
Fall  2008 Parallel Processing, Extreme Models Slide 1

Part II
Extreme Models



Fall  2008 Parallel Processing, Extreme Models Slide 2

About This Presentation

Edition Released Revised Revised
First Spring 2005 Spring 2006 Fall 2008

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures 
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by 
the author in connection with teaching the graduate-level course 
ECE 254B: Advanced Computer Architecture: Parallel Processing,  
at the University of California, Santa Barbara. Instructors can use 
these slides in classroom teaching and for other educational 
purposes. Any other use is strictly prohibited. © Behrooz Parhami



Fall  2008 Parallel Processing, Extreme Models Slide 3

II   Extreme Models
Study the two extremes of parallel computation models:

• Abstract SM (PRAM); ignores implementation issues
• Concrete circuit model; incorporates hardware details
• Everything else falls between these two extremes

Topics in This Part
Chapter 5   PRAM and Basic Algorithms
Chapter 6   More Shared-Memory Algorithms
Chapter 7   Sorting and Selection Networks
Chapter 8   Other Circuit-Level Examples



Fall  2008 Parallel Processing, Extreme Models Slide 4

5  PRAM and Basic Algorithms
PRAM, a natural extension of RAM (random-access machine):

• Present definitions of model and its various submodels
• Develop algorithms for key building-block computations

Topics in This Chapter
5.1   PRAM Submodels and Assumptions
5.2   Data Broadcasting
5.3   Semigroup or Fan-in Computation
5.4   Parallel Prefix Computation
5.5   Ranking the Elements of a Linked List
5.6   Matrix Multiplication



Fall  2008 Parallel Processing, Extreme Models Slide 5

5.1  PRAM Submodels and Assumptions

Fig. 4.6    Conceptual view of a parallel 
random-access machine (PRAM).

Processors

. 

. 

.

Shared Memory

0

1

p–1

. 

. 

.

0
1
2
3

m–1

Processor i can do 
the following in three 
phases of one cycle:

1. Fetch a value 
from address si
in shared 
memory

2. Perform 
computations on 
data held in local 
registers

3. Store a value 
into address di in 
shared memory



Fall  2008 Parallel Processing, Extreme Models Slide 6

Types of PRAM

Fig. 5.1   Submodels of the PRAM model.

EREW 
Least “powerful”, 
most “realistic” 

CREW 
Default 

ERCW 
Not useful 

CRCW 
Most “powerful”, 

further subdivided 

Reads from same location 
W

rit
es

 to
 s

am
e 

lo
ca

tio
n 

Exclusive 
C

on
cu

rre
nt

 
Concurrent 

E
xc

lu
si

ve
 



Fall  2008 Parallel Processing, Extreme Models Slide 7

Types of CRCW PRAM 

Undefined: The value written is undefined (CRCW-U)

Detecting: A special code for “detected collision” is written (CRCW-D)

Common: Allowed only if they all store the same value (CRCW-C) 
[ This is sometimes called the consistent-write submodel ]

Random: The value is randomly chosen from those offered (CRCW-R)

Priority: The processor with the lowest index succeeds (CRCW-P)

Max / Min: The largest / smallest of the values is written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S), 
logical AND (CRCW-A), 
logical XOR (CRCW-X), 
or another combination of values is written 

CRCW submodels are distinguished by the way they treat multiple writes: 



Fall  2008 Parallel Processing, Extreme Models Slide 8

Power of CRCW PRAM Submodels 

Theorem 5.1: A p-processor CRCW-P (priority) PRAM can be simulated 
(emulated) by a p-processor EREW PRAM with slowdown factor Θ(log p).

Intuitive justification for concurrent read emulation (write is similar):

Write the p memory addresses in a list
Sort the list of addresses in ascending order
Remove all duplicate addresses
Access data at desired addresses
Replicate data via parallel prefix computation

Each of these steps requires constant or O(log p) time 

Model U is more powerful than model V if TU(n) =o(TV(n)) for some problem

EREW  <  CREW  <  CRCW-D   <  CRCW-C  <  CRCW-R  <  CRCW-P 

1
6
5
2
3
6
1
1
2

1
1
1
2
2
3
5
6
6

1

2

3
5
6



Fall  2008 Parallel Processing, Extreme Models Slide 9

Implications of the CRCW Hierarchy of Submodels

Our most powerful PRAM CRCW submodel can be emulated by the 
least powerful submodel with logarithmic slowdown

Efficient parallel algorithms have polylogarithmic running times

Running time still polylogarithmic after slowdown due to emulation

A p-processor CRCW-P (priority) PRAM can be simulated (emulated) 
by a p-processor EREW PRAM with slowdown factor Θ(log p).

EREW  <  CREW  <  CRCW-D   <  CRCW-C  <  CRCW-R  <  CRCW-P 

We need not be too concerned with the CRCW submodel used

Simply use whichever submodel is most natural or convenient



Fall  2008 Parallel Processing, Extreme Models Slide 10

Some Elementary PRAM Computations 

Initializing an n-vector (base address = B) to all 0s:

for j = 0 to ⎡n/p⎤ – 1 processor i do
if jp + i < n then M[B + jp + i] := 0

endfor

Adding two n-vectors and storing the results in a third
(base addresses B′, B″, B)

Convolution of two n-vectors: Wk = ∑i+j=k Ui × Vj
(base addresses BW, BU, BV)

⎡n / p⎤
segments

p
elements



Fall  2008 Parallel Processing, Extreme Models Slide 11

5.2  Data 
Broadcasting

Fig. 5.2 Data broadcasting in EREW PRAM 
via recursive doubling. 

Making p copies of B[0] 
by recursive doubling
for k = 0 to ⎡log2p⎤ – 1    

Proc j, 0 ≤ j < p, do
Copy B[j] into B[j + 2k] 

endfor 

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11

B

Fig. 5.3 EREW PRAM data broadcasting 
without redundant copying. 

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11

B

Can modify the algorithm 
so that redundant copying 
does not occur and array 
bound is not exceeded



Fall  2008 Parallel Processing, Extreme Models Slide 12

All-to-All Broadcasting on EREW PRAM 
EREW PRAM algorithm for all-to-all broadcasting
Processor j, 0 ≤ j < p, write own data value into B[j]
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

Read the data value in B[(j + k) mod p]
endfor 

This O(p)-step algorithm is time-optimal 

Naive EREW PRAM sorting algorithm (using all-to-all broadcasting)
Processor j, 0 ≤ j < p, write 0 into R[ j ] 
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

l := (j + k) mod p
if S[ l ] < S[ j ] or S[ l ] = S[ j ] and l < j
then R[ j ] := R[ j ] + 1
endif

endfor
Processor j, 0 ≤ j < p, write S[ j ] into S[R[ j ]] 

j

This O(p)-step sorting 
algorithm is far from 
optimal; sorting is possible 
in O(log p) time

p – 1

0



Fall  2008 Parallel Processing, Extreme Models Slide 13

Class Participation: Broadcast-Based Sorting 

Each person write down an arbitrary nonnegative 
integer with 3 or fewer digits on a piece of paper

Students take turn broadcasting their numbers by 
calling them out aloud

Each student puts an X on paper for every number 
called out that is smaller than his/her own number, or is 
equal but was called out before the student’s own value

j

Each student counts the number of Xs on paper to determine 
the rank of his/her number

p – 1

0

Students call out their numbers in order of the computed rank



Fall  2008 Parallel Processing, Extreme Models Slide 14

5.3  Semigroup or Fan-in Computation
EREW PRAM semigroup 
computation algorithm
Proc j, 0 ≤ j<p, copy X[j] into S[j]
s := 1
while s<p Proc j, 0 ≤ j<p– s, do

S[j + s] := S[j] ⊗ S[j + s]
s := 2s

endwhile
Broadcast S[p – 1] to all 
processors 

If we use p processors on a list 
of size n = O(p log p), then optimal 
speedup can be achieved

This algorithm is optimal for PRAM, 
but its speedup of O(p / log p) is not

Fig. 5.4   Semigroup computation 
in EREW PRAM.

0 
1 
2 
3 
4 
5 
6 
7 
8 
9

S
  0:0 
  1:1 
  2:2 
  3:3 
  4:4 
  5:5 
  6:6 
  7:7 
  8:8 
  9:9

  0:0 
  0:1 
  1:2 
  2:3 
  3:4 
  4:5 
  5:6 
  6:7 
  7:8 
  8:9

  0:0 
  0:1 
  0:2 
  0:3 
  1:4 
  2:5 
  3:6 
  4:7 
  5:8 
  6:9

  0:0 
  0:1 
  0:2 
  0:3 
  0:4 
  0:5 
  0:6 
  0:7 
  1:8 
  2:9

  0:0 
  0:1 
  0:2 
  0:3 
  0:4 
  0:5 
  0:6 
  0:7 
  0:8 
  0:9

Fig. 5.5   Intuitive justification of why 
parallel slack helps improve the efficiency.

Higher degree
of parallelism
near the leave

Lower degree
of parallelism
near the root



Fall  2008 Parallel Processing, Extreme Models Slide 15

5.4  Parallel Prefix Computation

Fig. 5.6    Parallel prefix computation in EREW PRAM 
via recursive doubling. 

