
Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 1

Part III
Mesh-Based Architectures

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by
the author in connection with teaching the graduate-level course
ECE 254B: Advanced Computer Architecture: Parallel Processing,
at the University of California, Santa Barbara. Instructors can use
these slides in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019 Winter 2020 Winter 2021

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 3

III Mesh-Type Architectures

Study mesh, torus, and related interconnection schemes:
• Many modern parallel machines are mesh/torus-based
• Scalability and speed due to short, regular wiring
• Enhanced meshes, variants, and derivative networks

Topics in This Part

Chapter 9 Sorting on a 2D Mesh or Torus

Chapter 10 Routing on a 2D Mesh or Torus

Chapter 11 Numerical 2D Mesh Algorithms

Chapter 12 Mesh-Related Architectures

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 4

9 Sorting on a 2D Mesh or Torus

Introduce the mesh model (processors, links, communication):
• Develop 2D mesh sorting algorithms
• Learn about strengths and weaknesses of 2D meshes

Topics in This Chapter

9.1 Mesh-Connected Computers

9.2 The Shearsort Algorithm

9.3 Variants of Simple Shearsort

9.4 Recursive Sorting Algorithms

9.5 A Nontrivial Lower Bound

9.6 Achieving the Lower Bound

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 5

9.1 Mesh-Connected Computers

Fig. 9.1 Two-dimensional mesh-connected computer.

2D, four-neighbor
(NEWS) mesh; other
types in Chapter 12

Square p1/2  p1/2 or
rectangular r  p/r

MIMD, SPMD, SIMD,
Weak SIMD

Single/All-port model

Diameter-based or
bisection-based
lower bound: O(p1/2)

Row wrap-around link for torus

In
p

ut
/o

u
tp

ut
 v

ia
 b

ou
n

da
ry

 p
ro

ce
ss

or
s?

C
ol

u
m

n
w

ra
pa

ro
u

nd
 li

nk
 f

o
r

to
ru

s
Row wraparound link for torus

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 6

MIMD, SPMD, SIMD, or Weak SIMD Mesh

Some communication modes.

a. MIMD all-port b. MIMD Single-port

c. SIMD single-port d. Weak SIMD

All-port: Processor can
communicate with all its
neighbors at once (in one
cycle or time step)

Single-port: Processor
can send/receive one
message per time step

MIMD: Processors choose
their communication
directions independently

SIMD: All processors
directed to do the same

Weak SIMD: Same
direction for all (uniaxis)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 7

Torus Implementation without Long Wires

Fig. 9.2 A 5  5 torus folded along its columns. Folding this diagram
along the rows will produce a layout with only short links.

8 x 8 folded torus

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 8

Processor Indexing in Mesh or Torus

 0 1 2 3

 4 5 6 7

 8 9 10 11

12 13 14 15

a. Row-major

 0 1 2 3

 7 6 5 4

 8 9 10 11

15 14 13 12

b. Snakelike row-major

 0 1 4 5

 2 3 6 7

 8 9 12 13

10 11 14 15

c. Shuffled row-major

 1 2 5 6

 0 3 4 7

15 12 11 8

14 13 10 9

d. Proximity order

 --- ---
 | | | |

 |
 --
 | | | |
 -- --

Fig. 9.3 Some
linear indexing
schemes for the
processors in a
2D mesh.

Our focus will
be on row-major
and snakelike
row-major
indexing

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 9

Register-Based Communication

Fig. 9.4 Reading data from NEWS neighbors via virtual local registers.

R1
R2

R3
R4

R5

R5

R5

R5

R5
R2

R3
R4

R1

R5

R5

R6
R6

R7

R7

R8

R8

0
North
East
West
South
Buffer

$0
$1
$2
$3
$4
$5
$6
$7

.

.

.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 10

9.2 The Shearsort Algorithm

Fig. 9.5 Description
of the shearsort
algorithm on an
r-row 2D mesh.

Tshearsort = log2r (p/r + r) + p/r

then
sort the
columns
(top-to-
bottom)

Sort the
rows
(snake-
like)

repeat log r times

endrepeat
Sort the rows

Snakelike Row-Major

.
.

.

.

.

.

.

.

(depending on the desired final sorted order)
or

 2

Shearsort algorihm for a 2D mesh with r rows

On a square mesh:
Tshearsort =p1/2(log2p+1)

Diameter-based LB:
Tsort  2p1/2 – 2

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 11

Proving Shearsort Correct

Fig. 9.6 A pair of dirty rows create at least one clean row in each
shearsort iteration

Assume that
in doing the
column
sorts, we first
sort pairs of
elements in
the column
and then sort
the entire
column

0 0 0 1 1
1 1 1 0 0

0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1
1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1

0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

Row 2i
Row 2i + 1

Case (a):
More 0s

Case (b):
More 1s

Case (c):
Equal #
0s & 1s







Bubbles up in the
next column sort

Sinks down in the
next column sort

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 12

Shearsort Proof (Continued)

Fig. 9.7 The number of dirty rows halves with each shearsort iteration.

Dirty Dirty
x dirty
rows

At most x/2
dirty rows

0

1

0

1


 

0

1

After log2r iterations, only
one dirty row remains

0

1

00111010011010110

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 13

Shearsort Example

Fig. 9.8 Example of shearsort on a 4  4 mesh.

1 12 21 4

15 20 13 2

5 9 18 7

22 3 14 17

1 4 12 21

20 15 13 2

5 7 9 18

22 17 14 3

1 4 9 2

5 7 12 3

20 15 13 18

22 17 14 21

1 2 4 9

12 7 5 3

13 15 18 20

22 21 17 14

1 2 4 3

12 7 5 9

13 15 17 14

22 21 18 20

1 2 3 4

12 9 7 5

13 14 15 17

22 21 20 18

1 2 3 4

5 7 9 12

13 14 15 17

18 20 21 22

After first row sort
(snakelike)

After second row sort
(snakelike)

After final row sort
(snakelike)

Column sort Column sort (left to right)

Initial arrangement
of keys in the mesh

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 14

9.3 Variants of Simple Shearsort

Observation: On a linear array, odd-even transposition sort needs only k
steps if the “dirty” (unsorted) part of the array is of length k

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1

Unsorted part

Dirty Dirty
x dirty
rows

At most x/2
dirty rows

0

1

0

1


 

In shearsort, we do not have to sort
columns completely, because only a
portion of the column is unsorted
(the portion shrinks in each phase)

On a square mesh:
Topt shearsort =

p1/2(½ log2p+3)–2

Topt shearsort = (p / r)(log2r + 1) +
r + r/2 + . . . + 2

2r – 2

Thus, 2r – 2 replaces r log2r in
simple shearsort

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 15

Shearsort with
Multiple Items per

Processor

Fig. 9.9 Example of
shearsort on a 4  4
mesh with two keys
stored per processor.

Perform ordinary
shearsort, but replace
compare-exchange
with merge-split

(n/p) log2(n/p) steps
for the initial sort; the
rest multiplied by n/p

 1 12 21 4

15 20 13 2

 5 9 18 7

22 3 14 17

 1 6 12 25

31 20 15 2

 5 8 11 19

28 23 17 3

Keys

Row
sort

 1 6 11 2

 5 9 15 13

28 20 17 19

31 24 21 26

The final row sort (snake-like or row-major) is not shown.

 6 26 25 10

31 32 16 30

11 19 27 8

28 23 29 24

 4 10 21 26

32 30 16 13

 7 9 18 27

29 24 22 14

 4 8 12 3

 7 10 16 14

29 23 18 25

32 30 22 27

 1 3 6 11

15 13 9 5

17 19 23 28

31 27 24 21

 2 4 8 12

16 14 10 7

18 20 25 29

32 30 26 22

 1 3 6 5

15 13 9 11

17 19 23 21

31 27 25 28

 2 4 8 7

16 14 10 12

18 20 24 22

32 30 26 29

Row
sort

Column
sort

Column
sort

x
 y

Two keys held
by one processor

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 16

9.4 Recursive Sorting Algorithms

Fig. 9.10 Graphical depiction
of the first recursive algorithm
for sorting on a 2D mesh
based on four-way divide and
conquer.

