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Part III
Mesh-Based Architectures
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III   Mesh-Type Architectures

Study mesh, torus, and related interconnection schemes:
• Many modern parallel machines are mesh/torus-based
• Scalability and speed due to short, regular wiring
• Enhanced meshes, variants, and derivative networks

Topics in This Part

Chapter 9 Sorting on a 2D Mesh or Torus

Chapter 10 Routing on a 2D Mesh or Torus

Chapter 11 Numerical 2D Mesh Algorithms

Chapter 12 Mesh-Related Architectures
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9  Sorting on a 2D Mesh or Torus

Introduce the mesh model (processors, links, communication):
• Develop 2D mesh sorting algorithms
• Learn about strengths and weaknesses of 2D meshes

Topics in This Chapter

9.1 Mesh-Connected Computers

9.2 The Shearsort Algorithm

9.3 Variants of Simple Shearsort

9.4 Recursive Sorting Algorithms

9.5 A Nontrivial Lower Bound

9.6 Achieving the Lower Bound
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9.1  Mesh-Connected Computers

Fig. 9.1    Two-dimensional mesh-connected computer. 

2D, four-neighbor 
(NEWS) mesh; other 
types in Chapter 12

Square p1/2  p1/2 or 
rectangular r  p/r

MIMD, SPMD, SIMD, 
Weak SIMD

Single/All-port model

Diameter-based or 
bisection-based 
lower bound: O(p1/2)
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MIMD, SPMD, SIMD, or Weak SIMD Mesh

Some communication modes. 

a. MIMD all-port b. MIMD Single-port 

c. SIMD single-port d. Weak SIMD 

All-port: Processor can 
communicate with all its 
neighbors at once (in one 
cycle or time step)

Single-port: Processor 
can send/receive one 
message per time step

MIMD: Processors choose 
their communication 
directions independently

SIMD: All processors 
directed to do the same

Weak SIMD: Same 
direction for all (uniaxis)
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Torus Implementation without Long Wires

Fig. 9.2   A 5  5 torus folded along its columns. Folding this diagram 
along the rows will produce a layout with only short links. 

8 x 8 folded torus
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Processor Indexing in Mesh or Torus 

 0   1   2   3 
 
 4   5   6   7 
 
 8   9  10  11 
 
12  13  14  15 

a. Row-major 

 0   1   2   3 
 
 7   6   5   4 
 
 8   9  10  11 
 
15  14  13  12 

b. Snakelike row-major 

 0   1   4   5 
 
 2   3   6   7 
 
 8   9  12  13 
 
10  11  14  15 

c. Shuffled row-major 

 1   2   5   6 
 
 0   3   4   7 
 
15  12  11   8 
 
14  13  10   9 

d. Proximity order 

  ---     --- 
 |   |   |   | 
      --- 
             | 
      -- 
 |   |   |   | 
  --      -- 

Fig. 9.3   Some 
linear indexing 
schemes for the 
processors in a 
2D mesh. 

Our focus will 
be on row-major 
and snakelike 
row-major 
indexing
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Register-Based Communication

Fig. 9.4   Reading data from NEWS neighbors via virtual local registers. 
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.



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 10

9.2  The Shearsort Algorithm

Fig. 9.5  Description 
of the shearsort 
algorithm on an 
r-row 2D mesh. 

Tshearsort = log2r (p/r + r) + p/r

then 
sort the 
columns 
(top-to- 
bottom)

Sort the 
rows 
(snake- 
like)

repeat   log  r   times

endrepeat 
Sort the rows

Snakelike Row-Major

 . . .. 
. 
.

. 

. 

.

. 

. 

.

(depending on the desired final sorted order)
or

 2

Shearsort algorihm for a 2D mesh with r rows

On a square mesh: 
Tshearsort =p1/2(log2p+1)

Diameter-based LB:
Tsort  2p1/2 – 2 
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Proving Shearsort Correct 

Fig. 9.6   A pair of dirty rows create at least one clean row in each 
shearsort iteration  

Assume that 
in doing the 
column 
sorts, we first 
sort pairs of 
elements in 
the column 
and then sort 
the entire 
column

0 0 0         1 1 
1 1 1         0 0

0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1 
1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 
1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 1

0 0 1 1 1 0 0 0 
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1

Row 2i  
Row 2i + 1

Case (a):   
More 0s

Case (b):   
More 1s

Case (c):   
Equal # 
0s & 1s







Bubbles up in the 
next column sort

Sinks down in the 
next column sort
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Shearsort Proof (Continued) 

Fig. 9.7  The number of dirty rows halves with each shearsort iteration. 

Dirty Dirty
x dirty 
rows

At most  x/2  
dirty rows

0

1

0

1


 

0

1

After log2r iterations, only 
one dirty row remains

0

1

00111010011010110
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Shearsort Example 

Fig. 9.8  Example of shearsort on a 4  4 mesh. 

1 12 21 4 

15 20 13 2 

5 9 18 7 

22 3 14 17 

1 4 12 21 

20 15 13 2 

5 7 9 18 

22 17 14 3 

1 4 9 2 

5 7 12 3 

20 15 13 18 

22 17 14 21 

1 2 4 9 

12 7 5 3 

13 15 18 20 

22 21 17 14 

1 2 4 3 

12 7 5 9 

13 15 17 14 

22 21 18 20 

1 2 3 4 

12 9 7 5 

13 14 15 17 

22 21 20 18 

1 2 3 4 

5 7 9 12 

13 14 15 17 

18 20 21 22 

After first row sort 
(snakelike) 

After second row sort 
(snakelike) 

After final row sort 
(snakelike) 

Column sort Column sort (left to right) 

Initial arrangement 
of keys in the mesh 
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9.3  Variants of Simple Shearsort

Observation: On a linear array, odd-even transposition sort needs only k
steps if the “dirty” (unsorted) part of the array is of length k

0   0   0   0   0   0   1   1   0   1   0   0   0   1   0   1   1   1   1   1   1

Unsorted part

Dirty Dirty
x dirty 
rows

At most  x/2  
dirty rows

0

1

0

1


 

In shearsort, we do not have to sort 
columns completely, because only a 
portion of the column is unsorted 
(the portion shrinks in each phase)

On a square mesh: 
Topt shearsort =

p1/2(½ log2p+3)–2

Topt shearsort = (p / r)(log2r + 1) + 
r + r/2 + . . . + 2

2r – 2 

Thus, 2r – 2 replaces r log2r in 
simple shearsort  
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Shearsort with 
Multiple Items per 

Processor 

Fig. 9.9   Example of 
shearsort on a 4  4 
mesh with two keys 
stored per processor. 

Perform ordinary 
shearsort, but replace 
compare-exchange 
with merge-split

(n/p) log2(n/p) steps 
for the initial sort; the 
rest multiplied by n/p

 1  12  21   4 
 
15  20  13   2 
 
 5   9  18   7 
 
22   3  14  17

 1   6  12  25 
 
31  20  15   2  
 
 5   8  11  19 
 
28  23  17   3

Keys

Row 
sort

 1   6  11   2 
 
 5   9  15  13  
 
28  20  17  19 
 
31  24  21  26

The final row sort (snake-like or row-major) is not shown.

 6  26  25  10 
 
31  32  16  30 
 
11  19  27   8 
 
28  23  29  24

 4  10  21  26 
 
32  30  16  13 
 
 7   9  18  27 
 
29  24  22  14

 4   8  12   3 
 
 7  10  16  14 
 
29  23  18  25 
 
32  30  22  27

 1   3   6  11 
 
15  13   9   5  
 
17  19  23  28 
 
31  27  24  21

 2   4   8  12 
 
16  14  10   7 
 
18  20  25  29 
 
32  30  26  22

 1   3   6   5 
 
15  13   9  11  
 
17  19  23  21 
 
31  27  25  28

 2   4   8   7 
 
16  14  10  12 
 
18  20  24  22 
 
32  30  26  29

Row 
sort

Column 
sort

Column 
sort

x      
   y

Two keys held 
by one processor
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9.4  Recursive Sorting Algorithms

Fig. 9.10   Graphical depiction 
of the first recursive algorithm 
for sorting on a 2D mesh 
based on four-way divide and 
conquer. 

