Low-Diameter Architectures

Introduction to Parallel Processing

Aggorithms and Architectures

Behrooz Parhami

Part IV

Part I: Fundamental Concepts	Background and Motivation	1. Introduction to Parallelism 2. A Taste of Parallel Algorithms 3. Parallel Algorithm Complexity 4. Models of Parallel Processing
	Complexity and Models	

	Part II: Extreme Models	Abstract View of Shared Memory Circuit Model of Parallel Systems	5. PRAM and Basic Algorithms 6. More Shared-Memory Algorithms 7. Sorting and Selection Networks 8. Other Circuit-Level Examples
	Part III: Mesh-Based Architectures	Data Movement on 2D Arrays	9. Sorting on a 2 D Mesh or Torus 10. Routing on a 2 D Mesh or Torus 11. Numerical 2D Mesh Algorithms 12. Other Mesh-Related Architectures
		Mesh Algorithms and Variants	
	Part IV: Low-Diameter Architectures	The Hypercube Architecture	13. Hypercubes and Their Algorithms 14. Sorting and Routing on Hypercubes 15. Other Hypercubic Architectures 16. A Sampler of Other Networks
		Hypercubic and Other Networks	
Part V: Some Broad Topics		Coordination and Data Access	17. Emulation and Scheduling 18. Data Storage, Input, and Output 19. Reliable Parallel Processing 20. System and Software Issues
		Robustness and Ease of Use	

Part VI: Implementation Aspects	Control-Parallel Systems	21. Shared-Memory MIMD Machines 22. Message-Passing MIMD Machines 23. Data-Parallel SIMD Machines 24. Past, Present, and Future
	Data Parallelism and Conclusion	

Winter 2021

About This Presentation

This presentation is intended to support the use of the textbook Introduction to Parallel Processing: Algorithms and Architectures (Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by the author in connection with teaching the graduate-level course ECE 254B: Advanced Computer Architecture: Parallel Processing, at the University of California, Santa Barbara. Instructors can use these slides in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Spring 2005	Spring 2006	Fall 2008	Fall 2010
		Winter 2013	Winter 2014	Winter 2016
		Winter 2019	Winter 2020	Winter 2021

IV Low-Diameter Architectures

Study the hypercube and related interconnection schemes:

- Prime example of low-diameter (logarithmic) networks
- Theoretical properties, realizability, and scalability
- Complete our view of the "sea of interconnection nets"

Topics in This Part
Chapter 13 Hypercubes and Their Algorithms
Chapter 14 Sorting and Routing on Hypercubes
Chapter 15 Other Hypercubic Architectures
Chapter 16 A Sampler of Other Networks

13 Hypercubes and Their Algorithms

Study the hypercube and its topological/algorithmic properties:

- Develop simple hypercube algorithms (more in Ch. 14)
- Learn about embeddings and their usefulness

Topics in This Chapter

13.1 Definition and Main Properties
13.2 Embeddings and Their Usefulness
13.3 Embedding of Arrays and Trees
13.4 A Few Simple Algorithms
13.5 Matrix Multiplication
13.6 Inverting a Lower-Triangular Matrix

13.1 Definition and Main Properties

Begin studying networks that are intermediate between diameter-1 complete network and diameter- $p^{1 / 2}$ mesh

Very-High-Dimensional Meshes and Tori

$q \mathrm{D}$ mesh with m processors along each dimension: $p=m^{q}$
Diameter
$D=q(m-1)=q\left(p^{1 / q}-1\right)$
Bisection width:
$B=p^{1-1 / q}$ when $m=p^{1 / q}$ is even
Node degree
$d=2 q$
$q \mathrm{D}$ torus with m processors along each dimension $=m$-ary q-cube

What happens when q becomes as large as $\log _{2} p$?
Diameter $\quad D=q\left(p^{1 / q}-1\right)=\log _{2} p^{*}=O(\log p)$
Bisection width: $\quad B=p^{1-1 / q}=p / p^{1 / q}=p / 2^{*}=O(p)$
Node degree $\quad d=2 q=\log _{2} p^{* *}=O(\log p)$
$q \mathrm{D}$ torus with 2 processors along each dimension same as mesh

