S, i|S|/k, p) {let m0 := –; mk := +}
endfor

3. for i = 0 to k – 1 do
make the sublist T(i) from elements of S in (mi, mi+1)

endfor
4. for i = 1 to k/2 do in parallel

PRAMselectionsort(T(i), 2p/k)
{p/(k/2) proc’s used for each of the k/2 subproblems}

endfor
5. for i = k/2 + 1 to k do in parallel

PRAMselectionsort(T(i), 2p/k)
endfor

O(nx)

T(n/k,2p/k)

O(1)

O(nx)

. . .m m m m

n/k elements n/k n/k n/k

 – +
1 2 3 k–1  

Fig. 6.1 Partitioning of the sorted list for selection-based sorting.

T(n/k,2p/k)
Let p = n1–x

and k = 21/x

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 39

Algorithm Complexity and Efficiency

The solution is O(nx log n);
verify by substitutionT(n, p) = 2T(n/k, 2p/k) + cnx

Speedup(n,p) = W(n logn) / O(nx logn) = W(n1–x) = W(p)

Efficiency = speedup / p = W(1)

Work(n, p) = pT(n, p) = Q(n1–x) Q(nx log n) = Q(n log n)

What happens if we set x to 1? (i.e., use one processor)

T(n, 1) = O(n x log n) = O(n log n)

Our asymptotic analysis is valid for x > 0 but not for x = 0;

i.e., PRAMselectionsort cannot sort p keys in optimal O(log p) time.

Remember
p = O(n1–x)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 40

Example of Parallel Sorting

S: 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5

Threshold values for k = 4 (i.e., x = ½ and p = n1/2 processors):
m0 = –

n/k = 25/4  6 m1 = PRAMselect(S, 6, 5) = 2
2n/k = 50/4  13 m2 = PRAMselect(S, 13, 5) = 4
3n/k = 75/4  19 m3 = PRAMselect(S, 19, 5) = 6

m4 = +

m0 m1 m2 m3 m4

T: - - - - - 2|- - - - - - 4|- - - - - 6|- - - - - -

T: 0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 41

6A.5 Alternative Sorting Algorithms

Parallel randomized sort PRAMrandomsort(S, p)
1. Processor j, 0  j < p, pick |S|/p2 random samples of

its |S|/p elements and store them in its corresponding
section of a list T of length |S|/p

2. Processor 0 sort the list T
{comparison threshold mi is the (i |S| /p2)th element of T}

3. Processor j, 0  j < p, store its elements falling
in (mi, mi+1) into T(i)

4. Processor j, 0  j < p, sort the sublist T(j)

Sorting via random sampling (assume p <<  n)

Given a large list S of inputs, a random sample of the elements
can be used to find k comparison thresholds

It is easier if we pick k = p, so that each of the resulting
subproblems is handled by a single processor

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 42

Parallel Binsort or Bucketsort

If the list consists of small range of values (say, numbers 0-9),
bucketsort can be used to count the number of occurrences of
each value in O(n) time serially and in O(n/p) time in parallel

Wikipedia images
Suppose input values are in [0, m)

Divide the range into p subranges

[0, m/p), [m/p, 2m/p), ….

Processor j sorts the elements in the
jth subrange

If values are uniformly distributed,
each processor gets ~n/p values

Avg. time = O(n/p) + O((n/p) log(n/p)
Fill

buckets
Sort

buckets

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 43

Parallel Radixsort

In binary version of radixsort, we examine every bit of the
k-bit keys in turn, starting from the LSB

In Step i, bit i is examined, 0  i < k
Records are stably sorted by the value of the ith key bit

Input Sort by Sort by Sort by
list LSB middle bit MSB
–––––– –––––– –––––– ––––––
5 (101) 4 (100) 4 (100) 1 (001)
7 (111) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010) 1 (001) 2 (010)
1 (001) 5 (101) 2 (010) 3 (011)
4 (100) 7 (111) 2 (010) 4 (100)
2 (010) 3 (011) 7 (111) 5 (101)
7 (111) 1 (001) 3 (011) 7 (111)
2 (010) 7 (111) 7 (111) 7 (111)

Binary
forms

Question:
How are
the data
movements
performed?