Snakelike sorting order 
on a square mesh

 . . .

. 

. 

.

1.  Sort quadrants 2.  Sort rows

3.  Sort columns 4.  Apply 4¦p steps of odd-even   
  transposition along the snake

. 

. 

.

1. Sort quadrants  2. Sort rows 

3. Sort columns 4. Apply 4p steps of  
odd-even transposition 
along the overall snake 

T(p1/2) = T(p1/2/2) + 5.5p1/2

Note that row sort in phase 2 
needs fewer steps

Trecursive 1 11p1/2
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Proof of the 11p1/2-Time Sorting Algorithm 

Fig. 9.11   
The proof 
of the first 
recursive 
sorting 
algorithm 
for 2D 
meshes. 

x + x'  b + c + (a – b)/2 + (d – c)/2 + a' + d' + (b' – a')/2 + (c' – d')/2
 b + c + a' + d' + (a – b)/2 + (d – c)/2 + (b' – a')/2 + (c' – d')/2 – 4½ 
=  (a + a')/2 + (b + b')/2 + (c + c')/2 + (d + d')/2 – 2  
 p1/2 – 4 

x  b + c + (a – b)/2 + (d – c)/2 A similar inequality applies to x'

0

1

Dirty

x rows

x' rows

0
0

00

1
1

1
1

a

a'

b

b'

c

c'

d

d'

Numbers of clean rows in 
each of the four quadrants 

 p – x – x' 
rows

State of the array 
after Phase 3 
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Some Programming Considerations

Let b (a power of 2) be the block length 
for snakelike sorting

 . . .

. 

. 

.

1.  Sort quadrants 2.  Sort rows

3.  Sort columns 4.  Apply 4¦p steps of odd-even   
  transposition along the snake

. 

. 

.

1. Sort quadrants  2. Sort rows 

3. Sort columns 4. Apply 4p steps of  
odd-even transposition 
along the overall snake 

snakelike-mesh-sort(b)
snakelike-mesh-sort(b/2)
snakelike-row-sort(b)
column-sort(b)
snake-odd-even-xpose(4b)

R1
R2

R3
R4

R5

R5

R5

R5

R5
R2

R3
R4

R1

R5

R5

R6
R6

R7

R7

R8

R8

Fig. 9.10

Fig. 9.4

snakelike-row-sort(b)
for k = 0 to b – 1 Proc (i, j), j even, do
case i, k
even, even: if j  0 mod b AND

(R5) < (R3) then R5  R3
even, odd: if (R2) < (R5) then R2  R5 
. . .
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Another Recursive Sorting Algorithm 

Fig. 9.12  Graphical 
depiction of the second 
recursive algorithm for 
sorting on a 2D mesh 
based on four-way 
divide and conquer. 

1.  Sort quadrants 2.  Shuffle row elements

3.  Sort double columns 
 in snake-like order

4.  Apply 2¦p steps of 
 odd-even transposition 
 along the overall snake

. 

. 

.

. . .

0  1  2  3 

Distribute 
these ¦p/2 
columns  
evenly

1. Sort quadrants  
 
 

2. Shuffle row elements 
 
 

3. Sort double columns 
in snakelike order 
 
 

4. Apply 2p steps of  
odd-even transposition 
along the overall snake 
 
 

Distribute 
these p/2 
columns 
evenly 
 
 

0    1  
 
 

 2    3  
 
 T(p1/2) = T(p1/2/2) + 4.5p1/2

Note that the distribution in 
phase 2 needs ½p1/2 steps

Trecursive 2 9p1/2
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Proof of the 9p1/2-Time Sorting Algorithm 

Fig. 9.13   The proof of the 
second recursive sorting 
algorithm for 2D meshes. 

0

0
0

00

1
1

1
1

a
b

c
d

Numbers of clean 0 rows 
   in the four quadrants 

.  .  .

.  .  .

Numbers of 0s in two different 
 double-columns differ by Š 2

a
b

c d

.  .  .

.  .  .

Š 2¦p elements

0
0

0
0

0
0

0
0

0
0 0

0 0 0

1 1 1

 2p elements  
 
 
 

Numbers of 0s in two different  
double-columns differ by  2 
 
 
 

Numbers of clean 0 rows 
in the four quadrants  
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Typical complexity classes 

Improving upper bounds Shifting lower bounds 

log n log n 2 n / log n n n log log n n log n n 2 

1988 
Zak’s thm. 
(log n) 

1994 
Ying’s thm. 
(log n) 2 

1996 
Dana’s alg. 

O(n) 

1991 
Chin’s alg.  

O(n log log n) 

1988 
Bert’s alg. 
O(n log n) 

1982 
Anne’s alg. 

O(n  ) 2 

Optimal 
algorithm? 

Sublinear 
Linear 

Superlinear 

Our Progress in Mesh Sorting Thus Far

Upper bounds: Deriving/analyzing 
algorithms and proving them correct

Lower bounds: Theoretical arguments 
based on bisection width, and the like

p1/2 log2p
Shearsort

11p1/29p1/22p1/2

Diameter
3p1/2

For snakelike
order only

(proved next)

Problem 
9.9

Schnorr/Shamir
algorithm
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9.5  A Nontrivial Lower Bound

Fig. 9.14    The proof 
of the 3p1/2 – o(p1/2) 
lower bound for 
sorting in snakelike 
row-major order.

2p 1/4 

2p 1/4 

2p 
items 

1/2 

Shortest path from the 
upper left triangle to the 
opposite corner in hops: 

2p 1/4 2p 1/2 2  x[t]:  
Value held  
in this corner  
after t steps 

p 1/2 

p 1/2 

The proof is complete 
if we show that the 
highlighted element 
must move by p1/2

steps in some cases
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Proving the 
Lower Bound

Fig. 9.15   Illustrating the effect of fewer or more 0s in the shaded area.

Any of the values 
1-63 can be forced 
into any desired 
column in sorted 
order by mixing 0s 
and 64s in the 
shaded area

64  64  64  64  64   1   2   3   4 
 
64  64  64  64   5   6   7   8   9 
 
64  64  64  10  11  12  13  14  15 
 
64  64  64  16  17  18  19  20  21 
 
64  64  22  23  24  25  26  27  28 
 
64  29  30  31  32  33  34  35  36 
 
37  38  39  40  41  42  43  44  45 
 
46  47  48  49  50  51  52  53  54 
 
55  56  57  58  59  60  61  62  63 
 

 0   0   0   0   0   1   2   3   4 
 
 0   0   0   0   5   6   7   8   9 
 
 0   0   0  10  11  12  13  14  15 
 
 0   0   0  16  17  18  19  20  21 
 
 0   0  22  23  24  25  26  27  28 
 
 0  29  30  31  32  33  34  35  36 
 
37  38  39  40  41  42  43  44  45 
 
46  47  48  49  50  51  52  53  54 
 
55  56  57  58  59  60  61  62  63

 1   2   3   4   5   6   7   8   9 
 
18  17  16  15  14  13  12  11  10 
 
19  20  21  22  23  24  25  26  27 
 
36  35  34  33  32  31  30  29  28 
 
37  38  39  40  41  42  43  44  45 
 
54  53  52  51  50  49  48  47  46 
 
55  56  57  58  59  60  61  62  63 
 
64  64  64  64  64  64  64  64  64 
 
64  64  64  64  64  64  64  64  64 
 

 0   0   0   0   0   0   0   0   0 
 
 0   0   0   0   0   0   0   0   0 
 
 1   2   3   4   5   6   7   8   9 
 
18  17  16  15  14  13  12  11  10 
 
19  20  21  22  23  24  25  26  27 
 
36  35  34  33  32  31  30  29  28 
 
37  38  39  40  41  42  43  44  45 
 
54  53  52  51  50  49  48  47  46 
 
55  56  57  58  59  60  61  62  63
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Proving the 
Lower Bound

Fig. 9.15   (Alternate version) Illustrating the effect of fewer or more 0s in 
the shaded area.