 0 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9

S
  0:0 
  1:1 
  2:2 
  3:3 
  4:4 
  5:5 
  6:6 
  7:7 
  8:8 
  9:9

  0:0 
  0:1 
  1:2 
  2:3 
  3:4 
  4:5 
  5:6 
  6:7 
  7:8 
  8:9

  0:0 
  0:1 
  0:2 
  0:3 
  1:4 
  2:5 
  3:6 
  4:7 
  5:8 
  6:9

  0:0 
  0:1 
  0:2 
  0:3 
  0:4 
  0:5 
  0:6 
  0:7 
  1:8 
  2:9

  0:0 
  0:1 
  0:2 
  0:3 
  0:4 
  0:5 
  0:6 
  0:7 
  0:8 
  0:9

Same as the first part of semigroup computation (no final broadcasting) 



Fall  2008 Parallel Processing, Extreme Models Slide 16

A Divide-and-Conquer Parallel-Prefix Algorithm 

Fig. 5.7    Parallel prefix computation using a divide-and-conquer scheme. 

⊗ ⊗ ⊗ ⊗ ⊗ 

 

⊗ ⊗ ⊗ ⊗ 

x 0 x 1 x 2 x 3 x n-1 x n-2 

0:0 
0:1 

0:2 
0:3 

0:n-2 
0:n-1 

Parallel prefix 
computation 
of size n/2 

In hardware, 
this is the basis 
for Brent-Kung 
carry-lookahead 
adder

T(p) = T(p/2) + 2

T(p) ≅ 2 log2 p

Each vertical 
line represents 
a location in 
shared memory



Fall  2008 Parallel Processing, Extreme Models Slide 17

Another Divide-and-Conquer Algorithm 

Fig. 5.8  Another divide-and-conquer scheme for parallel prefix computation. 

Strictly optimal 
algorithm, but 
requires 
commutativity

x 0 x 1 x 2 x 3 x n-1 x n-2 

0:0 
0:1 

0:2 
0:3 

0:n-2 
0:n-1 

 

 
Parallel prefix  
computation on n/2 
odd-indexed inputs 

Parallel prefix  
computation on n/2 
even-indexed inputs 

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ 

T(p) = T(p/2) + 1

T(p) = log2 p

Each vertical 
line represents 
a location in 
shared memory



Fall  2008 Parallel Processing, Extreme Models Slide 18

5.5  Ranking the Elements of a Linked List

C F A E B D
Rank:   5           4           3          2           1           0

info  next
head

Terminal element

(or distance from terminal)

Distance from head:
1           2           3          4           5           6

Fig. 5.9     Example linked list and the ranks of its elements.

Fig. 5.10   PRAM data structures 
representing a linked list and the 
ranking results. 

A

B

C

D

E

F

4

3

5

3

1

0

info next rank
0

1

2

3

4

5

head

List ranking appears to be 
hopelessly sequential; 
one cannot get to a list 
element except through 
its predecessor!



Fall  2008 Parallel Processing, Extreme Models Slide 19

List Ranking via Recursive Doubling

Fig. 5.11   Element ranks initially and after each of the three iterations. 

Many problems 
that appear to be 
unparallelizable 
to the uninitiated 
are  parallelizable;
Intuition can be 
quite misleading!

1 1 1 1 1 0

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

A

B

C

D

E

F

4

3

5

3

1

0

info next
0

1

2

3

4

5

head



Fall  2008 Parallel Processing, Extreme Models Slide 20

PRAM List Ranking Algorithm

Question: Which PRAM 
submodel is implicit in 
this algorithm?

If we do not 
want to modify 
the original list, 
we simply make 
a copy of it first, 
in constant time

A

B

C

D

E

F

4

3

5

3

1

0

info next rank
0

1

2

3

4

5

head

PRAM list ranking algorithm (via pointer jumping)
Processor j, 0 ≤ j<p, do {initialize the partial ranks}
if next [ j ] = j
then rank[ j ] := 0 
else  rank[ j ] := 1 
endif
while rank[next[head]] ≠ 0 Processor j, 0 ≤ j < p, do

rank[ j ] := rank[ j ] + rank[next [ j ]]
next [ j ] := next [next [ j ]]

endwhile

Answer: CREW



Fall  2008 Parallel Processing, Extreme Models Slide 21

5.6  Matrix Multiplication

Sequential matrix multiplication
for i = 0 to m – 1 do

for j = 0 to m – 1 do
t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

endfor
endfor 

=×
i

j

ij

A B C

cij := Σk=0 to m–1 aikbkj

PRAM solution with 
m3 processors: 
each processor does 
one multiplication 
(not very efficient)

m × m
matrices



Fall  2008 Parallel Processing, Extreme Models Slide 22

PRAM Matrix Multiplication with m2 Processors

Fig. 5.12    PRAM matrix multiplication; p = m2 processors.

=×
i

j

ij

PRAM matrix multiplication using m2 processors
Proc (i, j), 0 ≤ i, j < m, do
begin

t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

end 

Θ(m) steps: Time-optimal

CREW model is implicit

Processors are numbered (i, j), 
instead of 0 to m2 – 1

A B C



Fall  2008 Parallel Processing, Extreme Models Slide 23

PRAM Matrix Multiplication with m Processors

PRAM matrix multiplication using m processors
for j = 0 to m – 1 Proc i, 0 ≤ i < m, do

endfor
cij := t

endfor 

t := 0
for k = 0 to m – 1 do

t := t + aikbkj

=×
i

j

ij

Θ(m2) steps: Time-optimal

CREW model is implicit

Because the order of multiplications 
is immaterial, accesses to B can be 
skewed to allow the EREW model

A B C



Fall  2008 Parallel Processing, Extreme Models Slide 24

PRAM Matrix Multiplication with Fewer Processors

Algorithm is similar, except that 
each processor is in charge of 
computing m /p rows of C

Θ(m3/p) steps: Time-optimal

EREW model can be used

A drawback of all algorithms thus far is that only two arithmetic 
operations (one multiplication and one addition) are performed 
for each memory access. 

This is particularly costly for NUMA shared-memory machines.

=×
i

j

ij m / p 
rows

B CA



Fall  2008 Parallel Processing, Extreme Models Slide 25

More Efficient Matrix Multiplication (for NUMA)

Fig. 5.13    Partitioning the matrices 
for block matrix multiplication .

A B 

C D 

AE+BG AF+BH E F 

G H CE+DG CF+DH 

= × 

Block matrix multiplication 
follows the same algorithm as 
simple matrix multiplication.

=×
i

j

ij
BlockBlock- 

band

Block-band

1 2 ¦p

1

2

¦p

One processor  
computes these  
elements of C  
that it holds in  
local memory

q

q=m/¦p

√p

√p

q=m/√p

Partition the matrices
into p square blocks



Fall  2008 Parallel Processing, Extreme Models Slide 26

Details of Block Matrix Multiplication

Fig. 5.14    How Processor (i, j) operates on an element of A
and one block-row of B to update one block-row of C.

A multiply-add 
computation 
on q × q blocks 
needs 
2q 2 = 2m 2/p
memory 
accesses and 
2q 3 arithmetic 
operations

So, q arithmetic 
operations are 
done per 
memory access iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + b jq + q - 1 

kq + c 

kq + c 

iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + 1 jq + b jq + q - 1 

Multiply 

Add 
Elements of 
block (i, j)  
in matrix C 

Elements of 
block (k, j) 
in matrix B 

Element of 
block (i, k) 
in matrix A  

jq + 1 



Fall  2008 Parallel Processing, Extreme Models Slide 27

6  More Shared-Memory Algorithms
Develop PRAM algorithm for more complex problems:

• Must present background on the problem in some cases
• Discuss some practical issues such as data distribution

Topics in This Chapter
6.1   Sequential Ranked-Based Selection
6.2   A Parallel Selection Algorithm
6.3   A Selection-Based Sorting Algorithm
6.4   Alternative Sorting Algorithms
6.5   Convex Hull of a 2D Point Set
6.6   Some Implementation Aspects



Fall  2008 Parallel Processing, Extreme Models Slide 28

8.1  Searching and Dictionary Operations
Example:
n = 26, p = 2

P0

P1

0 
1 
2 

8

17

25

P0

P1P0P1
Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0

A single search in a sorted list 
can’t be significantly speeded up 
through parallel processing, 
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups) 

Parallel p-ary search on PRAM

logp+1(n + 1) 
= log2(n + 1) / log2(p + 1)
= Θ(log n / log p) steps 

Speedup ≅ log p 

Optimal: no comparison-based 
search algorithm can be faster 



Fall  2008 Parallel Processing, Extreme Models Slide 29

6.1  Sequential Ranked-Based Selection
Selection: Find the (or a) kth smallest among n elements
Example: 5th smallest element in the following list is 1:
6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5

Naive solution 
through sorting, 
O(n log n) time 

But linear-time 
sequential 
algorithm can 
be developed

Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

max(|L|, |G|) ≤ 3n/4



Fall  2008 Parallel Processing, Extreme Models Slide 30

Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

Linear-Time Sequential Selection Algorithm
Sequential rank-based selection algorithm select(S, k)
1.  if |S| < q {q is a small constant}

then sort S and return the kth smallest element of S
else divide S into |S|/q subsequences of size q

Sort each subsequence and find its median
Let the |S|/q medians form the sequence T

endif
2.  m = select(T, |T|/2)    {find the median m of the |S|/q medians}
3.  Create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4.  if |L| ≥ k
then return select(L, k)
else if |L| + |E| ≥ k

then return m
else return select(G, k – |L| – |E|)
endif

endif 

O(n)

T(n/q)

T(3n/4)

O(n)



Fall  2008 Parallel Processing, Extreme Models Slide 31

Algorithm Complexity and Examples
We must have q ≥ 5; 
for q = 5, the solution is T(n) = 20cnT(n) = T(n /q) + T(3n /4) + cn

------------ n/q sublists of q elements -------------
S 6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5 

--------- --------- --------- --------- ---------
T 6        3          3        2          5    
m 3                            

1 2 1 0 2 1 1   3 3   6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
------------- --- -------------------------------

L E G
|L| = 7     |E| = 2           |G| = 16

To find the 5th smallest element in S, select the 5th smallest element in L
S 1 2 1 0 2  1 1  

--------- ---
T 1        1    
m 1                            

0   1 1 1 1   2 2
- ------- ---
L E G         

Answer: 1

The 9th smallest element of S is 3. 

