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Part II
Extreme Models
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II   Extreme Models
Study the two extremes of parallel computation models:

• Abstract SM (PRAM); ignores implementation issues
• Concrete circuit model; incorporates hardware details
• Everything else falls between these two extremes

Topics in This Part
Chapter 5   PRAM and Basic Algorithms
Chapter 6   More Shared-Memory Algorithms
Chapter 7   Sorting and Selection Networks
Chapter 8   Other Circuit-Level Examples
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5  PRAM and Basic Algorithms
PRAM, a natural extension of RAM (random-access machine):

• Present definitions of model and its various submodels
• Develop algorithms for key building-block computations

Topics in This Chapter
5.1   PRAM Submodels and Assumptions
5.2   Data Broadcasting
5.3   Semigroup or Fan-in Computation
5.4   Parallel Prefix Computation
5.5   Ranking the Elements of a Linked List
5.6   Matrix Multiplication
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5.1  PRAM Submodels and Assumptions

Fig. 4.6    Conceptual view of a parallel 
random-access machine (PRAM).

Processors

. 

. 

.

Shared Memory

0

1

p–1

. 

. 

.

0
1
2
3

m–1

Processor i can do 
the following in three 
phases of one cycle:

1. Fetch a value 
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Types of PRAM

Fig. 5.1   Submodels of the PRAM model.
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Types of CRCW PRAM 

Undefined: The value written is undefined (CRCW-U)

Detecting: A special code for “detected collision” is written (CRCW-D)

Common: Allowed only if they all store the same value (CRCW-C) 
[ This is sometimes called the consistent-write submodel ]

Random: The value is randomly chosen from those offered (CRCW-R)

Priority: The processor with the lowest index succeeds (CRCW-P)

Max / Min: The largest / smallest of the values is written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S), 
logical AND (CRCW-A), 
logical XOR (CRCW-X), 
or another combination of values is written 

CRCW submodels are distinguished by the way they treat multiple writes: 
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Power of CRCW PRAM Submodels 

Theorem 5.1: A p-processor CRCW-P (priority) PRAM can be simulated 
(emulated) by a p-processor EREW PRAM with slowdown factor Θ(log p).

Intuitive justification for concurrent read emulation (write is similar):

Write the p memory addresses in a list
Sort the list of addresses in ascending order
Remove all duplicate addresses
Access data at desired addresses
Replicate data via parallel prefix computation

Each of these steps requires constant or O(log p) time 

Model U is more powerful than model V if TU(n) =o(TV(n)) for some problem

EREW  <  CREW  <  CRCW-D   <  CRCW-C  <  CRCW-R  <  CRCW-P 
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Implications of the CRCW Hierarchy of Submodels

Our most powerful PRAM CRCW submodel can be emulated by the 
least powerful submodel with logarithmic slowdown

Efficient parallel algorithms have polylogarithmic running times

Running time still polylogarithmic after slowdown due to emulation

A p-processor CRCW-P (priority) PRAM can be simulated (emulated) 
by a p-processor EREW PRAM with slowdown factor Θ(log p).

EREW  <  CREW  <  CRCW-D   <  CRCW-C  <  CRCW-R  <  CRCW-P 

We need not be too concerned with the CRCW submodel used

Simply use whichever submodel is most natural or convenient
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Some Elementary PRAM Computations 

Initializing an n-vector (base address = B) to all 0s:

for j = 0 to ⎡n/p⎤ – 1 processor i do
if jp + i < n then M[B + jp + i] := 0

endfor

Adding two n-vectors and storing the results in a third
(base addresses B′, B″, B)

Convolution of two n-vectors: Wk = ∑i+j=k Ui × Vj
(base addresses BW, BU, BV)

⎡n / p⎤
segments

p
elements
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5.2  Data 
Broadcasting

Fig. 5.2 Data broadcasting in EREW PRAM 
via recursive doubling. 

Making p copies of B[0] 
by recursive doubling
for k = 0 to ⎡log2p⎤ – 1    

Proc j, 0 ≤ j < p, do
Copy B[j] into B[j + 2k] 

endfor 
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Fig. 5.3 EREW PRAM data broadcasting 
without redundant copying. 
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so that redundant copying 
does not occur and array 
bound is not exceeded
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All-to-All Broadcasting on EREW PRAM 
EREW PRAM algorithm for all-to-all broadcasting
Processor j, 0 ≤ j < p, write own data value into B[j]
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

Read the data value in B[(j + k) mod p]
endfor 

This O(p)-step algorithm is time-optimal 

Naive EREW PRAM sorting algorithm (using all-to-all broadcasting)
Processor j, 0 ≤ j < p, write 0 into R[ j ] 
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

l := (j + k) mod p
if S[ l ] < S[ j ] or S[ l ] = S[ j ] and l < j
then R[ j ] := R[ j ] + 1
endif

endfor
Processor j, 0 ≤ j < p, write S[ j ] into S[R[ j ]] 

j

This O(p)-step sorting 
algorithm is far from 
optimal; sorting is possible 
in O(log p) time

p – 1

0
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Class Participation: Broadcast-Based Sorting 

Each person write down an arbitrary nonnegative 
integer with 3 or fewer digits on a piece of paper

Students take turn broadcasting their numbers by 
calling them out aloud

Each student puts an X on paper for every number 
called out that is smaller than his/her own number, or is 
equal but was called out before the student’s own value

j

Each student counts the number of Xs on paper to determine 
the rank of his/her number

p – 1

0

Students call out their numbers in order of the computed rank
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5.3  Semigroup or Fan-in Computation
EREW PRAM semigroup 
computation algorithm
Proc j, 0 ≤ j<p, copy X[j] into S[j]
s := 1
while s<p Proc j, 0 ≤ j<p– s, do

S[j + s] := S[j] ⊗ S[j + s]
s := 2s

endwhile
Broadcast S[p – 1] to all 
processors 

If we use p processors on a list 
of size n = O(p log p), then optimal 
speedup can be achieved

This algorithm is optimal for PRAM, 
but its speedup of O(p / log p) is not

Fig. 5.4   Semigroup computation 
in EREW PRAM.
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5.4  Parallel Prefix Computation

Fig. 5.6    Parallel prefix computation in EREW PRAM 
via recursive doubling. 
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A Divide-and-Conquer Parallel-Prefix Algorithm 

Fig. 5.7    Parallel prefix computation using a divide-and-conquer scheme. 
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Another Divide-and-Conquer Algorithm 

Fig. 5.8  Another divide-and-conquer scheme for parallel prefix computation. 

