

Part II
 Extreme Models

	Part I: Fundamental Concepts	Background and Motivation	1. Introduction to Parallelism 2. A Taste of Parallel Algorithms 3. Parallel Algorithm Complexity 4. Models of Parallel Processing
		Complexity and Models	
	Part II: Extreme Models	Abstract View of Shared Memory	5. PRAM and Basic Algorithms 6. More Shared-Memory Algorithms 7. Sorting and Selection Networks 8. Other Circuit-Level Examples
		Circuit Model of Parallel Systems	
	Part III: Mesh-Based Architectures	$\begin{gathered} \text { Data Movement on } \\ 2 \mathrm{D} \text { Arrays } \end{gathered}$	9. Sorting on a 2 D Mesh or Torus 10. Routing on a $2 D$ Mesh or Torus 11. Numerical 20 Mesh Algorithms 12. Other Mesh-Related Architectures
		Mesh Algorithms and Variants	
	Part IV: Low-Diameter Architectures	The Hypercube Architecture	13. Hypercubes and Their Algorithms 14. Sorting and Routing on Hypercubes 15. Other Hypercubic Architectures 16. A Sampler of Other Networks
		Hypercubic and Other Networks	
	Part V: Some Broad Topics	Coordination and Data Access	17. Emulation and Scheduling 18. Data Storage, Input, and Output 19. Reliable Parallel Processing 20. System and Sotware Issues
		Robustness and Ease of Use	
	Part Vl: Implementation Aspects	Control-Parallel Systems	21. Shared-Memory MIMD Machines 22. Message-Passing MIMD Machines 23. Data-Parallel SIMD Machines 24. Past, Present, and Future
		Data Parallelism and Conclusion	

Parallel Processing, Extreme Models

About This Presentation

This presentation is intended to support the use of the textbook Introduction to Parallel Processing: Algorithms and Architectures (Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by the author in connection with teaching the graduate-level course ECE 254B: Advanced Computer Architecture: Parallel Processing, at the University of California, Santa Barbara. Instructors can use these slides in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised
First	Spring 2005	Spring 2006	Fall 2008

II Extreme Models

Study the two extremes of parallel computation models:

- Abstract SM (PRAM); ignores implementation issues
- Concrete circuit model; incorporates hardware details
- Everything else falls between these two extremes

Topics in This Part

Chapter 5 PRAM and Basic Algorithms
Chapter 6 More Shared-Memory Algorithms
Chapter 7 Sorting and Selection Networks
Chapter 8 Other Circuit-Level Examples

5 PRAM and Basic Algorithms

PRAM, a natural extension of RAM (random-access machine):

- Present definitions of model and its various submodels
- Develop algorithms for key building-block computations

Topics in This Chapter	
5.1	PRAM Submodels and Assumptions
5.2	Data Broadcasting
5.3	Semigroup or Fan-in Computation
5.4	Parallel Prefix Computation
5.5	Ranking the Elements of a Linked List
5.6	Matrix Multiplication

5.1 PRAM Submodels and Assumptions

Fig. 4.6 Conceptual view of a parallel random-access machine (PRAM).

Processor i can do the following in three phases of one cycle:

1. Fetch a value from address s_{i} in shared memory
2. Perform computations on data held in local registers
3. Store a value into address d_{i} in shared memory

Types of PRAM

Reads from same location
Exclusive

Fig. 5.1 Submodels of the PRAM model.

Types of CRCW PRAM

CRCW submodels are distinguished by the way they treat multiple writes:
Undefined: The value written is undefined (CRCW-U)
Detecting: A special code for "detected collision" is written (CRCW-D)
Common: Allowed only if they all store the same value (CRCW-C) [This is sometimes called the consistent-write submodel]

Random: The value is randomly chosen from those offered (CRCW-R)
Priority: \quad The processor with the lowest index succeeds (CRCW-P)
Max/Min: The largest/smallest of the values is written (CRCW-M)
Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), logical XOR (CRCW-X),
or another combination of values is written

Power of CRCW PRAM Submodels

Model U is more powerful than model V if $T_{\mathrm{U}}(n)=\mathrm{o}\left(T_{\mathrm{V}}(n)\right)$ for some problem

```
EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P
```

Theorem 5.1: A p-processor CRCW-P (priority) PRAM can be simulated (emulated) by a p-processor EREW PRAM with slowdown factor $\Theta(\log p)$.

Intuitive justification for concurrent read emulation (write is similar):

Write the p memory addresses in a list	1	1	1
Sort the list of addresses in ascending order	6	1	
Remove all duplicate addresses	5	1	
Access data at desired addresses	2	2	2
Replicate data via parallel prefix computation	3	2	
Each of these steps requires constant or O(log p) time	6	3	3
	1	5	5
Fall 2008		2	6

Implications of the CRCW Hierarchy of Submodels

```
EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P
```

A p-processor CRCW-P (priority) PRAM can be simulated (emulated) by a p-processor EREW PRAM with slowdown factor $\Theta(\log p)$.

Our most powerful PRAM CRCW submodel can be emulated by the least powerful submodel with logarithmic slowdown

Efficient parallel algorithms have polylogarithmic running times
Running time still polylogarithmic after slowdown due to emulation

We need not be too concerned with the CRCW submodel used
Simply use whichever submodel is most natural or convenient

Some Elementary PRAM Computations

Initializing an n-vector (base address $=B$) to all 0 s :

$$
\begin{aligned}
& \text { for } j=0 \text { to }\lceil n / p\rceil-1 \text { processor } i \text { do } \\
& \text { if } j p+i<n \text { then } M[B+j p+i]:=0 \\
& \text { endfor }
\end{aligned}
$$

Adding two n-vectors and storing the results in a third (base addresses $B^{\prime}, B^{\prime \prime}, B$)

Convolution of two n-vectors: $W_{k}=\sum_{i+j=k} U_{i} \times V_{j}$
(base addresses B_{W}, B_{U}, B_{V})

5.2 Data Broadcasting

Making p copies of $B[0]$ by recursive doubling for $k=0$ to $\left\lceil\log _{2} p\right\rceil-1$ Proc $j, 0 \leq j<p$, do Copy $B\left[J\right.$ into $B\left[j+2^{k}\right]$ endfor

Can modify the algorithm so that redundant copying does not occur and array bound is not exceeded

Fig. 5.2 Data broadcasting in EREW PRAM via recursive doubling.