* What is the value of $m=p^{1 / q}=p^{1 / \log 2 p}$?

$$
m=p^{1 / \log 2 p} \quad m^{\log 2 p}=p \quad m=2
$$

** When $m=2$, node degree becomes q instead of $2 q$

Hypercube and Its History

Binary tree has logarithmic diameter, but small bisection
Hypercube has a much larger bisection
Hypercube is a mesh with the maximum possible number of dimensions

$$
\underset{q}{2 \times 2 \times 2 \times \ldots \times 2}
$$

We saw that increasing the number of dimensions made it harder to design and visualize algorithms for the mesh
Oddly, at the extreme of $\log _{2} p$ dimensions, things become simple again!
Brief history of the hypercube (binary q-cube) architecture
Concept developed: early 1960s [Squi63]
Direct (single-stage) and indirect (multistage) versions: mid 1970s Initial proposals [Peas77], [Sull77] included no hardware
Caltech's 64-node Cosmic Cube: early 1980s [Seit85]
Introduced an elegant solution to routing (wormhole switching)
Several commercial machines: mid to late 1980s Intel PSC (personal supercomputer), CM-2, nCUBE (Section 22.3)

Basic Definitions

Hypercube is generic term; 3 -cube, 4-cube, . . . , q-cube in specific cases
(a) Binary 1-cube, built of two binary 0 -cubes, labeled 0 and 1
(b) Binary 2-cube, built of two
binary 1 -cubes, labeled 0 and 1

Fig. 13.1
The recursive structure of binary hypercubes.

(c) Binary 3 -cube, built of two binary 2 -cubes, labeled 0 and 1

Parameters:
$p=2^{q}$
$B=p / 2=2^{q-1}$
$D=q=\log _{2} p$
$d=q=\log _{2} p$

(d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1

Parallel Processing, Low-Diameter Architectures
Slide 8

The 64-Node Hypercube

Only sample wraparound links are shown to avoid clutter

Isomorphic to the $4 \times 4 \times 4$ 3D torus (each has $64 \times 6 / 2$ links)

Slide 9

Neighbors of a Node in a Hypercube

13.2 Embeddings and Their Usefulness

> Dilation $=1$ Congestion $=2$ Load factor $=2$

Fig. 13.2
Embedding a seven-node binary tree into 2D meshes of various sizes.

Expansion:

 ratio of the number of nodes (9/7, 8/7, and $4 / 7$ here)Dilation: Longest path onto which an edge is mapped (routing slowdown) Congestion: Max number of edges mapped onto one edge (contention slowdown) Load factor: Max number of nodes mapped onto one node (processing slowdown)

13.3 Embedding of Arrays and Trees

Hamiltonicity is an important property of a graph
A graph with n nodes is Hamiltonian if the n-node cycle is its subgraph
More generally, embedding of cycles of various lengths in an intact or faulty network of nodes may be sought
Bridges of Konigsberg: Find a path that crosses each bridge once

Parallel Processing, Low-Diameter Architectures

Hamiltonicity of the Hypercube

Mesh/Torus Embedding in a Hypercube

Fig. 13.5 The 4×4 mesh/torus is a subgraph of the 4-cube.
Is a mesh or torus a subgraph of the hypercube of the same size?
We prove this to be the case for a torus (and thus for a mesh)

Parallel Processing, Low-Diameter Architectures

Torus is a Subgraph of Same-Size Hypercube

A tool used in our proof

Product graph $G_{1} \times G_{2}$:

Has $n_{1} \times n_{2}$ nodes
Each node is labeled by a pair of labels, one from each component graph

Two nodes are connected if either component of the two nodes were connected in the component graphs

\times

Fig. 13.4 Examples of product graphs.
The $2^{a} \times 2^{b} \times 2^{c} \ldots$ torus is the product of $2^{a}-, 2^{b}-, 2^{c}-, \ldots$ node rings The ($a+b+c+\ldots$)-cube is the product of a-cube, b-cube, c-cube, \ldots The 2^{q}-node ring is a subgraph of the q-cube If a set of component graphs are subgraphs of another set, the product graphs will have the same relationship

Embedding Trees in the Hypercube

The ($2^{q}-1$)-node complete binary tree is not a subgraph of the q-cube

Proof by contradiction based on the parity of node label weights (number of 1 s is the labels)