The 13th smallest element of S is 
found by selecting the 4th smallest 
element in G. 



Fall  2008 Parallel Processing, Extreme Models Slide 32

Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

Parallel rank-based selection algorithm PRAMselect(S, k, p)
1.  if |S| < 4          

then sort S and return the kth smallest element of S
else broadcast |S| to all p processors

divide S into p subsequences S(j) of size |S|/p
Processor j, 0 ≤ j < p, compute Tj := select(S(j), |S(j)|/2)  

endif
2.  m = PRAMselect(T, |T|/2, p) {median of the medians}
3.  Broadcast m to all processors and create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4.  if |L| ≥ k
then return PRAMselect(L, k, p)
else if |L| + |E| ≥ k

then return m
else return PRAMselect(G, k – |L| – |E|, p)
endif 

endif

O(nx)

T(n1–x,p)

T(3n/4,p)

O(nx)

6.2  A Parallel Selection Algorithm

Let p = O(n1–x)



Fall  2008 Parallel Processing, Extreme Models Slide 33

Algorithm Complexity and Efficiency

The solution is O(nx);
verify by substitutionT(n,p) = T(n1–x,p) + T(3n /4,p) + cnx

Speedup = Θ(n) / O(nx) = Ω(n1–x) = Ω(p)
Efficiency = Ω(1) 
Work(n, p) = pT(n, p) = Θ(n1–x) Θ(nx) = Θ(n)

What happens if we set x to 1? ( i.e., use one processor)

T(n, 1) = O(n x) = O(n)

What happens if we set x to 0? (i.e., use n processors)

T(n, n) = O(n x) = O(1) ?

Remember
p = O(n1–x)

No, because 
in asymptotic 
analysis,
we ignored 
several 
O(log n) terms 
compared with 
O(nx) terms



Fall  2008 Parallel Processing, Extreme Models Slide 34

6.3  A Selection-Based Sorting Algorithm
Parallel selection-based sort PRAMselectionsort(S, p)
1.  if |S| < k then return quicksort(S)          
2.  for i = 1 to k – 1 do  

mj := PRAMselect(S, i|S|/k, p) {let m0 := –∞; mk := +∞}
endfor

3.  for i = 0 to k – 1 do  
make the sublist T(i) from elements of S in (mi, mi+1)

endfor
4.  for i = 1 to k/2 do in parallel  

PRAMselectionsort(T(i), 2p/k)
{p/(k/2) proc’s used for each of the k/2 subproblems}

endfor
5.  for i = k/2 + 1 to k do in parallel  

PRAMselectionsort(T(i), 2p/k)
endfor 

O(nx)

T(n/k,2p/k)

O(1)

O(nx)

.  .  .m m m m

n/k elements n/k n/k n/k

�– �+1 2 3 k–1 +∞ −∞ 

Fig. 6.1    Partitioning of the sorted list for selection-based sorting. 

T(n/k,2p/k)
Let p = n1–x

and k = 21/x



Fall  2008 Parallel Processing, Extreme Models Slide 35

Algorithm Complexity and Efficiency

The solution is O(nx log n);
verify by substitutionT(n, p) = 2T(n/k, 2p/k) + cnx

Speedup(n,p) = Ω(n logn) / O(nx logn) = Ω(n1–x) = Ω(p)
Efficiency = speedup / p = Ω(1) 
Work(n, p) = pT(n, p) = Θ(n1–x) Θ(nx log n) = Θ(n log n)

What happens if we set x to 1? ( i.e., use one processor)

T(n, 1) = O(n x log n) = O(n log n)

Our asymptotic analysis is valid for x > 0 but not for x = 0; 

i.e., PRAMselectionsort cannot sort p keys in optimal O(log p) time.

Remember
p = O(n1–x)



Fall  2008 Parallel Processing, Extreme Models Slide 36

Example of Parallel Sorting

S: 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5

Threshold values for k = 4 (i.e., x = ½ and p = n1/2 processors):
m0 = –∞

n/k = 25/4 ≅ 6    m1 = PRAMselect(S, 6, 5) = 2
2n/k = 50/4 ≅ 13     m2 = PRAMselect(S, 13, 5) = 4
3n/k = 75/4 ≅ 19    m3 = PRAMselect(S, 19, 5) = 6

m4 = +∞

m0 m1 m2 m3                                      m4

T: - - - - - 2|- - - - - - 4|- - - - - 6|- - - - - -

T: 0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9



Fall  2008 Parallel Processing, Extreme Models Slide 37

6.4  Alternative Sorting Algorithms

Parallel randomized sort PRAMrandomsort(S, p)
1.  Processor j, 0 ≤ j < p, pick |S|/p2 random samples of 

its |S|/p elements and store them in its corresponding
section of a list T of length |S|/p

2.  Processor 0 sort the list T
{comparison threshold mi is the (i |S| /p2)th element of T}

3.  Processor j, 0 ≤ j < p, store its elements falling 
in (mi, mi+1) into T(i)

4.  Processor j, 0 ≤ j < p, sort the sublist T(j) 

Sorting via random sampling (assume p << √ n)

Given a large list S of inputs, a random sample of the elements    
can be used to find k comparison thresholds 

It is easier if we pick k = p, so that each of the resulting
subproblems is handled by a single processor



Fall  2008 Parallel Processing, Extreme Models Slide 38

Parallel Radixsort
In binary version of radixsort, we examine every bit of the   

k-bit keys in turn, starting from the LSB 
In Step i, bit i is examined, 0 ≤ i < k
Records are stably sorted by the value of the ith key bit

Input Sort by Sort by Sort by
list LSB middle bit MSB
–––––– –––––– –––––– ––––––
5 (101) 4 (100) 4 (100) 1 (001)
7 (111) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010) 1 (001) 2 (010)
1 (001) 5 (101) 2 (010) 3 (011)
4 (100) 7 (111) 2 (010) 4 (100)
2 (010) 3 (011) 7 (111) 5 (101)
7 (111) 1 (001) 3 (011) 7 (111)
2 (010) 7 (111) 7 (111) 7 (111) 

Binary
forms

Question:
How are 
the data 
movements 
performed?



Fall  2008 Parallel Processing, Extreme Models Slide 39

Data Movements in Parallel Radixsort

Running time consists mainly of the time to perform 2k
parallel prefix computations: O(log p) for k constant 

Input Compl. Diminished Prefix sums Shifted
list of bit 0   prefix sums Bit 0  plus 2 list
–––––– ––– –––––– ––– ––––––––– ––––––
5 (101) 0  – 1 1   +  2  =  3 4 (100)
7 (111) 0  – 1 2   +  2  =  4 2 (010)
3 (011) 0  – 1 3   +  2  =  5 2 (010)
1 (001) 0  – 1 4   +  2  =  6 5 (101)
4 (100) 1 0 0   – 7 (111)
2 (010) 1 1 0   – 3 (011)
7 (111) 0  – 1 5   +  2  = 7 1 (001)
2 (010) 1 2 0   – 7 (111)



Fall  2008 Parallel Processing, Extreme Models Slide 40

6.5  Convex Hull of a 2D Point Set

Fig. 6.2    Defining the 
convex hull problem. 

x

y

x

y
Point 
Set Q

CH(Q)

0

1

2

3

4

5

6

7

9

8

10

11

12

13

14

15
0

1

2

7

8

11

14

15

Fig. 6.3   Illustrating the properties 
of the convex hull. 

x’ 

y’ 

All points 
fall on this 
side of line 

Angle 

0 

1 

7 

11 

15 

Best sequential 
algorithm for p
points: 
Ω(p log p) steps 



Fall  2008 Parallel Processing, Extreme Models Slide 41

PRAM Convex Hull Algorithm

Fig. 6.4   Multiway divide and conquer for the convex hull problem 

Parallel convex hull algorithm PRAMconvexhull(S, p)
1.  Sort point set by x coordinates         
2.  Divide sorted list into √p subsets Q (i) of size √p, 0 ≤ i < √p
3.  Find convex hull of each subset Q (i) using √p processors
4.  Merge √p convex hulls CH(Q (i)) into overall hull CH(Q)

x

y y

CH(Q   )(0)Q(0) Q(1) Q(2) Q(3)

Upper
hull

Lower
hull



Fall  2008 Parallel Processing, Extreme Models Slide 42

Fig. 6.5    Finding points in a partial hull that belong to the combined hull. 

Analysis:

T(p, p) 
= T(p1/2, p1/2) + c log p
≅ 2c log p

The initial sorting also 
takes O(log p) time 

Merging of Partial Convex Hulls

Tangent lines 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(a) No point of CH(Q(i)) is on CH(Q) 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(b) Points of CH(Q(i)) from A to B are on CH(Q) 

A B 

Tangent lines are 
found through binary 
search in log time



Fall  2008 Parallel Processing, Extreme Models Slide 43

6.6  Some Implementation Aspects

Fig. 4.3 A parallel processor with global (shared) memory.