Any of the values 
1-63 can be forced 
into any desired 
column in sorted 
order by mixing 0s 
and 64s in the 
shaded area

0 0 0 0 1

0 0 0 2 3

0 0 4 5 6

0 7 8 9 10

11 12 13 14 15

16 16 16 16 1

16 16 16 2 3

16 16 4 5 6

16 7 8 9 10

11 12 13 14 15

0 0 0 0 0

0 0 0 0 0

1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

16 16 16 16 16

16 16 16 16 16
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9.6  Achieving the Lower Bound

Schnorr-Shamir snakelike sorting

1. Sort each block in snakelike order
2. Permute columns such that the 

columns of each vertical slice are 
evenly distributed among all slices

3. Sort each block in snakelike order
4. Sort columns from top to bottom 
5. Sort Blocks 0&1, 2&3, . . . of all 

vertical slices together in 
snakelike order; i.e., sort within 
2p3/8p3/8 submeshes

6. Sort Blocks 1&2, 3&4, . . . of all 
vertical slices together in 
snakelike order

7. Sort rows in snakelike order
8. Apply 2p3/8 steps of odd-even 

transposition to the snake

   . 
.  .  . 
   .

p 3/8

p 3/8

Vertical slice

Horizontal 
slice

Block

p     Blocks1/8

.  .  .

. 

. 

.

. 

. 

.

.  .  .

p 1/2

Proc's

Fig. 9.16    Notation for 
the asymptotically optimal 
sorting algorithm.
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Elaboration on the 3p1/2 Lower Bound

In deriving the 3p1/2 lower bound for snakelike sorting on a square mesh, 
we implicitly assumed that each processor holds one item at all times

Without this assumption, the 
following algorithm leads to a 
running time of about 2.5p1/2

Phase 1: Move all data to the 
center p1/2/2 columns

Phase 2: Perform 2-2 sorting 
in the half-wide center mesh   

Phase 3: Distribute data from 
center half of each row to the 
entire row

p1/2/2

p1/2/4

2p1/2

p1/2/4
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10  Routing on a 2D Mesh or Torus

Routing is nonexistent in PRAM, hardwired in circuit model:
• Study point-to-point and collective communication
• Learn how to route multiple data packets to destinations

Topics in This Chapter

10.1 Types of Data Routing Operations

10.2 Useful Elementary Operations

10.3 Data Routing on a 2D Array

10.4 Greedy Routing Algorithms

10.5 Other Classes of Routing Algorithms

10.6 Wormhole Routing
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10.1  Types of Data Routing Operations

Point-to-point communication: one source, one destination

Collective communication

One-to-many: multicast, broadcast (one-to-all), scatter
Many-to-one: combine (fan-in), global combine, gather
Many-to-many: all-to-all broadcast (gossiping), scatter-gather

Message 
Padding 

Packet 
data 

Last packet 
Header Trailer 

A transmitted 
packet 

Flow control 
digits (flits) 

Data or payload 
First packet 
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Types of Data Routing Algorithms

Oblivious: A source-destination pair leads to a unique path;
non-fault-tolerant

Adaptive: One of the available paths is chosen dynamically;
can avoid faulty nodes/links or route around congested areas

Degree of adaptivity leads to trade-offs between decision simplicity 
(e.g., hard to avoid infinite loops) and routing flexibility

Optimal (shortest-path): Only shortest paths considered; 
can be oblivious or adaptive

Non-optimal (non-shortest-path): Selection of shortest path 
is not guaranteed, although most algorithms tend to choose 
a shortest path if possible
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Our First Encounter with Data Routing Issues

Shared memory: Processors can communicate by storing 
data into and reading data from the memory

Circuit model: Sending results from one part of the system 
to other parts is hardwired at design time

x0
x1

x

x3

2

y
0

y1

y

y3

2

Processors

. 

. 

.

Shared Memory

0

1

p–1

. 

. 

.

0

1

2

3

m–1

Graph model: We must specify the routing process explicitly

Sorting network



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 31

1-to-1 Communication (Point-to-Point Messages)

Message 
sources, 
destinations, 
and routes

a b

c

d e f

g h

a

b

cd

e

f

g

h

Packet sources Packet destinations Routing paths

0 2
3

4

01

2

3

3210

01

2

2

10

1

2

3
4

0

1

2

0

10
1

a b

c

d e f

g h

a b

d e

f

g h

a

bd e

f

g

h

a

b

d

g

a

b

Source nodes

a

b

cd

e

f

g

h

Destination nodes

c
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Routing Operations Specific to Meshes

Data compaction or packing

Move scattered data elements to 
the smallest possible submesh 
(e.g., for problem size reduction)

Random-access write (RAW)

Emulates one write step in PRAM 
(EREW vs CRCW)

Routing algorithm is critical

Random-access read (RAR)

Can be performed as two RAWs: Write source addresses to destinations; 
write data back to sources (emulates on PRAM memory read step)

a b

c

d e f

g h

a

b

cd

e

f

g

h

Packet sources Packet destinations

a b

c

d e f

g h

a b c

d e f

g h

Fig. 10.1   Example of data compaction or packing. 
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10.2  Useful Elementary Operations
Row/Column rotation

All-to-all broadcasting in a row or column

Sorting in various orders

Chapter 9

Semigroup computation

Horizontal combining 
        ¦p/2 steps

Vertical combining 
        ¦p/2 steps- -Horizontal combining 

 p/2 steps 
 

Vertical combining 
 p/2 steps 

 

Fig. 10.2    Recursive semigroup 
computation in a 2D mesh. 

Parallel prefix 
computation

Quadrant Prefixes Horizontal Combining 
   (includes reversal)    

Vertical Combining 
      

Fig. 10.3    Recursive 
parallel prefix compu-
tation in a 2D mesh. 
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Routing on 
a Linear 

Array 
(Mesh Row 
or Column)

Processor number

(data, destination)

Left-moving
Right-moving

(d,2) (b,5) (a,0)

0 1 2 3 4 5

(e,4) (c,1)

                  (a,–2)                     (c,–4) 
(d,+2)   (b,+4)            (e,+1)             
 
 
                  (a,–2)                     (c,–4) 
         (d,+1)   (b,+3)            (e,0)                 Right 
 
         (a,–1)                     (c,–3)                Left 
         (d,+1)   (b,+3)                            
 
         (a,–1)                     (c,–3)               
                  (d,0)    (b,+2)                         Right 
 
(a,0)                      (c,–2)                         Left   
                           (b,+2)                        
 
                           (c,–2)                          
                                    (b,+1)                Right 
 
                  (c,–1)                                  Left   
                                    (b,+1) 
    
                                              (b,0)       Right 
 
          (c,0)                                           Left                     
 

Fig. 10.4    
Example of 
routing 
multiple 
packets on a 
linear array. 
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10.3  Data Routing on a 2D Array

Fig. 10.5    Example of random-access write on a 2D mesh. 

Exclusive random-access write on a 2D mesh: MeshRAW

1. Sort packets in column-major order by destination column number; 
break ties by destination row number

2. Shift packets to the right, so that each item is in the correct column 
(no conflict; at most one element in a row headed for a given column)  

3. Route the packets within each column 

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column
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Analysis of Sorting-Based Routing Algorithm

Not a shortest-path algorithm

T = 3p1/2 + o(p1/2) {snakelike sorting}
+ p1/2 {odd column reversals}
+ 2p1/2 – 2 {row & column routing}

= 6p1/2 + o(p1/2)
= 11p1/2 + o(p1/2) with unidirectional commun.