The 2^{q}-node double-rooted complete binary tree is a subgraph of the q-cube

A Useful Tree Embedding in the Hypercube

Fig. 13.7 Embedding a 15 -node complete binary tree into the 3 -cube.
Parallel Processing, Low-Diameter Architectures

13.4 A Few Simple Algorithms

Semigroup computation on the q-cube Processor $x, 0 \leq x<p$ do $t[x]:=v[x]$ \{initialize "total" to own value\}
for $k=0$ to $q-1$ processor $x, 0 \leq x<p$, do get $y:=t\left[N_{k}(x)\right]$ set $t[x]:=t[x] \otimes y$ endfor

Commutativity of the operator \otimes is implicit here.

How can we remove this assumption?

Fig. 13.8 Semigroup computation on a 3-cube.

Parallel Processing, Low-Diameter Architectures

Parallel Prefix Computation

Parallel prefix computation on the q-cube Processor $x, 0 \leq x<p$, do $t[x]:=u[x]:=v[x]$ \{initialize subcube "total" and partial prefix\} for $k=0$ to $q-1$ processor $x, 0 \leq x<p$, do get $y:=t\left[N_{k}(x)\right]$ set $t[x]:=t[x] \otimes y$
if $x>\mathrm{N}_{k}(x)$ then set $u[x]:=y \otimes u[x]$ endfor

Commutativity of the operator \otimes is implicit in this algorithm as well.

How can we remove this assumption?

t : subcube "total"

u : subcube prefix Dim 2

All "totals" 0-7

Fig. 13.8 Semigroup computation on a 3-cube.

Parallel Processing, Low-Diameter Architectures

Sequence Reversal on the Hypercube

Reversing a sequence on the q-cube for $k=0$ to $q-1$ Processor $x, 0 \leq x<p$, do get $y:=v\left[\mathrm{~N}_{k}(x)\right]$
set $v[x]:=y$
endfor

Fig. 13.11 Sequence reversal on a 3-cube.

Parallel Processing, Low-Diameter Architectures

Ascend, Descend, and Normal Algorithms

13.5 Matrix Multiplication

$p=m^{3}=2^{q}$ processors, indexed as $i j k$ (with three $q / 3$-bit segments)

1. Place elements of A and B in registers R_{A} \& R_{B} of m^{2} processors with the IDs 0jk

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$
2. Replicate inputs: communicate across $1 / 3$ of the dimensions
3. Move $C_{j k}$ to

3, 4. Rearrange the data by communicating across the remaining $2 / 3$ of dimensions so that processor ijk has $A_{j i}$ and $B_{i k}$

$$
\mathrm{R}_{\mathrm{C}}:=\mathrm{R}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{B}}
$$

5

15

18

Fig. 13.12 Multiplying two 2×2 matrices on a 3-cube.

Analysis of Matrix Multiplication

The algorithm involves communication steps in three loops, each with $q / 3$ iterations (in one of the 4 loops, 2 values are exchanged per iteration)

$$
\begin{aligned}
& T_{\text {mul }}\left(m, m^{3}\right)= \\
& O(q)=\mathrm{O}(\log m)
\end{aligned}
$$

Analysis in the case of block matrix multiplication ($m \times m$ matrices): Matrices are partitioned into $p^{1 / 3} \times p^{1 / 3}$ blocks of size $\left(m / p^{1 / 3}\right) \times\left(m / p^{1 / 3}\right)$ Each communication step deals with $m^{2 /} p^{2 / 3}$ block elements
Each multiplication entails $2 m^{3} / p$ arithmetic operations

$$
T_{\text {mul }}(m, p)=\underset{\text { Communication }}{m^{2} / p^{2 / 3} \times \mathrm{O}(\log p)}+\underset{\text { Computation }}{2 m^{3} / p}
$$

13.6 Inverting a Lower-Triangular Matrix

For $A=\left[\begin{array}{ll}B & 0 \\ C & D\end{array}\right]$ we have $A^{-1}=\left[\begin{array}{cc}B^{-1} & 0 \\ -D^{-1} C B^{-1} & D^{-1}\end{array}\right]$

$$
T_{\text {inv }}(m)=T_{\text {inv }}(m / 2)+2 T_{\text {mul }}(m / 2)=T_{\text {inv }}(m / 2)+\mathrm{O}(\log m)=\mathrm{O}\left(\log ^{2} m\right)
$$