Strictly optimal 
algorithm, but 
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5.5  Ranking the Elements of a Linked List

C F A E B D
Rank:   5           4           3          2           1           0

info  next
head

Terminal element

(or distance from terminal)

Distance from head:
1           2           3          4           5           6

Fig. 5.9     Example linked list and the ranks of its elements.

Fig. 5.10   PRAM data structures 
representing a linked list and the 
ranking results. 
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List ranking appears to be 
hopelessly sequential; 
one cannot get to a list 
element except through 
its predecessor!
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List Ranking via Recursive Doubling

Fig. 5.11   Element ranks initially and after each of the three iterations. 

Many problems 
that appear to be 
unparallelizable 
to the uninitiated 
are  parallelizable;
Intuition can be 
quite misleading!
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PRAM List Ranking Algorithm

Question: Which PRAM 
submodel is implicit in 
this algorithm?

If we do not 
want to modify 
the original list, 
we simply make 
a copy of it first, 
in constant time

A
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D

E

F

4

3

5

3

1

0

info next rank
0

1

2

3

4

5

head

PRAM list ranking algorithm (via pointer jumping)
Processor j, 0 ≤ j<p, do {initialize the partial ranks}
if next [ j ] = j
then rank[ j ] := 0 
else  rank[ j ] := 1 
endif
while rank[next[head]] ≠ 0 Processor j, 0 ≤ j < p, do

rank[ j ] := rank[ j ] + rank[next [ j ]]
next [ j ] := next [next [ j ]]

endwhile

Answer: CREW
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5.6  Matrix Multiplication

Sequential matrix multiplication
for i = 0 to m – 1 do

for j = 0 to m – 1 do
t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

endfor
endfor 

=×
i

j

ij

A B C

cij := Σk=0 to m–1 aikbkj

PRAM solution with 
m3 processors: 
each processor does 
one multiplication 
(not very efficient)

m × m
matrices
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PRAM Matrix Multiplication with m2 Processors

Fig. 5.12    PRAM matrix multiplication; p = m2 processors.

=×
i

j

ij

PRAM matrix multiplication using m2 processors
Proc (i, j), 0 ≤ i, j < m, do
begin

t := 0
for k = 0 to m – 1 do

t := t + aikbkj
endfor
cij := t

end 

Θ(m) steps: Time-optimal

CREW model is implicit

Processors are numbered (i, j), 
instead of 0 to m2 – 1

A B C
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PRAM Matrix Multiplication with m Processors

PRAM matrix multiplication using m processors
for j = 0 to m – 1 Proc i, 0 ≤ i < m, do

endfor
cij := t

endfor 

t := 0
for k = 0 to m – 1 do

t := t + aikbkj

=×
i

j

ij

Θ(m2) steps: Time-optimal

CREW model is implicit

Because the order of multiplications 
is immaterial, accesses to B can be 
skewed to allow the EREW model

A B C
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PRAM Matrix Multiplication with Fewer Processors

Algorithm is similar, except that 
each processor is in charge of 
computing m /p rows of C

Θ(m3/p) steps: Time-optimal

EREW model can be used

A drawback of all algorithms thus far is that only two arithmetic 
operations (one multiplication and one addition) are performed 
for each memory access. 

This is particularly costly for NUMA shared-memory machines.

=×
i

j

ij m / p 
rows

B CA
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More Efficient Matrix Multiplication (for NUMA)

Fig. 5.13    Partitioning the matrices 
for block matrix multiplication .
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Block matrix multiplication 
follows the same algorithm as 
simple matrix multiplication.

=×
i

j

ij
BlockBlock- 

band

Block-band

1 2 ¦p

1

2

¦p

One processor  
computes these  
elements of C  
that it holds in  
local memory

q

q=m/¦p

√p

√p

q=m/√p

Partition the matrices
into p square blocks
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Details of Block Matrix Multiplication

Fig. 5.14    How Processor (i, j) operates on an element of A
and one block-row of B to update one block-row of C.

A multiply-add 
computation 
on q × q blocks 
needs 
2q 2 = 2m 2/p
memory 
accesses and 
2q 3 arithmetic 
operations

So, q arithmetic 
operations are 
done per 
memory access iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + b jq + q - 1 

kq + c 

kq + c 

iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + 1 jq + b jq + q - 1 

Multiply 

Add 
Elements of 
block (i, j)  
in matrix C 

Elements of 
block (k, j) 
in matrix B 

Element of 
block (i, k) 
in matrix A  

jq + 1 
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6  More Shared-Memory Algorithms
Develop PRAM algorithm for more complex problems:

• Must present background on the problem in some cases
• Discuss some practical issues such as data distribution

Topics in This Chapter
6.1   Sequential Ranked-Based Selection
6.2   A Parallel Selection Algorithm
6.3   A Selection-Based Sorting Algorithm
6.4   Alternative Sorting Algorithms
6.5   Convex Hull of a 2D Point Set
6.6   Some Implementation Aspects
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8.1  Searching and Dictionary Operations
Example:
n = 26, p = 2

P0

P1

0 
1 
2 

8

17

25

P0

P1P0P1
Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0

A single search in a sorted list 
can’t be significantly speeded up 
through parallel processing, 
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups) 

Parallel p-ary search on PRAM

logp+1(n + 1) 
= log2(n + 1) / log2(p + 1)
= Θ(log n / log p) steps 

Speedup ≅ log p 

Optimal: no comparison-based 
search algorithm can be faster 
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6.1  Sequential Ranked-Based Selection
Selection: Find the (or a) kth smallest among n elements
Example: 5th smallest element in the following list is 1:
6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5

Naive solution 
through sorting, 
O(n log n) time 

But linear-time 
sequential 
algorithm can 
be developed

Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

max(|L|, |G|) ≤ 3n/4
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Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

Linear-Time Sequential Selection Algorithm
Sequential rank-based selection algorithm select(S, k)
1.  if |S| < q {q is a small constant}

then sort S and return the kth smallest element of S
else divide S into |S|/q subsequences of size q

Sort each subsequence and find its median
Let the |S|/q medians form the sequence T

endif
2.  m = select(T, |T|/2)    {find the median m of the |S|/q medians}
3.  Create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4.  if |L| ≥ k
then return select(L, k)
else if |L| + |E| ≥ k

then return m
else return select(G, k – |L| – |E|)
endif

endif 

O(n)

T(n/q)

T(3n/4)

O(n)
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Algorithm Complexity and Examples
We must have q ≥ 5; 
for q = 5, the solution is T(n) = 20cnT(n) = T(n /q) + T(3n /4) + cn

------------ n/q sublists of q elements -------------
S 6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5 

--------- --------- --------- --------- ---------
T 6        3          3        2          5    
m 3                            

1 2 1 0 2 1 1   3 3   6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
------------- --- -------------------------------

L E G
|L| = 7     |E| = 2           |G| = 16

To find the 5th smallest element in S, select the 5th smallest element in L
S 1 2 1 0 2  1 1  

--------- ---
T 1        1    
m 1                            

0   1 1 1 1   2 2
- ------- ---
L E G         

Answer: 1

The 9th smallest element of S is 3. 