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 44

Data Movements in Parallel Radixsort

Running time consists mainly of the time to perform 2k
parallel prefix computations: O(log p) for k constant

Input Compl. Diminished Prefix sums Shifted
list of bit 0 prefix sums Bit 0 plus 2 list
–––––– ––– –––––– ––– ––––––––– ––––––
5 (101) 0 – 1 1 + 2 = 3 4 (100)
7 (111) 0 – 1 2 + 2 = 4 2 (010)
3 (011) 0 – 1 3 + 2 = 5 2 (010)
1 (001) 0 – 1 4 + 2 = 6 5 (101)
4 (100) 1 0 0 – 7 (111)
2 (010) 1 1 0 – 3 (011)
7 (111) 0 – 1 5 + 2 = 7 1 (001)
2 (010) 1 2 0 – 7 (111)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 45

6A.6 Convex Hull of a 2D Point Set

Fig. 6.2 Defining the
convex hull problem.

x

y

x

y
Point
Set Q

CH(Q)

0

1

2

3

4

5

6

7

9

8

10

11

12

13

14

15

0

1

2

7

8

11

14

15

Fig. 6.3 Illustrating the properties
of the convex hull.

x’

y’

All points
fall on this
side of line

Angle

0

1

7

11

15

Best sequential
algorithm for p
points:
W(p log p) steps

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 46

PRAM Convex Hull Algorithm

Fig. 6.4 Multiway divide and conquer for the convex hull problem

Parallel convex hull algorithm PRAMconvexhull(S, p)
1. Sort point set by x coordinates
2. Divide sorted list into p subsets Q (i) of size p, 0  i < p
3. Find convex hull of each subset Q (i) using p processors

4. Merge p convex hulls CH(Q (i)) into overall hull CH(Q)

x

y y

CH(Q)(0)
Q(0) Q(1) Q(2) Q(3)

Upper
hull

Lower
hull

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 47

Fig. 6.5 Finding points in a partial hull that belong to the combined hull.

Analysis:

T(p, p)
= T(p1/2, p1/2) + c log p
 2c log p

The initial sorting also
takes O(log p) time

Merging of Partial Convex Hulls

Tangent lines

CH(Q) (j)

CH(Q) (i)

CH(Q) (k)

(a) No point of CH(Q(i)) is on CH(Q)

CH(Q) (j)

CH(Q) (i)

CH(Q) (k)

(b) Points of CH(Q(i)) from A to B are on CH(Q)

A B

Tangent lines are
found through binary
search in log time

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 48

6B Implementation of Shared Memory
Main challenge: Easing the memory access bottleneck

• Providing low-latency, high-bandwidth paths to memory
• Reducing the need for access to nonlocal memory
• Reducing conflicts and sensitivity to memory latency

Topics in This Chapter

6B.1 Processor-Memory Interconnection

6B.2 Multistage Interconnection Networks

6B.3 Cache Coherence Protocols

6B.4 Data Allocation for Conflict-Free Access

6B.5 Distributed Shared Memory

6B.6 Methods for Memory Latency Hiding

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 49

About the New Chapter 6B

This new chapter incorporates material from the following existing
sections of the book:

6.6 Some Implementation Aspects

14.4 Dimension-Order Routing

15.3 Plus-or-Minus-2i Network

16.6 Multistage Interconnection Networks

17.2 Distributed Shared Memory

18.1 Data Access Problems and Caching

18.2 Cache Coherence Protocols

18.3 Multithreading and Latency Hiding

20.1 Coordination and Synchronization

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 50

Making PRAM Practical
PRAM needs a read and a write access to memory in every cycle

Even for a sequential computer, memory is tens to hundreds of times
slower than arithmetic/logic operations; multiple processors accessing
a shared memory only makes the situation worse

Shared access to a single large physical memory isn’t scalable

Strategies and focal points for making PRAM practical

1. Make memory accesses faster and more efficient (pipelining)

2. Reduce the number of memory accesses (caching, reordering of
accesses so as to do more computation per item fetched/stored)

3. Reduce synchronization, so that slow memory accesses for one
computation do not slow down others (synch, memory consistency)

4. Distribute the memory and data to make most accesses local

5. Store data structures to reduce access conflicts (skewed storage)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 51

6B.1 Processor-Memory Interconnection

Fig. 4.3 A parallel processor with global (shared) memory.

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors
Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Options:
Crossbar
Bus(es)
MIN

Bottleneck
Complex
Expensive

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 52

Processor-to-Memory Network

Crossbar switches offer
full permutation capability
(they are nonblocking),
but are complex and
expensive: O(p2)

An 8  8 crossbar switch

P0

P1

P2

P3

P4

P5

P6

P7

M0 M1 M2 M3 M4 M5 M6 M7
Practical processor-to-
memory networks cannot
realize all permutations
(they are blocking)

Even with a permutation
network, full PRAM
functionality is not
realized: two processors
cannot access different
addresses in the same
memory module

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 53

Bus-Based Interconnections

Memory

Proc Proc Proc Proc. . .