Recursive Lower-Triangular Matrix Inversion Algorithm

Invert lower-triangular matrices B and D

Send B^{-1} and D^{-1} to the subcube holding C

Compute $-D^{-1} C B^{-1}$ to in the subcube

14 Sorting and Routing on Hypercubes

Study routing and data movement problems on hypercubes:

- Learn about limitations of oblivious routing algorithms
- Show that bitonic sorting is a good match to hypercube

Topics in This Chapter	
14.1	Defining the Sorting Problem
14.2	Bitonic Sorting on a Hypercube
14.3	Routing Problems on a Hypercube
14.4	Dimension-Order Routing
14.5	Broadcasting on a Hypercube
14.6	Adaptive and Fault-Tolerant Routing

14.1 Defining the Sorting Problem

Review of the hypercube:
Fully symmetric with respect to dimensions Typical computations involve communication across all dimensions

Dimension-order communication
 is known as "ascend" or "descend" (0 up to $q-1$, or $q-1$ down to 0)

Due to symmetry, any hypercube dimension can be labeled as 0 , any other as 1 , and so on

Hypercube Sorting: Goals and Definitions

Arrange data in order of processor ID numbers (labels)
The ideal parallel sorting algorithm:

$$
T(p)=\Theta((n \log n) / p)
$$

This ideal has not been achieved in all cases for the hypercube

1-1 sorting (p items to sort, p processors)

Batcher's odd-even merge or bitonic sort: $\mathrm{O}\left(\log ^{2} p\right)$ time O(log p)-time deterministic algorithm not known
k - k sorting ($n=k p$ items to sort, p processors)
Optimal algorithms known for $n \gg p$ or when average running time is considered (randomized)

Hypercube Sorting: Attempts and Progress

No bull's eye yet!
There are three categories of practical sorting algorithms:

1. Deterministic 1-1, O($\left.\log ^{2} p\right)$-time
2. Deterministic $k-k$, optimal for $n \gg p$ (that is, for large k)
3. Probabilistic (1-1 or $k-k$)

Parallel Processing, Low-Diameter Architectures

Bitonic Sequences

Bitonic sequence:
133466622100 Rises, then falls

877666546889 Falls, then rises

898776665468 The previous sequence, right-rotated by 2

In Chapter 7, we designed bitonic sorting nets
Bitonic sorting is ideally suited to hypercube

(b)

Cyclic shift of (a)

Cyclic shift of (b)

Fig. 14.1 Examples of bitonic sequences.

Sorting a Bitonic Sequence on a Linear Array

Time needed to sort a bitonic sequence on a p-processor linear array:

$B(p)=p+p / 2$ $+p / 4+\ldots+2=$ $2 p-2$

Not competitive, because we can sort an arbitrary sequence in $2 p-2$ unidirectional communication steps using oddeven transposition

Shift right half of data to left half (superimpose the two halves)

In each position, keep the smaller of the two values and ship the larger value to the right

Each half is a bitonic sequence that can be sorted independently

Parallel Processing, Low-Diameter Architectures

Bitonic Sorting on a Linear Array

Fig. 14.3 Sorting an arbitrary sequence on a linear array through recursive application of bitonic sorting.

Sorting an arbitrary sequence of length p :

Recall that
$B(p)=2 p-2$

Alternate derivation:
$T(p)=B(2)+B(4)+\ldots+B(p)=2+6+\ldots+(2 p-2)=4 p-4-2 \log _{2} p$

Visualizing Bitonic Sorting on a Linear Array

- | - | Initial data sequence, stored one per processor
 Phase 1: Sort half-arrays in opposite directions
 Phase 2: Shift data leftward to compare half-arrays