Snakelike sorting order
on a square mesh

 . . .

.

.

.

1. Sort quadrants 2. Sort rows

3. Sort columns 4. Apply 4¦p steps of odd-even
 transposition along the snake

.

.

.

1. Sort quadrants 2. Sort rows

3. Sort columns 4. Apply 4p steps of
odd-even transposition
along the overall snake

T(p1/2) = T(p1/2/2) + 5.5p1/2

Note that row sort in phase 2
needs fewer steps

Trecursive 1 11p1/2

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 17

Proof of the 11p1/2-Time Sorting Algorithm

Fig. 9.11
The proof
of the first
recursive
sorting
algorithm
for 2D
meshes.

x + x'  b + c + (a – b)/2 + (d – c)/2 + a' + d' + (b' – a')/2 + (c' – d')/2
 b + c + a' + d' + (a – b)/2 + (d – c)/2 + (b' – a')/2 + (c' – d')/2 – 4½
= (a + a')/2 + (b + b')/2 + (c + c')/2 + (d + d')/2 – 2
 p1/2 – 4

x  b + c + (a – b)/2 + (d – c)/2 A similar inequality applies to x'

0

1

Dirty

x rows

x' rows

0
0

00

1
1

1
1

a

a'

b

b'

c

c'

d

d'

Numbers of clean rows in
each of the four quadrants

 p – x – x'
rows

State of the array
after Phase 3

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 18

Some Programming Considerations

Let b (a power of 2) be the block length
for snakelike sorting

 . . .

.

.

.

1. Sort quadrants 2. Sort rows

3. Sort columns 4. Apply 4¦p steps of odd-even
 transposition along the snake

.

.

.

1. Sort quadrants 2. Sort rows

3. Sort columns 4. Apply 4p steps of
odd-even transposition
along the overall snake

snakelike-mesh-sort(b)
snakelike-mesh-sort(b/2)
snakelike-row-sort(b)
column-sort(b)
snake-odd-even-xpose(4b)

R1
R2

R3
R4

R5

R5

R5

R5

R5
R2

R3
R4

R1

R5

R5

R6
R6

R7

R7

R8

R8

Fig. 9.10

Fig. 9.4

snakelike-row-sort(b)
for k = 0 to b – 1 Proc (i, j), j even, do
case i, k
even, even: if j  0 mod b AND

(R5) < (R3) then R5  R3
even, odd: if (R2) < (R5) then R2  R5
. . .

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 19

Another Recursive Sorting Algorithm

Fig. 9.12 Graphical
depiction of the second
recursive algorithm for
sorting on a 2D mesh
based on four-way
divide and conquer.

1. Sort quadrants 2. Shuffle row elements

3. Sort double columns
 in snake-like order

4. Apply 2¦p steps of
 odd-even transposition
 along the overall snake

.

.

.

. . .

0 1 2 3

Distribute
these ¦p/2
columns
evenly

1. Sort quadrants

2. Shuffle row elements

3. Sort double columns
in snakelike order

4. Apply 2p steps of
odd-even transposition
along the overall snake

Distribute
these p/2
columns
evenly

0 1

 2 3

 T(p1/2) = T(p1/2/2) + 4.5p1/2

Note that the distribution in
phase 2 needs ½p1/2 steps

Trecursive 2 9p1/2

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 20

Proof of the 9p1/2-Time Sorting Algorithm

Fig. 9.13 The proof of the
second recursive sorting
algorithm for 2D meshes.

0

0
0

00

1
1

1
1

a
b

c
d

Numbers of clean 0 rows
 in the four quadrants

. . .

. . .

Numbers of 0s in two different
 double-columns differ by Š 2

a
b

c d

. . .

. . .

Š 2¦p elements

0
0

0
0

0
0

0
0

0
0 0

0 0 0

1 1 1

 2p elements

Numbers of 0s in two different
double-columns differ by  2

Numbers of clean 0 rows
in the four quadrants

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 21

Typical complexity classes

Improving upper bounds Shifting lower bounds

log n log n 2 n / log n n n log log n n log n n 2

1988
Zak’s thm.
(log n)

1994
Ying’s thm.
(log n) 2

1996
Dana’s alg.

O(n)

1991
Chin’s alg.

O(n log log n)

1988
Bert’s alg.
O(n log n)

1982
Anne’s alg.

O(n) 2

Optimal
algorithm?

Sublinear
Linear

Superlinear

Our Progress in Mesh Sorting Thus Far

Upper bounds: Deriving/analyzing
algorithms and proving them correct

Lower bounds: Theoretical arguments
based on bisection width, and the like

p1/2 log2p
Shearsort

11p1/29p1/22p1/2

Diameter
3p1/2

For snakelike
order only

(proved next)

Problem
9.9

Schnorr/Shamir
algorithm

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 22

9.5 A Nontrivial Lower Bound

Fig. 9.14 The proof
of the 3p1/2 – o(p1/2)
lower bound for
sorting in snakelike
row-major order.

2p 1/4

2p 1/4

2p
items

1/2

Shortest path from the
upper left triangle to the
opposite corner in hops:

2p 1/4 2p 1/2 2  x[t]:
Value held
in this corner
after t steps

p 1/2

p 1/2

The proof is complete
if we show that the
highlighted element
must move by p1/2

steps in some cases

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 23

Proving the
Lower Bound

Fig. 9.15 Illustrating the effect of fewer or more 0s in the shaded area.

Any of the values
1-63 can be forced
into any desired
column in sorted
order by mixing 0s
and 64s in the
shaded area

64 64 64 64 64 1 2 3 4

64 64 64 64 5 6 7 8 9

64 64 64 10 11 12 13 14 15

64 64 64 16 17 18 19 20 21

64 64 22 23 24 25 26 27 28

64 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

 0 0 0 0 0 1 2 3 4

 0 0 0 0 5 6 7 8 9

 0 0 0 10 11 12 13 14 15

 0 0 0 16 17 18 19 20 21

 0 0 22 23 24 25 26 27 28

 0 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

 1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

19 20 21 22 23 24 25 26 27

36 35 34 33 32 31 30 29 28

37 38 39 40 41 42 43 44 45

54 53 52 51 50 49 48 47 46

55 56 57 58 59 60 61 62 63

64 64 64 64 64 64 64 64 64

64 64 64 64 64 64 64 64 64

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

 1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

19 20 21 22 23 24 25 26 27

36 35 34 33 32 31 30 29 28

37 38 39 40 41 42 43 44 45

54 53 52 51 50 49 48 47 46

55 56 57 58 59 60 61 62 63

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 24

Proving the
Lower Bound

Fig. 9.15 (Alternate version) Illustrating the effect of fewer or more 0s in
the shaded area.

Any of the values
1-63 can be forced
into any desired
column in sorted
order by mixing 0s
and 64s in the
shaded area

0 0 0 0 1

0 0 0 2 3

0 0 4 5 6

0 7 8 9 10

11 12 13 14 15

16 16 16 16 1

16 16 16 2 3

16 16 4 5 6

16 7 8 9 10

11 12 13 14 15

0 0 0 0 0

0 0 0 0 0

1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

16 16 16 16 16

16 16 16 16 16

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 25

9.6 Achieving the Lower Bound

Schnorr-Shamir snakelike sorting

1. Sort each block in snakelike order
2. Permute columns such that the

columns of each vertical slice are
evenly distributed among all slices

3. Sort each block in snakelike order
4. Sort columns from top to bottom
5. Sort Blocks 0&1, 2&3, . . . of all

vertical slices together in
snakelike order; i.e., sort within
2p3/8p3/8 submeshes

6. Sort Blocks 1&2, 3&4, . . . of all
vertical slices together in
snakelike order

7. Sort rows in snakelike order
8. Apply 2p3/8 steps of odd-even

transposition to the snake

 .
. . .
 .

p 3/8

p 3/8

Vertical slice

Horizontal
slice

Block

p Blocks1/8

. . .