The 13th smallest element of S is 
found by selecting the 4th smallest 
element in G. 
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Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 

Parallel rank-based selection algorithm PRAMselect(S, k, p)
1.  if |S| < 4          

then sort S and return the kth smallest element of S
else broadcast |S| to all p processors

divide S into p subsequences S(j) of size |S|/p
Processor j, 0 ≤ j < p, compute Tj := select(S(j), |S(j)|/2)  

endif
2.  m = PRAMselect(T, |T|/2, p) {median of the medians}
3.  Broadcast m to all processors and create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4.  if |L| ≥ k
then return PRAMselect(L, k, p)
else if |L| + |E| ≥ k

then return m
else return PRAMselect(G, k – |L| – |E|, p)
endif 

endif

O(nx)

T(n1–x,p)

T(3n/4,p)

O(nx)

6.2  A Parallel Selection Algorithm

Let p = O(n1–x)
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Algorithm Complexity and Efficiency

The solution is O(nx);
verify by substitutionT(n,p) = T(n1–x,p) + T(3n /4,p) + cnx

Speedup = Θ(n) / O(nx) = Ω(n1–x) = Ω(p)
Efficiency = Ω(1) 
Work(n, p) = pT(n, p) = Θ(n1–x) Θ(nx) = Θ(n)

What happens if we set x to 1? ( i.e., use one processor)

T(n, 1) = O(n x) = O(n)

What happens if we set x to 0? (i.e., use n processors)

T(n, n) = O(n x) = O(1) ?

Remember
p = O(n1–x)

No, because 
in asymptotic 
analysis,
we ignored 
several 
O(log n) terms 
compared with 
O(nx) terms
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6.3  A Selection-Based Sorting Algorithm
Parallel selection-based sort PRAMselectionsort(S, p)
1.  if |S| < k then return quicksort(S)          
2.  for i = 1 to k – 1 do  

mj := PRAMselect(S, i|S|/k, p) {let m0 := –∞; mk := +∞}
endfor

3.  for i = 0 to k – 1 do  
make the sublist T(i) from elements of S in (mi, mi+1)

endfor
4.  for i = 1 to k/2 do in parallel  

PRAMselectionsort(T(i), 2p/k)
{p/(k/2) proc’s used for each of the k/2 subproblems}

endfor
5.  for i = k/2 + 1 to k do in parallel  

PRAMselectionsort(T(i), 2p/k)
endfor 

O(nx)

T(n/k,2p/k)

O(1)

O(nx)

.  .  .m m m m

n/k elements n/k n/k n/k

�– �+1 2 3 k–1 +∞ −∞ 

Fig. 6.1    Partitioning of the sorted list for selection-based sorting. 

T(n/k,2p/k)
Let p = n1–x

and k = 21/x
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Algorithm Complexity and Efficiency

The solution is O(nx log n);
verify by substitutionT(n, p) = 2T(n/k, 2p/k) + cnx

Speedup(n,p) = Ω(n logn) / O(nx logn) = Ω(n1–x) = Ω(p)
Efficiency = speedup / p = Ω(1) 
Work(n, p) = pT(n, p) = Θ(n1–x) Θ(nx log n) = Θ(n log n)

What happens if we set x to 1? ( i.e., use one processor)

T(n, 1) = O(n x log n) = O(n log n)

Our asymptotic analysis is valid for x > 0 but not for x = 0; 

i.e., PRAMselectionsort cannot sort p keys in optimal O(log p) time.

Remember
p = O(n1–x)
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Example of Parallel Sorting

S: 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5

Threshold values for k = 4 (i.e., x = ½ and p = n1/2 processors):
m0 = –∞

n/k = 25/4 ≅ 6    m1 = PRAMselect(S, 6, 5) = 2
2n/k = 50/4 ≅ 13     m2 = PRAMselect(S, 13, 5) = 4
3n/k = 75/4 ≅ 19    m3 = PRAMselect(S, 19, 5) = 6

m4 = +∞

m0 m1 m2 m3                                      m4

T: - - - - - 2|- - - - - - 4|- - - - - 6|- - - - - -

T: 0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9
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6.4  Alternative Sorting Algorithms

Parallel randomized sort PRAMrandomsort(S, p)
1.  Processor j, 0 ≤ j < p, pick |S|/p2 random samples of 

its |S|/p elements and store them in its corresponding
section of a list T of length |S|/p

2.  Processor 0 sort the list T
{comparison threshold mi is the (i |S| /p2)th element of T}

3.  Processor j, 0 ≤ j < p, store its elements falling 
in (mi, mi+1) into T(i)

4.  Processor j, 0 ≤ j < p, sort the sublist T(j) 

Sorting via random sampling (assume p << √ n)

Given a large list S of inputs, a random sample of the elements    
can be used to find k comparison thresholds 

It is easier if we pick k = p, so that each of the resulting
subproblems is handled by a single processor
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Parallel Radixsort
In binary version of radixsort, we examine every bit of the   

k-bit keys in turn, starting from the LSB 
In Step i, bit i is examined, 0 ≤ i < k
Records are stably sorted by the value of the ith key bit

Input Sort by Sort by Sort by
list LSB middle bit MSB
–––––– –––––– –––––– ––––––
5 (101) 4 (100) 4 (100) 1 (001)
7 (111) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010) 1 (001) 2 (010)
1 (001) 5 (101) 2 (010) 3 (011)
4 (100) 7 (111) 2 (010) 4 (100)
2 (010) 3 (011) 7 (111) 5 (101)
7 (111) 1 (001) 3 (011) 7 (111)
2 (010) 7 (111) 7 (111) 7 (111) 

Binary
forms

Question:
How are 
the data 
movements 
performed?
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Data Movements in Parallel Radixsort

Running time consists mainly of the time to perform 2k
parallel prefix computations: O(log p) for k constant 