Phase 3: Send larger item in each pair to the right

Phase 4: Sort each bitonic half-sequence separately

14.2 Bitonic Sorting on a Hypercube

For linear array, the $4 p$-step bitonic sorting algorithm is inferior to odd-even transposition which requires p compare-exchange steps (or $2 p$ unidirectional communications)
The situation is quite different for a hypercube
Sorting a bitonic sequence on a hypercube: Compare-exchange values in the upper subcube (nodes with $x_{q-1}=1$) with those in the lower subcube ($x_{q-1}=0$); sort the resulting bitonic half-sequences

$$
B(q)=B(q-1)+1=q \quad \text { Complexity: } 2 q \text { communication steps }
$$

Sorting a bitonic sequence of size n on q-cube, $q=\log _{2} \underline{n}$ for $I=q-1$ downto 0 processor $x, 0 \leq x<p$, do
if $x_{l}=0$
then get $y:=v\left[\mathrm{~N}_{/}(x)\right]$; keep $\min (v(x), y)$; send $\max (v(x), y)$ to $\mathrm{N}_{/}(x)$ endif endfor

This is a "descend" algorithm

Bitonic Sorting on a Hypercube

Fig. 14.4 Sorting a bitonic sequence of size 8 on the 3-cube.

Dimension 2

Dimension 1

Dimension 0

Parallel Processing, Low-Diameter Architectures

14.3 Routing Problems on a Hypercube

Recall the following categories of routing algorithms:
Off-line: Routes precomputed, stored in tables On-line: Routing decisions made on the fly
Oblivious: Path depends only on source \& destination Adaptive: Path may vary by link and node conditions

Good news for routing on a hypercube:

Any 1-1 routing problem with p or fewer packets can be solved in $\mathrm{O}(\log p)$ steps, using an off-line algorithm; this is a consequence of there being many paths to choose from

Bad news for routing on a hypercube:

Oblivious routing requires $\Omega\left(p^{1 / 2} / \log p\right)$ time in the worst case
(only slightly better than mesh)
In practice, actual routing performance is usually much closer to the log-time best case than to the worst case.

Limitations of Oblivious Routing

Theorem 14.1: Let $G=(V, E)$ be a p-node, degree- d network. Any oblivious routing algorithm for routing p packets in G needs $\Omega\left(p^{1 / 2} / d\right)$ worst-case time

Proof Sketch: Let $P_{u, v}$ be the unique path used for routing messages from u to v
There are $p(p-1)$ possible paths for routing among all node pairs
These paths are predetermined and do not depend on traffic within the network
Our strategy: find k node pairs $u_{i}, v_{i}(1 \leq i \leq k)$ such that $u_{i} \neq u_{j}$ and $v_{i} \neq v_{j}$ for $i \neq j$, and $P_{u_{i}, v_{i}}$ all pass through the same edge e

Because ≤ 2 packets can go through a link in one step, $\Omega(k)$ steps will be needed for some 1-1 routing problem
The main part of the proof consists of showing that k can be as large as $p^{1 / 2 / d}$

14.4 Dimension-Order Routing

Source
Destination Differences Path:

01011011
11010110
ヘ ヘ^ ^

01011011
I1011011
11010011
11010111
11010110

Unfolded hypercube (indirect cube, butterfly) facilitates the discussion, visualization, and analysis of routing algorithms

Fig. 14.5 Unfolded 3-cube or the 32-node butterfly network.

Dimension-order routing between nodes i and j in q-cube can be viewed as routing from node i in column $0(q)$ to node j in column $q(0)$ of the butterfly

Self-Routing on a Butterfly Network

Fig. 14.6 Example dimension-order routing paths.

Number of cross links taken = length of path in hypercube

From node 3 to 6 : routing tag $=011 \oplus 110=101$ "cross-straight-cross" From node 3 to 5: routing tag $=011 \oplus 101=110$ "straight-cross-cross" From node 6 to 1 : routing tag $=110 \oplus 001=111$ "cross-cross-cross"

Butterfly Is Not a Permutation Network

Fig. 14.7 Packing is a "good" routing problem for dimensionorder routing on the hypercube.

Fig. 14.8 Bit-reversal permutation is a "bad" routing problem for dimensionorder routing on the hypercube.

Why Bit-Reversal Routing Leads to Conflicts?