I/O

Memory

Proc Proc Proc Proc. . .

I/O

Single-bus system:
Bandwidth bottleneck
Bus loading limit
Scalability: very poor
Single failure point
Conceptually simple
Forced serialization

Multiple-bus system:
Bandwidth improved
Bus loading limit
Scalability: poor
More robust
More complex scheduling
Simple serialization

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 54

Back-of-the-Envelope Bus Bandwidth Calculation

Memory

Proc Proc Proc Proc. . .

I/O
Single-bus system:
Bus frequency: 0.5 GHz
Data width: 256 b (32 B)
Mem. Access: 2 bus cycles
(0.5G)/2  32 = 8 GB/s

Bus cycle = 2 ns
Memory cycle = 100 ns
1 mem. cycle = 50 bus cycles

Multiple-bus system:
Peak bandwidth multiplied
by the number of buses
(actual bandwidth is likely
to be much less)

Mem

Proc Proc Proc Proc. . .

I/OMem Mem Mem

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 55

Hierarchical Bus Interconnection

Fig. 4.9 Example of a hierarchical interconnection architecture.

Low-level
cluster

Bus switch
(Gateway)

Heterogeneous system

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 56

Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Challenge:
Cache
coherence

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 57

Why Data Caching Works

Fig. 18.1 Data storage
and access in a two-way
set-associative cache.

Placement Option 0 Placement Option 1

.

.

.

Tag
State bits

--- One cache block --- Tag
State bits

--- One cache block ---

.

.

.

.

.

.

.

.

.

Block
address

Word
offset

The two candidate words
and their tags are read out

Tag Index

Address in

Mux
0 1

Data outCache miss

=

=Com-
 pare

Com-
 pare

Hit rate r (fraction of
memory accesses
satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

Cache parameters:

Size
Block length (line width)
Placement policy
Replacement policy
Write policy

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 58

Benefits of Caching Formulated as Amdahl’s Law

Generalized form of Amdahl’s speedup formula:

S = 1/(f1/p1 + f2/p2 + . . . + fm/pm), with f1 + f2 + . . . + fm = 1

In this case, a fraction 1 – r is slowed down by a factor (Cslow + Cfast) /Cslow,
and a fraction r is speeded up by a factor Cslow /Cfast

Fig. 18.3 of Parhami’s Computer Architecture text (2005)

Main
memory

Register
file

Access cabinet
in 30 s

Access
desktop in 2 s

Access drawer
in 5 s

Cache
memory

This corresponds to the miss-rate fraction 1 – r of accesses being unaffected
and the hit-rate fraction r (almost 1) being speeded up by a factor Cslow/Cfast

Hit rate r (fraction of memory
accesses satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

S = Cslow /Ceff

1
=

(1 – r) + Cfast/Cslow

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 59

6B.2 Multistage Interconnection Networks

Fig. 21.5 Key
elements of
the Cray Y-MP
processor.
Address
registers,
address
function units,
instruction
buffers, and
control not
shown.

V0

V7
V6

V5
V4

V3
V2

V1
 0
 1
 2
 3

 .
 .
 .

62
63

Vector
Registers

Vector
Integer
Units Shift

 Add

Logic

Weight/
Parity

Floating-
Point
Units Multiply

 Add

Reciprocal
Approx.

Scalar
Integer
Units Shift

 Add

Logic

Weight/
Parity

T Registers
(8 64-bit) S Registers

(8 64-bit)

From address
registers/units

Central
Memory

Inter-
Processor
Commun.

CPU

64 bit

64 bit

32 bit

Input/Output

The Vector-Parallel
Cray Y-MP Computer

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 60

Cray Y-MP’s Interconnection Network

Fig. 21.6 The processor-to-memory interconnection network of Cray Y-MP.

P0

P1

P2

P3

P4

P5

P6

P7

4 4

8 8

1 8

8 8

8 8

8 8

4 4

4 4

4 4

4 4

4 4

4 4

4 4

Sections Subsections
0, 4, 8, ... , 28
32, 36, 40, ... , 92

1, 5, 9, ... , 29

2, 6, 10, ... , 30

3, 7, 11, ... , 31

227, 231, ... , 255

Memory Banks

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 61

Fig. 6.9 Example of
a multistage memory
access network.