.

.

.

.

.

.

. . .

p 1/2

Proc's

Fig. 9.16 Notation for
the asymptotically optimal
sorting algorithm.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 26

Elaboration on the 3p1/2 Lower Bound

In deriving the 3p1/2 lower bound for snakelike sorting on a square mesh,
we implicitly assumed that each processor holds one item at all times

Without this assumption, the
following algorithm leads to a
running time of about 2.5p1/2

Phase 1: Move all data to the
center p1/2/2 columns

Phase 2: Perform 2-2 sorting
in the half-wide center mesh

Phase 3: Distribute data from
center half of each row to the
entire row

p1/2/2

p1/2/4

2p1/2

p1/2/4

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 27

10 Routing on a 2D Mesh or Torus

Routing is nonexistent in PRAM, hardwired in circuit model:
• Study point-to-point and collective communication
• Learn how to route multiple data packets to destinations

Topics in This Chapter

10.1 Types of Data Routing Operations

10.2 Useful Elementary Operations

10.3 Data Routing on a 2D Array

10.4 Greedy Routing Algorithms

10.5 Other Classes of Routing Algorithms

10.6 Wormhole Routing

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 28

10.1 Types of Data Routing Operations

Point-to-point communication: one source, one destination

Collective communication

One-to-many: multicast, broadcast (one-to-all), scatter
Many-to-one: combine (fan-in), global combine, gather
Many-to-many: all-to-all broadcast (gossiping), scatter-gather

Message
Padding

Packet
data

Last packet
Header Trailer

A transmitted
packet

Flow control
digits (flits)

Data or payload
First packet

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 29

Types of Data Routing Algorithms

Oblivious: A source-destination pair leads to a unique path;
non-fault-tolerant

Adaptive: One of the available paths is chosen dynamically;
can avoid faulty nodes/links or route around congested areas

Degree of adaptivity leads to trade-offs between decision simplicity
(e.g., hard to avoid infinite loops) and routing flexibility

Optimal (shortest-path): Only shortest paths considered;
can be oblivious or adaptive

Non-optimal (non-shortest-path): Selection of shortest path
is not guaranteed, although most algorithms tend to choose
a shortest path if possible

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 30

Our First Encounter with Data Routing Issues

Shared memory: Processors can communicate by storing
data into and reading data from the memory

Circuit model: Sending results from one part of the system
to other parts is hardwired at design time

x0
x1

x

x3

2

y
0

y1

y

y3

2

Processors

.

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Graph model: We must specify the routing process explicitly

Sorting network

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 31

1-to-1 Communication (Point-to-Point Messages)

Message
sources,
destinations,
and routes

a b

c

d e f

g h

a

b

cd

e

f

g

h

Packet sources Packet destinations Routing paths

0 2
3

4

01

2

3

3210

01

2

2

10

1

2

3
4

0

1

2

0

10
1

a b

c

d e f

g h

a b

d e

f

g h

a

bd e

f

g

h

a

b

d

g

a

b

Source nodes

a

b

cd

e

f

g

h

Destination nodes

c

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 32

Routing Operations Specific to Meshes

Data compaction or packing

Move scattered data elements to
the smallest possible submesh
(e.g., for problem size reduction)

Random-access write (RAW)

Emulates one write step in PRAM
(EREW vs CRCW)

Routing algorithm is critical

Random-access read (RAR)

Can be performed as two RAWs: Write source addresses to destinations;
write data back to sources (emulates on PRAM memory read step)

a b

c

d e f

g h

a

b

cd

e

f

g

h

Packet sources Packet destinations

a b

c

d e f

g h

a b c

d e f

g h

Fig. 10.1 Example of data compaction or packing.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 33

10.2 Useful Elementary Operations
Row/Column rotation

All-to-all broadcasting in a row or column

Sorting in various orders

Chapter 9

Semigroup computation

Horizontal combining
 ¦p/2 steps

Vertical combining
 ¦p/2 steps- -Horizontal combining

 p/2 steps

Vertical combining
 p/2 steps

Fig. 10.2 Recursive semigroup
computation in a 2D mesh.

Parallel prefix
computation

Quadrant Prefixes Horizontal Combining
 (includes reversal)

Vertical Combining

Fig. 10.3 Recursive
parallel prefix compu-
tation in a 2D mesh.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 34

Routing on
a Linear

Array
(Mesh Row
or Column)

Processor number

(data, destination)

Left-moving
Right-moving

(d,2) (b,5) (a,0)

0 1 2 3 4 5

(e,4) (c,1)

 (a,–2) (c,–4)
(d,+2) (b,+4) (e,+1)

 (a,–2) (c,–4)
 (d,+1) (b,+3) (e,0) Right

 (a,–1) (c,–3) Left
 (d,+1) (b,+3)

 (a,–1) (c,–3)
 (d,0) (b,+2) Right

(a,0) (c,–2) Left
 (b,+2)

 (c,–2)
 (b,+1) Right

 (c,–1) Left
 (b,+1)

 (b,0) Right

 (c,0) Left

Fig. 10.4
Example of
routing
multiple
packets on a
linear array.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 35

10.3 Data Routing on a 2D Array

Fig. 10.5 Example of random-access write on a 2D mesh.

Exclusive random-access write on a 2D mesh: MeshRAW

1. Sort packets in column-major order by destination column number;
break ties by destination row number

2. Shift packets to the right, so that each item is in the correct column
(no conflict; at most one element in a row headed for a given column)

3. Route the packets within each column

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 36

Analysis of Sorting-Based Routing Algorithm

Not a shortest-path algorithm

T = 3p1/2 + o(p1/2) {snakelike sorting}
+ p1/2 {odd column reversals}
+ 2p1/2 – 2 {row & column routing}

= 6p1/2 + o(p1/2)
= 11p1/2 + o(p1/2) with unidirectional commun.

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column

Node buffer space requirement: 1 item at any given time

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 37

10.4 Greedy Routing Algorithms

0

1

2

3

0 1 2 3

2,1 2,0 1,1

2,2 1,0

0,0 0,1

0

1

2

3

0 1 2 3

1,00,0

2,0

2,2

0,1

2,1
1,1 0

1

2

3

0 1 2 3

1,0
0,1

0,0

2,1
2,0

1,1

2,2

Initial state After 1 step After 2 steps

0

1

2

3

1,0

0,10,0

2,12,0

1,1

2,2

After 3 steps

0 1 2 3

Fig. 10.6 Greedy row-first routing on a 2D mesh.

Greedy algorithm: In each step, try to make the most progress toward
the solution based on current conditions or information available

This local or short-term optimization often does not lead to a globally
optimal solution; but, problems with optimal greedy algorithms do exist

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 38

Analysis of Row-First Greedy Routing

T = 2p1/2 – 2

This optimal time achieved
if we give priority to
messages that need to go
further along a column

Row i

Column j

Node (i,j)

Fig. 10.7 Demonstrating the worst-case
buffer requirement with row-first routing.

Thus far, we have two mesh
routing algorithms:

6p1/2-step, 1 buffer per node

2p1/2-step, time-optimal, but
needs large buffers

Question: Is there a
middle ground?

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 39

An Intermediate Routing Algorithm

Sort (p1/2/q)  (p1/2/q)
submeshes in
column-major order

Perform greedy routing

Fig. 10.8 Illustrating the structure of
the intermediate routing algorithm.

p /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p /q1/2

q–10 1 2
Let there be rk packets in
Bk headed for column j

Number of row-i packets
headed for column j:

∑k=0 to q – 1rk / (p1/2/q)
< ∑ [1 + rk / (p1/2 /q)]

 q + (q /p1/2)∑rk  2q

So, 2q – 1 buffers suffice

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 40

Analysis of the Intermediate Algorithm

Sort time: 4p1/2/q + o(p1/2/q)

Routing time: 2p1/2

Total time:  2p1/2 + 4p1/2/q

Fig. 10.8 Illustrating the structure of
the intermediate routing algorithm.

p /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p /q1/2

q–10 1 2

One extreme, q = 1:
Degenerates into
sorting-based routing

Another extreme, large q:
Approaches the greedy
routing algorithm

Buffers: 2q – 1,
Intermediate between
1 and O(p1/2)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 41

10.5 Other Classes of Routing Algorithms
Row-first greedy routing has very good average-case performance,
even if the node buffer size is restricted

Idea: Convert any routing problem to two random instances by picking
a random intermediate node for each message

Fig. 10.9 Combining of write requests
headed for the same destination.