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column

Node buffer space requirement: 1 item at any given time
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10.4  Greedy Routing Algorithms

0

1

2

3

0 1 2 3

2,1 2,0 1,1

2,2 1,0

0,0 0,1

0

1

2

3

0 1 2 3

1,00,0

2,0

2,2

0,1

2,1
1,1 0

1

2

3

0 1 2 3

1,0
0,1

0,0

2,1
2,0

1,1

2,2

Initial state     After 1 step After 2 steps

0

1

2

3

1,0

0,10,0

2,12,0

1,1

2,2

After 3 steps

0 1 2 3

Fig. 10.6    Greedy row-first routing on a 2D mesh. 

Greedy algorithm: In each step, try to make the most progress toward 
the solution based on current conditions or information available

This local or short-term optimization often does not lead to a globally 
optimal solution; but, problems with optimal greedy algorithms do exist
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Analysis of Row-First Greedy Routing

T =  2p1/2 – 2

This optimal time achieved 
if we give priority to 
messages that need to go 
further along a column

Row i

Column j

Node (i,j)

Fig. 10.7    Demonstrating the worst-case 
buffer requirement with row-first routing. 

Thus far, we have two mesh 
routing algorithms:

6p1/2-step, 1 buffer per node 

2p1/2-step, time-optimal, but 
needs large buffers  

Question: Is there a 
middle ground?
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An Intermediate Routing Algorithm

Sort (p1/2/q)  (p1/2/q)
submeshes in 
column-major order

Perform greedy routing 

Fig. 10.8    Illustrating the structure of 
the intermediate routing algorithm.

p   /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p   /q1/2

q–10 1 2
Let there be rk packets in 
Bk headed for column j

Number of row-i packets 
headed for column j:

∑k=0 to q – 1rk / (p1/2/q)
< ∑ [1 + rk / (p1/2 /q)] 

 q + (q /p1/2)∑rk  2q

So, 2q – 1 buffers suffice
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Analysis of the Intermediate Algorithm

Sort time:  4p1/2/q + o(p1/2/q)

Routing time:  2p1/2

Total time:   2p1/2 + 4p1/2/q

Fig. 10.8    Illustrating the structure of 
the intermediate routing algorithm.

p   /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p   /q1/2

q–10 1 2

One extreme, q = 1:
Degenerates into 
sorting-based routing

Another extreme, large q:
Approaches the greedy 
routing algorithm

Buffers: 2q – 1, 
Intermediate between 
1 and O(p1/2)
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10.5  Other Classes of Routing Algorithms
Row-first greedy routing has very good average-case performance, 
even if the node buffer size is restricted

Idea: Convert any routing problem to two random instances by picking 
a random intermediate node for each message

Fig. 10.9    Combining of write requests 
headed for the same destination. 

Destination 
processor for 5 
write requests

W

W

W

W W1 2

3

4

5

W1,2

W3,4,5

Regardless of the routing 
algorithm used, concurrent 
writes can degrade the 
performance

Priority or combining scheme 
can be built into the routing 
algorithm so that congestion 
close to the common 
destination is avoided
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Types of Routing Problems or Algorithms

Static: Packets to be routed all available at t = 0
Dynamic: Packets “born” in the course of computation

Off-line: Routes precomputed, stored in tables
On-line: Routing decisions made on the fly

Oblivious: Path depends only on source and destination
Adaptive: Path may vary by link and node conditions

Deflection: Any received packet leaves immediately, 
even if this means misrouting (via detour path);
also known as hot-potato routing

x
x
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10.6  Wormhole Routing

Circuit switching: A circuit is established between source and 
destination before message is sent (as in old telephone networks)

Advantage:  Fast transmission after the initial overhead

Packet switching: Packets are sent independently over possibly 
different paths

Advantage:  Efficient use of channels due to sharing 

Wormhole 
switching:
Combines the 
advantages of 
circuit and 
packet switching

A

B

C

D

Packet 1

Packet 2
Deadlock!

Fig. 10.10    Worms and deadlock in wormhole routing.
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Routing algorithm must be simple to make the route selection quick

Example: row-first routing, with 2-byte header for row & column offsets

Route Selection in Wormhole Switching

Worm 1: 
moving 

(a) Two worms en route to their 
respective destinations 

Source 2 

Source 1 

Destination 1 

Destination 2 

Worm 2: 
blocked 

(b) Deadlock due to circular waiting 
of four blocked worms 

Each worm is blocked at the 
point of attempted right turn 

But . . . care must be taken to avoid excessive blocking and deadlock
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Fig. 10.11    Various ways of dealing 
with conflicts in wormhole routing. 

Dealing with Conflicts

Buffer Block

Drop Deflect
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(b) Deadlock due to circular waiting 
of four blocked worms 

Each worm is blocked at the 
point of attempted right turn 

Deadlock in Wormhole Switching

Deadlock avoidance requires a more complicated routing algorithm 
and/or more conservative routing decisions 

. . .  nontrivial performance penalties

Two strategies for dealing with deadlocks:

1. Avoidance

2. Detection and recovery
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Fig. 10.12  Use of 
dependence graph to 
check for the possibility 
of deadlock  

Deadlock Avoidance via Dependence Analysis

Less restrictive models 
are also possible; e.g., 
the turn model allows 
three of four possible 
turns for each worm

A sufficient condition for 
lack of deadlocks is to 
have a link dependence 
graph that is cycle-free

1 3
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0
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Fig. 10.13    Use of 
virtual channels for 
avoiding deadlocks. 

Deadlock Avoidance via Virtual Channels

Allow only three of the 
four possible turns

Eastbound 
messages

Westbound 
messages

Deadlock Avoidance via Routing Restrictions

NE

WN

ES

SW

Virtual channel 0 active

Virtual channel 1 active
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11  Numerical 2D Mesh Algorithms

Become more familiar with mesh/ torus architectures by:
• Developing a number of useful numerical algorithms
• Studying seminumerical applications (graphs, images)

Topics in This Chapter

11.1 Matrix Multiplication

11.2 Triangular System of Linear Equations

11.3 Tridiagonal System of Linear Equations

11.4 Arbitrary System of Linear Equations

11.5 Graph Algorithms

11.6 Image-Processing Algorithms
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11.1  Matrix Multiplication

Fig. 11.1   Matrix–vector multiplication on a linear array.

 -- 

 

a 33 

 --  -- 

a 22 

a 23 

 -- 

a 13 

 -- 

a 12 

 -- 

a 02 

 -- 

   Col 0 of A 

 -- 
a 00 

a 01 

x 3 x 2 x 1 x 0 

y 3 

a 20 
a 10 

a 03 

 -- 
 -- 
 -- 

 -- 

 -- 

P P P P 

a 11 

y 2 
y 1 

y 0 

a 21 a 30 

a 31 

a 32 

 -- 
 --  -- 

 -- 

 -- 

   Row 0 of A  

0 1 2 3 

y = Ax or 

yi = ∑j=0 to m–1 aij xj

With p = m processors, 
T = 2m – 1 = 2p – 1 
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Another View of Matrix-Vector Multiplication

m-processor linear array for multiplying an m-vector by an m  m matrix.

a    a    a    a   
 
a    a    a    a   
 
a    a    a    a   
 
a    a    a    a   

 00   01   02   03 
  
 10   11   12   13 
  
 20   21   22   23 
  
 30   31   32   33  

x 
 
x 
 
x 
 
x

0 
 
1 
 
2 
 
3

y 
 
y 
 
y 
 
y

0 
 
1 
 
2 
 
3

 

Delay
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Mesh Matrix Multiplication

Fig. 11.2    Matrix-matrix 
multiplication on a 2D mesh.