Fig. 5.3 EREW PRAM data broadcasting without redundant copying.

All-to-All Broadcasting on EREW PRAM

EREW PRAM algorithm for all-to-all broadcasting Processor $j, 0 \leq j<p$, write own data value into $B[j]$ for $k=1$ to $p-1$ Processor $j, 0 \leq j<p$, do

Read the data value in $B[(j+k) \bmod p]$ endfor

This $\mathrm{O}(p)$-step algorithm is time-optimal

Naive EREW PRAM sorting algorithm (using all-to-all broadcasting)
Processor $j, 0 \leq j<p$, write 0 into $R[j]$
for $k=1$ to $p-1$ Processor $j, 0 \leq j<p$, do
$I:=(j+k) \bmod p$
if $S[I]<S[j]$ or $S[I]=S[j]$ and $I<j$ then $R[j]:=R[j]+1$ endif
endfor

This $\mathrm{O}(p)$-step sorting algorithm is far from optimal; sorting is possible in $\mathrm{O}(\log p)$ time

Processor $j, 0 \leq j<p$, write $S[j]$ into $S[R[j]]$

Class Participation: Broadcast-Based Sorting

Each person write down an arbitrary nonnegative integer with 3 or fewer digits on a piece of paper

Students take turn broadcasting their numbers by calling them out aloud

Each student puts an X on paper for every number
 called out that is smaller than his/her own number, or is equal but was called out before the student's own value

Each student counts the number of Xs on paper to determine the rank of his/her number

Students call out their numbers in order of the computed rank

5.3 Semigroup or Fan-in Computation

EREW PRAM semigroup computation algorithm Proc $j, 0 \leq j<p$, copy $X[J]$ into $S[J]$ $s:=1$
while $s<p \operatorname{Proc} j, 0 \leq j<p-s$, do

$$
\begin{aligned}
& S[j+s]:=S[j] \otimes S[j+s] \\
& s:=2 s
\end{aligned}
$$

endwhile
Broadcast $S[p-1]$ to all processors

This algorithm is optimal for PRAM, but its speedup of $\mathrm{O}(p / \log p)$ is not

If we use p processors on a list of size $n=\mathrm{O}(p \log p)$, then optimal speedup can be achieved

$0: 0$
$0: 1$
$0: 2$
$0: 3$
$0: 4$
$0: 5$
$0: 6$
$0: 7$
$0: 8$
$0: 9$

Fig. 5.4 Semigroup computation in EREW PRAM.

Lower degree of parallelism near the root

Higher degreє of parallelism near the leave

Fig. 5.5 Intuitive justification of why parallel slack helps improve the efficiency.

5.4 Parallel Prefix Computation

Same as the first part of semigroup computation (no final broadcasting)

Fig. 5.6 Parallel prefix computation in EREW PRAM via recursive doubling.

A Divide-and-Conquer Parallel-Prefix Algorithm

Fig. 5.7 Parallel prefix computation using a divide-and-conquer scheme.

Another Divide-and-Conquer Algorithm

$T(p)=T(p / 2)+1$
$T(p)=\log _{2} p$

Strictly optimal algorithm, but requires commutativity

Fig. 5.8 Another divide-and-conquer scheme for parallel prefix computation.

5.5 Ranking the Elements of a Linked List

Fig. 5.9 Example linked list and the ranks of its elements.

List ranking appears to be hopelessly sequential; one cannot get to a list element except through its predecessor!

Fig. 5.10 PRAM data structures representing a linked list and the ranking results.

rank

List Ranking via Recursive Doubling

Fig. 5.11 Element ranks initially and after each of the three iterations.

PRAM List Ranking Algorithm

PRAM list ranking algorithm (via pointer jumping)
Processor $j, 0 \leq j<p$, do \{initialize the partial ranks\} if $\operatorname{next}[j]=j$
then $\operatorname{rank}[j]:=0$
else $\operatorname{rank}[j]:=1$
endif
while $\operatorname{rank}[$ next[head $]] \neq 0$ Processor $j, 0 \leq j<p$, do

$$
\operatorname{rank}[j]:=\operatorname{rank}[j]+\operatorname{rank}[\operatorname{next}[j]]
$$

endwhile

Question: Which PRAM submodel is implicit in this algorithm?

Answer: CREW

If we do not want to modify the original list, we simply make a copy of it first, in constant time

$$
\operatorname{next}[j]:=\operatorname{next}[\operatorname{next}[j]]
$$

5.6 Matrix Multiplication

Sequential matrix multiplication
for $i=0$ to $m-1$ do

$$
\text { for } j=0 \text { to } m-1 \text { do }
$$

$$
t:=0
$$

$$
\text { for } k=0 \text { to } m-1 \text { do }
$$

$$
t:=t+a_{i k} b_{k j}
$$

endfor
$c_{i j}:=t$
endfor endfor
$m \times m$
matrices

PRAM solution with m^{3} processors: each processor does one multiplication (not very efficient)

$$
c_{i j}:=\sum_{k=0 \text { to } m-1} a_{i k} b_{k j}
$$

PRAM Matrix Multiplication with m^{2} Processors

PRAM matrix multiplication using m^{2} processors
Proc (i, j), $0 \leq i, j<m$, do
begin
$t:=0$
for $k=0$ to $m-1$ do $t:=t+a_{i k} b_{k j}$
endfor

$c_{i j}:=t$

end

Fig. 5.12 PRAM matrix multiplication; $p=m^{2}$ processors.

PRAM Matrix Multiplication with m Processors

PRAM matrix multiplication using m processors
for $j=0$ to $m-1$ Proc $i, 0 \leq i<m$, do
$t:=0$
for $k=0$ to $m-1$ do

$$
t:=t+a_{i k} b_{k j}
$$

endfor
$c_{i j}:=t$
endfor
$\Theta\left(m^{2}\right)$ steps: Time-optimal
CREW model is implicit
Because the order of multiplications is immaterial, accesses to B can be skewed to allow the EREW model

UCSB

PRAM Matrix Multiplication with Fewer Processors

Algorithm is similar, except that each processor is in charge of computing m / p rows of C
$\Theta\left(m^{3} / p\right)$ steps: Time-optimal
EREW model can be used

A drawback of all algorithms thus far is that only two arithmetic operations (one multiplication and one addition) are performed for each memory access.