Destination
processor for 5
write requests

W

W

W

W W1 2

3

4

5

W1,2

W3,4,5

Regardless of the routing
algorithm used, concurrent
writes can degrade the
performance

Priority or combining scheme
can be built into the routing
algorithm so that congestion
close to the common
destination is avoided

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 42

Types of Routing Problems or Algorithms

Static: Packets to be routed all available at t = 0
Dynamic: Packets “born” in the course of computation

Off-line: Routes precomputed, stored in tables
On-line: Routing decisions made on the fly

Oblivious: Path depends only on source and destination
Adaptive: Path may vary by link and node conditions

Deflection: Any received packet leaves immediately,
even if this means misrouting (via detour path);
also known as hot-potato routing

x
x

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 43

10.6 Wormhole Routing

Circuit switching: A circuit is established between source and
destination before message is sent (as in old telephone networks)

Advantage: Fast transmission after the initial overhead

Packet switching: Packets are sent independently over possibly
different paths

Advantage: Efficient use of channels due to sharing

Wormhole
switching:
Combines the
advantages of
circuit and
packet switching

A

B

C

D

Packet 1

Packet 2
Deadlock!

Fig. 10.10 Worms and deadlock in wormhole routing.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 44

Routing algorithm must be simple to make the route selection quick

Example: row-first routing, with 2-byte header for row & column offsets

Route Selection in Wormhole Switching

Worm 1:
moving

(a) Two worms en route to their
respective destinations

Source 2

Source 1

Destination 1

Destination 2

Worm 2:
blocked

(b) Deadlock due to circular waiting
of four blocked worms

Each worm is blocked at the
point of attempted right turn

But . . . care must be taken to avoid excessive blocking and deadlock

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 45

Fig. 10.11 Various ways of dealing
with conflicts in wormhole routing.

Dealing with Conflicts

Buffer Block

Drop Deflect

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 46

(b) Deadlock due to circular waiting
of four blocked worms

Each worm is blocked at the
point of attempted right turn

Deadlock in Wormhole Switching

Deadlock avoidance requires a more complicated routing algorithm
and/or more conservative routing decisions

. . . nontrivial performance penalties

Two strategies for dealing with deadlocks:

1. Avoidance

2. Detection and recovery

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 47

Fig. 10.12 Use of
dependence graph to
check for the possibility
of deadlock

Deadlock Avoidance via Dependence Analysis

Less restrictive models
are also possible; e.g.,
the turn model allows
three of four possible
turns for each worm

A sufficient condition for
lack of deadlocks is to
have a link dependence
graph that is cycle-free

1 3

45

6 8
9

10

2 7

11 13

12 14
15

16
17

18
19

2021

22

23

24

1

2

3

4

5 6 7 8 9
1
0

11

12

13

14

 Unrestricted routing
(following shortest path)

1

2

3

4

5 6 7 8 9
1
0

11

12

13

14

 E-cube routing
 (row-first)

3-by-3 mesh with its links numbered

21

22

23

24

1
5

1
6

1
8

1
9

1
7

2
0

21

22

23

24

1
5

1
6

1
8

1
9

1
7

2
0

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 48

Fig. 10.13 Use of
virtual channels for
avoiding deadlocks.

Deadlock Avoidance via Virtual Channels

Allow only three of the
four possible turns

Eastbound
messages

Westbound
messages

Deadlock Avoidance via Routing Restrictions

NE

WN

ES

SW

Virtual channel 0 active

Virtual channel 1 active

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 49

11 Numerical 2D Mesh Algorithms

Become more familiar with mesh/ torus architectures by:
• Developing a number of useful numerical algorithms
• Studying seminumerical applications (graphs, images)

Topics in This Chapter

11.1 Matrix Multiplication

11.2 Triangular System of Linear Equations

11.3 Tridiagonal System of Linear Equations

11.4 Arbitrary System of Linear Equations

11.5 Graph Algorithms

11.6 Image-Processing Algorithms

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 50

11.1 Matrix Multiplication

Fig. 11.1 Matrix–vector multiplication on a linear array.

 --

a 33

 -- --

a 22

a 23

 --

a 13

 --

a 12

 --

a 02

 --

 Col 0 of A

 --
a 00

a 01

x 3 x 2 x 1 x 0

y 3

a 20
a 10

a 03

 --
 --
 --

 --

 --

P P P P

a 11

y 2
y 1

y 0

a 21 a 30

a 31

a 32

 --
 -- --

 --

 --

 Row 0 of A

0 1 2 3

y = Ax or

yi = ∑j=0 to m–1 aij xj

With p = m processors,
T = 2m – 1 = 2p – 1

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 51

Another View of Matrix-Vector Multiplication

m-processor linear array for multiplying an m-vector by an m  m matrix.

a a a a

a a a a

a a a a

a a a a

 00 01 02 03

 10 11 12 13

 20 21 22 23

 30 31 32 33

x

x

x

x

0

1

2

3

y

y

y

y

0

1

2

3

 

Delay

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 52

Mesh Matrix Multiplication

Fig. 11.2 Matrix-matrix
multiplication on a 2D mesh.

c 03

c 13

c 23

c 33

c 02

c 12

c 22

c 32

c 01

c 11

c 21

c 31

b 00

 --

 --

a

33

a

22

a

23
 a

13
 a

12
 a

02

 Col 0 of A

 --
 a

00

a

01

a

20
 a

10

a

03

 --

 --
 --

 --

a

11

a

21

a

30

a

31

a

32

 Row 0 of A

b 10

b 20

b 30

c 00

c 10

c 20

c 30

 --

 --

 --

 --

 --

b 01

b 11

b 21

b 31

b 02

b 12

b 22

b 32

b 03

b 13

b 23

b 33

 Col 0 of B

C = AB or

cij = ∑k=0 to m–1 aik bkj

p = m2, T = 3m – 2

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 53

Matrix-Vector Multiplication on a Ring

y = Ax or

yi = ∑j=0 to m–1 aij xj

a 33

a 22

a 23
a 13

a 12

a 02

 Col 0 of A

a 00

a 01

x 3 x 2

y 3

a 20
a 10

a 03

a 11

y 2 y 1 y 0

a 21 a 30

a 31

a 32

 Row 0 of A

x 1 x 0

Fig. 11.3 Matrix-vector multiplication on a ring.

With p = m processors,
T = m = p

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 54

Fig. 11.4 Matrix–matrix
multiplication on a 2D torus.

a a a a 03 12 21 30
b b b b 30 20 10 00

a a a a 02 11 20 33
b b b b 21 11 01 31

a a a a 01 10 23 32
b b b b 12 02 32 22

a a a a 00 13 22 31
b b b b 03 33 23 13

Torus Matrix Multiplication

C = AB or

cij = ∑k=0 to m–1 aik bkj

p = m2, T = m = p1/2

B moves

A moves
For m > p1/2, use block
matrix multiplication

Can gain efficiency from
overlapping communication
with computation

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 55

11.2 Triangular System of Linear Equations

Lower
triangular:
Find x0 from the
first equation,
substitute in the
second equation
to find x1, etc.

Solution: Use
forward (lower)
or back (upper)
substitution

a00x0 = b0

a10x0 + a11x1 = b1

a20x0 + a21x1 + a22x2 = b2

.

.