Input Compl. Diminished Prefix sums Shifted
list of bit 0   prefix sums Bit 0  plus 2 list
–––––– ––– –––––– ––– ––––––––– ––––––
5 (101) 0  – 1 1   +  2  =  3 4 (100)
7 (111) 0  – 1 2   +  2  =  4 2 (010)
3 (011) 0  – 1 3   +  2  =  5 2 (010)
1 (001) 0  – 1 4   +  2  =  6 5 (101)
4 (100) 1 0 0   – 7 (111)
2 (010) 1 1 0   – 3 (011)
7 (111) 0  – 1 5   +  2  = 7 1 (001)
2 (010) 1 2 0   – 7 (111)
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6.5  Convex Hull of a 2D Point Set

Fig. 6.2    Defining the 
convex hull problem. 
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Fig. 6.3   Illustrating the properties 
of the convex hull. 
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PRAM Convex Hull Algorithm

Fig. 6.4   Multiway divide and conquer for the convex hull problem 

Parallel convex hull algorithm PRAMconvexhull(S, p)
1.  Sort point set by x coordinates         
2.  Divide sorted list into √p subsets Q (i) of size √p, 0 ≤ i < √p
3.  Find convex hull of each subset Q (i) using √p processors
4.  Merge √p convex hulls CH(Q (i)) into overall hull CH(Q)

x

y y

CH(Q   )(0)Q(0) Q(1) Q(2) Q(3)

Upper
hull

Lower
hull
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Fig. 6.5    Finding points in a partial hull that belong to the combined hull. 

Analysis:

T(p, p) 
= T(p1/2, p1/2) + c log p
≅ 2c log p

The initial sorting also 
takes O(log p) time 

Merging of Partial Convex Hulls

Tangent lines 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(a) No point of CH(Q(i)) is on CH(Q) 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(b) Points of CH(Q(i)) from A to B are on CH(Q) 

A B 

Tangent lines are 
found through binary 
search in log time
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6.6  Some Implementation Aspects

Fig. 4.3 A parallel processor with global (shared) memory.

0 0 

1 1 

 

Processor-
to-memory 

network 

p-1 m-1 

Processor-
to-processor 

network 

Processors 
Memory 
modules 

Parallel I/O 
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. 

Options:
Crossbar
Bus(es)
MIN

Bottleneck
Complex
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This section has been expanded; it will eventually become a separate chapter
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Processor-to-Memory Network

Crossbar switches offer 
full permutation capability 
(they are nonblocking), 
but are complex and 
expensive: O(p2)

An 8 × 8 crossbar switch

P0

P1

P2

P3

P4

P5

P6

P7

M0 M1 M2 M3 M4 M5 M6 M7
Practical processor-to-
memory networks cannot 
realize all permutations 
(they are blocking) 

Even with a permutation 
network, full PRAM 
functionality is not 
realized: two processors 
cannot access different 
addresses in the same 
memory module
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Bus-Based Interconnections

Memory

Proc Proc Proc Proc.  .  .

I/O

Memory

Proc Proc Proc Proc.  .  .

I/O

Single-bus system:
Bandwidth bottleneck
Bus loading limit
Scalability: very poor
Single failure point
Conceptually simple
Forced serialization

Multiple-bus system:
Bandwidth improved
Bus loading limit
Scalability: poor
More robust
More complex scheduling
Simple serialization
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Back-of-the-Envelope Bus Bandwidth Calculation

Memory

Proc Proc Proc Proc.  .  .

I/O
Single-bus system:
Bus frequency: 0.5 GHz
Data width: 256 b (32 B)
Mem. Access: 2 bus cycles
(0.5G)/2 × 32 = 8 GB/s

Bus cycle = 2 ns
Memory cycle = 100 ns
1 mem. cycle = 50 bus cycles

Multiple-bus system:
Peak bandwidth multiplied 
by the number of buses
(actual bandwidth is likely 
to be much less)

Mem

Proc Proc Proc Proc.  .  .

I/OMem Mem Mem
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Hierarchical Bus Interconnection

Fig. 4.9 Example of a hierarchical interconnection architecture.

Low-level 
cluster

Bus switch 
(Gateway)

Heterogeneous system
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Removing the Processor-to-Memory Bottleneck

Fig. 4.4 A parallel processor with global memory and processor caches.
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Why Data Caching Works

Fig. 18.1    Data storage 
and access in a two-way 
set-associative cache. 
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=
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Benefits of Caching Formulated as Amdahl’s Law

Generalized form of Amdahl’s speedup formula:

S =  1/(f1/p1 + f2/p2 + . . . + fm/pm),  with f1 + f2 + . . . + fm = 1

In this case, a fraction 1 – r is slowed down by a factor (Cslow + Cfast) /Cslow, 
and a fraction r is speeded up by a factor Cslow /Cfast

Fig. 18.3 of Parhami’s Computer Architecture text (2005)

Main 
memory 

Register 
file 

Access cabinet  
in 30 s 

Access 
desktop in 2 s 

Access drawer 
in 5 s 

Cache 
memory 

Hit rate r (fraction of memory 
accesses satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

S    = Cslow /Ceff

1
=  

(1 – r) + Cfast/Cslow

This corresponds to the miss-rate fraction 1– r of accesses being unaffected 
and the hit-rate fraction r (almost 1) being speeded up by a factor Cslow/Cfast
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18.2  Cache Coherence Protocols

Fig. 18.2   Various types of cached data blocks in a parallel processor 
with global memory and processor caches.
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Example: A Bus-Based Snoopy Protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU 
write miss: 
Write back 
the block,  
Put write 
miss on bus

CPU read hit

CPU 
read miss:  
Put read 
miss on bus

Bus write miss for this block: 
Write back the block

Bus write miss for this block

CPU read miss: 
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3   Finite-state control mechanism for a bus-based 
snoopy cache coherence protocol.

Each transition is labeled with the event that triggers it, 
followed by the action(s) that must be taken
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Implementing a Snoopy Protocol

Fig. 27.7 of Parhami’s Computer Architecture text.

A second 
tags/state 
storage unit 
allows 
snooping to 
be done 
concurrently 
with normal 
cache 
operation

Tags 

Cache 
data 
array 

 

Duplicate tags 
and state store 
for snoop side 

CPU 

 

Main tags and 
state store for 
processor side 

=? 

=? 

Processor side 
cache control 

Snoop side 
cache control 

Addr Addr Cmd Cmd Buffer Buffer 
Snoop 
state 

System 
bus 

Tag 

Addr Cmd 

State 

Getting all the 
implementation 
timing and 
details right is 
nontrivial



Fall  2008 Parallel Processing, Extreme Models Slide 54

Distributed Shared Memory

Fig. 4.5 A parallel processor with distributed memory.
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Example: A Directory-Based Protocol

Fig. 18.4   States and transitions for a directory entry in a directory-based 
coherence protocol (c denotes the cache sending the message).