0 0 

1 1 

 

Processor-
to-memory 

network 

p-1 m-1 

Processor-
to-processor 

network 

Processors 
Memory 
modules 

Parallel I/O 

. . . 

. 

. 

. 

. 

. 

. 

Options:
Crossbar
Bus(es)
MIN

Bottleneck
Complex
Expensive

This section has been expanded; it will eventually become a separate chapter



Fall  2008 Parallel Processing, Extreme Models Slide 44

Processor-to-Memory Network

Crossbar switches offer 
full permutation capability 
(they are nonblocking), 
but are complex and 
expensive: O(p2)

An 8 × 8 crossbar switch

P0

P1

P2

P3

P4

P5

P6

P7

M0 M1 M2 M3 M4 M5 M6 M7
Practical processor-to-
memory networks cannot 
realize all permutations 
(they are blocking) 

Even with a permutation 
network, full PRAM 
functionality is not 
realized: two processors 
cannot access different 
addresses in the same 
memory module



Fall  2008 Parallel Processing, Extreme Models Slide 45

Bus-Based Interconnections

Memory

Proc Proc Proc Proc.  .  .

I/O

Memory

Proc Proc Proc Proc.  .  .

I/O

Single-bus system:
Bandwidth bottleneck
Bus loading limit
Scalability: very poor
Single failure point
Conceptually simple
Forced serialization

Multiple-bus system:
Bandwidth improved
Bus loading limit
Scalability: poor
More robust
More complex scheduling
Simple serialization



Fall  2008 Parallel Processing, Extreme Models Slide 46

Back-of-the-Envelope Bus Bandwidth Calculation

Memory

Proc Proc Proc Proc.  .  .

I/O
Single-bus system:
Bus frequency: 0.5 GHz
Data width: 256 b (32 B)
Mem. Access: 2 bus cycles
(0.5G)/2 × 32 = 8 GB/s

Bus cycle = 2 ns
Memory cycle = 100 ns
1 mem. cycle = 50 bus cycles

Multiple-bus system:
Peak bandwidth multiplied 
by the number of buses
(actual bandwidth is likely 
to be much less)

Mem

Proc Proc Proc Proc.  .  .

I/OMem Mem Mem



Fall  2008 Parallel Processing, Extreme Models Slide 47

Hierarchical Bus Interconnection

Fig. 4.9 Example of a hierarchical interconnection architecture.

Low-level 
cluster

Bus switch 
(Gateway)

Heterogeneous system



Fall  2008 Parallel Processing, Extreme Models Slide 48

Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.

0 0 

1 1 

 

Processor-
to-memory 

network 

p-1 m-1 

Processor-
to-processor 

network 

Processors Caches Memory 
modules 

Parallel I/O 

. . . 

. 

. 

. 

. 

. 

. 

Challenge:
Cache 
coherence



Fall  2008 Parallel Processing, Extreme Models Slide 49

Why Data Caching Works

Fig. 18.1    Data storage 
and access in a two-way 
set-associative cache. 

Placement Option 0 Placement Option 1

. 

. 

.

Tag
State bits

--- One cache block --- Tag
State bits

--- One cache block ---

. 

. 

.

. 

. 

.

. 

. 

.

Block 
address

Word 
offset

The two candidate words 
and their tags are read out

Tag Index
Address in

Mux
0         1

Data outCache miss

=

=Com- 
 pare

Com- 
 pare

Hit rate r (fraction of 
memory accesses 
satisfied by cache)

Ceff =  Cfast + (1 – r)Cslow

Cache parameters:

Size 
Block length (line width)     
Placement policy 
Replacement policy 
Write policy



Fall  2008 Parallel Processing, Extreme Models Slide 50

Benefits of Caching Formulated as Amdahl’s Law

Generalized form of Amdahl’s speedup formula:

S =  1/(f1/p1 + f2/p2 + . . . + fm/pm),  with f1 + f2 + . . . + fm = 1

In this case, a fraction 1 – r is slowed down by a factor (Cslow + Cfast) /Cslow, 
and a fraction r is speeded up by a factor Cslow /Cfast

Fig. 18.3 of Parhami’s Computer Architecture text (2005)

Main 
memory 

Register 
file 

Access cabinet  
in 30 s 

Access 
desktop in 2 s 

Access drawer 
in 5 s 

Cache 
memory 

Hit rate r (fraction of memory 
accesses satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

S    = Cslow /Ceff

1
=  

(1 – r) + Cfast/Cslow

This corresponds to the miss-rate fraction 1– r of accesses being unaffected 
and the hit-rate fraction r (almost 1) being speeded up by a factor Cslow/Cfast



Fall  2008 Parallel Processing, Extreme Models Slide 51

18.2  Cache Coherence Protocols

Fig. 18.2   Various types of cached data blocks in a parallel processor 
with global memory and processor caches.

0 

1 

 

Processor-
to-memory 

network 

p–1  

Proc.-
to-

proc.  
net-
work  

Processors Caches Memory 
modules 

Parallel I/O 

. . . 

. 

. 

. 

. 

. 

. 

w 
x 

y 

z ′ 

w 
y ′ 

w 
z ′ 

x 
z 

w 

x 

y ′ 

z 

Multiple 
consistent 

Single 
consistent 

Single 
inconsistent 

Invalid 



Fall  2008 Parallel Processing, Extreme Models Slide 52

Example: A Bus-Based Snoopy Protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU 
write miss: 
Write back 
the block,  
Put write 
miss on bus

CPU read hit

CPU 
read miss:  
Put read 
miss on bus

Bus write miss for this block: 
Write back the block

Bus write miss for this block

CPU read miss: 
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3   Finite-state control mechanism for a bus-based 
snoopy cache coherence protocol.

Each transition is labeled with the event that triggers it, 
followed by the action(s) that must be taken



Fall  2008 Parallel Processing, Extreme Models Slide 53

Implementing a Snoopy Protocol

Fig. 27.7 of Parhami’s Computer Architecture text.

A second 
tags/state 
storage unit 
allows 
snooping to 
be done 
concurrently 
with normal 
cache 
operation

Tags 

Cache 
data 
array 

 

Duplicate tags 
and state store 
for snoop side 

CPU 

 

Main tags and 
state store for 
processor side 

=? 

=? 

Processor side 
cache control 

Snoop side 
cache control 

Addr Addr Cmd Cmd Buffer Buffer 
Snoop 
state 

System 
bus 

Tag 

Addr Cmd 

State 

Getting all the 
implementation 
timing and 
details right is 
nontrivial



Fall  2008 Parallel Processing, Extreme Models Slide 54

Distributed Shared Memory

Fig. 4.5 A parallel processor with distributed memory.

0 

1 

 

Interconnection 
network 

p-1 

Processors 

Parallel I/O 

. 

. 

. 

. 

. 

. 

 

 

 

Memories Some Terminology:

NUMA
Nonuniform memory access
(distributed shared memory)

UMA
Uniform memory access
(global shared memory)

COMA
Cache-only memory arch



Fall  2008 Parallel Processing, Extreme Models Slide 55

Example: A Directory-Based Protocol

Fig. 18.4   States and transitions for a directory entry in a directory-based 
coherence protocol (c denotes the cache sending the message).

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation, 
return data value, sharing set = {c}

Read miss: Return data value, 
sharing set = sharing set + {c}

Data write-back: 
Sharing set = { }

Read miss: Return data value, 
sharing set = {c}Write miss: Return data value, 

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},  
return data value

Read miss: Fetch data value, return data value, 
sharing set = sharing set + {c} sharing set +

Correction to text



Fall  2008 Parallel Processing, Extreme Models Slide 56

Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)

When there are many more nodes (caches) than the typical size of a 
sharing set, a list of sharing units may be maintained in the directory

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Processor 0 Processor 1 Processor 2 Processor 3 

Memory 

Noncoherent  
data blocks Coherent  

data block  

 Cache 0  Cache 1  Cache 2  Cache 3 

Head pointer 

The sharing set can be maintained as a distributed doubly linked list 
(will discuss in Section 18.6 in connection with the SCI standard) 



Fall  2008 Parallel Processing, Extreme Models Slide 57

Hiding the Memory Access Latency

0  0  

1  1  

 

P r o c e s s o r -
to - m e m o r y  

n e tw o r k  

p - 1  m - 1  

P r o c e s s o r -
t o - p r o c e s s o r  

n e t w o r k  

P r o c e s s o r s  
M e m o r y  
m o d u le s  

P a r a l le l  I /O  

.  .  .  

.  

.  

.  

.  

.  

.  

By assumption, PRAM accesses memory 
locations right when they are needed, so 
processing must stall until data is fetched

Method 1: Predict accesses (prefetch)
Method 2: Pipeline multiple accesses

Not a smart strategy:
Memory access time = 
100s times that of add time

Proc. 0’s access request
Proc. 0’s access response



Fall  2008 Parallel Processing, Extreme Models Slide 58

21.3  Vector-Parallel Cray Y-MP

Fig. 21.5   Key 
elements of 
the Cray Y-MP 
processor. 
Address 
registers, 
address 
function units, 
instruction 
buffers, and 
control not 
shown.

V0

V7
V6

V5
V4

V3
V2

V1
  0 
  1 
  2 
  3 
 
 
  . 
  . 
  . 
 
 
62 
63

 

Vector 
Registers

Vector 
Integer  
Units Shift

 Add

Logic

Weight/ 
Parity

Floating- 
Point  
Units Multiply

 Add

Reciprocal 
Approx.