.

am-1,0x0 + am-1,1x1 + . . . + am-1,m-1xm-1 = bm-1

0

0
a ij

a ij

i  j

i  j

Fig. 11.5 Lower/upper triangular square matrix;
if aii = 0 for all i, then it is strictly lower/upper triangular.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 56

Forward Substitution on a Linear Array

Fig. 11.6 Solving a triangular system of linear equations on a linear array.

-- -- --
-- --

a

11

 --
a 10 --

a 20 --

a 22
a 21 -- --

a 31 --

a
a 32 --

 Col 0 of A

 --
a 00 --

x 3 x 2 x 1 x 0

 --
a 30

 --
 --

b 2 b 3
b 0 b 1

/   

33

--

--

--

x 3

x 2

x 1

x 0

 Outputs

Placeholders
for values to
be computed

x 1 x 2



a

x

b

x

b  ax

a00x0 = b0

a10x0 + a11x1 = b1

.

.

.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 57

Triangular Matrix Inversion: Algorithm

Fig. 11.7 Inverting a triangular matrix by solving
triangular systems of linear equations.

1
1

1
1

1

0

a ij
i  j 0

0

 = .
 .
 .

A I X =

0

a ij
i  j



A

=

0

1

0

0

.

.

.

.

.

.

1

A multiplied by ith column
of X yields ith column of
the identity matrix I
(solve m such triangular
systems to invert A)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 58

Triangular Matrix Inversion on a Mesh

Fig. 11.8 Inverting a lower triangular matrix on a 2D mesh.

a 11

 --
a 10 --

a 20 --

a 22
a 21 -- --

a 31 --

a
a 32 --

 Col 0 of A

 --
a 00 --

 --
a 30

 --
 --

-- -- --
-- --

 x 30 x 20 x 10 x 00

t 20 t 30
t 00 t 10

/   

33

-- -- --
-- --

 x 31 x 21 x 11 x 01

t 21 t 31
t 01 t 11   

-- -- --
-- --

 x 32 x 22 x 12 x 02

t 22 t 32
t 02 t 12   

-- -- --
-- --

 x 33 x 23 x 13 x 03

t 23 t 33 t 03 t 13





   

--

--

--

--

--

--

-- --

1/a ii

T = 3m – 2

Can invert two
matrices using
one more step

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 59

11.3 Tridiagonal System of Linear Equations

Fig. 11.9 A tridiagonal system of linear equations.

l0 x–1 + d0 x0 + u0 x1 = b0

l1 x0 + d1 x1 + u1 x2 = b1

l2 x1 + d2 x2 + u2 x3 = b2

.

.

.

2

1

0

m1

x 2

x 1

x 0 d 0
d 1

d 2

d

l 1
l 2

l
d

m1 m1

0

0
.
 .
 .

.
 .
 .

x m1

m2

.

.

.



b
b
b

b

.

.

.



2 u
1 u

0 u

m2 u

m1 u

l 0

.
 .
 .

l m2

Special case of
a band matrix

0

0

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 60

Other Types of Diagonal Matrices

A pentadiagonal matrix.

x x x 0 0 0 0 0 0 0 0 0
x x x x 0 0 0 0 0 0 0 0
x x x x x 0 0 0 0 0 0 0
0 x x x x x 0 0 0 0 0 0
0 0 x x x x x 0 0 0 0 0
0 0 0 x x x x x 0 0 0 0
0 0 0 0 x x x x x 0 0 0
0 0 0 0 0 x x x x x 0 0
0 0 0 0 0 0 x x x x x 0
0 0 0 0 0 0 0 x x x x x
0 0 0 0 0 0 0 0 x x x x
0 0 0 0 0 0 0 0 0 x x x

Tridiagonal, pentadiagonal, . . .
matrices arise in the solution of
differential equations using finite
difference methods

Matrices with more than three
diagonals can be viewed as
tridiagonal blocked matrices

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 61

Odd-Even Reduction
l0 x–1 + d0 x0 + u0 x1 = b0

l1 x0 + d1 x1 + u1 x2 = b1

l2 x1 + d2 x2 + u2 x3 = b2

l3 x2 + d3 x3 + u3 x4 = b3
.
.
.

Use odd equations to find odd-indexed
variables in terms of even-indexed ones

d1 x1 = b1 – l1 x0 – u1 x2

d3 x3 = b3 – l3 x2 – u3 x4
.
.
.

Substitute in even equations to get
a tridiagonal system of half the size

L0 x–2 + D0 x0 + U0 x2 = B0

L2 x0 + D2 x2 + U2 x4 = B2

L4 x2 + D4 x4 + U4 x6 = B4

.

.

.

Li = – li li–1/di–1

Di = di – li ui–1/di–1 – ui li+1/di+1

Ui = – ui ui+1/di+1

Bi = bi – li bi–1/di–1 – ui bi+1/di+1

The six divides are replaceable
with one reciprocation per
equation, to find 1/dj for odd j,
and six multiplies

Sequential solution:
T(m) = T(m/2) + cm = 2cm

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 62

Architecture for Odd-Even Reduction

Fig. 11.10 The structure of odd-even reduction
for solving a tridiagonal system of equations.

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

x14 x12 x10 x8 x6 x4 x2 x0

x12 x8 x4 x0

x8 x0

x0

*

 * Find x in terms of x and x from Eqn. 1;
 substitute in Eqns. 0 and 2.

1 0 2

Because we
ignored
communication,
our analysis is
valid for PRAM or
for an architecture
whose topology
matches that of
Fig. 11.10.

Parallel solution:

T(m) = T(m/2) + c

= c log2 m

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 63

Odd-Even Reduction on a Linear Array

Fig. 11.11 Binary X-tree (with dotted
links) and multigrid architectures.

Architecture of Fig. 11.10
can be modified to binary
X-tree and then simplified
to 2D multigrid

Communication time on

linear array:

T(m) = 2(1 + 2 + . . . + m/2)

= 2m – 2
x
15

x
14

x
13

x
12

x
11

x
10

x
9

x
8

x
7

x
6

x
5

x
4

x
3

x
2

x
1

x
0

x 14 x 12 x 10 x 8 x 6 x 4 x 2 x 0

x 12 x 8 x 4 x 0

x 8 x 0

x 0

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 64

Odd-Even Reduction on a 2D Mesh

Communication time on 2D mesh:

T(m)  2[2(1 + 2 + . . . + m1/2/2)]

 2m1/2

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

0

Row 0Row 1Row 2Row 3

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Communication
in rows

Communication
in columns

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 65

11.4 Arbitrary System of Linear Equations
2x0 + 4x1 - 7x2 = 3 2x0 + 4x1 - 7x2 = 7
3x0 + 6x1 - 10x2 = 4 3x0 + 6x1 - 10x2 = 8
-x0 + 3x1 - 4x2 = 6 -x0 + 3x1 - 4x2 = -1

2 4 -7 3 7
3 6 -10 4 8
-1 3 -4 6 -1

Extended matrix A =

A b
for system 1

b
for system 2

Ax = b

1 2 -3.5 1.5 3.5
0 0 0.5 -0.5 -2.5
0 5 -7.5 7.5 2.5

Extended matrix A =

1 0 0 -2 0
0 1 0 0 -7
0 0 1 -1 -5

Extended matrix A =

Divide row 0 by 2;
subtract 3 times
from row 1
(pivoting oper)

Repeat until
identity matrix
appears in first
n columns;
read solutions
from remaining
columns

Gaussian elimination

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 66

Performing One Step of Gaussian Elimination

Fig. 11.12 A linear array performing the first phase of Gaussian elimination.

a 10 a 01

a 02 a 20 a 11

a 13

y

a 21

a 22 Row 0 of
extended
matrix A’

 -- a 00
x

z stored
in cell

b 1

1/   

 -- --

 -- --

 --

b 2

b 0 *

*

*
*

 x

y  xz

Termination
symbol

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 67

Gaussian Elimination on a 2D Mesh

Fig. 11.13 Implementation of
Gaussian elimination on a 2D array.