Butterfly Processor-to-Memory Network

Not a full
permutation network
(e.g., processor 0
cannot be connected
to memory bank 2
alongside the two
connections shown)

Is self-routing: i.e.,
the bank address
determines the route

A request going to
memory bank 3
(0 0 1 1) is routed:

lower upper upper

0 1 2 3
log p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2

Two ways to use the butterfly:
- Edge switches 1 x 2 and 2 x 1
- All switches 2 x 2

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 62

Butterfly as Multistage Interconnection Network

Fig. 6.9 Example of a multistage
memory access network

Generalization of the butterfly network
High-radix or m-ary butterfly, built of m  m switches
Has mq rows and q + 1 columns (q if wrapped)

0 1 2 3
log p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 0 1 2 3
log p + 1 Columns of 2-by-2 Switches

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7
 0
 1
 2
 3
 4
 5
 6
 7

2

Fig. 15.8 Butterfly network
used to connect modules
that are on the same side

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 63

Self-Routing on a Butterfly Network

From node 3 to 6: routing tag = 011  110 = 101 “cross-straight-cross”
From node 3 to 5: routing tag = 011  101 = 110 “straight-cross-cross”
From node 6 to 1: routing tag = 110  001 = 111 “cross-cross-cross”

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Ascend Descend

Fig. 14.6 Example
dimension-order
routing paths.

Number of cross
links taken = length
of path in hypercube

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 64

Butterfly Is Not a Permutation Network
dim 0 dim 1 dim 2

0 1 2 3

A

B

C

D

A

B

C

D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 14.7 Packing is a “good”
routing problem for dimension-
order routing on the hypercube.

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 14.8 Bit-reversal permutation is
a “bad” routing problem for dimension-
order routing on the hypercube.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 65

Structure of Butterfly Networks
0

1

2

3

4

5

6

7

D im 0 D im 1 D im 2

0 1 2 3

D im 3

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
4

The 16-row butterfly network.

Fig. 15.5 Butterfly network
with permuted dimensions.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Dim 1 Dim 0 Dim 2

0 1 2 3

Switching these
two row pairs
converts this to
the original
butterfly network.
Changing the
order of stages in
a butterfly is thus
equi valent to a
relabeling of the
rows (in this
example, row xyz
becomes row xzy)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 66

Beneš Network

Fig. 15.9 Beneš network formed from two back-to-back butterflies.

A 2q-row Beneš network:
Can route any 2q  2q permutation
It is “rearrangeable”

0 1 2 3 4
2 log p – 1 Columns of 2-by-2 Switches

000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7

Processors Memory Banks

000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7

2

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 67

Routing Paths in a Beneš Network

Fig. 15.10 Another example of a Beneš network.

0 1 2 3 4 5 6

2q + 1 Columns

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 Rows,q

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 Inputsq+1 2 Outputs
q+1

To which
memory
modules
can we
connect
proc 4
without
rearranging
the other
paths?

What
about
proc 6?

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 68

Augmented Data
Manipulator Network

Fig. 15.12 Augmented
data manipulator network.

Data manipulator network
was used in Goodyear
MPP, an early SIMD
parallel machine.

“Augmented” means that
switches in a column are
independent, as opposed
to all being set to same
state (simplified control).

0 1 2 3

q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows
q

a

b

a

b

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 69

Fat Trees

Fig. 15.6 Two representations of a fat tree.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Skinny tree?

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

Front view:
Binary tree

Side view:
Inverted
binary tree

1 3 5 7

1 2 3
5 6 7

1 2
3 4 5 6 7

Fig. 15.7
Butterfly
network
redrawn as
a fat tree.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 70

The Sea of Indirect Interconnection Networks

Numerous indirect or
multistage interconnection
networks (MINs) have been
proposed for, or used in,
parallel computers

They differ in topological,
performance, robustness,
and realizability attributes

We have already seen the
butterfly, hierarchical bus,
beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect
interconnection networks.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 71

Self-Routing Permutation Networks

Do there exist self-routing permutation networks? (The butterfly network
is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14 Example of sorting on a binary radix sort network.

7 (111)
 0 (000)
 4 (100)
 6 (110)
 1 (001)
 5 (101)
 3 (011)
 2 (010)

7 (111)

0 (000)

4 (100)

6 (110)

1 (001)

5 (101)

3 (011)

2 (010)

0
 1
 3
 2

5

7
 4
 6

0
 1
 3
 2

6

4
 5
 7

Sort by
MSB

Sort by
LSB

Sort by the
middle bit

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 72

Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)

Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)

Baseline: Butterfly network with nodes labeled differently

Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)

Bidelta: A MIN that is a delta network in either direction

Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)

Data manipulator: Same as ADM, but with switches in a column restricted to same state

Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1

for 2  2 switches) and path label, composed of concatenating switch output labels

leading from an input to an output depends only on the output

Flip: Reverse of the omega network (inputs  outputs)

Indirect cube: Same as butterfly or omega

Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)

Permutation: Any MIN that can realize all permutations

Rearrangeable: Same as permutation network

Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 73

6B.3 Cache Coherence Protocols

Fig. 18.2 Various types of cached data blocks in a parallel processor
with global memory and processor caches.