 
 

c 03 
 

c 13 
 

c 23 
 

c 33 
 

 
 

c 02 
 

c 12 
 

c 22 
 

c 32 
 

 
 

c 01 
 

c 11 
 

c 21 
 

c 31 
 

b 00 
 

 -- 
 

 -- 
 

a 
 

33 
 

a 
 

22 
 

a 
 

23 
 a 

 
13 
 a 

 
12 
 a 

 
02 
 

   Col 0 of A 
 

 -- 
 a 

 
00 
 

a 
 

01 
 

a 
 

20 
 a 

 
10 
 

a 
 

03 
 

 -- 
 

 -- 
  -- 
 

 -- 
 

a 
 

11 
 

a 
 

21 
 

a 
 

30 
 

a 
 

31 
 

a 
 

32 
 

   Row 0 of A  
 

b 10 
 

b 20 
 

b 30 
 

 
 

c 00 
 

c 10 
 

c 20 
 

c 30 
 

 -- 
 

 -- 
 

 -- 
 

 -- 
 

 -- 
 

b 01 
 

b 11 
 

b 21 
 

b 31 
 

b 02 
 

b 12 
 

b 22 
 

b 32 
 

b 03 
 

b 13 
 

b 23 
 

b 33 
 

   Col 0 of B 
 

C = AB or 

cij = ∑k=0 to m–1 aik bkj

p = m2, T = 3m – 2



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 53

Matrix-Vector Multiplication on a Ring

y = Ax or 

yi = ∑j=0 to m–1 aij xj

 

a 33 

a 22 

a 23 
a 13 

a 12 

a 02 

   Col 0 of A 

a 00 

a 01 

x 3 x 2 

y 3 

a 20 
a 10 

a 03 

a 11 

y 2 y 1 y 0 

a 21 a 30 

a 31 

a 32 

   Row 0 of A  

x 1 x 0 

Fig. 11.3    Matrix-vector multiplication on a ring.

With p = m processors, 
T = m = p
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Fig. 11.4    Matrix–matrix 
multiplication on a 2D torus.

a    a    a    a  03   12   21   30  
b    b    b    b  30   20   10   00  

a    a    a    a  02   11   20   33  
b    b    b    b  21   11   01   31  

a    a    a    a  01   10   23   32  
b    b    b    b  12   02   32   22  

a    a    a    a  00   13   22   31  
b    b    b    b  03   33   23   13  

Torus Matrix Multiplication

C = AB or 

cij = ∑k=0 to m–1 aik bkj

p = m2, T = m = p1/2

B moves

A moves
For m > p1/2, use block 
matrix multiplication

Can gain efficiency from 
overlapping communication 
with computation
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11.2  Triangular System of Linear Equations

Lower 
triangular:
Find x0 from the 
first equation, 
substitute in the 
second equation 
to find x1, etc.

Solution: Use 
forward (lower) 
or back (upper) 
substitution

a00x0 = b0

a10x0 +  a11x1 = b1

a20x0 +  a21x1 + a22x2 = b2   

.

.

.

am-1,0x0 + am-1,1x1 + . . . + am-1,m-1xm-1 = bm-1

0 

0 
a ij 

a ij 

i  j 

i  j 

Fig. 11.5    Lower/upper triangular square matrix; 
if aii = 0 for all i, then it is strictly lower/upper triangular.
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Forward Substitution on a Linear Array

Fig. 11.6   Solving a triangular system of linear equations on a linear array.

-- -- -- 
-- -- 

a 

 

11 

 -- 
a 10  -- 

a 20  -- 

a 22 
a 21  --  -- 

a 31  -- 

a 
a 32  -- 

   Col 0 of A 

 -- 
a 00  -- 
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 -- 
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b 2 b 3 
b 0 b 1 

/       

33 

-- 

-- 

-- 

x 3 

x 2 

x 1 

x 0 

 Outputs 

Placeholders  
for values to 
be computed 

x 1 x 2 

  

a 

x 

b 

x 

b  ax 

a00x0 = b0

a10x0 + a11x1 = b1

.

.

.
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Triangular Matrix Inversion: Algorithm

Fig. 11.7  Inverting a triangular matrix by solving 
triangular systems of linear equations.

1 
1 

1 
1 

1 

0 

a ij 
i  j 0 

0 

 = . 
  . 
    . 

A I X = 

0 

a ij 
i  j 

 

A 

= 

0 

1 

0 

0 

. 

. 

. 

. 

. 

. 

1 

A multiplied by ith column 
of X yields ith column of 
the identity matrix I 
(solve m such triangular 
systems to invert A) 
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Triangular Matrix Inversion on a Mesh

Fig. 11.8   Inverting a lower triangular matrix on a 2D mesh. 

a 11 

 -- 
a 10  -- 

a 20  -- 

a 22 
a 21  --  -- 

a 31  -- 

a 
a 32  -- 

   Col 0 of A 

 -- 
a 00  -- 
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 -- 
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 x 30 x 20 x 10 x 00 

t 20 t 30 
t 00 t 10 

/    

33 

-- -- -- 
-- -- 

 x 31 x 21 x 11 x 01 

t 21 t 31 
t 01 t 11    

-- -- -- 
-- -- 

 x 32 x 22 x 12 x 02 

t 22 t 32 
t 02 t 12    

-- -- -- 
-- -- 

 x 33 x 23 x 13 x 03 

t 23 t 33 t 03 t 13 

 

 

    

-- 

-- 

-- 

-- 

-- 

-- 

-- -- 

1/a ii 

T = 3m – 2

Can invert two 
matrices using 
one more step
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11.3  Tridiagonal System of Linear Equations

Fig. 11.9    A tridiagonal system of linear equations. 

l0 x–1 +  d0 x0 + u0 x1 = b0

l1 x0  +  d1 x1 + u1 x2 = b1

l2 x1  +  d2 x2 + u2 x3 = b2

.

.

.

2 

1 

0 

m1 

x 2 

x 1 

x 0 d 0 
d 1 

d 2 

d 

l 1 
l 2 

l 
d 

m1 m1 

0 

0 
. 
     . 
          . 

. 
     . 
          . 

x m1 

m2 

. 

. 

. 

 
 
 

b 
b 
b 

b 

. 

. 

. 

 
 
 

2 u 
1 u 

0 u 

m2 u 

m1 u 

l 0 

. 
     . 
          . 

l m2 

Special case of 
a band matrix

0

0
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Other Types of Diagonal Matrices

A pentadiagonal matrix.

x x x 0 0 0 0 0 0 0 0 0
x x x x 0 0 0 0 0 0 0 0
x x x x x 0 0 0 0 0 0 0
0 x x x x x 0 0 0 0 0 0
0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x 0 0 0 0
0 0 0 0 x x x x x 0 0 0
0 0 0 0 0 x x x x x 0 0
0 0 0 0 0 0 x x x x x 0
0 0 0 0 0 0 0 x x x x x
0 0 0 0 0 0 0 0 x x x x
0 0 0 0 0 0 0 0 0 x x x

Tridiagonal, pentadiagonal, . . . 
matrices arise in the solution of 
differential equations using finite 
difference methods 

Matrices with more than three 
diagonals can be viewed as 
tridiagonal blocked matrices 



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 61

Odd-Even Reduction
l0 x–1 +  d0 x0 + u0 x1 = b0

l1 x0  +  d1 x1 + u1 x2 = b1

l2 x1  +  d2 x2 + u2 x3 = b2

l3 x2  +  d3 x3 + u3 x4 = b3
.
.
.

Use odd equations to find odd-indexed 
variables in terms of even-indexed ones

d1 x1 = b1 – l1 x0 – u1 x2 

d3 x3 = b3 – l3 x2 – u3 x4 
.
.
.

Substitute in even equations to get 
a tridiagonal system of half the size

L0 x–2 +  D0 x0 + U0 x2 = B0

L2 x0  +  D2 x2 + U2 x4 = B2

L4 x2  +  D4 x4 + U4 x6 = B4

.

.

.