a 10 a 01

a 02 a 20 a 11

a 13

y

a 21

a 22 Row 0 of
extended
matrix A’

 -- a 00
x

z stored
in cell

b 1

 1/   

 -- --

 -- --

 --

b 2

b 0 *

*

*
*

 x

y  xz

Termination
symbol

 1/  

 1/ 

x 1

x 2

x 0

Outputs

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 68

Matrix Inversion
on a 2D Mesh

Fig. 11.14 Matrix inversion
by Gaussian elimination.

a 10 a 01

a 02 a 20 a 11

a 13 a 21

a 22

Row 0 of
extended
matrix A’

 -- a 00

 0

 1/  

 --

 --

 0

 1 *

*

*
*

 1/ 

1/



 --

 --

 --



 

x 10

x 20

x 00

Outputs



 --

 --

 --



 

x 11

x 21

x 01



 --

 --

 --



 

x 12

x 22

x 02

 1

 0

 0

*
 0

 1

 0

*

 --

 --

 --

 --

 --

 --

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 69

Jacobi Methods

2x0 + 4x1 - 7x2 = 3
3x0 + 6x1 - 10x2 = 4
-x0 + 3x1 - 4x2 = 6

Ax = b

x0 = -2.000x1 + 3.500x2 + 1.500
x1 = -0.500x0 + 1.667x2 + 0.667
x2 = -0.250x0 + 0.750x1 – 1.500

Use each equation to find one of the variables in terms of all others

Iterate: Plug in estimates for the unknowns on the right-hand side
to find new estimates on the left-hand side

Example: Estimate x0 = 1, x1 = 1, x2 = 1

x0 = -2.000 + 3.500 + 1.500 = 3.000
x1 = -0.500 + 1.667 + 0.667 = 1.834
x2 = -0.250 + 0.750 – 1.500 = -1.000

Solution: x0 = -2
x1 = 0
x2 = -1

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 70

Jacobi Relaxation and Overrelaxation

Jacobi relaxation: Assuming aii ≠ 0, solve the ith equation for xi,
yielding m equations from which new (better) approximations to the
answers can be obtained.

xi
(t+1) = (1 /aii)[bi – ∑ji aij xj

(t)] xi
(0) = initial approximation for xi

On an m-processor linear array, each iteration takes O(m) steps.
The number of iterations needed is O(log m) if certain conditions are
satisfied, leading to O(m log m) average time.

A variant: Jacobi overrelaxation

xi
(t+1) = (1 – g) xi

(t) + (g /aii)[bi – ∑ji aij xj
(t)] 0 < g ≤ 1

For g = 1, the method is the same as Jacobi relaxation
For smaller g, overrelaxation may offer better performance

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 71

11.5 Graph Algorithms

Fig. 11.15 Matrix representation of directed graphs.

0 1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

A =

0

1
2

34

 0 2 2 2
 1 0 2

 0 3
 0 0

 1 0

W

2
1

2

2
–3

0
1

2

= -

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 2 2  2
1 0 2  
  0 3 
   0 0
1    0



Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 72

Transitive Closure of a Graph

A0 = I Paths of length 0 (identity matrix)

A1 = A Paths of length 1

A2 = A  A Paths of length 2

A3 = A2  A Paths of length 3 etc.

Compute “powers” of A via matrix multiplication,
but use AND/OR in lieu of multiplication/addition

Transitive closure of G has the adjacency matrix

A* = A0 + A1 + A2 + . . .

A*ij = 1 iff node j is reachable from node i

Powers need to be computed up to An–1 (why?)

0 1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

A =

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

Graph G with
adjacency matrix A

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 73

Transitive Closure Algorithm

Initialization: Insert the edges (i, i), 0  i  n – 1, into the graph

Phase 0 Insert the edge (i, j) into the graph
if (i, 0) and (0, j) are in the graph

Phase 1 Insert the edge (i, j) into the graph
if (i, 1) and (1, j) are in the graph

.

.

.

Phase k Insert the edge (i, j) into the graph
if (i, k) and (k, j) are in the graph
[Graph A(k) then has an edge (i, j) iff there is
a path from i to j that goes only through
nodes {1, 2, . . . , k} as intermediate hops]

.

.

.

Phase n – 1 Graph A(n–1) is the answer A*

0 1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

A =

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

Graph G with
adjacency matrix A

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 74

Transitive Closure on a 2D Mesh

The key to the algorithm is to ensure that each
phase takes constant time; overall O(n) steps.
This would be optimal on an n  n mesh because
the best sequential algorithm needs O(n3) time.

0 1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

A =

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

Graph G with
adjacency matrix A

 Row 2
 Row 1
 Row 0

 Row 2
Row 0/1

Row 0/2
 Row 1

Row 2
Row 1
Row 0

 Row 0
Row 1/2

Row 1/0
 Row 2

 Row 1
Row 2/0

Row 2/1
 Row 0

 Row 2
 Row 1
 Row 0

 Row 2
 Row 1
 Row 0

Initially

Fig. 11.16 Transitive closure algorithm on a 2D mesh.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 75

Elimination of Broadcasting via Retiming

Example of systolic retiming by delaying the inputs to CL and advancing
the outputs from CL by d units [Fig. 12.8 in Computer Arithmetic:
Algorithms and Hardware Designs, by Parhami, Oxford, 2000]

Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

0 0 0 0

1 1 1 1

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 76

Systolic Retiming for Transitive Closure

Fig. 11.17
Systolic
retiming to
eliminate
broadcasting.

Input host

Output host

Cut 1

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Input host

Output host

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

7 1 1 1

1 5 1 1

1 1 3 1

1 2 3 4

1 2 3 4

1 1 1

1 1 1

1 3 1

5 1 1

Broadcasting
nodes

Add 2n – 2 = 6 units of delay to edges crossing cut 1
Move 6 units of delay from inputs to outputs of node (0, 0)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 77

11.6 Image Processing Algorithms

The reason for considering
diagonally adjacent pixels parts
of the same component.

Labeling connected components in a binary image (matrix of pixels)

x

Worst-case component showing
that a naïve “propagation”
algorithm may require O(p) time.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 78

Recursive Component Labeling on a 2D Mesh
1 0 C 0 C 3

C 49

C 47

1 1 1 0 1 1

0 1 1 0 1 0 1

1 0 0 0

0

1 0 0 0

1 0 1 1 0 1 1 1

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1

1 0 0 0 1 0 0 1

Fig. 11.18 Connected components
in an 8  8 binary image.

Fig. 11.19 Finding the connected
components via divide and conquer.

1 0 1 1 1 0 1 1

0 1 1 0 1 0 1

1 0 0 0

0

1 0 0 0

1 0 1 1 0 1 1 1

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1

1 0 0 0 1 0 0 1

0 0

0

0

0

3

3

26 26

4 4

4

4

4

4

4 4 4

49

49 49

36

36

36

47

47

47 47

T(p) = T(p/4) + O(p1/2) = O(p1/2)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 79

Levialdi’s
Algorithm

Figure 11.21 Example
of the shrinkage phase
of Levialdi’s component
labeling algorithm.