Scalar 
Integer  
Units Shift

 Add

Logic

Weight/ 
Parity

T Registers 
(8  64-bit) S Registers 

(8  64-bit)

From address 
registers/units

Central 
Memory

Inter- 
Processor 
Commun.

CPU      

64 bit

64 bit

32 bit

Input/Output



Fall  2008 Parallel Processing, Extreme Models Slide 59

Cray Y-MP’s Interconnection Network 

Fig. 21.6   The processor-to-memory interconnection network of Cray Y-MP.

P0

P1

P2

P3

P4

P5

P6

P7

4    4×

8   8×

1   8×

8   8×

8   8×

8   8×

4    4×

4    4×

4    4×

4    4×

4    4×

4    4×

4    4×

Sections Subsections  
0, 4, 8, ... , 28 
32, 36, 40, ... , 92 
 
 
 
 
 
1, 5, 9, ... , 29 
 
 
 
 
 
2, 6, 10, ... , 30 
 
 
 
 
 
 
3, 7, 11, ... , 31 
 
 
 
 
227, 231, ... , 255

Memory Banks



Fall  2008 Parallel Processing, Extreme Models Slide 60

Fig. 6.9    Example of a multistage 
memory access network. 

Not a full 
permutation network
(e.g., processor 0 
cannot be connected 
to memory bank 2 
alongside the two 
connections shown)

Is self-routing: i.e., 
the bank address 
determines the route

A request going to 
memory bank 3 
(0 0 1 1) is routed:

lower upper upper

Butterfly Processor-to-Memory Network

0        1        2        3
log  p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15

2



Fall  2008 Parallel Processing, Extreme Models Slide 61

Butterfly as Multistage Interconnection Network

Fig. 6.9    Example of a multistage 
memory access network 

Generalization of the butterfly network
High-radix or m-ary butterfly, built of m × m switches
Has mq rows and q + 1 columns (q if wrapped)

0        1        2        3
log  p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15

2 0        1        2        3
log  p + 1 Columns of 2-by-2 Switches

000 
001 
010 
011 
100 
101 
110 
111 
000 
001 
010 
011 
100 
101 
110 
111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7

2

Fig. 15.8    Butterfly network 
used to connect modules 
that are on the same side 



Fall  2008 Parallel Processing, Extreme Models Slide 62

Beneš Network

Fig. 15.9    Beneš network formed from two back-to-back butterflies.

A 2q-row Beneš network:
Can route any 2q × 2q permutation
It is “rearrangeable”

0        1        2        3        4
2 log  p – 1 Columns of 2-by-2 Switches

000 
001 
010 
011 
100 
101 
110 
111 

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 

Processors Memory Banks
000 
001 
010 
011 
100 
101 
110 
111 

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 

2



Fall  2008 Parallel Processing, Extreme Models Slide 63

Routing Paths in a Beneš Network

Fig. 15.10    Another example of a Beneš network.

0        1        2        3        4        5        6

2q + 1 Columns

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15

2  Rows,q

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15
2      Inputsq+1 2      Outputsq+1

To which 
memory 
modules 
can we 
connect 
proc 4 
without 
rearranging 
the other 
paths?

What 
about 
proc 6?



Fall  2008 Parallel Processing, Extreme Models Slide 64

16.6  Multistage Interconnection Networks

Numerous indirect  or 
multistage interconnection 
networks (MINs) have been 
proposed for, or used in, 
parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes

We have already seen the 
butterfly, hierarchical bus, 
beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect 
interconnection networks.



Fall  2008 Parallel Processing, Extreme Models Slide 65

Self-Routing Permutation Networks
Do there exist self-routing permutation networks? (The butterfly network 
is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14    Example of sorting on a binary radix sort network.

7  (111) 
 0  (000) 
 4  (100) 
 6  (110) 
 1  (001) 
 5  (101) 
 3  (011) 
 2  (010) 
 

7  (111) 
 

0  (000) 
 

4  (100) 
 

6  (110) 
 

1  (001) 
 

5  (101) 
 

3  (011) 
 

2  (010) 
 

0 
 1 
 3 
 2 
 

5 
 

7 
 4 
 6 
 

0 
 1 
 3 
 2 
 

6 
 

4 
 5 
 7 
 

Sort by 
MSB 

Sort by 
LSB 

Sort by the 
middle bit 



Fall  2008 Parallel Processing, Extreme Models Slide 66

Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)
Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)
Baseline: Butterfly network with nodes labeled differently
Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)
Bidelta: A MIN that is a delta network in either direction 
Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)
Data manipulator: Same as ADM, but with switches in a column restricted to same state  
Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1 
for 2 × 2 switches) and path label, composed of concatenating switch output labels 
leading from an input to an output depends only on the output
Flip: Reverse of the omega network (inputs × outputs)
Indirect cube: Same as butterfly or omega
Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)
Permutation: Any MIN that can realize all permutations
Rearrangeable: Same as permutation network
Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged



Fall  2008 Parallel Processing, Extreme Models Slide 67

Conflict-Free Memory Access

Try to store the data such that parallel accesses are to different banks 

For many data structures, a compiler may perform the memory mapping

Fig. 6.6    Matrix storage in column-major 
order to allow concurrent accesses to rows. 

0,0 
1,0 
2,0 
3,0 
4,0 
5,0 

Row 1 
0,1 
1,1 
2,1 
3,1 
4,1 
5,1 

0,2 
1,2 
2,2 
3,2 
4,2 
5,2 

0,3 
1,3 
2,3 
3,3 
4,3 
5,3 

0,4 
1,4 
2,4 
3,4 
4,4 
5,4 

0,5 
1,5 
2,5 
3,5 
4,5 
5,5 

Module    0    1    2    3    4    5 

Column 2 

Accessing a column
leads to conflicts

Each matrix column is 
stored in a different 
memory module (bank)



Fall  2008 Parallel Processing, Extreme Models Slide 68

Fig. 6.7    Skewed matrix storage for 
conflict-free accesses to rows and columns. 

Skewed Storage Format

0,0 
1,5 
2,4 
3,3 
4,2 
5,1 

Row 1 
0,1 
1,0 
2,5 
3,4 
4,3 
5,2 

0,2 
1,1 
2,0 
3,5 
4,4 
5,3 

0,3 
1,2 
2,1 
3,0 
4,5 
5,4 

0,4 
1,3 
2,2 
3,1 
4,0 
5,5 

0,5 
1,4 
2,3 
3,2 
4,1 
5,0 

Module    0    1    2    3    4    5 

Column 2 



Fall  2008 Parallel Processing, Extreme Models Slide 69

Fig. 6.8    A 6 × 6 matrix viewed, in column-
major order, as a 36-element vector. 

A Unified Theory of Conflict-Free Access

 0 
 1 
 2 
 3 
 4 
 5  

 6 
 7 
 8 
 9 
10 
11  

12 
13 
14 
15 
16 
17  

18 
19 
20 
21 
22 
23  

24 
25 
26 
27 
28 
29  

30 
31 
32 
33 
34 
35  

Vector 
indices 

A    is viewed as vector element i + jm  ij 

Column: k, k+1, k+2, k+3, k+4, k+5 Stride = 1
Row:  k, k+m, k+2m, k+3m, k+4m, k+5m Stride = m
Diagonal: k, k+m+1, k+2(m+1), k+3(m+1), 

k+4(m+1), k+5(m+1) Stride = m + 1
Antidiagonal: k, k+m–1, k+2(m–1), k+3(m–1), 

k+4(m–1), k+5(m–1) Stride = m – 1

A qD array can be 
viewed as a vector,
with “row” / “column” 
accesses associated
with constant strides



Fall  2008 Parallel Processing, Extreme Models Slide 70

Fig. 6.8    A 6 × 6 matrix viewed, in column-
major order, as a 36-element vector. 

Linear Skewing Schemes

 0 
 1 
 2 
 3 
 4 
 5 

 6 
 7 
 8 
 9 
10 
11 

12 
13 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 

Vector 
indices 

A    is viewed as vector element i + jm ij 

With a linear skewing scheme, vector elements k, k + s, k  +2s,  . . .  , 
k + (B – 1)s will be assigned to different memory banks iff sb is 
relatively prime with respect to the number B of memory banks. 

A prime value for B ensures this condition, but is not very practical.

Place vector element i
in memory bank 
a + bi mod B
(word address within 
bank is irrelevant to 
conflict-free access;
also, a can be set to 0)



Fall  2008 Parallel Processing, Extreme Models Slide 71

7  Sorting and Selection Networks
Become familiar with the circuit model of parallel processing:

• Go from algorithm to architecture, not vice versa
• Use a familiar problem to study various trade-offs

Topics in This Chapter
7.1   What is a Sorting Network?
7.2   Figures of Merit for Sorting Networks
7.3   Design of Sorting Networks
7.4   Batcher Sorting Networks
7.5   Other Classes of Sorting Networks
7.6   Selection Networks



Fall  2008 Parallel Processing, Extreme Models Slide 72

7.1  What is a Sorting Network?

Fig. 7.1 An n-input 
sorting network or 
an n-sorter.

x
x
x

x

. 

. 

.

. 

. 

.

n-sorter

0

1

2

n–1

y
y
y

y

0

1

2

n–1

The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1≤ ≤ ≤ 

Fig. 7.2 Block diagram and four different 
schematic representations for a 2-sorter.

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out



Fall  2008 Parallel Processing, Extreme Models Slide 73

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

2-sorter

Building Blocks for Sorting Networks

Fig. 7.3   Parallel and bit-serial hardware realizations of a 2-sorter.