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation, 
return data value, sharing set = {c}

Read miss: Return data value, 
sharing set = sharing set + {c}

Data write-back: 
Sharing set = { }

Read miss: Return data value, 
sharing set = {c}Write miss: Return data value, 

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},  
return data value

Read miss: Fetch data value, return data value, 
sharing set = sharing set + {c} sharing set +

Correction to text
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Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)

When there are many more nodes (caches) than the typical size of a 
sharing set, a list of sharing units may be maintained in the directory

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Processor 0 Processor 1 Processor 2 Processor 3 

Memory 

Noncoherent  
data blocks Coherent  

data block  

 Cache 0  Cache 1  Cache 2  Cache 3 

Head pointer 

The sharing set can be maintained as a distributed doubly linked list 
(will discuss in Section 18.6 in connection with the SCI standard) 
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Hiding the Memory Access Latency

0  0  

1  1  

 

P r o c e s s o r -
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M e m o r y  
m o d u le s  

P a r a l le l  I /O  

.  .  .  

.  

.  

.  

.  

.  

.  

By assumption, PRAM accesses memory 
locations right when they are needed, so 
processing must stall until data is fetched

Method 1: Predict accesses (prefetch)
Method 2: Pipeline multiple accesses

Not a smart strategy:
Memory access time = 
100s times that of add time

Proc. 0’s access request
Proc. 0’s access response
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21.3  Vector-Parallel Cray Y-MP

Fig. 21.5   Key 
elements of 
the Cray Y-MP 
processor. 
Address 
registers, 
address 
function units, 
instruction 
buffers, and 
control not 
shown.
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Cray Y-MP’s Interconnection Network 

Fig. 21.6   The processor-to-memory interconnection network of Cray Y-MP.

P0

P1

P2

P3

P4

P5

P6

P7

4    4×

8   8×

1   8×

8   8×

8   8×

8   8×

4    4×

4    4×

4    4×

4    4×

4    4×

4    4×

4    4×

Sections Subsections  
0, 4, 8, ... , 28 
32, 36, 40, ... , 92 
 
 
 
 
 
1, 5, 9, ... , 29 
 
 
 
 
 
2, 6, 10, ... , 30 
 
 
 
 
 
 
3, 7, 11, ... , 31 
 
 
 
 
227, 231, ... , 255

Memory Banks



Fall  2008 Parallel Processing, Extreme Models Slide 60

Fig. 6.9    Example of a multistage 
memory access network. 

Not a full 
permutation network
(e.g., processor 0 
cannot be connected 
to memory bank 2 
alongside the two 
connections shown)

Is self-routing: i.e., 
the bank address 
determines the route

A request going to 
memory bank 3 
(0 0 1 1) is routed:

lower upper upper

Butterfly Processor-to-Memory Network
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Butterfly as Multistage Interconnection Network

Fig. 6.9    Example of a multistage 
memory access network 

Generalization of the butterfly network
High-radix or m-ary butterfly, built of m × m switches
Has mq rows and q + 1 columns (q if wrapped)
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Fig. 15.8    Butterfly network 
used to connect modules 
that are on the same side 
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Beneš Network

Fig. 15.9    Beneš network formed from two back-to-back butterflies.

A 2q-row Beneš network:
Can route any 2q × 2q permutation
It is “rearrangeable”
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Routing Paths in a Beneš Network

Fig. 15.10    Another example of a Beneš network.
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16.6  Multistage Interconnection Networks

Numerous indirect  or 
multistage interconnection 
networks (MINs) have been 
proposed for, or used in, 
parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes

We have already seen the 
butterfly, hierarchical bus, 
beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect 
interconnection networks.
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Self-Routing Permutation Networks
Do there exist self-routing permutation networks? (The butterfly network 
is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14    Example of sorting on a binary radix sort network.
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Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)
Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)
Baseline: Butterfly network with nodes labeled differently
Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)
Bidelta: A MIN that is a delta network in either direction 
Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)
Data manipulator: Same as ADM, but with switches in a column restricted to same state  
Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1 
for 2 × 2 switches) and path label, composed of concatenating switch output labels 
leading from an input to an output depends only on the output
Flip: Reverse of the omega network (inputs × outputs)
Indirect cube: Same as butterfly or omega
Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)
Permutation: Any MIN that can realize all permutations
Rearrangeable: Same as permutation network
Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged
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Conflict-Free Memory Access

Try to store the data such that parallel accesses are to different banks 

For many data structures, a compiler may perform the memory mapping

Fig. 6.6    Matrix storage in column-major 
order to allow concurrent accesses to rows. 
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Fig. 6.7    Skewed matrix storage for 
conflict-free accesses to rows and columns. 
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Fig. 6.8    A 6 × 6 matrix viewed, in column-
major order, as a 36-element vector. 

A Unified Theory of Conflict-Free Access
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A qD array can be 
viewed as a vector,
with “row” / “column” 
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with constant strides
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Fig. 6.8    A 6 × 6 matrix viewed, in column-
major order, as a 36-element vector. 

Linear Skewing Schemes

 0 
 1 
 2 
 3 
 4 
 5 

 6 
 7 
 8 
 9 
10 
11 

12 
13 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 

Vector 
indices 

A    is viewed as vector element i + jm ij 

With a linear skewing scheme, vector elements k, k + s, k  +2s,  . . .  , 
k + (B – 1)s will be assigned to different memory banks iff sb is 
relatively prime with respect to the number B of memory banks. 

A prime value for B ensures this condition, but is not very practical.

Place vector element i
in memory bank 
a + bi mod B
(word address within 
bank is irrelevant to 
conflict-free access;
also, a can be set to 0)
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7  Sorting and Selection Networks
Become familiar with the circuit model of parallel processing:

• Go from algorithm to architecture, not vice versa
• Use a familiar problem to study various trade-offs

Topics in This Chapter
7.1   What is a Sorting Network?
7.2   Figures of Merit for Sorting Networks
7.3   Design of Sorting Networks
7.4   Batcher Sorting Networks
7.5   Other Classes of Sorting Networks
7.6   Selection Networks
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7.1  What is a Sorting Network?

Fig. 7.1 An n-input 
sorting network or 
an n-sorter.

x
x
x

x

. 

. 

.

. 

. 

.

n-sorter

0

1

2

n–1

y
y
y

y

0

1

2

n–1

The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1≤ ≤ ≤ 

Fig. 7.2 Block diagram and four different 
schematic representations for a 2-sorter.

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out



Fall  2008 Parallel Processing, Extreme Models Slide 73

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

2-sorter

Building Blocks for Sorting Networks

Fig. 7.3   Parallel and bit-serial hardware realizations of a 2-sorter.
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  Q 
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1 
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max(a, b)

 b<a? 

a 

b 
M

SB
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  a<b? 