0 1 0 1 0

1

0 1 0

0 1

0

1 0 0 1

0

1

0 1 0 1

0

1

0 1

0 1 1 0 0 1

1

0 0 1 0

1

0 1 1

0 0 0 1 0 0 1

1 0

0

0 1 0 0 1 1

0 0 0 1 0 0 1

Ini tial image

0 0

1

0

1

0

1

0

0 1 1 0 0 1

0

1

0

1

0 1

0

1

0 1

0 1 1 0 1

1

0

0 1 0

1

0 1 1

0 0 0 1 0 0 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0

0 0

1

0

1

0

1

0

0

1

1 0 0

1

1

0

1

0 1

0

1

0 1

0 1 1 0 1

1

0

0 1

1

0 1 1

0 0 1 0 0 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0

0 0

1

0 0

1

0

1

0

1

0

0

1

1 0 0

1

1

0

1

0 1

0

1

0

1

0 1 1 0 1

1

0

0 1

1

1 1

0 1 0 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0

0 0

1

After step 1 After step 2

0

0

0

0 0

1

0

1

0

1

0

0

1

0 0

1

0

1

0 1

0

1

0

1

0

1

1 0

0

0 1

1

1 1

0 1 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0

0 0

1

0

1

0 0

0

1

0 0

1

0

1

0 1

0

0

1

0

1

1 0

0

0

1

1

0 1 1

1 0

0

0 1

0

0 1

1 0 0 1 0 0 1

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0 0 0

0 0

0 0

1

0

1

0 0

0

1

0 0

1

0

0

0

0

1

0

1

0

0

0

1

0

1

1

1 0

0

0 1

0

0

1

1 0 0 1 0 0 1

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0 0 0

0 0

0

0

0

0

0

0 0 0

1

0 0

0 0 0

0

0

0

0

1

0

1

0

0

0

1

0

1 1 0

0

0

0

0

1 0 1 0 0 1

0

0

0

0 0 0

0

0

0

0

1

0

0

0 0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

1

0 0 0 0 0

0 0 0

0

0

0

0

0

1

0

0

0

1

0

1 0

0

0

0

0

* 0 1 0 0

0

0

0

0 0 0

0

0

0

0

0

0

0 0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

After step 6 After step 7 After step 8

0 1 1 1 0 is changed to 1
1 0 1 0 if N = W = 1

 0 0 1 is changed to 0
 0 1 if N = W = NW = 0

Figure 11.20
Transformation or
rewriting rules for
Levialdi’s algorithm in
the shrinkage phase
(no other pixel changes).

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 80

Analysis and Proof of Levialdi’s Algorithm

0 1 1 1 0 is changed to 1
1 0 1 0 if N = W = 1

 0 0 1 is changed to 0
 0 1 if N = W = NW = 0

Component do not merge in shrinkage phase
Consider a 0 that is about to become a 1
If any y is 1, then already connected
If z is 1 then it will change to 0 unless
at least one neighboring y is 1

x 1 y

1 0 y

y y z

Latency of Levialdi’s algorithm

T(n) = 2n1/2 – 1 {shrinkage} + 2n1/2 – 1 {expansion}

Figure 11.20
Transformation or rewriting
rules for Levialdi’s algorithm
in the shrinkage phase
(no other pixel changes).

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 81

12 Mesh-Related Architectures

Study variants of simple mesh and torus architectures:
• Variants motivated by performance or cost factors
• Related architectures: pyramids and meshes of trees

Topics in This Chapter

12.1 Three or More Dimensions

12.2 Stronger and Weaker Connectivities

12.3 Meshes Augmented with Nonlocal Links

12.4 Meshes with Dynamic Links

12.5 Pyramid and Multigrid Systems

12.6 Meshes of Trees

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 82

12.1 Three or More Dimensions
3D vs 2D mesh: D = 3p1/3 – 3 vs 2p1/2 – 2; B = p2/3 vs p1/2

Example: 3D 8  8  8 mesh p = 512, D = 21, B = 64
2D 22  23 mesh p = 506, D = 43, B = 23

Fig. 12.1 3D and 2.5D physical realizations of a 3D mesh.

Circuit
Board

Backplane

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 83

More than Three
Dimensions?

qD mesh with m processors along each dimension: p = mq

Node degree d = 2q
Diameter D = q(m – 1) = q (p1/q – 1)
Bisection width: B = p1–1/q when m = p1/q is even

qD torus with m processors along each dimension = m-ary q-cube

PC board

Backplane

Memory

CPU

Bus

Connector

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common

Stacked layers
glued together

Interlayer connections
deposited on the

outside of the stack
Die

4D, 5D, . . .
meshes/tori:
optical links?

2.5D and 3D
packaging
technologies

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 84

zyx order
000 0
001 1
002 2
003 3
010 4
011 5
012 6
013 7
020 8

…

100 16
101 17

…

200 32
201 33

Node Indexing in q-D Meshes

X

Y

Z

0

1

2

3

4

5

6

16

17

8

1013

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 85

Sorting on 3D mesh (zyx order; reverse of node index)

Phase 1: Sort elements on each zx plane into zx order
Phase 2: Sort elements on each yz plane into zy order
Phase 3: Sort elements on each xy layer into yx order

(odd layers sorted in reverse order)
Phase 4: Apply 2 steps of odd-even transposition along z
Phase 5: Sort elements on each xy layer into yx order

A variant of
shearsort is
available,
but Kunde’s
algorithm is
faster and
simpler

Defining the
zyx processor
ordering x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering
of processors

0 1 2
3 4 5

6 7 8
9 10

Sorting on a 3D Mesh

Time for Kunde’s algorithm
= 4  (2D-sort time) + 2
 16p1/3 steps

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 86

Greedy zyx (layer-first, row last) routing algorithm

Phase 1: Sort into zyx order by destination addresses

Phase 2: Route along z dimension to correct xy layer

Phase 3: Route along y dimension to correct column

Phase 4: Route along x dimension to destination

Simple greedy
algorithm does
fine usually,
but sorting first
reduces buffer
requirements

As in 2D case,
partial sorting
can be used x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering
of processors

0 1 2
3 4 5

6 7 8
9 10

Routing on a 3D Mesh

Time for sort-based routing
= Sort time + Diameter
 19p1/3 steps

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 87

Assume the use of an m3/4 m3/4 m3/4 mesh with p = m9/4 processors

Each m3/4 m3/4 layer of the mesh is assigned to one of the m3/4 m3/4

matrix multiplications (m3/4 multiply-add steps)

The rest of the process can take time that is of lower order

Optimal: Matches sequential work and diameter-based lower bound

A total of (m1/4)3

= m3/4 block
multiplications
are needed

Matrix blocking
for multiplication
on a 3D mesh

Matrix Multiplication on a 3D Mesh

m

m

m
3/4

m
3/4

m
3/4

m
3/4

m
3/4

Matrices
Processor
 array

m processors 9/4

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 88

A low-dimensional mesh can efficiently emulate a high-dimensional one

Question: Is it more cost effective, e.g., to have 4-port processors in a
2D mesh architecture or 6-port processors in a 3D mesh architecture,
given that for the 4-port processors, fewer ports and ease of layout allow
us to make each channel wider?

There is a good match between
the structure of a 3D mesh and
communication requirements of
physical modeling problems

Low- vs High-Dimensional Meshes

6  6 mesh
emulating
333 mesh
(not optimal)

Lower
layer

Middle
layer

Upper
layer

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 89

12.2 Stronger and Weaker Connectivities

Fig. 12.2 Eight-neighbor and hexagonal (hex) meshes.

Fortified meshes
and other models
with stronger
connectivities:

Eight-neighbor
Six-neighbor

Triangular
Hexagonal

0 1 2

3 4 5

6 7 8 9

10 11 12 13

14 15 16

17 18

Node i connected to i ± 1,
i ± 7, and i ± 8 (mod 19).

As in higher-dimensional meshes, greater connectivity does not
automatically translate into greater performance

Area and signal-propagation delay penalties must be factored in

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 90

Simplification via Link Orientation

Figure 12.3 A 4  4 Manhattan street network.

Two in- and
out-channels
per node,
instead of four

With even side
lengths, the

diameter does
not change

Some shortest
paths become
longer, however

Can be more
cost-effective

than 2D mesh

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 91

Simplification via Link Removal

Figure 12.4 A pruned 4  4  4 torus
with nodes of degree four [Kwai97].

Pruning a high-dimensional
mesh or torus can yield an
architecture with the same
diameter but much lower
implementation cost

X

Y
Z

Honeycomb torus

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 92

Simplification via Link Sharing

Fig. 12.5 Eight-neighbor mesh with shared links and example data paths.