  Q 
 R 
  S 

Com-
pare 

   
1 

   
0  

   
1 

   
0  

k 

k 

k 

k 

min(a, b) 

max(a, b) 

 b<a? 

a 

b 

  Q 
 R 
  S 

   
1 

   
0  

   
1 

   
0  

min(a, b)

max(a, b)

 b<a? 

a 

b 
M

SB
-f

irs
t s

er
ia

l in
pu

ts
 

  a<b? 

Reset 

Implementation with 
bit-parallel inputs

Implementation with 
bit-serial inputs



Fall  2008 Parallel Processing, Extreme Models Slide 74

Proving a Sorting Network Correct
x0
x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

Fig. 7.4    Block diagram and schematic representation of a 4-sorter.

Method 1: Exhaustive test – Try all n! possible input orders

Method 2: Ad hoc proof – for the example above, note that y0 is smallest, 
y3 is largest, and the last comparator sorts the other two outputs

Method 3: Use the zero-one principle – A comparison-based sorting 
algorithm is correct iff it correctly sorts all 0-1 sequences (2n tests)



Fall  2008 Parallel Processing, Extreme Models Slide 75

Elaboration on the Zero-One Principle

Deriving a 0-1 sequence that is not correctly sorted, given an 
arbitrary sequence that is not correctly sorted.

Let outputs yi and yi+1 be out of order, that is yi > yi+1

Replace inputs that are strictly less than yi with 0s and all others with 1s

The resulting 0-1 sequence will not be correctly sorted either

6-sorter

1 
3 
6* 
5* 
8 
9

3 
6 
9 
1 
8 
5 

Invalid

0 
1 
1 
0 
1 
0

0 
0 
1 
0 
1 
1



Fall  2008 Parallel Processing, Extreme Models Slide 76

7.2  Figures of Merit for Sorting Networks

Delay: Number 
of levels

Cost: Number of 
comparators

Cost × Delay

x0
x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

In the following example, we have 5 comparators

The following 4-sorter has 3 comparator levels on 
its critical path

The cost-delay product for this example is 15

Fig. 7.4    Block diagram and schematic representation of a 4-sorter.



Fall  2008 Parallel Processing, Extreme Models Slide 77

Cost as a Figure of Merit

n = 9, 25 modules, 9 levels
n = 10, 29 modules, 9 levels

n = 12, 39 modules, 9 levels

n = 16, 60 modules, 10 levels

Fig. 7.5 Some low-cost sorting networks.



Fall  2008 Parallel Processing, Extreme Models Slide 78

Delay as a Figure of Merit

Fig. 7.6 Some fast sorting networks.

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

These 3 comparators 
constitute one level



Fall  2008 Parallel Processing, Extreme Models Slide 79

Cost-Delay Product as a Figure of Merit

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

Fast 10-sorter from Fig. 7.6

n = 10, 29 modules, 9 levels

n = 16, 60 modules, 10 levels

Low-cost 10-sorter from Fig. 7.5

Cost×Delay = 29×9 = 261 Cost×Delay = 31×7 = 217

The most cost-effective n-sorter may be neither 
the fastest design, nor the lowest-cost design



Fall  2008 Parallel Processing, Extreme Models Slide 80

7.3  Design of Sorting Networks

Fig. 7.7   Brick-wall 6-sorter based on odd–even transposition. 

Rotate 
by 90 
degrees

Rotate by 
90 degrees 
to see the 
odd-even 
exchange 
patterns 

C(n) =    n(n – 1)/2
D(n ) =    n

Cost × Delay  =    n2(n – 1)/2  =  Θ(n3) 



Fall  2008 Parallel Processing, Extreme Models Slide 81

Insertion Sort and Selection Sort

Fig. 7.8   Sorting network based on insertion sort or selection sort. 

x
x
x

x

. 

. 

.

(n–1)-sorter

0

1

2

n–2

y
y
y

y

0

1

2

n–2
xn–1

. 

. 

.

yn–1

x
x
x

x

. 

. 

.

(n–1)-sorter

0

1

2

n–2

y
y
y

y

0

1

2

n–2
xn–1

. 

. 

.

yn–1

. 

. 

.

Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

C(n)  = n(n – 1)/2
D(n ) = 2n – 3 
Cost × Delay 

= Θ(n3) 



Fall  2008 Parallel Processing, Extreme Models Slide 82

Theoretically Optimal Sorting Networks

AKS sorting network
(Ajtai, Komlos, Szemeredi: 1983)

x
x
x

x

. 

. 

.

. 

. 

.

n-sorter

0

1

2

n–1

y
y
y

y

0

1

2

n–1

The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1≤ ≤ ≤ 

O(log n) depth

O(n log n)
size

Note that even for these 
optimal networks, delay-cost 
product is suboptimal; but 
this is the best we can do

Existing sorting networks 
have O(log2 n) latency and 
O(n log2 n) cost

Given that log2 n is only 20 
for n = 1 000 000, the latter 
are more practical

Unfortunately, AKS networks are not practical owing to large (4-digit) 
constant factors involved; improvements since 1983 not enough



Fall  2008 Parallel Processing, Extreme Models Slide 83

7.4  Batcher Sorting Networks

Fig. 7.9 Batcher’s even–odd merging network for 4 + 7 inputs. 

x

x

y

y

y

y

y

x

x

y

y

v

v

v

v

v

v

0

2

3

4

5

6

0

3

4

5

w1

2

3

0

1

1

2

w

w

w

w

3

4

(2, 4)-merger (2, 3)-merger

0

1

2

First 
sorted 
sequ- 
ence x

Second 
sorted 
sequ- 
ence y

(2, 3)-merger
a0
a1
b0
b1
b2

(1, 2)-merger
c0

d0
d1

(1, 1) (1, 2)

(1, 1)



Fall  2008 Parallel Processing, Extreme Models Slide 84

Proof of Batcher’s Even-Odd Merge
x

x

x

x

y

y

y

y

y

y

y v

v

v

v

v

v

0

1

2

3

0

1

2

3

4

5

6

0

1

2

3

4

5

w

w

w

w

w

0

1

2

3

4

(2, 4)-merger (2, 3)-merger

First 
sorted 
sequ- 
ence x

Second 
sorted 
sequ- 
ence y

Assume: x has k 0s
y has k ′ 0s

Use the zero-one principle

Case a: keven = kodd v 0    0    0    0    0    0    1    1    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Case b: keven = kodd+1 v 0    0    0    0    0    0    0    1    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Case c: keven = kodd+2 v 0    0    0    0    0    0    0    0    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Out  of order

v has keven = ⎡k/2⎤ + ⎡k ′/2⎤ 0s

w has kodd = ⎣k/2⎦ + ⎣k ′/2⎦ 0s



Fall  2008 Parallel Processing, Extreme Models Slide 85

Batcher’s Even-Odd Merge Sorting
Batcher’s (m, m) even-odd merger, 
for m a power of 2:  

C(m) =  2C(m/2) + m – 1 
= (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .  
= m log2m + 1

D(m) = D(m/2) + 1 =  log2 m + 1
Cost × Delay  =  Θ(m log2 m)

Batcher sorting networks based on the 
even-odd merge technique:  

C(n)  =  2C(n/2) + (n/2)(log2(n/2)) + 1  
≅ n(log2n)2/ 2 

D(n)  =  D(n/2) + log2(n/2) + 1 
= D(n/2) + log2n
=  log2n (log2n + 1)/2

Cost × Delay = Θ(n log4n) 

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

Fig. 7.10    The recursive 
structure of Batcher’s even–
odd merge sorting network. 



Fall  2008 Parallel Processing, Extreme Models Slide 86

Example Batcher’s Even-Odd 8-Sorter

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

Fig. 7.11    Batcher’s even-odd merge 
sorting network for eight inputs . 



Fall  2008 Parallel Processing, Extreme Models Slide 87

Bitonic-Sequence Sorter

Fig. 14.2    Sorting a bitonic 
sequence on a linear array. 

Shift right half of 
data to left half 
(superimpose the 
two halves) 

In each position, 
keep the smaller 
value of each pair 
and ship the larger 
value to the right 

Each half is a bitonic 
sequence that can be 
sorted independently 

0 1 2 n–1 

0 1 2 n–1 

.   .   . 

.   .   . 

Bitonic 
sequence 

Shifted 
right half 

n/2 

n/2 

.   .   . 

.   .   . 

Bitonic sequence:

1  3  3  4  6  6  6  2  2  1  0  0      
Rises, then falls

8  7  7  6  6  6  5  4  6  8  8  9      
Falls, then rises

8  9  8  7  7  6  6  6  5  4  6  8     
The previous sequence, 
right-rotated by 2 



Fall  2008 Parallel Processing, Extreme Models Slide 88

Batcher’s Bitonic Sorting Networks

Fig. 7.12    The recursive 
structure of Batcher’s 
bitonic sorting network. 

n/2-sorter

n/2-sorter

n-input bitonic- 
sequence sorter

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

Bitonic 
sequence

. 
  . 
     .

. 
  . 
     .

Fig. 7.13    Batcher’s 
bitonic sorting network 
for eight inputs. 

8-input bitonic- 
sequence sorter

4-input bitonic- 
sequence sorters

2-input 
sorters



Fall  2008 Parallel Processing, Extreme Models Slide 89

7.5  Other Classes of Sorting Networks

Fig. 7.14    Periodic balanced 
sorting network for eight inputs. 