0

1

Processor-
to-memory

network

p–1

Proc.-
to-

proc.
net-
work

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

w
x

y

z 

w
y 

w
z 

x
z

w

x

y 

z

Multiple
consistent

Single
consistent

Single
inconsistent

Invalid

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 74

Example: A Bus-Based Snoopy Protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU
write miss:
Write back
the block,
Put write
miss on bus

CPU read hit

CPU
read miss:
Put read
miss on bus

Bus write miss for this block:
Write back the block

Bus write miss for this block

CPU read miss:
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3 Finite-state control mechanism for a bus-based
snoopy cache coherence protocol.

Each transition is labeled with the event that triggers it,
followed by the action(s) that must be taken

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 75

Implementing a Snoopy Protocol

Fig. 27.7 of Parhami’s Computer Architecture text.

A second
tags/state
storage unit
allows
snooping to
be done
concurrently
with normal
cache
operation

Tags

Cache
data
array

Duplicate tags
and state store
for snoop side

CPU

Main tags and
state store for
processor side

=?

=?

Processor side
cache control

Snoop side
cache control

Addr Addr Cmd Cmd Buffer Buffer
Snoop
state

System
bus

Tag

Addr Cmd

State

Getting all the
implementation
timing and
details right is
nontrivial

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 76

Scalable (Distributed) Shared Memory

Fig. 4.5 A parallel processor with distributed memory.

0

1

Interconnection
network

p-1

Processors

Parallel I/O

.

.

.

.

.

.

Memories
Some Terminology:

NUMA
Nonuniform memory access
(distributed shared memory)

UMA
Uniform memory access
(global shared memory)

COMA
Cache-only memory arch

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 77

Example: A Directory-Based Protocol

Fig. 18.4 States and transitions for a directory entry in a directory-based
coherence protocol (c denotes the cache sending the message).

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation,
return data value, sharing set = {c}

Read miss: Return data value,
sharing set = sharing set + {c}

Data write-back:
Sharing set = { }

Read miss: Return data value,
sharing set = {c}Write miss: Return data value,

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},
return data value

Read miss: Fetch data value, return data value,
sharing set = sharing set + {c} sharing set +

Correction to text

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 78

Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)

When there are many more nodes (caches) than the typical size of a
sharing set, a list of sharing units may be maintained in the directory

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Processor 0 Processor 1 Processor 2 Processor 3

Memory

Noncoherent
data blocks Coherent

data block

 Cache 0 Cache 1 Cache 2 Cache 3

Head pointer

The sharing set can be maintained as a distributed doubly linked list
(will discuss in Section 18.6 in connection with the SCI standard)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 79

6B.4 Data Allocation for Conflict-Free Access

Try to store the data such that parallel accesses are to different banks

For many data structures, a compiler may perform the memory mapping

Fig. 6.6 Matrix storage in column-major
order to allow concurrent accesses to rows.

0,0
1,0
2,0
3,0
4,0
5,0

Row 1
0,1
1,1
2,1
3,1
4,1
5,1

0,2
1,2
2,2
3,2
4,2
5,2

0,3
1,3
2,3
3,3
4,3
5,3

0,4
1,4
2,4
3,4
4,4
5,4

0,5
1,5
2,5
3,5
4,5
5,5

Module 0 1 2 3 4 5

Column 2

Accessing a column
leads to conflicts

Each matrix column is
stored in a different
memory module (bank)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 80

Fig. 6.7 Skewed matrix storage for
conflict-free accesses to rows and columns.

Skewed Storage Format

0,0
1,5
2,4
3,3
4,2
5,1

Row 1
0,1
1,0
2,5
3,4
4,3
5,2

0,2
1,1
2,0
3,5
4,4
5,3

0,3
1,2
2,1
3,0
4,5
5,4

0,4
1,3
2,2
3,1
4,0
5,5

0,5
1,4
2,3
3,2
4,1
5,0

Module 0 1 2 3 4 5

Column 2

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 81

Fig. 6.8 A 6  6 matrix viewed, in column-
major order, as a 36-element vector.

A Unified Theory of Conflict-Free Access

 0
 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35

Vector
indices

A is viewed as vector element i + jm ij

Column: k, k+1, k+2, k+3, k+4, k+5 Stride = 1
Row: k, k+m, k+2m, k+3m, k+4m, k+5m Stride = m
Diagonal: k, k+m+1, k+2(m+1), k+3(m+1),

k+4(m+1), k+5(m+1) Stride = m + 1
Antidiagonal: k, k+m–1, k+2(m–1), k+3(m–1),

k+4(m–1), k+5(m–1) Stride = m – 1

A qD array can be
viewed as a vector,
with “row” / “column”
accesses associated
with constant strides

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 82

Fig. 6.8 A 6  6 matrix viewed, in column-
major order, as a 36-element vector.