This is particularly costly for NUMA shared-memory machines.

More Efficient Matrix Multiplication (for NUMA)

Fig. 5.13 Partitioning the matrices for block matrix multiplication .

Details of Block Matrix Multiplication

Fig. 5.14 How Processor (i, j) operates on an element of A and one block-row of B to update one block-row of C.

6 More Shared-Memory Algorithms

Develop PRAM algorithm for more complex problems:

- Must present background on the problem in some cases
- Discuss some practical issues such as data distribution

Topics in This Chapter	
6.1	Sequential Ranked-Based Selection
6.2	A Parallel Selection Algorithm
6.3	A Selection-Based Sorting Algorithm
6.4	Alternative Sorting Algorithms
6.5	Convex Hull of a 2D Point Set
6.6	Some Implementation Aspects

8.1 Searching and Dictionary Operations

Parallel p-ary search on PRAM

$$
\begin{aligned}
& \log _{p+1}(n+1) \\
& \quad=\log _{2}(n+1) / \log _{2}(p+1) \\
& \quad=\Theta(\log n / \log p) \text { steps }
\end{aligned}
$$

Speedup $\cong \log p$
Optimal: no comparison-based search algorithm can be faster

A single search in a sorted list can't be significantly speeded up through parallel processing, but all hope is not lost:

Dynamic data (sorting overhead)
Batch searching (multiple lookups)

Slide 28

6.1 Sequential Ranked-Based Selection

Selection: Find the (or a) k th smallest among n elements
Example: 5th smallest element in the following list is 1 :

Naive solution through sorting, O($n \log n$) time

But linear-time sequential algorithm can be developed

Linear-Time Sequential Selection Algorithm

Sequential rank-based selection algorithm $\operatorname{select}(S, k)$

1. if $|S|<q \quad\{q$ is a small constant $\}$
then sort S and return the k th smallest element of S else divide S into $|S| / q$ subsequences of size q Sort each subsequence and find its median Let the $|S| / q$ medians form the sequence T
endif
2. $m=\operatorname{select}(T,|T| / 2) \quad$ \{find the median m of the $|S| / q$ medians $\}$
3. Create 3 subsequences
$\mathrm{O}(n)$
L: Elements of S that are $<m$
E : Elements of S that are $=m$
G : Elements of S that are $>m$
4. if $|L| \geq k$
then return $\operatorname{select}(L, k)$
else if $|L|+|E| \geq k$
then return m
else return $\operatorname{select}(G, k-|L|-|E|)$ endif
endif

Algorithm Complexity and Examples

$$
T(n)=T(n / q)+T(3 n / 4)+c n
$$

We must have $q \geq 5$;
for $q=5$, the solution is $T(n)=20 \mathrm{cn}$

To find the 5 th smallest element in S, select the 5 th smallest element in L

The 9th smallest element of S is 3 .
The 13th smallest element of S is found by selecting the 4th smallest element in G.

Answer: 1

6.2 A Parallel Selection Algorithm

Parallel rank-based selection algorithm $\operatorname{PRAMselect(S,~} k, p$)

1. if $|S|<4$
then sort S and return the k th smallest element of S else broadcast $|S|$ to all p processors
divide S into p subsequences $S(j)$ of size $|S| / p$
Processor $j, 0 \leq j<p$, compute $T_{j}:=\operatorname{select}(S(j),|S(j)| / 2)$
endif
$T\left(n^{1-x}, p\right)$ 2. $m=\operatorname{PRAMselect}(T,|T| / 2, p) \quad$ \{median of the medians\}
2. Broadcast m to all processors and create 3 subsequences
$O\left(n^{x}\right)$
$T(3 n / 4, p)$

L: Elements of S that are $<m$
E : Elements of S that are $=m$
G : Elements of S that are $>m$
4. if $|L| \geq k$
then return PRAMselect (L, k, p) else if $|L|+|E| \geq k$
then return m

$$
\begin{aligned}
& \text { else return PRAMselect(}(G, k-|L|-|E|, p) \\
& \text { endif } \\
& \text { endif }
\end{aligned} \text { Let } p=O\left(n^{1-x}\right)
$$

Algorithm Complexity and Efficiency

$T(n, p)=T\left(n^{1-x}, p\right)+T(3 n / 4, p)+c n^{x}$
The solution is $\mathrm{O}\left(n^{x}\right)$; verify by substitution

Speedup $=\Theta(n) / O\left(n^{x}\right)=\Omega\left(n^{1-x}\right)=\Omega(p)$
Efficiency $=\Omega(1)$

Remember $p=\mathrm{O}\left(n^{1-x}\right)$
$\operatorname{Work}(n, p)=p T(n, p)=\Theta\left(n^{1-x}\right) \Theta\left(n^{x}\right)=\Theta(n)$

What happens if we set x to 1 ? (i.e., use one processor)

$$
T(n, 1)=O\left(n^{x}\right)=O(n)
$$

What happens if we set x to 0 ? (i.e., use n processors)

$$
T(n, n)=O\left(n^{x}\right)=O(1) ?
$$

No, because in asymptotic analysis, we ignored several
O(log n) terms compared with $\mathrm{O}\left(n^{x}\right)$ terms

6.3 A Selection-Based Sorting Algorithm

Algorithm Complexity and Efficiency

$T(n, p)=2 T(n / k, 2 p / k)+c n^{x}$

The solution is $\mathrm{O}\left(n^{\times} \log n\right)$; verify by substitution

Speedup $(n, p)=\Omega(n \log n) / O\left(n^{\times} \log n\right)=\Omega\left(n^{1-x}\right)=\Omega(p)$
Efficiency $=$ speedup $/ p=\Omega(1)$
$\operatorname{Work}(n, p)=p T(n, p)=\Theta\left(n^{1-x}\right) \Theta\left(n^{\times} \log n\right)=\Theta(n \log n)$

What happens if we set x to 1 ? (i.e., use one processor)

$$
T(n, 1)=O\left(n^{\times} \log n\right)=O(n \log n)
$$

Remember
$p=\mathrm{O}\left(n^{1-x}\right)$

Our asymptotic analysis is valid for $\boldsymbol{x}>\mathbf{0}$ but not for $\boldsymbol{x}=\mathbf{0}$;
i.e., PRAMselectionsort cannot sort p keys in optimal $O(\log p)$ time.