Reset 

Implementation with 
bit-parallel inputs

Implementation with 
bit-serial inputs
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Proving a Sorting Network Correct
x0
x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

Fig. 7.4    Block diagram and schematic representation of a 4-sorter.

Method 1: Exhaustive test – Try all n! possible input orders

Method 2: Ad hoc proof – for the example above, note that y0 is smallest, 
y3 is largest, and the last comparator sorts the other two outputs

Method 3: Use the zero-one principle – A comparison-based sorting 
algorithm is correct iff it correctly sorts all 0-1 sequences (2n tests)
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Elaboration on the Zero-One Principle

Deriving a 0-1 sequence that is not correctly sorted, given an 
arbitrary sequence that is not correctly sorted.

Let outputs yi and yi+1 be out of order, that is yi > yi+1

Replace inputs that are strictly less than yi with 0s and all others with 1s

The resulting 0-1 sequence will not be correctly sorted either

6-sorter

1 
3 
6* 
5* 
8 
9

3 
6 
9 
1 
8 
5 

Invalid

0 
1 
1 
0 
1 
0

0 
0 
1 
0 
1 
1
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7.2  Figures of Merit for Sorting Networks

Delay: Number 
of levels

Cost: Number of 
comparators

Cost × Delay

x0
x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

In the following example, we have 5 comparators

The following 4-sorter has 3 comparator levels on 
its critical path

The cost-delay product for this example is 15

Fig. 7.4    Block diagram and schematic representation of a 4-sorter.
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Cost as a Figure of Merit

n = 9, 25 modules, 9 levels
n = 10, 29 modules, 9 levels

n = 12, 39 modules, 9 levels

n = 16, 60 modules, 10 levels

Fig. 7.5 Some low-cost sorting networks.
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Delay as a Figure of Merit

Fig. 7.6 Some fast sorting networks.

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

These 3 comparators 
constitute one level
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Cost-Delay Product as a Figure of Merit

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

Fast 10-sorter from Fig. 7.6

n = 10, 29 modules, 9 levels

n = 16, 60 modules, 10 levels

Low-cost 10-sorter from Fig. 7.5

Cost×Delay = 29×9 = 261 Cost×Delay = 31×7 = 217

The most cost-effective n-sorter may be neither 
the fastest design, nor the lowest-cost design
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7.3  Design of Sorting Networks

Fig. 7.7   Brick-wall 6-sorter based on odd–even transposition. 

Rotate 
by 90 
degrees

Rotate by 
90 degrees 
to see the 
odd-even 
exchange 
patterns 

C(n) =    n(n – 1)/2
D(n ) =    n

Cost × Delay  =    n2(n – 1)/2  =  Θ(n3) 
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Insertion Sort and Selection Sort

Fig. 7.8   Sorting network based on insertion sort or selection sort. 

x
x
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.

(n–1)-sorter
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n–2

y
y
y

y

0
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xn–1

. 

. 

.

yn–1
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.

(n–1)-sorter

0

1

2

n–2

y
y
y

y

0

1

2

n–2
xn–1

. 

. 

.

yn–1

. 

. 

.

Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

C(n)  = n(n – 1)/2
D(n ) = 2n – 3 
Cost × Delay 

= Θ(n3) 
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Theoretically Optimal Sorting Networks

AKS sorting network
(Ajtai, Komlos, Szemeredi: 1983)

x
x
x

x

. 

. 

.

. 

. 

.

n-sorter

0

1

2

n–1

y
y
y

y

0

1

2

n–1

The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1≤ ≤ ≤ 

O(log n) depth

O(n log n)
size

Note that even for these 
optimal networks, delay-cost 
product is suboptimal; but 
this is the best we can do

Existing sorting networks 
have O(log2 n) latency and 
O(n log2 n) cost

Given that log2 n is only 20 
for n = 1 000 000, the latter 
are more practical

Unfortunately, AKS networks are not practical owing to large (4-digit) 
constant factors involved; improvements since 1983 not enough
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7.4  Batcher Sorting Networks

Fig. 7.9 Batcher’s even–odd merging network for 4 + 7 inputs. 
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v
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v
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6
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3
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1

2

w

w

w

w

3

4

(2, 4)-merger (2, 3)-merger

0

1

2

First 
sorted 
sequ- 
ence x

Second 
sorted 
sequ- 
ence y

(2, 3)-merger
a0
a1
b0
b1
b2

(1, 2)-merger
c0

d0
d1

(1, 1) (1, 2)

(1, 1)



Fall  2008 Parallel Processing, Extreme Models Slide 84

Proof of Batcher’s Even-Odd Merge
x

x

x

x

y

y

y

y

y

y

y v

v

v

v

v

v

0

1

2

3

0

1

2

3

4

5

6

0

1

2

3

4

5

w

w

w

w

w

0

1

2

3

4

(2, 4)-merger (2, 3)-merger

First 
sorted 
sequ- 
ence x

Second 
sorted 
sequ- 
ence y

Assume: x has k 0s
y has k ′ 0s

Use the zero-one principle

Case a: keven = kodd v 0    0    0    0    0    0    1    1    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Case b: keven = kodd+1 v 0    0    0    0    0    0    0    1    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Case c: keven = kodd+2 v 0    0    0    0    0    0    0    0    1    1    1    1
w 0    0    0    0    0    0    1    1    1    1    1

Out  of order

v has keven = ⎡k/2⎤ + ⎡k ′/2⎤ 0s

w has kodd = ⎣k/2⎦ + ⎣k ′/2⎦ 0s
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Batcher’s Even-Odd Merge Sorting
Batcher’s (m, m) even-odd merger, 
for m a power of 2:  

C(m) =  2C(m/2) + m – 1 
= (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .  
= m log2m + 1

D(m) = D(m/2) + 1 =  log2 m + 1
Cost × Delay  =  Θ(m log2 m)

Batcher sorting networks based on the 
even-odd merge technique:  

C(n)  =  2C(n/2) + (n/2)(log2(n/2)) + 1  
≅ n(log2n)2/ 2 

D(n)  =  D(n/2) + log2(n/2) + 1 
= D(n/2) + log2n
=  log2n (log2n + 1)/2

Cost × Delay = Θ(n log4n) 

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

Fig. 7.10    The recursive 
structure of Batcher’s even–
odd merge sorting network. 
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Example Batcher’s Even-Odd 8-Sorter

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

Fig. 7.11    Batcher’s even-odd merge 
sorting network for eight inputs . 
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Bitonic-Sequence Sorter

Fig. 14.2    Sorting a bitonic 
sequence on a linear array. 