Factor-of-2 reduction in ports and links, with no performance
degradation for uniaxis communication (weak SIMD model)

NE
NW

SE
SW

NE

SE

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 93

12.3 Meshes Augmented with Nonlocal Links
Motivation: Reduce the wide diameter (which is a weakness of meshes)

Fig. 12.6 Three examples of bypass links along the rows of a 2D mesh.

Increases max
node degree
and hurts the
wiring locality
and regularity

One-way street

Freeway

Road analogy
for bypass
connections

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 94

Using a Single Global Bus

Fig. 12.7 Mesh with a global bus and semigroup computation on it.

Semigroup computation on 2D mesh with a global bus

Phase 1: Find partial results in p1/3p1/3 submeshes in O(p1/3) steps;
results stored in the upper left corner of each submesh

Phase 2: Combine partial results in O(p1/3) steps, using a sequential
algorithm in one node and the global bus for data transfers

Phase 3: Broadcast the result to all nodes (one step)

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

 .
 .
 .

p 1/3

p 1/3

p 1/2

The single bus
increases the
bisection width
by 1, so it does
not help much
with sorting or
other tasks that
need extensive
data movement

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 95

Mesh with Row and Column Buses

Fig. 12.8 Mesh with row/column buses and semigroup computation on it.

Semigroup computation on 2D mesh with row and column buses
Phase 1: Find partial results in p1/6  p1/6 submeshes in O(p1/6) steps
Phase 2: Distribute p1/3 row values left among the p1/6 rows in same slice
Phase 3: Combine row values in p1/6 steps using the row buses
Phase 4: Distribute column-0 values to p1/3 columns using the row buses
Phase 5: Combine column values in p1/6 steps using the column buses
Phase 6: Distribute p1/3 values on row 0 among p1/6 rows of row slice 0
Phase 7: Combine row values in p1/6 steps
Phase 8: Broadcast the result to all nodes (2 steps)

The bisection width
doubles, so row and
column buses do not
fundamentally change
the performance of
sorting or other tasks
that need extensive
data movement

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

 .
 .
 .

p 1/6

p 1/6

p 1/2

A row
slice

A column slice

 Column
 bus

Row bus

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 96

12.4 Meshes with Dynamic Links

Fig. 12.9 Linear array with a separable bus using reconfiguration switches.

Semigroup computation in O(log p) steps; both 1D and 2D meshes

{N}{E}{W}{S} {NS}{EW} {NEWS}

{NES}{W}{NE}{WS} {NE}{W}{S}

Fig. 12.10 Some processor
states in a reconfigurable mesh.

Various subsets of processors
(not just rows and columns) can
be configured, to communicate
over shared buses

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 97

Programmable Connectivity in FPGAs

Interconnection switch
with 8 ports and four
connection choices for
each port:

0 – No connection
1 – Straight through
2 – Right turn
3 – Left turn

8 control bits (why?)

1

2

1

2

3

3
4

4

5

58

8

7

6

6
7

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 98

An Array Reconfiguration Scheme

3-state 2  2 switch

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 99

Reconfiguration of Faulty Arrays

Spare
Row

Spare Column

Question: How do we know which
cells/nodes must be bypassed?

Must devise a scheme in which
healthy nodes set the switches

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 100

12.5 Pyramid and Multigrid Systems

Originally developed for image processing applications

Roughly 3/4 of the processors belong to the base

For an l-level pyramid: D = 2l – 2 d = 9 B = 2l

Apex

Base

Fig. 12.11 Pyramid with 3 levels and 4  4 base along with its 2D layout.

Faster than mesh
for semigroup
computation,
but not for
sorting or
arbitrary
routing

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 101

Pyramid and 2D Multigrid Architectures

Fig. 12.12 The relationship between pyramid
and 2D multigrid architectures.

Multigrid architecture is less costly
and can emulate the pyramid
architecture quite efficiently x

15
x
14
x
13

x
12

x
11

x
10
x
9

x
8

x
7

x
6

x
5
x
4

x
3

x
2

x
1

x
0

x 14 x 12 x 10 x 8 x 6 x 4 x 2 x 0

x 12 x 8 x 4 x 0

x 8 x 0

x 0

Pyramid is to 2D multigrid
what X-tree is to 1D multigrid

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 102

12.6 Meshes of Trees

Fig. 12.13 Mesh of trees architecture with 3 levels and a 4  4 base.

2m trees, each with m leaves,
sharing leaves in the base

Row and column roots can be
combined into m degree-4 nodes

m m base

Column tree
(one per col.)

Row tree
(one per row)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 103

Fig. 12.14 Alternate views of the mesh of trees

architecture with a 4  4 base.

Alternate Views of a Mesh of Trees

2D layout for mesh of trees
network with a 4  4 base;
root nodes are in the middle
row and column

P 0 0 M

P 1

P 2

P 3

 1 M

 2 M

 3 M

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 104

2D layout for mesh of trees
network with a 4  4 base;
root nodes are in the middle
row and column

P 0 0 M

P 1

P 2

P 3

 1 M

 2 M

 3 M

Simple Algorithms for Mesh of Trees

Semigroup computation: row/column combining

Parallel prefix computation: similar

Routing m2 packets, one per processor on the
m  m base: requires (m) = (p1/2) steps

In the view of Fig. 12.14, with only m packets
to be routed from one side of the network to
the other, 2 log2 m steps are required,
provided destination nodes are distinct

Sorting m2 keys, one per processor on the
m  m base: emulate any mesh sorting algorithm

Sorting m keys stored in merged roots:
broadcast xi to row i and column i, compare xi to xj

in leaf (i, j) to set a flag, add flags in column trees
to find the rank of xi , route xi to node rank[xi]

m m base

Column tree
(one per col.)

Row tree
(one per row)

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 105

Some Numerical Algorithms for Mesh of Trees

Matrix-vector multiplication Ax = y (A stored on
the base and vector x in the column roots, say;
result vector y is obtained in the row roots):
broadcast xj in the jth column tree, compute aijxj

in base processor (i, j), sum over row trees

m m base

Column tree
(one per col.)

Row tree
(one per row)

Column tree
(only one shown) Diagonal trees

 Fig. 12.15
Mesh of trees
variant with
row, column,
and diagonal

trees.

Convolution of two vectors: similar

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 106

Minimal-Weight Spanning Tree Algorithm

31

19
14

11

12

24

25

22

21

27

37

23

0

8

7

6
5

4

3

2

1
31

19
14

11

12

24

25

22

21

27

37

23

0

8

7

6
5

4

3

2

1

Supernode 3
Supernode 6

0

6 3

1
31

25

21 37 23

Supernode 0

0 1
25

19
14

11

12

25

22

21

23

0

8

7

6
5

4

3

2

1

Resulting
MWST

Supernode 1

Supernode 1 Supernode 0

Greedy algorithm: in each of at most log2 n phases, add the
minimal-weight edge that connects a component to a neighbor

Sequential algorithms, for
an n-node, e-edge graph:

Kruskal’s: O(e log e)

Prim’s (binary heap):
O((e + n) log n)

Both of these algorithms
are O(n2 log n) for dense
graphs, with e = O(n2)

Prim’s (Fibonacci heap):
O(e + n log n), or
O(n2) for dense graphs

Fig. 12.16 Example for min-weight spanning tree algorithm.

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 107

MWST Algorithm on a Mesh of Trees

m m base

Column tree
(one per col.)

Row tree
(one per row)

The key to parallel version of the algorithm is showing that
each phase can be done in O(log2n) steps; O(log3n) overall

Leaf (i, j) holds the weight W(i, j) of edge (i, j)
and “knows” whether the edge is in the
spanning tree, and if so, in which supernode.
In each phase, we must:
a. Find the min-weight edge incident

to each supernode
b. Merge supernodes for next phase

Example pointer
after one jump

A
B

 C

 2

7

Supernode A
is merging with
supernode B
and B with C

Leader of the
new supernode

Remove and make
node 2 point to itself

Fig. 12.17 Finding the new supernode

ID when several supernodes merge.

Subphase a takes O(log n) steps
Subphase b takes O(log2 n) steps