Example of Parallel Sorting

Threshold values for $k=4$ (i.e., $x=1 / 2$ and $p=n^{1 / 2}$ processors):

$$
\begin{aligned}
& m_{0}=-\infty \\
& m_{1}=P R \\
& m_{2}=P R \\
& m_{3}=P R \\
& m_{4}=+\infty
\end{aligned}
$$

$$
n / k=25 / 4 \cong 6 \quad m_{1}=\operatorname{PRAMselect}(S, 6,5)=2
$$

$$
2 n / k=50 / 4 \cong 13 \quad m_{2}=\operatorname{PRAMselect}(S, 13,5)=4
$$

$$
3 n / k=75 / 4 \cong 19 \quad m_{3}=\operatorname{PRAMselect}(S, 19,5)=6
$$

6.4 Alternative Sorting Algorithms

Sorting via random sampling (assume $p \ll \sqrt{ } n$)
Given a large list S of inputs, a random sample of the elements can be used to find k comparison thresholds

It is easier if we pick $k=p$, so that each of the resulting subproblems is handled by a single processor

Parallel randomized sort PRAMrandomsort(S, p)

1. Processor $j, 0 \leq j<p$, pick $|S| / p^{2}$ random samples of its $|S| / p$ elements and store them in its corresponding section of a list T of length $|S| / p$
2. Processor 0 sort the list T
\{comparison threshold m_{i} is the $\left(i|S| / p^{2}\right)$ th element of $\left.T\right\}$
3. Processor $j, 0 \leq j<p$, store its elements falling
in $\left(m_{i}, m_{i+1}\right)$ into $T(i)$
4. Processor $j, 0 \leq j<p$, sort the sublist $T(j)$

Parallel Radixsort

In binary version of radixsort, we examine every bit of the k-bit keys in turn, starting from the LSB In Step i, bit i is examined, $0 \leq i<k$ Records are stably sorted by the value of the ith key bit

Binary forms	Input list	Sort by LSB	Sort by middle bit	Sort by MSB
	(10)			
	5 (101)	4 (100)	4 (100)	-1 (001)
	7 (111)	2 (010)	5 (101)	2 (010)
Question: How are the data movements performed?	3 (011)	2 (010)	1 (001)	-2 (010)
	1 (001)	5 (101)	2 (010)	-3 (011)
	4 (100)	7 (111)	2 (010)	4 (100)
	2 (010)	3 (011)	7 (111)	5 (101)
	7 (111)	1 (001)	3 (011)	7 (111)
	2 (010)	7 (111)	7 (111)	7 (111)

Data Movements in Parallel Radixsort

Input list	Compl. of bit 0	Diminished prefix sums	Bit 0	Prefix sums plus 2	Shifted list
5 (101)	0	-	1	$1+2=3$	4 (100)
7 (111)	0	-	1	$2+2=4$	2 (010)
3 (011)	0	-	1	$3+2=5$	$\underline{2}$ (010)
1 (001)	0	-	1	$4+2=6$	5 (101)
4 (100)	1	0	0	-	7 (111)
2 (010)	1	1	0	-	3 (011)
7 (111)	0	-	1	$5+2=7$	1 (001)
2 (010)	1	2	0	-	7 (111)

Running time consists mainly of the time to perform $2 k$ parallel prefix computations: $\mathrm{O}(\log p)$ for k constant

6.5 Convex Hull of a 2D Point Set

Fig. 6.2 Defining the convex hull problem.

Fig. 6.3 Illustrating the properties of the convex hull.

PRAM Convex Hull Algorithm

Parallel convex hull algorithm PRAMconvexhull(S, p)

1. Sort point set by x coordinates
2. Divide sorted list into $\sqrt{ } p$ subsets $Q^{(i)}$ of size $\sqrt{ } p, 0 \leq i<\sqrt{ } p$
3. Find convex hull of each subset $Q^{(i)}$ using $\sqrt{ } p$ processors
4. Merge $\sqrt{ } p$ convex hulls $\mathrm{CH}\left(Q^{(i)}\right)$ into overall hull $\mathrm{CH}(Q)$

Fig. 6.4 Multiway divide and conquer for the convex hull problem

Merging of Partial Convex Hulls

(a) No point of $\mathrm{CH}(\mathrm{Q}(i))$ is on $\mathrm{CH}(\mathrm{Q})$

Tangent lines are found through binary search in log time

Analysis:
$T(p, p)$
$=T\left(p^{1 / 2}, p^{1 / 2}\right)+c \log p$
$\cong 2 c \log p$
The initial sorting also takes $\mathrm{O}(\log p)$ time
(b) Points of $\mathrm{CH}(\mathrm{Q}(i))$ from A to B are on $\mathrm{CH}(\mathrm{Q})$

Fig. 6.5 Finding points in a partial hull that belong to the combined hull.

6.6 Some Implementation Aspects

This section has been expanded; it will eventually become a separate chapter

Fig. 4.3 A parallel processor with global (shared) memory.

Processor-to-Memory Network

An 8×8 crossbar switch

Crossbar switches offer full permutation capability (they are nonblocking), but are complex and expensive: $O\left(p^{2}\right)$

Even with a permutation network, full PRAM functionality is not realized: two processors cannot access different addresses in the same memory module

Practical processor-tomemory networks cannot realize all permutations (they are blocking)

Bus-Based Interconnections

Single-bus system:

Bandwidth bottleneck
Bus loading limit
Scalability: very poor Single failure point Conceptually simple Forced serialization

Multiple-bus system:
Bandwidth improved Bus loading limit Scalability: poor More robust More complex scheduling Simple serialization

Slide 45

Back-of-the-Envelope Bus Bandwidth Calculation

Single-bus system:
Bus frequency: 0.5 GHz
Data width: 256 b (32 B)
Mem. Access: 2 bus cycles $(0.5 \mathrm{G}) / 2 \times 32=8 \mathrm{~GB} / \mathrm{s}$

Bus cycle $=2$ ns

Memory cycle $=100 \mathrm{~ns}$
1 mem. cycle $=50$ bus cycles
Multiple-bus system:
Peak bandwidth multiplied by the number of buses (actual bandwidth is likely to be much less)

Hierarchical Bus Interconnection

Heterogeneous system
Fig. 4.9 Example of a hierarchical interconnection architecture.

Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.
Slide 48

Why Data Caching Works

Hit rate r (fraction of memory accesses satisfied by cache)

$$
C_{\text {eff }}=C_{\text {fast }}+(1-r) C_{\text {slow }}
$$

Cache parameters:

Size
Block length (line width)
Placement policy
Replacement policy
Write policy

Fig. 18.1 Data storage and access in a two-way set-associative cache.

Benefits of Caching Formulated as Amdahl's Law

Hit rate r (fraction of memory accesses satisfied by cache)

$$
\begin{aligned}
C_{\text {eff }} & =C_{\text {fast }}+(1-r) C_{\text {slow }} \\
S & =C_{\text {slow }} / C_{\text {eff }} \\
& =\frac{1}{(1-r)+C_{\text {fast }} / C_{\text {slow }}}
\end{aligned}
$$

Fig. 18.3 of Parhami's Computer Architecture text (2005)

This corresponds to the miss-rate fraction 1-r of accesses being unaffected and the hit-rate fraction r (almost 1) being speeded up by a factor $C_{\text {slow }} / C_{\text {fast }}$

Generalized form of Amdahl's speedup formula:

$$
S=1 /\left(f_{1} / p_{1}+f_{2} / p_{2}+\ldots+f_{m} / p_{m}\right), \text { with } f_{1}+f_{2}+\ldots+f_{m}=1
$$

In this case, a fraction $1-r$ is slowed down by a factor $\left(C_{\text {slow }}+C_{\text {fast }}\right) / C_{\text {slow }}$, and a fraction r is speeded up by a factor $C_{\text {slow }} / C_{\text {fast }}$

18.2 Cache Coherence Protocols

Fig. 18.2 Various types of cached data blocks in a parallel processor with global memory and processor caches.

Example: A Bus-Based Snoopy Protocol

Each transition is labeled with the event that triggers it, followed by the action(s) that must be taken

Fig. 18.3 Finite-state control mechanism for a bus-based snoopy cache coherence protocol.

Implementing a Snoopy Protocol

Fig. 27.7 of Parhami's Computer Architecture text.

Distributed Shared Memory

Some Terminology:

NUMA
Nonuniform memory access
(distributed shared memory)
UMA
Uniform memory access
(global shared memory)
COMA
Cache-only memory arch

Fig. 4.5 A parallel processor with distributed memory.

Example: A Directory-Based Protocol

Write miss: Fetch data value, request invalidation, return data value, sharing set $=\{c\}$

Read miss: Return data value, sharing set $=$ sharing set $+\{c\}$

Fig. 18.4 States and transitions for a directory entry in a directory-based coherence protocol (c denotes the cache sending the message).

Parallel Processing, Extreme Models

Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)
When there are many more nodes (caches) than the typical size of a sharing set, a list of sharing units may be maintained in the directory

The sharing set can be maintained as a distributed doubly linked list (will discuss in Section 18.6 in connection with the SCI standard)

Hiding the Memory Access Latency

By assumption, PRAM accesses memory locations right when they are needed, so processing must stall until data is fetched

Method 1: Predict accesses (prefetch) Method 2: Pipeline multiple accesses

Not a smart strategy: Memory access time = 100s times that of add time

21.3 Vector-Parallel Cray Y-MP

Fig. 21.5 Key elements of the Cray Y-MP processor. Address registers, address function units, instruction buffers, and control not shown.

Cray Y-MP’s Interconnection Network

Fig. 21.6 The processor-to-memory interconnection network of Cray Y-MP.

Butterfly Processor-to-Memory Network

Fig. 6.9 Example of a multistage memory access network.

Not a full permutation network (e.g., processor 0 cannot be connected to memory bank 2 alongside the two connections shown)

Is self-routing: i.e., the bank address determines the route

A request going to memory bank 3 (0011) is routed: lower upper upper

Butterfly as Multistage Interconnection Network

Fig. 6.9 Example of a multistage memory access network

Fig. 15.8 Butterfly network used to connect modules that are on the same side

Generalization of the butterfly network High-radix or m-ary butterfly, built of $m \times m$ switches Has m^{q} rows and $q+1$ columns (q if wrapped)

Beneš Network

Fig. 15.9 Beneš network formed from two back-to-back butterflies.

A ${ }^{q}$-row Beneš network:
Can route any $2^{q} \times 2^{q}$ permutation It is "rearrangeable"

Routing Paths in a Beneš Network

Fig. 15.10 Another example of a Beneš network.

Slide 63

16.6 Multistage Interconnection Networks

Numerous indirect or multistage interconnection networks (MINs) have been proposed for, or used in, parallel computers

They differ in topological, performance, robustness, and realizability attributes

We have already seen the butterfly, hierarchical bus, beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect interconnection networks.

Slide 64

Self-Routing Permutation Networks

Do there exist self-routing permutation networks? (The butterfly network is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14 Example of sorting on a binary radix sort network.

Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)
Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)
Baseline: Butterfly network with nodes labeled differently
Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)
Bidelta: A MIN that is a delta network in either direction
Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)
Data manipulator: Same as ADM, but with switches in a column restricted to same state
Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1
for 2×2 switches) and path label, composed of concatenating switch output labels leading from an input to an output depends only on the output
Flip: Reverse of the omega network (inputs \times outputs)
Indirect cube: Same as butterfly or omega
Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)
Permutation: Any MIN that can realize all permutations
Rearrangeable: Same as permutation network
Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged

Conflict-Free Memory Access

Try to store the data such that parallel accesses are to different banks
For many data structures, a compiler may perform the memory mapping

Column 2

	0,0	0,1	0,2	0,3	0,4	0,5
Row $1 \rightarrow$	1,0	1,1	1,2	1,3	1,4	1,5
	2,0	2,1	2,2	2,3	2,4	2,5
	3,0	3,1	3,2	3,3	3,4	3,5
	4,0	4,1	4,2	4,3	4,4	4,5
	5,0	5,1	5,2	5,3	5,4	5,5
Module	0	1	2	3	4	5

Each matrix column is stored in a different memory module (bank)

Accessing a column leads to conflicts

Fig. 6.6 Matrix storage in column-major order to allow concurrent accesses to rows.