Linear Skewing Schemes

 0
 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35

Vector
indices

A is viewed as vector element i + jm ij

With a linear skewing scheme, vector elements k, k + s, k +2s, . . . ,
k + (B – 1)s will be assigned to different memory banks iff sb is
relatively prime with respect to the number B of memory banks.

A prime value for B ensures this condition, but is not very practical.

Place vector element i
in memory bank
a + bi mod B
(word address within
bank is irrelevant to
conflict-free access;
also, a can be set to 0)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 83

6B.5 Distributed Shared Memory

Fig. 4.5 A parallel processor with distributed memory.

0

1

Interconnection
network

p-1

Processors

Parallel I/O

.

.

.

.

.

.

Memories
Some Terminology:

NUMA
Nonuniform memory access
(distributed shared memory)

UMA
Uniform memory access
(global shared memory)

COMA
Cache-only memory arch

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 84

Butterfly-Based Distributed Shared Memory

Use hash function to map
memory locations to modules

p locations  p modules,
not necessarily distinct

With high probability, at most
O(log p) of the p locations will
be in modules located in the
same row

Average slowdown = O(log p)
Fig. 17.2 Butterfly distributed-memory
machine emulating the PRAM.

Randomized
emulation of the
p-processor PRAM
on p-node butterfly

dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows q

One of p =

processors
q Memory module

holding m/p
memory locations

P M P M P M P M

Each node =
router +
processor +
memory

2 (q + 1)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 85

PRAM Emulation with Butterfly MIN

Less efficient than Fig. 17.2,
which uses a smaller butterfly

Fig. 17.3 Distributed-memory machine, with a butterfly
multistage interconnection network, emulating the PRAM.

M
dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rowsq

POne of p =2
processors

q Memory module
holding m/p
memory locations

Emulation of the p-processor PRAM on (p logp)-node butterfly, with memory
modules and processors connected to the two sides; O(log p) avg. slowdown

By using p / (log p) physical
processors to emulate the
p-processor PRAM, this new
emulation scheme becomes
quite efficient (pipeline the
memory accesses of the log p
virtual processors assigned to
each physical processor)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 86

Deterministic Shared-Memory Emulation

Deterministic emulation
of p-processor PRAM
on p-node butterfly

dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows q

One of p =

processors
q Memory module

holding m/p
memory locations

P M P M P M P M

Each node =
router +
processor +
memory

2 (q + 1)

Store log2 m copies of each of
the m memory location contents

Time-stamp each updated value

A “write” is complete once a
majority of copies are updated

A “read” is satisfied when a
majority of copies are accessed
and the one with latest time
stamp is used

Why it works: A few congested
links won’t delay the operation

Write set Read set

log2 m copies

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 87

PRAM Emulation Using Information Dispersal

Fig. 17.4 Illustrating the information dispersal approach
to PRAM emulation with lower data redundancy.

Instead of (log m)-fold replication of data, divide each data element
into k pieces and encode the pieces using a redundancy factor of 3,
so that any k / 3 pieces suffice for reconstructing the original data

Recunstruction
algorithm

Original data word
and its k pieces

The k pieces
after encoding
(approx. three
times larger)

Original data word recovered
from k /3 encoded pieces

Up-to-date
pieces

Possible read set
of size 2k/3

Possible update set
of size 2k/3

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 88

6B.6 Methods for Memory Latency Hiding

0 0

1 1

P r o c e s s o r -
t o - m e m o r y

n e tw o r k

p - 1 m - 1

P r o c e s s o r -
t o - p ro c e s s o r

n e t w o rk

P r o c e s s o r s
M e m o r y
m o d u le s

P a r a l le l I /O

. . .

.

.

.

.

.

.