Shift right half of 
data to left half 
(superimpose the 
two halves) 

In each position, 
keep the smaller 
value of each pair 
and ship the larger 
value to the right 

Each half is a bitonic 
sequence that can be 
sorted independently 

0 1 2 n–1 

0 1 2 n–1 

.   .   . 

.   .   . 

Bitonic 
sequence 

Shifted 
right half 

n/2 

n/2 

.   .   . 

.   .   . 

Bitonic sequence:

1  3  3  4  6  6  6  2  2  1  0  0      
Rises, then falls

8  7  7  6  6  6  5  4  6  8  8  9      
Falls, then rises

8  9  8  7  7  6  6  6  5  4  6  8     
The previous sequence, 
right-rotated by 2 
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Batcher’s Bitonic Sorting Networks

Fig. 7.12    The recursive 
structure of Batcher’s 
bitonic sorting network. 

n/2-sorter

n/2-sorter

n-input bitonic- 
sequence sorter

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

Bitonic 
sequence

. 
  . 
     .

. 
  . 
     .

Fig. 7.13    Batcher’s 
bitonic sorting network 
for eight inputs. 

8-input bitonic- 
sequence sorter

4-input bitonic- 
sequence sorters

2-input 
sorters
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7.5  Other Classes of Sorting Networks

Fig. 7.14    Periodic balanced 
sorting network for eight inputs. 

Desirable properties:
a.  Regular / modular 
(easier VLSI layout).
b.  Simpler circuits via 
reusing the blocks
c.  With an extra block 
tolerates some faults 
(missed exchanges)
d.  With 2 extra blocks 
provides tolerance to 
single faults (a missed 
or incorrect exchange)
e.  Multiple passes 
through faulty network 
(graceful degradation)
f.  Single-block design 
becomes fault-tolerant 
by using an extra stage
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Shearsort-Based Sorting Networks (1)

Fig. 7.15    Design of an 8-sorter based on shearsort on 2×4 mesh. 

0 1 2 3
4567

Snake-like 
row sorts

Column 
sorts

0 
1 
2 
3 
4 
5 
6 
7

Snake-like 
row sorts

Corresponding 
2-D mesh
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Shearsort-Based Sorting Networks (2)

Fig. 7.16    Design of an 8-sorter based on shearsort on 2×4 mesh. 

0 
1 
2 
3 
4 
5 
6 
7

0 1
3 2

54
7 6

Corresponding 
2-D mesh

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Some of the same
advantages as
periodic balanced
sorting networks
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7.6  Selection Networks
Direct design may 
yield simpler/faster 
selection networks

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

3rd smallest element

Can remove 
this block if 
smallest three 
inputs needed 

Can remove 
these four 
comparators 

Deriving an (8, 3)-selector from Batcher’s even-odd merge 8-sorter. 
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Categories of Selection Networks

Unfortunately we know even less about selection networks 
than we do about sorting networks.

One can define three selection problems [Knut81]:

I. Select the k smallest values; present in sorted order
II. Select kth smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest 

Classifiers:
Selectors that separate 
the smaller half of values 
from the larger half

Smaller
4 values

Larger
4 values

8 inputs 8-Classifier
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Type-III Selection Networks

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,6]

[1,7]

[0,6]

[0,6]

[0,6]

[1,7]

[1,7]

[1,7]

[1,6]

[1,6]

[1,6]

[1,6]

[0,3]

[0,4]

[0,4]

[0,4]

[0,4] [0,3]

[3,7]

[4,7][3,7][3,7]

[3,7]

[4,7]

[1,3]

[1,5]

[1,5] [1,3]

[4,6][2,6]

[2,6]

[4,6]

Figure 7.17    A type III (8, 4)-selector. 8-Classifier
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8  Other Circuit-Level Examples
Complement our discussion of sorting and sorting nets with:

• Searching, parallel prefix computation, Fourier transform
• Dictionary machines, parallel prefix nets, FFT circuits

Topics in This Chapter
8.1   Searching and Dictionary Operations
8.2   A Tree-Structured Dictionary Machine
8.3   Parallel Prefix Computation
8.4   Parallel Prefix Networks
8.5   The Discrete Fourier Transform
8.6   Parallel Architectures for FFT
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8.1  Searching and Dictionary Operations
Example:
n = 26, p = 2

P0

P1

0 
1 
2 

8

17

25

P0

P1P0P1
Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0

A single search in a sorted list 
can’t be significantly speeded up 
through parallel processing, 
but all hope is not lost:

Dynamic data (sorting overhead)

Batch searching (multiple lookups) 

Parallel p-ary search on PRAM

logp+1(n + 1) 
= log2(n + 1) / log2(p + 1)
= Θ(log n / log p) steps 

Speedup ≅ log p 

Optimal: no comparison-based 
search algorithm can be faster 
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Dictionary Operations
Basic dictionary operations: record keys x0, x1, . . . , xn–1

search(y) Find record with key y; return its associated data
insert(y, z) Augment list with a record: key = y, data = z
delete(y) Remove record with key y; return its associated data

Some or all of the following operations might also be of interest:
findmin Find record with smallest key; return data
findmax Find record with largest key; return data
findmed Find record with median key; return data
findbest(y) Find record with key “nearest” to y
findnext(y) Find record whose key is right after y in sorted order
findprev(y) Find record whose key is right before y in sorted order
extractmin Remove record(s) with min key; return data
extractmax Remove record(s) with max key; return data
extractmed Remove record(s) with median key value; return data

Priority queue operations: findmin, extractmin (or findmax, extractmax)
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8.2  A Tree-Structured Dictionary Machine

Fig. 8.1 A tree-structured dictionary machine.

x

Input Root

Output Root

"Circle" 
  Tree

"Triangle" 
    Tree

0 x1 x2 x4x3 x5 x6 x7

Combining in the 
triangular nodes

search(y): Pass OR 
of match signals & 
data from “yes” side

findmin / findmax: 
Pass smaller / larger 
of two keys & data

findmed:
Not supported here

findbest(y): Pass 
the larger of two 
match-degree 
indicators along with 
associated record

Search 1

Search 2 Pipelined
search
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Insertion and Deletion in the Tree Machine

Figure 8.2    Tree machine storing 5 records and containing 3 free slots.

*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

Counters keep track 
of the vacancies 
in each subtree

Deletion needs second 
pass to update the 
vacancy counters

Redundant 
insertion (update?) 
and deletion (no-op?)