Consider the $(2 a+1)$-cube and messages that must go from nodes $000 \ldots 0 x_{1} x_{2} \ldots x_{a-1} x_{a}$ to nodes $x_{a} x_{a-1} \ldots x_{2} x_{1} 000 \ldots 0$

$$
a+1 \text { zeros } \quad a+1 \text { zeros }
$$

If we route messages in dimension order, starting from the right end, all of these $2^{a}=\Theta\left(p^{1 / 2}\right)$ messages will pass through node 0
Consequences of this result:

1. The $\Theta\left(p^{1 / 2}\right)$ delay is even worse than $\Omega\left(p^{1 / 2} / d\right)$ of Theorem 14.1
2. Besides delay, large buffers are needed within the nodes

True or false? If we limit nodes to a constant number of message buffers, then the $\Theta\left(p^{1 / 2}\right)$ bound still holds, except that messages are queued at several levels before reaching node 0

Bad news (false): The delay can be $\Theta(p)$ for some permutations
Good news: Performance usually much better; i.e., $\log _{2} p+o(\log p)$

Wormhole Routing on a Hypercube

Good/bad routing problems are good/bad for wormhole routing as well Dimension-order routing is deadlock-free

14.5 Broadcasting on a Hypercube

Flooding: applicable to any network with all-port communication

00000
00001, 00010, 00100, 01000, 10000
00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000
00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100
01111, 10111, 11011, 11101, 11110
11111

Source node

Neighbors of source
Distance-2 nodes
Distance-3 nodes
Distance-4 nodes
Distance-5 node

Binomial broadcast tree with single-port communication

Fig. 14.9
The binomial broadcast tree for a 5-cube.

Parallel Processing, Low-Diameter Architectures

Hypercube Broadcasting Algorithms

Fig. 14.10 Three hypercube broadcasting schemes as performed on a 4-cube.

Dim 2

Parallel Processing, Low-Diameter Architectures

14.6 Adaptive and Fault-Tolerant Routing

There are up to q node-disjoint and edge-disjoint shortest paths between any node pairs in a q-cube

Thus, one can route messages around congested or failed nodes/links
A useful notion for designing adaptive wormhole routing algorithms is that of virtual communication networks

Subnetwork 0

Subnetwork 1

Fig. 14.11 Partitioning a 3-cube into subnetworks for deadlock-free routing.

Each of the two subnetworks in Fig. 14.11 is acyclic

Hence, any routing scheme that begins by using links in subnet 0 , at some point switches the path to subnet 1 , and from then on remains in subnet 1 , is deadlock-free

Robustness of the Hypercube

Rich connectivity provides many alternate paths for message routing

The node that is furthest from S is not its diametrically opposite node in the fault-free hypercube

The fault diameter of the q-cube is $q+1$.

Parallel Processing, Low-Diameter Architectures

15 Other Hypercubic Architectures

Learn how the hypercube can be generalized or extended:

- Develop algorithms for our derived architectures
- Compare these architectures based on various criteria

Topics in This Chapter
15.1 Modified and Generalized Hypercubes
15.2 Butterfly and Permutation Networks
15.3 Plus-or-Minus-2 ${ }^{i}$ Network
15.4 The Cube-Connected Cycles Network
15.5 Shuffle and Shuffle-Exchange Networks
15.6 That's Not All, Folks!

15.1 Modified and Generalized Hypercubes

3-cube and a 4-cycle in it

Twisted 3-cube

Fig. 15.1 Deriving a twisted 3-cube by redirecting two links in a 4-cycle.

Diameter is one less than the original hypercube

Folded Hypercubes

Fig. 15.2 Deriving a folded 3 -cube by adding four diametral links.

Diameter is half that of the original hypercube

A diametral path in the 3-cube

Folded 3-cube

Folded 3-cube with
Dim-0 links removed

After renaming, diametral links replace dim-0 links

Fig. 15.3
Folded 3-cube viewed as 3 -cube with a redundant dimension.