By assumption, PRAM accesses memory
locations right when they are needed, so
processing must stall until data is fetched

Method 1: Predict accesses (prefetch)
Method 2: Pipeline multiple accesses

Not a smart strategy:
Memory access time =
100s times that of add time

Proc. 0’s access request
Proc. 0’s access response

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 89

6C Shared-Memory Abstractions
A precise memory view is needed for correct algorithm design

• Sequential consistency facilitates programming
• Less strict consistency models offer better performance

Topics in This Chapter

6C.1 Atomicity in Memory Access

6C.2 Strict and Sequential Consistency

6C.3 Processor Consistency

6C.4 Weak or Synchronization Consistency

6C.5 Other Memory Consistency Models

6C.6 Transactional Memory

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 90

6C.1 Atomicity in Memory Access

0 0

1 1

P r o c e s s o r -
t o - m e m o r y

n e tw o r k

p - 1 m - 1

P r o c e s s o r -
t o - p ro c e s s o r

n e t w o rk

P r o c e s s o r s
M e m o r y
m o d u le s

P a r a l le l I /O

. . .

.

.

.

.

.

.

Performance optimization and latency hiding often imply that memory
accesses are interleaved and perhaps not serviced in the order issued

Proc. 0’s access request
Proc. 0’s access response

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 91

Barrier Synchronization Overhead

Fig. 20.3 The performance benefit of less frequent synchronization.

P1P0 P3P2 P1P0 P3P2

Time

Synchro-
nization
overhead

Done

Done

Given that AND
is a semigroup
computation, it is
only a small step
to generalize it to
a more flexible
“global combine”
operation

Reduction of synchronization overhead:
1. Providing hardware aid to do it faster
2. Using less frequent synchronizations

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 92

1

2

3

4

5

6
7

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

1

p

Output

Synchronization via Message Passing

Task interdependence is often more complicated than
the simple prerequisite structure thus far considered

Process B:
–––
–––

receive x
–––
–––
–––
–––

 B
waits

Time

Process A:
–––
–––
–––
–––
–––
–––
send x
–––
–––
–––
–––
–––
–––

t

t

t

1

2

3

A B
Schematic
representation
of data
dependence

Details of
dependence

{
Commu-
nication
latency

Fig. 20.1 Automatic synchronization in message-passing systems.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 93

Synchronization with Shared Memory

Accomplished by accessing specially designated shared control variables

The fetch-and-add instruction constitutes a useful atomic operation

If the current value of x is c, fetch-and-add(x, a) returns c to the
process and overwrites x = c with the value c + a

A second process executing fetch-and-add(x, b) then gets the now current
value c + a and modifies it to c + a + b

Why atomicity of fetch-and-add is important: With ordinary instructions,
the 3 steps of fetch-and-add for A and B may be interleaved as follows:

Process A Process B Comments
Time step 1 read x A’s accumulator holds c
Time step 2 read x B’s accumulator holds c
Time step 3 add a A’s accumulator holds c + a
Time step 4 add b B’s accumulator holds c + b
Time step 5 store x x holds c + a
Time step 6 store x x holds c + b (not c + a + b)

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 94

Barrier Synchronization: Implementations

Make each processor, in a designated set, wait at a barrier until all other
processors have arrived at the corresponding points in their computations

Software implementation via fetch-and-add or similar instruction

Hardware implementation via an AND tree (raise flag, check AND result)

A problem with the AND-tree:
If a processor can be randomly
delayed between raising it flag
and checking the tree output,
some processors might cross
the barrier and lower their flags
before others have noticed the
change in the AND tree output

Solution: Use two AND trees
for alternating barrier points

Set
AND
tree

fo
fo
fo

fo

0
1
2

p–1 S

R

Q

Reset
AND
tree

fe
fe
fe

fe

0
1
2

p–1

Barrier
SignalFlip-

flop

Fig. 20.4 Example of hardware aid for
fast barrier synchronization [Hoar96].

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 95

6C.2 Strict and Sequential Consistency
A global notion of time does not exist: The speed of light is finite;
therefore, we do not become aware of events instantaneously

Suppose a group of people decide to synchronize their watches

One person shouts: On the count of 3, set your watches to 1:00 PM

Not everyone will hear the command at the same time

In physics, we learn that two observers
do not see the same time

Furthermore, the speed of time passing
varies for different observers

Conclusion: A universal notion
of time does not exist!

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 96

Strict Consistency

With strict consistency, a read operation always returns the result of the
latest write operation on that data object

Strict consistency is impossible to maintain in a distributed system
which does not have a global clock

While clocks can be synchronized, there is always some error that
causes trouble in near-simultaneous operations

Example: Three processes sharing variables 1-4 (r = read, w = write)

w1 r2 w2 w3 r1 r2’

w4 r1 r3 r3’ w2

r5 r2 w3 w4 r4 r1r3

Real time

Process A

Process B

Process C

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 97

Sequential Consistency

Sequential consistency (new def.): Write operations on the same data
object are seen in exactly the same order by all system nodes