Li = – li li–1/di–1

Di = di – li ui–1/di–1 – ui li+1/di+1

Ui = – ui ui+1/di+1

Bi = bi – li bi–1/di–1 – ui bi+1/di+1

The six divides are replaceable 
with one reciprocation per 
equation, to find 1/dj for odd j, 
and six multiplies 

Sequential solution: 
T(m) = T(m/2) + cm = 2cm
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Architecture for Odd-Even Reduction

Fig. 11.10    The structure of odd-even reduction 
for solving a tridiagonal system of equations. 

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

x14 x12 x10 x8 x6 x4 x2 x0

x12 x8 x4 x0

x8 x0

x0

*

 * Find x  in terms of x  and x  from Eqn. 1;    
   substitute in Eqns. 0 and 2.

1 0 2

Because we 
ignored 
communication, 
our analysis is 
valid for PRAM or 
for an architecture 
whose topology 
matches that of 
Fig. 11.10. 

Parallel solution: 

T(m) = T(m/2) + c

= c log2 m
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Odd-Even Reduction on a Linear Array

Fig. 11.11    Binary X-tree (with dotted 
links) and multigrid architectures. 

Architecture of Fig. 11.10 
can be modified to binary 
X-tree and then simplified 
to 2D multigrid

Communication time on 

linear array: 

T(m) = 2(1 + 2 + . . . + m/2) 

= 2m – 2
x 
15 

x 
14 

x 
13 

x 
12 

x 
11 

x 
10 

x 
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x 
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x 
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x 
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x 
5 

x 
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x 
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x 
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x 
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x 
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x 14 x 12 x 10 x 8 x 6 x 4 x 2 x 0 

x 12 x 8 x 4 x 0 

x 8 x 0 

x 0 

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
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Odd-Even Reduction on a 2D Mesh

Communication time on 2D mesh: 

T(m)  2[2(1 + 2 + . . . + m1/2/2)] 

 2m1/2

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

0

Row 0Row 1Row 2Row 3

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Communication 
in rows

Communication 
in columns
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11.4  Arbitrary System of Linear Equations
2x0 + 4x1 - 7x2 = 3 2x0 + 4x1 - 7x2 =  7
3x0 + 6x1 - 10x2 = 4 3x0 + 6x1 - 10x2 =  8
-x0 + 3x1 - 4x2 = 6 -x0 + 3x1 - 4x2 = -1

2 4 -7 3    7
3 6 -10 4    8
-1 3 -4 6   -1

Extended matrix A =

A b
for system 1

b 
for system 2

Ax = b

1 2 -3.5 1.5   3.5
0 0 0.5 -0.5  -2.5
0 5 -7.5 7.5   2.5

Extended matrix A =

1 0 0 -2    0
0 1 0 0   -7
0 0 1 -1   -5

Extended matrix A =

Divide row 0 by 2; 
subtract 3 times 
from row 1 
(pivoting oper)

Repeat until 
identity matrix 
appears in first 
n columns; 
read solutions 
from remaining 
columns

Gaussian elimination
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Performing One Step of Gaussian Elimination

Fig. 11.12  A linear array performing the first phase of Gaussian elimination. 
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Gaussian Elimination on a 2D Mesh

Fig. 11.13    Implementation of 
Gaussian elimination on a 2D array. 
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Matrix Inversion 
on a 2D Mesh

Fig. 11.14    Matrix inversion 
by Gaussian elimination. 
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Jacobi Methods

2x0 + 4x1 - 7x2 = 3
3x0 + 6x1 - 10x2 = 4
-x0 + 3x1 - 4x2 = 6

Ax = b

x0 = -2.000x1 + 3.500x2 + 1.500
x1 = -0.500x0 + 1.667x2 + 0.667
x2 = -0.250x0 + 0.750x1 – 1.500

Use each equation to find one of the variables in terms of all others

Iterate: Plug in estimates for the unknowns on the right-hand side 
to find new estimates on the left-hand side

Example: Estimate x0 = 1, x1 = 1, x2 = 1

x0 = -2.000 + 3.500 + 1.500 =  3.000
x1 = -0.500 + 1.667 + 0.667 =  1.834
x2 = -0.250 + 0.750 – 1.500 = -1.000

Solution: x0 = -2
x1 =  0
x2 = -1
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Jacobi Relaxation and Overrelaxation

Jacobi relaxation: Assuming aii ≠ 0, solve the ith equation for xi, 
yielding m equations from which new (better) approximations to the 
answers can be obtained.

xi
(t+1) = (1 /aii)[bi – ∑ji aij xj

(t)]         xi
(0) = initial approximation for xi

On an m-processor linear array, each iteration takes O(m) steps. 
The number of iterations needed is O(log m) if certain conditions are 
satisfied, leading to O(m log m) average time.

A variant: Jacobi overrelaxation

xi
(t+1) = (1 – g) xi

(t) + (g /aii)[bi – ∑ji aij xj
(t)]              0 < g ≤ 1

For g = 1, the method is the same as Jacobi relaxation
For smaller g, overrelaxation may offer better performance
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11.5  Graph Algorithms

Fig. 11.15    Matrix representation of directed graphs. 

0 1 2

3 4 5

0 0 0 1 0 0 
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0 0 0 0 0 0
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0 1 0 0 0 0 
0 0 0 0 0 0 
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Transitive Closure of a Graph

A0 = I Paths of length 0 (identity matrix)

A1 = A Paths of length 1

A2 = A  A Paths of length 2 

A3 = A2  A Paths of length 3 etc.

Compute “powers” of A via matrix multiplication, 
but use AND/OR in lieu of multiplication/addition

Transitive closure of G has the adjacency matrix

A* = A0 + A1 + A2 + . . . 

A*ij = 1 iff node j is reachable from node i

Powers need to be computed up to An–1 (why?)

0 1 2

3 4 5

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0

A  =

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 

Graph G with 
adjacency matrix A
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Transitive Closure Algorithm

Initialization: Insert the edges (i, i), 0  i  n – 1, into the graph 

Phase 0    Insert the edge (i, j) into the graph 
if (i, 0) and (0, j) are in the graph

Phase 1    Insert the edge (i, j) into the graph 
if (i, 1) and (1, j) are in the graph

.

.

.

Phase k Insert the edge (i, j) into the graph 
if (i, k) and (k, j) are in the graph 
[Graph A(k) then has an edge (i, j) iff there is 
a path from i to j that goes only through 
nodes {1, 2, . . . , k} as intermediate hops]

.

.

.

Phase n – 1    Graph A(n–1) is the answer A*

0 1 2

3 4 5

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0

A  =

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 

Graph G with 
adjacency matrix A
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Transitive Closure on a 2D Mesh

The key to the algorithm is to ensure that each 
phase takes constant time; overall O(n) steps. 
This would be optimal on an n  n mesh because 
the best sequential algorithm needs O(n3) time.

0 1 2

3 4 5

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0

A  =

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 

Graph G with 
adjacency matrix A

 Row 2 
 Row 1 
 Row 0

  
 Row 2 
Row 0/1

  
Row 0/2 
 Row 1

Row 2 
Row 1 
Row 0

 Row 0 
Row 1/2 
 

Row 1/0 
 Row 2 

  
 Row 1 
Row 2/0

  
Row 2/1 
 Row 0

 Row 2 
 Row 1 
 Row 0

 Row 2 
 Row 1 
 Row 0

Initially

Fig. 11.16   Transitive closure algorithm on a 2D mesh. 
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Elimination of Broadcasting via Retiming

Example of systolic retiming by delaying the inputs to CL and advancing 
the outputs from CL by d units [Fig. 12.8 in Computer Arithmetic: 
Algorithms and Hardware Designs, by Parhami, Oxford, 2000] 

Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

0 0 0 0

1 1 1 1
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Systolic Retiming for Transitive Closure

Fig. 11.17    
Systolic 
retiming to 
eliminate 
broadcasting.