Implementation:
Merge the circle and 

triangle trees by folding



Fall  2008 Parallel Processing, Extreme Models Slide 100

S   L
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S   L
M

S   L
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S   L
M
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S   L
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S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

S   L
M

Systolic Data Structures
Fig. 8.3    Systolic data structure 

for minimum, maximum, 
and median finding.

Each node holds the smallest (S), 
median (M),,and largest (L)
value in its subtree

Each subtree is balanced 
or has one fewer element on the 

left (root flag shows this)

[5, 87] [87, 176]
Insert  2 
Insert  20 
Insert  127 
Insert  195

Extractmin 
Extractmed 
Extractmax19 or 20 

items 20 items

1765
87

Update/access 
examples for the 
systolic data 
structure of Fig. 8.3

Example: 20 elements,
3 in root, 8 on left, 

and 9 on right

8 elements:
3 + 2 + 3



Fall  2008 Parallel Processing, Extreme Models Slide 101

8.3  Parallel Prefix Computation

Fig. 8.4 Prefix computation using a latched or pipelined function unit.

⊗ x i 

s i 
x i 

s i 

Latches Four-stage pipeline Function unit 

Example: Prefix sums
x0 x1 x2 .  .  . xi
x0 x0 + x1 x0 + x1 + x2 .  .  . x0 + x1 + . . . + xi
s0 s1 s2 .  .  . si

Sequential time with one processor is O(n)
Simple pipelining does not help
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Improving the Performance with Pipelining

Fig. 8.5 High-throughput prefix computation using a pipelined function unit.

Ignoring pipelining overhead, it appears that we 
have achieved a speedup of 4 with 3 “processors.”
Can you explain this anomaly? (Problem 8.6a)

a[i]

x[i – 12]
Delay

Delays
a[i–1]

a[i–6] ³ a[i–7]

a[i–4] ³ a[i–5]

a[i–8] ³ a[i–9] ³ a[i–10] ³ a[i–11]

s i–12

xi

Delay

Delays

xi–1

⊗xi–4 xi–5

xi–6 xi–7⊗

xi–8 xi–9 xi–10 xi–11⊗⊗⊗
Function unit 

⊗computing
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8.4  Parallel Prefix Networks

Fig. 8.6 Prefix sum network built of one n/2-input network and n – 1 adders. 

. . .

Prefix Sum n/2

x x x x x x. . .

s n–1 s n–2 s 3 s 2 s 1 s 0

+ +
This is the Brent-Kung
Parallel prefix network
(its delay is actually 
2 log2n – 2)

n–1 n–2 3 2 1 0

+++

T(n) = T(n/2) + 2 
= 2 log2n – 1

C(n) = C(n/2) + n – 1 
= 2n – 2 – log2n
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Example of Brent-Kung Parallel Prefix Network

Fig. 8.8 Brent–Kung parallel prefix graph for n = 16. 

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

One level 
of latency

Originally developed
by Brent and Kung as
part of a VLSI-friendly 
carry lookahead adder

T(n) = 2 log2n – 2

C(n) = 2n – 2 – log2n
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Another Divide-and-Conquer Design

Fig. 8.7 Prefix sum network built of two n/2-input networks and n/2 adders.

T(n) = T(n/2) + 1 
= log2n

C(n) = 2C(n/2) + n/2 
= (n/2) log2n

Simple Ladner-Fisher
Parallel prefix network
(its delay is optimal, 
but has fan-out issues
if implemented directly)

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Ladner-Fischer construction
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Example of Kogge-Stone Parallel Prefix Network

Fig. 8.9 Kogge-Stone parallel prefix graph for n = 16. 

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

T(n) = log2n

C(n) = (n–1) + (n–2)
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Optimal in delay,
but too complex 
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and wiring pattern
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Comparison and Hybrid Parallel Prefix Networks
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Fig. 8.10 A hybrid 
Brent–Kung / 
Kogge–Stone 
parallel prefix 
graph for n = 16.
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Linear-Cost, Optimal Ladner-Fischer Networks

Recursive construction of the fastest possible 
parallel prefix network (type-0) 

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Type-0 Type-1

Type-0

Define a type-x parallel prefix network as one that:
Produces the leftmost output in optimal log2 n time
Yields all other outputs with at most x additional delay

We are interested in 
building a type-0 overall 
network, but can use 
type-x networks (x > 0) 
as component parts

Note that even the 
Brent-Kung network 
produces the leftmost 
output in optimal time
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8.5  The Discrete Fourier Transform
DFT yields output sequence yi based on input sequence xi (0 ≤ i < n)

yi =  ∑
j=0 to n–1

ωn
ij xj                       O(n2)-time naïve algorithm

where ωn is the nth primitive root of unity; ωn
n = 1, ωn

j ≠ 1 (1 ≤ j < n)

Examples:  ω4 is the imaginary number i and ω3 = (−1 + i √3)/2 

The inverse DFT is almost exactly the same computation:

xi = (1/n) ∑
j=0 to n–1

ωn
−ij yj     

Fast Fourier Transform (FFT): 
O(n log n)-time DFT algorithm that derives y from half-length sequences 
u and v that are DFTs of even- and odd-indexed inputs, respectively

yi =  ui + ωn
i vi (0 ≤ i < n/2)

yi+n/2 =  ui + ωn
i+n/2 vi

T(n) = 2T(n/2) + n = n log2n sequentially
T(n)  =  T(n/2) + 1 = log2n in parallel
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Application of DFT to Spectral Analysis

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209 
  Hz

1477  
  Hz

1336  
  Hz

1633  
  Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments 
     for touch-tone dialing

Frequency spectrum of received tone



Fall  2008 Parallel Processing, Extreme Models Slide 111

Application of DFT to Smoothing or Filtering

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal
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8.6  Parallel Architectures for FFT

Fig. 8.11    Butterfly network for an 8-point FFT. 

u: DFT of even-indexed inputs
v: DFT of odd-indexed inputs
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Fig. 8.12 FFT network variant and its shared-hardware realization.

Variants of the Butterfly Architecture
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Computation Scheme for 16-Point FFT
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More 
Economical 

FFT 
Hardware

Fig. 8.13    
Linear array of 
log2n cells for 
n-point FFT 
computation.
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Another Circuit Model: Artificial Neural Nets

Supervised learning

Inputs Weights

Activation 
function

Output

Threshold
Feedforward network 
Three layers: input, hidden, output
No feedback

Artificial 
neuron

Recurrent network 
Simple version due to Elman
Feedback from hidden nodes to special nodes at the input layer

Diagrams from
http://www.learnartificialneuralnetworks.com/

Hopfield network 
All connections are bidirectional

Characterized by connection 
topology and learning method
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