Sequential consistency (original def.): The result of any execution is
the same as if processor operations were executed in some sequential
order, and the operations of a particular processor appear in the
sequence specified by the program it runs

w1 r2 w2 w3 r1 r2’

w4 r1 r3 r3’ w2

r5 r2 w3 w4 r4 r1r3 Time

Process A

Process B

Process C

w1 r2 w2 w3 r1 r2w4 r1 r3 r3’ w2r5 r2 w3w4 r4 r1r3A possible ordering

w1 r2 w2 w3 r1 r2w4 r1 r3 r3’ w2r5 r2 w3w4 r4 r1r3A possible ordering

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 98

The Performance Penalty of Sequential Consistency

If a compiler reorders the seemingly independent statements in Thread 1,
the desired semantics (R1 and R2 not being both 0) is compromised

Initially Thread 1 Thread 2
X = Y = 0 X := 1 Y := 1

R1 := Y R2 :=X

Exec 1 Exec 2 Exec 3
X := 1 Y := 1 X := 1
R1 := Y R2 :=X Y := 1
Y := 1 X := 1 R1 := Y
R2 := X R1 := Y R2 := X

Relaxed consistency (memory model): Ease the requirements on doing
things in program order and/or write atomicity to gain performance

When maintaining order is absolutely necessary, we use synchronization
primitives to enforce it

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 99

6C.3 Processor Consistency
Processor consistency: Writes by the same processors are seen by
all other processors as occurring in the same order; writes by different
processors may appear in different order at various nodes

Example: Linear array in which changes in values propagate at the rate
of one node per time step

P0 P1 P2 P3

If P0 and P4 perform two write operations on consecutive time steps,
then this is how the processors will see them

Step 1 WA -- -- -- WX
Step 2 WB WA -- WX WY
Step 3 -- WB WA, WX WY --
Step 4 -- WX WB, WY WA
Step 5 WX WY -- WB WA
Step 6 WY -- -- -- WB

P4

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 100

6C.4 Weak or Synchronization Consistency

Weak consistency: Memory accesses are divided into two categories:
(1) Ordinary data accesses (2) Synchronizing accesses
Category-1 accesses can be reordered with no limitation
If ordering of two operations is to be maintained, the programmer must
specify at least one of them as a synchronizing, or Category-2, access

Access

Shared Private

Competing Noncompeting

Synchronizing Nonsync

Acquire Release

A sync access is performed
after every preceding write has
completed and before any new
data access is allowed

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 101

6C.5 Other Memory Consistency Models

Release consistency: Relaxes synchronization consistency somewhat
(1) A process can access a shared variable only if all of its previous
acquires have completed successfully
(2) A process can perform a release operation only if all of its previous
reads and writes have completed
(3) Acquire and release accesses must be sequentially consistent

For more on memory consistency models, see:

Adve, S. V. and K. Gharachorloo, “Shared Memory Consistency Models:
A Tutorial,” IEEE Computer, Dec. 1996.

Adve, S. V., H.-J. Boehm, “MemoryModels:ACase forRethinkingParallel
LanguagesandHardware,” Communications of the ACM, Aug. 2010.

For general info on memory management, see:

Gaud, F. et al., “Challenges of Memory Management on Modern NUMA
Systems,” Communications of the ACM, Dec. 2015.

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 102

6C.6 Transactional Memory

TM allows a group of read & write operations to be enclosed in a block,
so that any changed values become observable to the rest of the system
only upon the completion of the entire block

TM systems typically provide atomic statements that allow the execution
of a block of code as an all-or-nothing entity (much like a transaction)

Example of transaction: Transfer $x from account A to Account B
(1) if a  x

then a := a – x
else return “insufficient funds”

(2) b := b + x
(3) return “transfer successful”

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 103

Examples of Memory Transactions

w1 r2 w2 w3 r1 r2’

w4 r1 r3 r3’ w2

r5 r2 ra rb wa r1wb

Real time

Process A

Process B

Process C

A group of reads, writes, and intervening operations can be grouped into
an atomic transaction

Example: If and are made part of the same memory transaction,
every processor will see both changes or neither of them

wa wb

Winter 2021 Parallel Processing, Shared-Memory Parallelism Slide 104

Implementations of Transactional Memory

For more information on transactional memory, see:

[Laru08] Larus, J. and C. Kozyrakis, “Transactional Memory,”
Communications of the ACM, Vol. 51, No. 7, pp. 80-88, July 2008.

Software: 2-7 times slower than sequential code [Laru08]

Hardware acceleration: Hardware assists for the most time-consuming
parts of TM operations

e.g., maintenance and validation of read sets

Hardware implementation: All required bookkeeping operations are
implemented directly in hardware

e.g., by modifying the L1 cache and the coherence protocol