Desirable properties:
a.  Regular / modular 
(easier VLSI layout).
b.  Simpler circuits via 
reusing the blocks
c.  With an extra block 
tolerates some faults 
(missed exchanges)
d.  With 2 extra blocks 
provides tolerance to 
single faults (a missed 
or incorrect exchange)
e.  Multiple passes 
through faulty network 
(graceful degradation)
f.  Single-block design 
becomes fault-tolerant 
by using an extra stage



Fall  2008 Parallel Processing, Extreme Models Slide 90

Shearsort-Based Sorting Networks (1)

Fig. 7.15    Design of an 8-sorter based on shearsort on 2×4 mesh. 

0 1 2 3
4567

Snake-like 
row sorts

Column 
sorts

0 
1 
2 
3 
4 
5 
6 
7

Snake-like 
row sorts

Corresponding 
2-D mesh



Fall  2008 Parallel Processing, Extreme Models Slide 91

Shearsort-Based Sorting Networks (2)

Fig. 7.16    Design of an 8-sorter based on shearsort on 2×4 mesh. 

0 
1 
2 
3 
4 
5 
6 
7

0 1
3 2

54
7 6

Corresponding 
2-D mesh

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Some of the same
advantages as
periodic balanced
sorting networks



Fall  2008 Parallel Processing, Extreme Models Slide 92

7.6  Selection Networks
Direct design may 
yield simpler/faster 
selection networks

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

3rd smallest element

Can remove 
this block if 
smallest three 
inputs needed 

Can remove 
these four 
comparators 

Deriving an (8, 3)-selector from Batcher’s even-odd merge 8-sorter. 



Fall  2008 Parallel Processing, Extreme Models Slide 93

Categories of Selection Networks

Unfortunately we know even less about selection networks 
than we do about sorting networks.

One can define three selection problems [Knut81]:

I. Select the k smallest values; present in sorted order
II. Select kth smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest 

Classifiers:
Selectors that separate 
the smaller half of values 
from the larger half

Smaller
4 values

Larger
4 values

8 inputs 8-Classifier



Fall  2008 Parallel Processing, Extreme Models Slide 94

Type-III Selection Networks

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,6]

[1,7]

[0,6]

[0,6]

[0,6]

[1,7]

[1,7]

[1,7]

[1,6]

[1,6]

[1,6]

[1,6]

[0,3]

[0,4]

[0,4]

[0,4]

[0,4] [0,3]

[3,7]

[4,7][3,7][3,7]

[3,7]

[4,7]

[1,3]

[1,5]

[1,5] [1,3]

[4,6][2,6]

[2,6]

[4,6]

Figure 7.17    A type III (8, 4)-selector. 8-Classifier



Fall  2008 Parallel Processing, Extreme Models Slide 95

8  Other Circuit-Level Examples
Complement our discussion of sorting and sorting nets with:

• Searching, parallel prefix computation, Fourier transform
• Dictionary machines, parallel prefix nets, FFT circuits

Topics in This Chapter
8.1   Searching and Dictionary Operations
8.2   A Tree-Structured Dictionary Machine
8.3   Parallel Prefix Computation
8.4   Parallel Prefix Networks
8.5   The Discrete Fourier Transform
8.6   Parallel Architectures for FFT



Fall  2008 Parallel Processing, Extreme Models Slide 96

8.1  Searching and Dictionary Operations
Example:
n = 26, p = 2

P0

P1

0 
1 
2 

8

17

25

P0

P1P0P1
Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0

A single search in a sorted list 
can’t be significantly speeded up 
through parallel processing, 
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups) 

Parallel p-ary search on PRAM

logp+1(n + 1) 
= log2(n + 1) / log2(p + 1)
= Θ(log n / log p) steps 

Speedup ≅ log p 

Optimal: no comparison-based 
search algorithm can be faster 



Fall  2008 Parallel Processing, Extreme Models Slide 97

Dictionary Operations
Basic dictionary operations: record keys x0, x1, . . . , xn–1

search(y) Find record with key y; return its associated data
insert(y, z) Augment list with a record: key = y, data = z
delete(y) Remove record with key y; return its associated data

Some or all of the following operations might also be of interest:
findmin Find record with smallest key; return data
findmax Find record with largest key; return data
findmed Find record with median key; return data
findbest(y) Find record with key “nearest” to y
findnext(y) Find record whose key is right after y in sorted order
findprev(y) Find record whose key is right before y in sorted order
extractmin Remove record(s) with min key; return data
extractmax Remove record(s) with max key; return data
extractmed Remove record(s) with median key value; return data

Priority queue operations: findmin, extractmin (or findmax, extractmax)



Fall  2008 Parallel Processing, Extreme Models Slide 98

8.2  A Tree-Structured Dictionary Machine

Fig. 8.1 A tree-structured dictionary machine.

x

Input Root

Output Root

"Circle" 
  Tree

"Triangle" 
    Tree

0 x1 x2 x4x3 x5 x6 x7

Combining in the 
triangular nodes

search(y): Pass OR 
of match signals & 
data from “yes” side

findmin / findmax: 
Pass smaller / larger 
of two keys & data

findmed:
Not supported here

findbest(y): Pass 
the larger of two 
match-degree 
indicators along with 
associated record

Search 1

Search 2 Pipelined
search



Fall  2008 Parallel Processing, Extreme Models Slide 99

Insertion and Deletion in the Tree Machine

Figure 8.2    Tree machine storing 5 records and containing 3 free slots.

*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

Counters keep track 
of the vacancies 
in each subtree

Deletion needs second 
pass to update the 
vacancy counters

Redundant 
insertion (update?) 
and deletion (no-op?)

Implementation:
Merge the circle and 

triangle trees by folding



Fall  2008 Parallel Processing, Extreme Models Slide 100

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

Systolic Data Structures
Fig. 8.3    Systolic data structure 

for minimum, maximum, 
and median finding.

Each node holds the smallest (S), 
median (M),,and largest (L)
value in its subtree

Each subtree is balanced 
or has one fewer element on the 

left (root flag shows this)

[5, 87] [87, 176]
Insert  2 
Insert  20 
Insert  127 
Insert  195

Extractmin 
Extractmed 
Extractmax19 or 20 

items 20 items

1765
87

Update/access 
examples for the 
systolic data 
structure of Fig. 8.3

Example: 20 elements,
3 in root, 8 on left, 

and 9 on right

8 elements:
3 + 2 + 3



Fall  2008 Parallel Processing, Extreme Models Slide 101

8.3  Parallel Prefix Computation

Fig. 8.4 Prefix computation using a latched or pipelined function unit.

⊗ x i 

s i 
x i 

s i 

Latches Four-stage pipeline Function unit 

Example: Prefix sums
x0 x1 x2 .  .  . xi
x0 x0 + x1 x0 + x1 + x2 .  .  . x0 + x1 + . . . + xi
s0 s1 s2 .  .  . si

Sequential time with one processor is O(n)
Simple pipelining does not help



Fall  2008 Parallel Processing, Extreme Models Slide 102

Improving the Performance with Pipelining

Fig. 8.5 High-throughput prefix computation using a pipelined function unit.

Ignoring pipelining overhead, it appears that we 
have achieved a speedup of 4 with 3 “processors.”
Can you explain this anomaly? (Problem 8.6a)

a[i]

x[i – 12]
Delay

Delays
a[i–1]

a[i–6] ³ a[i–7]

a[i–4] ³ a[i–5]

a[i–8] ³ a[i–9] ³ a[i–10] ³ a[i–11]

s i–12

xi

Delay

Delays

xi–1

⊗xi–4 xi–5

xi–6 xi–7⊗

xi–8 xi–9 xi–10 xi–11⊗⊗⊗
Function unit 

⊗computing



Fall  2008 Parallel Processing, Extreme Models Slide 103

8.4  Parallel Prefix Networks

Fig. 8.6 Prefix sum network built of one n/2-input network and n – 1 adders. 

. . .

Prefix Sum n/2

x x x x x x. . .

s n–1 s n–2 s 3 s 2 s 1 s 0

+ +
This is the Brent-Kung
Parallel prefix network
(its delay is actually 
2 log2n – 2)

n–1 n–2 3 2 1 0

+++

T(n) = T(n/2) + 2 
= 2 log2n – 1

C(n) = C(n/2) + n – 1 
= 2n – 2 – log2n



Fall  2008 Parallel Processing, Extreme Models Slide 104

Example of Brent-Kung Parallel Prefix Network

Fig. 8.8 Brent–Kung parallel prefix graph for n = 16. 

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

One level 
of latency

Originally developed
by Brent and Kung as
part of a VLSI-friendly 
carry lookahead adder

T(n) = 2 log2n – 2

C(n) = 2n – 2 – log2n



Fall  2008 Parallel Processing, Extreme Models Slide 105

Another Divide-and-Conquer Design

Fig. 8.7 Prefix sum network built of two n/2-input networks and n/2 adders.

T(n) = T(n/2) + 1 
= log2n

C(n) = 2C(n/2) + n/2 
= (n/2) log2n

Simple Ladner-Fisher
Parallel prefix network
(its delay is optimal, 
but has fan-out issues
if implemented directly)

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Ladner-Fischer construction



Fall  2008 Parallel Processing, Extreme Models Slide 106

Example of Kogge-Stone Parallel Prefix Network

Fig. 8.9 Kogge-Stone parallel prefix graph for n = 16. 