Skewed Storage Format

Fig. 6.7 Skewed matrix storage for conflict-free accesses to rows and columns.

A Unified Theory of Conflict-Free Access

A qD array can be viewed as a vector, with "row"/"column" accesses associated with constant strides

Vector 0	6	12	18	24	30
indices 1	7	13	19	25	31
$\times 2$	8	14	20	26	32
3	9	15	21	27	33
4	10	16	22	28	34
5	11	17	23	29	35

$A_{i j}$ is viewed as vector element $i+j m$

Fig. 6.8 A 6×6 matrix viewed, in columnmajor order, as a 36-element vector.

Column:

$$
\begin{aligned}
& k, k+1, k+2, k+3, k+4, k+5 \\
& k, k+m, k+2 m, k+3 m, k+4 m, k+5 m \\
& k, k+m+1, k+2(m+1), k+3(m+1) \\
& k+4(m+1), k+5(m+1)
\end{aligned}
$$

Antidiagonal: $\quad k, k+m-1, k+2(m-1), k+3(m-1)$, $k+4(m-1), k+5(m-1)$

Stride $=1$
Stride $=m$

Stride $=m+1$
Stride $=m-1$

Linear Skewing Schemes

Vector 0	6	12	18	24	30
indices 1	7	13	19	25	31
-2	8	14	20	26	32
3	9	15	21	27	33
4	10	16	22	28	34
5	11	17	23	29	35

$A_{i j}$ is viewed as vector element $i+j m$

Place vector element i in memory bank $a+b i \bmod B$ (word address within bank is irrelevant to conflict-free access; also, a can be set to 0)

Fig. 6.8 A 6×6 matrix viewed, in columnmajor order, as a 36 -element vector.

With a linear skewing scheme, vector elements $k, k+s, k+2 s, \ldots$, $k+(B-1) s$ will be assigned to different memory banks iff $s b$ is relatively prime with respect to the number B of memory banks.

A prime value for B ensures this condition, but is not very practical.

7 Sorting and Selection Networks

Become familiar with the circuit model of parallel processing:

- Go from algorithm to architecture, not vice versa
- Use a familiar problem to study various trade-offs

Topics in This Chapter	
7.1	What is a Sorting Network?
7.2	Figures of Merit for Sorting Networks
7.3	Design of Sorting Networks
7.4	Batcher Sorting Networks
7.5	Other Classes of Sorting Networks
7.6	Selection Networks

Topics in This Chapter
7.1 What is a Sorting Network?
7.2 Figures of Merit for Sorting Networks
7.3 Design of Sorting Networks
7.4 Batcher Sorting Networks
7.5 Other Classes of Sorting Networks
7.6 Selection Networks

7.1 What is a Sorting Network?

Fig. 7.1 An n-input sorting network or an n-sorter.

Block Diagram

Alternate Representations

Fig. 7.2 Block diagram and four different schematic representations for a 2-sorter.

Slide 72

Building Blocks for Sorting Networks

Fig. 7.3 Parallel and bit-serial hardware realizations of a 2-sorter.

Proving a Sorting Network Correct

Fig. 7.4 Block diagram and schematic representation of a 4-sorter.
Method 1: Exhaustive test - Try all n ! possible input orders
Method 2: Ad hoc proof - for the example above, note that y_{0} is smallest, y_{3} is largest, and the last comparator sorts the other two outputs

Method 3: Use the zero-one principle - A comparison-based sorting algorithm is correct iff it correctly sorts all $0-1$ sequences (2^{n} tests)

Elaboration on the Zero-One Principle

Deriving a 0-1 sequence that is not correctly sorted, given an arbitrary sequence that is not correctly sorted.

Let outputs y_{i} and y_{i+1} be out of order, that is $y_{i}>y_{i+1}$
Replace inputs that are strictly less than y_{i} with 0 s and all others with 1 s
The resulting $0-1$ sequence will not be correctly sorted either

7.2 Figures of Merit for Sorting Networks

Cost: Number of comparators

Delay: Number of levels

In the following example, we have 5 comparators

The following 4-sorter has 3 comparator levels on its critical path

The cost-delay product for this example is 15

Fig. 7.4 Block diagram and schematic representation of a 4-sorter.

Cost as a Figure of Merit

$n=9,25$ modules, 9 levels

$\mathrm{n}=12$, 39 modules, 9 levels

$\mathrm{n}=10$, 29 modules, 9 levels
$\mathrm{n}=16,60$ modules, 10 levels
Fig. 7.5 Some low-cost sorting networks.

Delay as a Figure of Merit

These 3 comparators constitute one level

$\mathrm{n}=9$, 25 modules, 8 levels

$\mathrm{n}=10$, 31 modules, 7 levels

$\mathrm{n}=12$, 40 modules, 8 levels

$\mathrm{n}=16,61$ modules, 9 levels

Fig. 7.6 Some fast sorting networks.

Cost-Delay Product as a Figure of Merit

Low-cost 10-sorter from Fig. 7.5
Cost \times Delay $=29 \times 9=261$

Fast 10-sorter from Fig. 7.6

Cost \times Delay $=31 \times 7=217$

The most cost-effective n-sorter may be neither the fastest design, nor the lowest-cost design

7.3 Design of Sorting Networks

Fig. 7.7 Brick-wall 6-sorter based on odd-even transposition.

Insertion Sort and Selection Sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!
$C(n)=n(n-1) / 2$
$D(n)=2 n-3$
Cost \times Delay
$=\Theta\left(n^{3}\right)$

Fig. 7.8 Sorting network based on insertion sort or selection sort.

Theoretically Optimal Sorting Networks

AKS sorting network
(Ajtai, Komlos, Szemeredi: 1983)

Note that even for these optimal networks, delay-cost product is suboptimal; but this is the best we can do

Existing sorting networks have $\mathrm{O}\left(\log ^{2} n\right)$ latency and $\mathrm{O}\left(n \log ^{2} n\right)$ cost

Given that $\log _{2} n$ is only 20 for $n=1000000$, the latter are more practical

Unfortunately, AKS networks are not practical owing to large (4-digit) constant factors involved; improvements since 1983 not enough

7.4 Batcher Sorting Networks

Fig. 7.9 Batcher's even-odd merging network for $4+7$ inputs.