Input host 

Output host  

Cut 1 

0, 0 0, 1 0, 2 0, 3 

1, 0 1, 1 1, 2 1, 3 

2, 0 2, 1 2, 2 2, 3 

3, 0 3, 1 3, 2 3, 3 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Input host 

Output host  

0, 0 0, 1 0, 2 0, 3 

1, 0 1, 1 1, 2 1, 3 

2, 0 2, 1 2, 2 2, 3 

3, 0 3, 1 3, 2 3, 3 

7 1 1 1 

1 5 1 1 

1 1 3 1 

1 2 3 4 

1 2 3 4 

1 1 1 

1 1 1 

1 3 1 

5 1 1 

Broadcasting 
nodes  

Add 2n – 2 = 6 units of delay to edges crossing cut 1
Move 6 units of delay from inputs to outputs of node (0, 0)
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11.6  Image Processing Algorithms

The reason for considering 
diagonally adjacent pixels parts 
of the same component.

Labeling connected components in a binary image (matrix of pixels)

 

x 

Worst-case component showing 
that a naïve “propagation” 
algorithm may require O(p) time.
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Recursive Component Labeling on a 2D Mesh
1 0 C 0 C 3 

C 49 

C 47 

1 1 1 0 1 1 

0 1 1 0 1 0 1 

1 0 0 0 

0 

1 0 0 0 

1 0 1 1 0 1 1 1 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 1 

0 1 0 0 1 0 1 1 

1 0 0 0 1 0 0 1 

Fig. 11.18   Connected components 
in an 8  8 binary image. 

Fig. 11.19    Finding the connected 
components via divide and conquer.
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T(p) = T(p/4) + O(p1/2) = O(p1/2)
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Levialdi’s 
Algorithm

Figure 11.21 Example 
of the shrinkage phase 
of Levialdi’s component 
labeling algorithm.
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Figure 11.20
Transformation or 
rewriting rules for 
Levialdi’s algorithm in 
the shrinkage phase 
(no other pixel changes).
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Analysis and Proof of Levialdi’s Algorithm

0 1    1 1    0 is changed to 1 
1 0    1 0    if N = W = 1 
                                                  
       0 0    1 is changed to 0 
       0 1    if N = W = NW = 0 
 

Component do not merge in shrinkage phase
Consider a 0 that is about to become a 1
If any y is 1, then already connected
If z is 1 then it will change to 0 unless 
at least one neighboring y is 1

x 1 y

1 0 y

y y z

Latency of Levialdi’s algorithm

T(n) = 2n1/2 – 1 {shrinkage} + 2n1/2 – 1 {expansion}

Figure 11.20
Transformation or rewriting 
rules for Levialdi’s algorithm 
in the shrinkage phase 
(no other pixel changes).
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12  Mesh-Related Architectures

Study variants of simple mesh and torus architectures:
• Variants motivated by performance or cost factors
• Related architectures: pyramids and meshes of trees

Topics in This Chapter

12.1 Three or More Dimensions

12.2 Stronger and Weaker Connectivities

12.3 Meshes Augmented with Nonlocal Links

12.4 Meshes with Dynamic Links

12.5 Pyramid and Multigrid Systems

12.6 Meshes of Trees



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 82

12.1  Three or More Dimensions
3D vs 2D mesh: D = 3p1/3 – 3 vs 2p1/2 – 2; B = p2/3 vs p1/2

Example: 3D 8  8  8 mesh p = 512, D = 21, B = 64
2D 22  23 mesh p = 506, D = 43, B = 23

Fig. 12.1    3D and 2.5D physical realizations of a 3D mesh.

Circuit 
Board

Backplane
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More than Three 
Dimensions?

qD mesh with m processors along each dimension: p = mq

Node degree d = 2q
Diameter D = q(m – 1) = q (p1/q – 1)
Bisection width: B = p1–1/q when m = p1/q is even

qD torus with m processors along each dimension = m-ary q-cube 

PC board 

Backplane 

Memory 

CPU 

Bus 

Connector 

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common 

Stacked layers 
glued together 

Interlayer connections 
deposited on the 

outside of the stack 
Die 

4D, 5D, . . .  
meshes/tori: 
optical links?

2.5D and 3D 
packaging 
technologies
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zyx order
000 0
001 1
002 2
003 3
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011 5
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…
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Node Indexing in q-D Meshes
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Sorting on 3D mesh (zyx order; reverse of node index)

Phase 1: Sort elements on each zx plane into zx order
Phase 2: Sort elements on each yz plane into zy order
Phase 3: Sort elements on each xy layer into yx order 

(odd layers sorted in reverse order)
Phase 4: Apply 2 steps of odd-even transposition along z
Phase 5: Sort elements on each xy layer into yx order

A variant of 
shearsort is 
available, 
but Kunde’s 
algorithm is 
faster and 
simpler

Defining the 
zyx processor 
ordering x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering 
of processors

0 1 2
3 4 5

6 7 8
9 10

Sorting on a 3D Mesh

Time for Kunde’s algorithm 
= 4  (2D-sort time) + 2 
 16p1/3 steps
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Greedy zyx (layer-first, row last) routing algorithm 

Phase 1: Sort into zyx order by destination addresses 

Phase 2: Route along z dimension to correct xy layer

Phase 3: Route along y dimension to correct column

Phase 4: Route along x dimension to destination

Simple greedy 
algorithm does 
fine usually, 
but sorting first 
reduces buffer 
requirements

As in 2D case, 
partial sorting 
can be used x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering 
of processors

0 1 2
3 4 5

6 7 8
9 10

Routing on a 3D Mesh

Time for sort-based routing 
= Sort time + Diameter 
 19p1/3 steps
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Assume the use of an m3/4 m3/4 m3/4 mesh with p = m9/4 processors

Each m3/4 m3/4 layer of the mesh is assigned to one of the m3/4 m3/4

matrix multiplications (m3/4 multiply-add steps)

The rest of the process can take time that is of lower order

Optimal: Matches sequential work and diameter-based lower bound 

A total of (m1/4)3

= m3/4 block 
multiplications 
are needed

Matrix blocking 
for multiplication 
on a 3D mesh

Matrix Multiplication on a 3D Mesh

m

m

m
3/4

m
3/4

m
3/4

m
3/4

m
3/4

Matrices
Processor 
   array

m      processors   9/4
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A low-dimensional mesh can efficiently emulate a high-dimensional one

Question: Is it more cost effective, e.g., to have 4-port processors in a 
2D mesh architecture or 6-port processors in a 3D mesh architecture, 
given that for the 4-port processors, fewer ports and ease of layout allow 
us to make each channel wider?

There is a good match between 
the structure of a 3D mesh and 
communication requirements of 
physical modeling problems

Low- vs High-Dimensional Meshes

6  6 mesh 
emulating 
333 mesh
(not optimal)

Lower 
layer

Middle 
layer

Upper 
layer
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12.2  Stronger and Weaker Connectivities

Fig. 12.2    Eight-neighbor and hexagonal (hex) meshes.

Fortified meshes 
and other models 
with stronger 
connectivities:

Eight-neighbor
Six-neighbor

Triangular
Hexagonal

0 1 2

3 4 5

6 7 8 9

10 11 12 13

14 15 16

17 18

Node i connected to i ± 1, 
i ± 7, and i ± 8 (mod 19).

As in higher-dimensional meshes, greater connectivity does not 
automatically translate into greater performance

Area and signal-propagation delay penalties must be factored in
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Simplification via Link Orientation

Figure 12.3    A 4  4 Manhattan street network.

Two in- and 
out-channels 
per node, 
instead of four

With even side 
lengths, the 

diameter does 
not change

Some shortest 
paths become 
longer, however

Can be more 
cost-effective 

than 2D mesh
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Simplification via Link Removal

Figure 12.4   A pruned 4  4  4 torus 
with nodes of degree four [Kwai97].