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

T(n) = log2n

C(n) = (n–1) + (n–2)
+ (n–4) + . . . + n/2 
= n log2n – n – 1

Optimal in delay,
but too complex 
in number of cells 
and wiring pattern



Fall  2008 Parallel Processing, Extreme Models Slide 107

Comparison and Hybrid Parallel Prefix Networks
x0x1x2x3x4x5x6x7

x8x9x10x11
x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

Fig. 8.10 A hybrid 
Brent–Kung / 
Kogge–Stone 
parallel prefix 
graph for n = 16.

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

Brent- 
Kung

Brent- 
Kung

Kogge- 
Stone

Han/Carlson
5 levels
32 cells

Brent/Kung
6 levels
26 cells

Kogge/Stone
4 levels
49 cells



Fall  2008 Parallel Processing, Extreme Models Slide 108

Linear-Cost, Optimal Ladner-Fischer Networks

Recursive construction of the fastest possible 
parallel prefix network (type-0) 

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Type-0 Type-1

Type-0

Define a type-x parallel prefix network as one that:
Produces the leftmost output in optimal log2 n time
Yields all other outputs with at most x additional delay

We are interested in 
building a type-0 overall 
network, but can use 
type-x networks (x > 0) 
as component parts

Note that even the 
Brent-Kung network 
produces the leftmost 
output in optimal time



Fall  2008 Parallel Processing, Extreme Models Slide 109

8.5  The Discrete Fourier Transform
DFT yields output sequence yi based on input sequence xi (0 ≤ i < n)

yi =  ∑
j=0 to n–1

ωn
ij xj                       O(n2)-time naïve algorithm

where ωn is the nth primitive root of unity; ωn
n = 1, ωn

j ≠ 1 (1 ≤ j < n)

Examples:  ω4 is the imaginary number i and ω3 = (−1 + i √3)/2 

The inverse DFT is almost exactly the same computation:

xi = (1/n) ∑
j=0 to n–1

ωn
−ij yj     

Fast Fourier Transform (FFT): 
O(n log n)-time DFT algorithm that derives y from half-length sequences 
u and v that are DFTs of even- and odd-indexed inputs, respectively

yi =  ui + ωn
i vi (0 ≤ i < n/2)

yi+n/2 =  ui + ωn
i+n/2 vi

T(n) = 2T(n/2) + n = n log2n sequentially
T(n)  =  T(n/2) + 1 = log2n in parallel



Fall  2008 Parallel Processing, Extreme Models Slide 110

Application of DFT to Spectral Analysis

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209 
  Hz

1477  
  Hz

1336  
  Hz

1633  
  Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments 
     for touch-tone dialing

Frequency spectrum of received tone



Fall  2008 Parallel Processing, Extreme Models Slide 111

Application of DFT to Smoothing or Filtering

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal



Fall  2008 Parallel Processing, Extreme Models Slide 112

8.6  Parallel Architectures for FFT

Fig. 8.11    Butterfly network for an 8-point FFT. 

u: DFT of even-indexed inputs
v: DFT of odd-indexed inputs

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

yi =  ui + ωn
i vi (0 ≤ i < n/2)

yi+n/2 =  ui + ωn
i+n/2 vi



Fall  2008 Parallel Processing, Extreme Models Slide 113

Fig. 8.12 FFT network variant and its shared-hardware realization.

Variants of the Butterfly Architecture

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6



Fall  2008 Parallel Processing, Extreme Models Slide 114

Computation Scheme for 16-Point FFT
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Bit-reversal 
permutation 

Butterfly 
operation 

a 
b j 

a + bω 
a − bω 

j 
j 

0 

0 

0 

0 

0 

0 

0 

0 

0 
4 

0 
4 

0 
4 

0 
4 

0 
2 
4 
6 

0 
2 
4 
6 

0 
1 
2 
3 
4 
5 
6 
7 



Fall  2008 Parallel Processing, Extreme Models Slide 115

More 
Economical 

FFT 
Hardware

Fig. 8.13    
Linear array of 
log2n cells for 
n-point FFT 
computation.

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Project

Project

Project 

Project 

   
0 
 

   
1  
 

   
1 
 

   
0  
 

 Control 

x 
 

b 
 

a 
 

a − b  
 

 a + b 
 

− 

+ 

× 

ω  n 
 

 i 
 

y 
 



Fall  2008 Parallel Processing, Extreme Models Slide 116

Another Circuit Model: Artificial Neural Nets

Supervised learning

Inputs Weights

Activation 
function

Output

Threshold
Feedforward network 
Three layers: input, hidden, output
No feedback

Artificial 
neuron

Recurrent network 
Simple version due to Elman
Feedback from hidden nodes to special nodes at the input layer

Diagrams from
http://www.learnartificialneuralnetworks.com/

Hopfield network 
All connections are bidirectional

Characterized by connection 
topology and learning method


	Part II�Extreme Models
	II   Extreme Models
	5  PRAM and Basic Algorithms
	5.1  PRAM Submodels and Assumptions
	Types of PRAM
	Types of CRCW PRAM 
	Power of CRCW PRAM Submodels 
	Implications of the CRCW Hierarchy of Submodels
	Some Elementary PRAM Computations 
	5.2  Data �Broadcasting
	All-to-All Broadcasting on EREW PRAM 
	Class Participation: Broadcast-Based Sorting 
	5.3  Semigroup or Fan-in Computation
	5.4  Parallel Prefix Computation
	A Divide-and-Conquer Parallel-Prefix Algorithm 
	Another Divide-and-Conquer Algorithm 
	5.5  Ranking the Elements of a Linked List
	List Ranking via Recursive Doubling
	PRAM List Ranking Algorithm
	5.6  Matrix Multiplication
	PRAM Matrix Multiplication with m 2 Processors
	PRAM Matrix Multiplication with m Processors
	PRAM Matrix Multiplication with Fewer Processors
	More Efficient Matrix Multiplication (for NUMA)
	Details of Block Matrix Multiplication
	6  More Shared-Memory Algorithms
	8.1  Searching and Dictionary Operations
	6.1  Sequential Ranked-Based Selection
	Linear-Time Sequential Selection Algorithm
	Algorithm Complexity and Examples
	Algorithm Complexity and Efficiency
	6.3  A Selection-Based Sorting Algorithm
	Algorithm Complexity and Efficiency
	Example of Parallel Sorting
	6.4  Alternative Sorting Algorithms
	Parallel Radixsort
	Data Movements in Parallel Radixsort
	6.5  Convex Hull of a 2D Point Set
	PRAM Convex Hull Algorithm
	Merging of Partial Convex Hulls
	6.6  Some Implementation Aspects
	Processor-to-Memory Network
	Bus-Based Interconnections
	Back-of-the-Envelope Bus Bandwidth Calculation
	Hierarchical Bus Interconnection
	Removing the Processor-to-Memory Bottleneck
	Why Data Caching Works
	Benefits of Caching Formulated as Amdahl’s Law
	Example: A Bus-Based Snoopy Protocol
	Implementing a Snoopy Protocol
	Distributed Shared Memory
	Example: A Directory-Based Protocol
	Implementing a Directory-Based Protocol
	Hiding the Memory Access Latency
	21.3  Vector-Parallel Cray Y-MP
	Cray Y-MP’s Interconnection Network 
	Butterfly Processor-to-Memory Network
	Butterfly as Multistage Interconnection Network
	Beneš Network
	Routing Paths in a Beneš Network
	16.6  Multistage Interconnection Networks
	Self-Routing Permutation Networks
	Partial List of Important MINs
	Conflict-Free Memory Access
	Skewed Storage Format
	A Unified Theory of Conflict-Free Access
	Linear Skewing Schemes
	7  Sorting and Selection Networks
	7.1  What is a Sorting Network?
	Building Blocks for Sorting Networks
	Proving a Sorting Network Correct
	Elaboration on the Zero-One Principle
	7.2  Figures of Merit for Sorting Networks
	Cost as a Figure of Merit
	Delay as a Figure of Merit
	Cost-Delay Product as a Figure of Merit
	7.3  Design of Sorting Networks
	Insertion Sort and Selection Sort
	Theoretically Optimal Sorting Networks
	7.4  Batcher Sorting Networks
	Proof of Batcher’s Even-Odd Merge
	Batcher’s Even-Odd Merge Sorting
	Example Batcher’s Even-Odd 8-Sorter
	Bitonic-Sequence Sorter
	Batcher’s Bitonic Sorting Networks
	7.5  Other Classes of Sorting Networks
	Shearsort-Based Sorting Networks (1)
	Shearsort-Based Sorting Networks (2)
	7.6  Selection Networks
	Categories of Selection Networks
	Type-III Selection Networks
	8  Other Circuit-Level Examples
	8.1  Searching and Dictionary Operations
	Dictionary Operations
	8.2  A Tree-Structured Dictionary Machine
	Insertion and Deletion in the Tree Machine
	Systolic Data Structures
	8.3  Parallel Prefix Computation
	Improving the Performance with Pipelining
	8.4  Parallel Prefix Networks
	Example of Brent-Kung Parallel Prefix Network
	Another Divide-and-Conquer Design
	Example of Kogge-Stone Parallel Prefix Network
	Comparison and Hybrid Parallel Prefix Networks
	Linear-Cost, Optimal Ladner-Fischer Networks
	8.5  The Discrete Fourier Transform
	Application of DFT to Spectral Analysis
	Application of DFT to Smoothing or Filtering
	8.6  Parallel Architectures for FFT
	Variants of the Butterfly Architecture
	Computation Scheme for 16-Point FFT
	More Economical FFT Hardware
	Another Circuit Model: Artificial Neural Nets