Proof of Batcher's Even-Odd Merge

Use the zero-one principle
Assume: $\quad x$ has $k 0 s$ y has $k^{\prime} 0 \mathrm{~s}$
v has $k_{\text {even }}=\lceil k / 2\rceil+\left\lceil k^{\prime} / 2\right\rceil 0 \mathrm{~s}$
w has $k_{\text {odd }}=\lfloor k / 2\rfloor+\left\lfloor k^{\prime} / 2\right\rfloor 0 \mathrm{~s}$

Case a: $k_{\text {even }}=k_{\text {odd }} \quad \begin{array}{llllllllllllll}v & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

Batcher's Even-Odd Merge Sorting

Fig. 7.10 The recursive structure of Batcher's evenodd merge sorting network.

Batcher's (m, m) even-odd merger, for m a power of 2 :

$$
\begin{aligned}
& C(m)=2 C(m / 2)+m-1 \\
&=(m-1)+2(m / 2-1)+4(m / 4-1)+\ldots \\
&=m \log _{2} m+1 \\
& D(m)=D(m / 2)+1=\log _{2} m+1 \\
& \text { Cost } \times \text { Delay }=\Theta\left(m \log ^{2} m\right)
\end{aligned}
$$

Batcher sorting networks based on the even-odd merge technique:

$$
\begin{aligned}
C(n) & =2 C(n / 2)+(n / 2)\left(\log _{2}(n / 2)\right)+1 \\
& \cong n\left(\log _{2} n\right)^{2} / 2 \\
D(n) & =D(n / 2)+\log _{2}(n / 2)+1 \\
& =D(n / 2)+\log _{2} n \\
& =\log _{2} n\left(\log _{2} n+1\right) / 2
\end{aligned}
$$

Cost \times Delay $=\Theta\left(n \log ^{4} n\right)$

Example Batcher’s Even-Odd 8-Sorter

Fig. 7.11 Batcher's even-odd merge sorting network for eight inputs .

Bitonic-Sequence Sorter

Bitonic sequence:

133466622100 Rises, then falls

877666546889 Falls, then rises

898776665468 The previous sequence, right-rotated by 2

In each position, keep the smaller value of each pair and ship the larger value to the right

Each half is a bitonic sequence that can be sorted independently

Fig. 14.2 Sorting a bitonic sequence on a linear array.

Batcher's Bitonic Sorting Networks

Fig. 7.12 The recursive structure of Batcher's bitonic sorting network.

Fig. 7.13 Batcher's bitonic sorting network for eight inputs.

7.5 Other Classes of Sorting Networks

Fig. 7.14 Periodic balanced sorting network for eight inputs.

Desirable properties:
a. Regular / modular (easier VLSI layout).
b. Simpler circuits via reusing the blocks
c. With an extra block tolerates some faults (missed exchanges)
d. With 2 extra blocks provides tolerance to single faults (a missed or incorrect exchange)
e. Multiple passes through faulty network (graceful degradation)
f. Single-block design becomes fault-tolerant by using an extra stage

Shearsort-Based Sorting Networks (1)

Fig. 7.15 Design of an 8 -sorter based on shearsort on 2×4 mesh.

Shearsort-Based Sorting Networks (2)

0	1
3	2
4	5
7	6

Corresponding 2-D mesh

Some of the same advantages as periodic balanced sorting networks

Fig. 7.16 Design of an 8 -sorter based on shearsort on 2×4 mesh.

7.6 Selection Networks

Can remove this block if smallest three inputs needed

Can remove these four comparators

Deriving an (8, 3)-selector from Batcher's even-odd merge 8-sorter.

Categories of Selection Networks

Unfortunately we know even less about selection networks than we do about sorting networks.

One can define three selection problems [Knut81]:
I. Select the k smallest values; present in sorted order
II. Select k th smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest
Classifiers:
Selectors that separate the smaller half of values from the larger half

Type-III Selection Networks

Figure 7.17 A type III (8, 4)-selector.
8-Classifier

8 Other Circuit-Level Examples

Complement our discussion of sorting and sorting nets with:

- Searching, parallel prefix computation, Fourier transform
- Dictionary machines, parallel prefix nets, FFT circuits

Topics in This Chapter	
8.1	Searching and Dictionary Operations
8.2	A Tree-Structured Dictionary Machine
8.3	Parallel Prefix Computation
8.4	Parallel Prefix Networks
8.5	The Discrete Fourier Transform
8.6	Parallel Architectures for FFT

8.1 Searching and Dictionary Operations

Parallel p-ary search on PRAM

$$
\begin{aligned}
& \log _{p+1}(n+1) \\
& \quad=\log _{2}(n+1) / \log _{2}(p+1) \\
& \quad=\Theta(\log n / \log p) \text { steps }
\end{aligned}
$$

Speedup $\cong \log p$
Optimal: no comparison-based search algorithm can be faster

A single search in a sorted list can't be significantly speeded up through parallel processing, but all hope is not lost:

Dynamic data (sorting overhead)
Batch searching (multiple lookups)

Slide 96

Dictionary Operations

Basic dictionary operations: record keys $x_{0}, x_{1}, \ldots, x_{n-1}$

search (y)	Find record with key y; return its associated data
insert (y, z)	Augment list with a record: key $=y$, data $=z$
delete (y)	Remove record with key y; return its associated data

Some or all of the following operations might also be of interest:
findmin findmax findmed findbest(y)
findnext(y)
findprev(y)
extractmin
extractmax
extractmed

Find record with smallest key; return data
Find record with largest key; return data
Find record with median key; return data
Find record with key "nearest" to y
Find record whose key is right after y in sorted order Find record whose key is right before y in sorted order Remove record(s) with min key; return data Remove record(s) with max key; return data Remove record(s) with median key value; return data

Priority queue operations: findmin, extractmin (or findmax, extractmax)

8.2 A Tree-Structured Dictionary Machine

Fig. 8.1 A tree-structured dictionary machine.