Pruning a high-dimensional 
mesh or torus can yield an 
architecture with the same 
diameter but much lower 
implementation cost

X

Y
Z

Honeycomb torus
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Simplification via Link Sharing

Fig. 12.5   Eight-neighbor mesh with shared links and example data paths.

Factor-of-2 reduction in ports and links, with no performance 
degradation for uniaxis communication (weak SIMD model)

NE
NW

SE
SW

NE

SE
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12.3  Meshes Augmented with Nonlocal Links
Motivation: Reduce the wide diameter (which is a weakness of meshes)

Fig. 12.6   Three examples of bypass links along the rows of a 2D mesh.

Increases max 
node degree 
and hurts the 
wiring locality 
and regularity

One-way street  

Freeway 

Road analogy 
for bypass 
connections
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Using a Single Global Bus

Fig. 12.7    Mesh with a global bus and semigroup computation on it.

Semigroup computation on 2D mesh with a global bus

Phase 1: Find partial results in p1/3p1/3 submeshes in O(p1/3) steps;
results stored in the upper left corner of each submesh

Phase 2: Combine partial results in O(p1/3) steps, using a sequential
algorithm in one node and the global bus for data transfers

Phase 3: Broadcast the result to all nodes (one step)

. 

. 

. 

. 

. 

. 

. 

. 

. 

.   .   . 

.   .   . 

.   .   . 

 . 
     . 
         . 

p 1/3 

p 1/3 

p 1/2 

The single bus 
increases the 
bisection width 
by 1, so it does 
not help much 
with sorting or 
other tasks that 
need extensive 
data movement
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Mesh with Row and Column Buses

Fig. 12.8    Mesh with row/column buses and semigroup computation on it.

Semigroup computation on 2D mesh with row and column buses
Phase 1:  Find partial results in p1/6  p1/6 submeshes in O(p1/6) steps
Phase 2:  Distribute p1/3 row values left among the p1/6 rows in same slice   
Phase 3:  Combine row values in p1/6 steps using the row buses
Phase 4:  Distribute column-0 values to p1/3 columns using the row buses
Phase 5:  Combine column values in p1/6 steps using the column buses 
Phase 6:  Distribute p1/3 values on row 0 among p1/6 rows of row slice 0
Phase 7:  Combine row values in p1/6 steps 
Phase 8:  Broadcast the result to all nodes (2 steps)

The bisection width 
doubles, so row and 
column buses do not 
fundamentally change 
the performance of 
sorting or other tasks 
that need extensive 
data movement
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12.4  Meshes with Dynamic Links

Fig. 12.9    Linear array with a separable bus using reconfiguration switches. 

Semigroup computation in O(log p) steps; both 1D and 2D meshes

{N}{E}{W}{S} {NS}{EW} {NEWS}

{NES}{W}{NE}{WS} {NE}{W}{S}

Fig. 12.10    Some processor 
states in a reconfigurable mesh. 

Various subsets of processors 
(not just rows and columns) can 
be configured, to communicate 
over shared buses
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Programmable Connectivity in FPGAs

Interconnection switch 
with 8 ports and four 
connection choices for 
each port:

0 – No connection
1 – Straight through
2 – Right turn
3 – Left turn

8 control bits (why?)

1

2

1

2

3

3
4

4

5

58

8

7

6

6
7



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 98

An Array Reconfiguration Scheme

3-state 2  2 switch
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Reconfiguration of Faulty Arrays

Spare 
Row

Spare Column

Question: How do we know which 
cells/nodes must be bypassed?

Must devise a scheme in which 
healthy nodes set the switches
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12.5  Pyramid and Multigrid Systems

Originally developed for image processing applications

Roughly 3/4 of the processors belong to the base

For an l-level pyramid: D = 2l – 2      d = 9      B = 2l

Apex

Base

Fig. 12.11    Pyramid with 3 levels and 4  4 base along with its 2D layout. 

Faster than mesh 
for semigroup 
computation, 
but not for 
sorting or 
arbitrary 
routing
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Pyramid and 2D Multigrid Architectures

Fig. 12.12    The relationship between pyramid 
and 2D multigrid architectures. 

Multigrid architecture is less costly 
and can emulate the pyramid 
architecture quite efficiently x 
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Pyramid is to 2D multigrid 
what X-tree is to 1D multigrid



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 102

12.6  Meshes of Trees

Fig. 12.13    Mesh of trees architecture with 3 levels and a 4  4 base. 

2m trees, each with m leaves, 
sharing leaves in the base

Row and column roots can be 
combined into m degree-4 nodes

m m  base 

Column tree 
(one per col.) 

Row tree 
(one per row) 
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Fig. 12.14 Alternate views of the mesh of trees 

architecture with a 4  4 base.

Alternate Views of a Mesh of Trees

2D layout for mesh of trees  
network with a 4  4 base;  
root nodes are in the middle 
row and column 

P 0  0 M 

P 1 

P 2 

P 3 

 1 M 

 2 M 

 3 M 
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2D layout for mesh of trees 
network with a 4  4 base; 
root nodes are in the middle 
row and column 

P 0  0 M 

P 1 

P 2 

P 3 

 1 M 

 2 M 

 3 M 

Simple Algorithms for Mesh of Trees

Semigroup computation: row/column combining

Parallel prefix computation: similar

Routing m2 packets, one per processor on the 
m  m base: requires (m) = (p1/2) steps

In the view of Fig. 12.14, with only m packets 
to be routed from one side of the network to 
the other, 2 log2 m steps are required, 
provided destination nodes are distinct

Sorting m2 keys, one per processor on the 
m  m base: emulate any mesh sorting algorithm 

Sorting m keys stored in merged roots: 
broadcast xi to row i and column i, compare xi to xj

in leaf (i, j) to set a flag, add flags in column trees 
to find the rank of xi , route xi to node rank[xi]

m m  base 

Column tree 
(one per col.) 

Row tree 
(one per row) 
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Some Numerical Algorithms for Mesh of Trees

Matrix-vector multiplication Ax = y (A stored on 
the base and vector x in the column roots, say; 
result vector y is obtained in the row roots): 
broadcast xj in the jth column tree, compute aijxj

in base processor (i, j), sum over row trees

m m  base 

Column tree 
(one per col.) 

Row tree 
(one per row) 

Column tree 
(only one shown) Diagonal trees 

 Fig. 12.15
Mesh of trees 
variant with 
row, column, 
and diagonal 

trees.

Convolution of two vectors: similar
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Minimal-Weight Spanning Tree Algorithm
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Resulting 
MWST 

Supernode 1 

Supernode 1 Supernode 0 

Greedy algorithm: in each of at most log2 n phases, add the 
minimal-weight edge that connects a component to a neighbor 

Sequential algorithms, for 
an n-node, e-edge graph:

Kruskal’s: O(e log e)

Prim’s (binary heap): 
O((e + n) log n)

Both of these algorithms 
are O(n2 log n) for dense 
graphs, with e = O(n2)

Prim’s (Fibonacci heap):      
O(e + n log n), or 
O(n2) for dense graphs

Fig. 12.16 Example for min-weight spanning tree algorithm.
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MWST Algorithm on a Mesh of Trees

m m  base 

Column tree 
(one per col.) 

Row tree 
(one per row) 

The key to parallel version of the algorithm is showing that 
each phase can be done in O(log2n) steps; O(log3n) overall

Leaf (i, j) holds the weight W(i, j) of edge (i, j) 
and “knows” whether the edge is in the 
spanning tree, and if so, in which supernode. 
In each phase, we must:
a. Find the min-weight edge incident 

to each supernode
b. Merge supernodes for next phase

Example pointer 
after one jump 

A 
B 

 C 

 2 

7 

Supernode A   
is merging with 
supernode B 
and B with C 

Leader of the 
new supernode 

Remove and make 
node 2 point to itself 

Fig. 12.17 Finding the new supernode 

ID when several supernodes merge.

Subphase a takes O(log n) steps
Subphase b takes O(log2 n) steps