Combining in the triangular nodes search(y): Pass OR of match signals \& data from "yes" side
findmin/findmax:
Pass smaller/larger of two keys \& data
findmed:
Not supported here
findbest(y): Pass the larger of two match-degree indicators along with associated record

Insertion and Deletion in the Tree Machine

Figure 8.2 Tree machine storing 5 records and containing 3 free slots.

Systolic Data Structures

8.3 Parallel Prefix Computation

Example: Prefix sums

x_{0}	x_{1}	x_{2}	\cdots	x_{i}
x_{0}	$x_{0}+x_{1}$	$x_{0}+x_{1}+x_{2}$	\cdot.	$x_{0}+x_{1}+\ldots+x_{i}$
s_{0}	s_{1}	s_{2}	..	s_{i}

Sequential time with one processor is $\mathrm{O}(n)$ Simple pipelining does not help

Fig. 8.4 Prefix computation using a latched or pipelined function unit.

Improving the Performance with Pipelining

Ignoring pipelining overhead, it appears that we have achieved a speedup of 4 with 3 "processors." Can you explain this anomaly? (Problem 8.6a)

Fig. 8.5 High-throughput prefix computation using a pipelined function unit.

Slide 102

8.4 Parallel Prefix Networks

$$
\begin{aligned}
T(n) & =T(n / 2)+2 \\
& =2 \log _{2} n-1 \\
C(n) & =C(n / 2)+n-1 \\
& =2 n-2-\log _{2} n
\end{aligned}
$$

This is the Brent-Kung Parallel prefix network (its delay is actually $2 \log _{2} n-2$)

Fig. 8.6 Prefix sum network built of one $n / 2$-input network and $n-1$ adders.

Example of Brent-Kung Parallel Prefix Network

Originally developed by Brent and Kung as part of a VLSI-friendly carry lookahead adder

$$
\begin{aligned}
& T(n)=2 \log _{2} n-2 \\
& C(n)=2 n-2-\log _{2} n
\end{aligned}
$$

One level of latency

Fig. 8.8 Brent-Kung parallel prefix graph for $n=16$.

Another Divide-and-Conquer Design

Ladner-Fischer construction

Fig. 8.7 Prefix sum network built of two $n / 2$-input networks and $n / 2$ adders.

Example of Kogge-Stone Parallel Prefix Network

$$
\begin{aligned}
T(n) & =\log _{2} n \\
C(n) & =(n-1)+(n-2) \\
& +(n-4)+\ldots+n / 2 \\
& =n \log _{2} n-n-1
\end{aligned}
$$

Optimal in delay, but too complex in number of cells and wiring pattern

Fig. 8.9 Kogge-Stone parallel prefix graph for $n=16$.

Comparison and Hybrid Parallel Prefix Networks

Brent/Kung
6 levels
26 cells

Kogge/Stone
4 levels
49 cells

Fig. 8.10 A hybrid Brent-Kung / Kogge-Stone parallel prefix graph for $n=16$.

Han/Carlson

Slide 107

Linear-Cost, Optimal Ladner-Fischer Networks

Define a type-x parallel prefix network as one that: Produces the leftmost output in optimal $\log _{2} n$ time Yields all other outputs with at most x additional delay

Note that even the Brent-Kung network produces the leftmost output in optimal time

We are interested in building a type-0 overall network, but can use type-x networks ($x>0$) as component parts

Recursive construction of the fastest possible parallel prefix network (type-0)

8.5 The Discrete Fourier Transform

DFT yields output sequence y_{i} based on input sequence $x_{i}(0 \leq i<n)$

$$
y_{i}=\sum_{j=0 \text { ton-1 }} \omega_{n}^{i j} x_{j} \quad \mathrm{O}\left(n^{2}\right) \text {-time naïve algorithm }
$$

where ω_{n} is the nth primitive root of unity; $\omega_{n}{ }^{n}=1, \omega_{n}^{j} \neq 1(1 \leq j<n)$
Examples: ω_{4} is the imaginary number i and $\omega_{3}=(-1+i \sqrt{ } 3) / 2$
The inverse DFT is almost exactly the same computation:

$$
x_{i}=(1 / n) \sum_{j=0 \text { ton-1 }} \omega_{n}^{--j j} y_{j}
$$

Fast Fourier Transform (FFT):

O($n \log n$)-time DFT algorithm that derives y from half-length sequences u and v that are DFTs of even- and odd-indexed inputs, respectively

$$
\begin{gathered}
y_{i}=u_{i}+\omega_{n}{ }^{i} v_{i} \\
y_{i+n / 2}=u_{i}+\omega_{n}^{i+n / 2} v_{i}
\end{gathered}
$$

$$
(0 \leq i<n / 2)
$$

$$
\begin{array}{ll}
T(n)=2 T(n / 2)+n=n \log _{2} n & \text { sequentially } \\
T(n)=T(n / 2)+1=\log _{2} n & \text { in parallel }
\end{array}
$$

Application of DFT to Spectral Analysis

Tone frequency assignments
for touch-tone dialing

Frequency spectrum of received tone

Application of DFT to Smoothing or Filtering

8.6 Parallel Architectures for FFT

u : DFT of even-indexed inputs v : DFT of odd-indexed inputs

$$
\begin{aligned}
y_{i} & =u_{i}+\omega_{n}{ }^{i} v_{i} \quad(0 \leq i<n / 2) \\
y_{i+n / 2} & =u_{i}+\omega_{n}^{i+n / 2} v_{i}
\end{aligned}
$$

Fig. 8.11 Butterfly network for an 8-point FFT.

Variants of the Butterfly Architecture

Fig. 8.12 FFT network variant and its shared-hardware realization.

Computation Scheme for 16-Point FFT

More Economical FFT Hardware

Fig. 8.13
Linear array of $\log _{2} n$ cells for n-point FFT computation.

Parallel Processing, Extreme Models

Slide 115

Another Circuit Model: Artificial Neural Nets

Feedforward network

Three layers: input, hidden, output No feedback

Recurrent network
Simple version due to Elman

Hopfield network
All connections are bidirectional

Fixed input $x_{0}= \pm 1$

Artificial neuron

Activation function

Threshold
Characterized by connection topology and learning method

Feedback from hidden nodes to special nodes at the input layer