Parallel Processing, Low-Diameter Architectures

Generalized Hypercubes

A hypercube is a power or homogeneous product network q-cube $=(0-0)^{q} ; q$ th power of K_{2}

Generalized hypercube $=q$ th power of K_{r} (node labels are radix- r numbers)
Node x is connected to y iff x and y differ in one digit Each node has $r-1$ dimension- k links

Example: radix-4 generalized hypercube Node labels are radix-4 numbers

Bijective Connection Graphs

Beginning with a c-node seed network, the network size is recursively doubled in each step by linking nodes in the two halves via an arbitrary one-to-one mapping. Number of nodes $=c 2^{q}$

Hypercube is a special case, as are many hypercube variant networks (twisted, crossed, mobius, cubes)

Special case of $c=1$:
Diameter upper bound is q
Diameter lower bound is an open problem (it is better than $\lceil q+1\rceil / 2$)

15.2 Butterfly and Permutation Networks

Fig. 7.4 Butterfly and wrapped butterfly networks.

Parallel Processing, Low-Diameter Architectures

Structure of Butterfly Networks

Switching these two row pairs converts this to the original butterfly network. Changing the order of stages in a butterfly is thus equivalent to a relabeling of the rows (in this example, row xyz becomes row xzy)

Fig. 15.5 Butterfly network with permuted dimensions.

The 16 -row butterfly network.

Parallel Processing, Low-Diameter Architectures
Slide 53

Fat Trees

Fig. 15.6 Two representations of a fat tree.

Skinny tree?

Front view: Binary tree
Dimary uce

Parallel Processing, Low-Diameter Architectures
(0) (rb) 0n min

Butterfly as Multistage Interconnection Network

Fig. 6.9 Example of a multistage memory access network

Fig. 15.8 Butterfly network used to connect modules that are on the same side

Generalization of the butterfly network High-radix or m-ary butterfly, built of $m \times m$ switches
Has m^{q} rows and $q+1$ columns (q if wrapped)

Beneš Network

Fig. 15.9 Beneš network formed from two back-to-back butterflies.

A 2^{q}-row Beneš network:
Can route any $2^{q} \times 2^{q}$ permutation
It is "rearrangeable"

Routing Paths in a Beneš Network

To which memory modules can we connect proc 4 without rearranging the other paths?

What about proc 6 ?

Fig. 15.10 Another example of a Beneš network.

Parallel Processing, Low-Diameter Architectures
䠉保

15.3 Plus-or-Minus-2i ${ }^{i}$ Network

Fig. 15.11 Two representations of the eight-node PM21 network.

The hypercube is a subgraph of the PM2I network

Unfolded PM2I Network

Data manipulator network was used in Goodyear MPP, an early SIMD parallel machine.
"Augmented" means that switches in a column are independent, as opposed to all being set to same state (simplified control).

Fig. 15.12 Augmented data manipulator network.

Parallel Processing, Low-Diameter Architectures

15.4 The Cube-Connected Cycles Network

The cube-connected cycles network (CCC) is the earliest example of what later became known as X-connected cycles, with X being an arbitrary network

Transform a p-node, degree-d network into a pd-node, degree-3 network by replacing each of the original network nodes with a d-node cycle

Parallel Processing, Low-Diameter Architectures

Original degree-8 node in a network, with its links labeled LO through $L 7$

Replacement 8 -node cycle, with each of its 8 nodes accommodating one of the links L0 through L7

A View of The CCC Network

Example of hierarchical substitution to derive a lower-cost network from a basis network

Fig. 15.14 Alternate derivation of CCC from a hypercube.

Replacing each node of a high-dimensional q-cube by a cycle of length q is how CCC was originally proposed

Slide 61

Another View of the Cube-Connected Cycles Network

The cube-connected cycles network (CCC) can be viewed as a simplified wrapped butterfly whose node degree is reduced from 4 to 3.

q columns/dimensions
Fig. 15.13 A wrapped butterfly (left) converted into cube-connected cycles.

Parallel Processing, Low-Diameter Architectures
(0) 006 (0)

Emulation of a 6-Cube by a 64-Node CCC

With proper node mapping, dim-0 and dim-1 neighbors of each node will map onto the same cycle

Suffices to show how to communicate along other dimensions of the 6 -cube

Emulation of Hypercube Algorithms by CCC

Ascend, descend, and normal algorithms.

Node (x, j) is communicating along dimension j; after the next rotation, it will be linked to its dimension- $(j+1)$ neighbor.

Parallel Processing, Low-Diameter Architectures

15.5 Shuffle and Shuffle-Exchange Networks

Fig. 15.16 Shuffle, exchange, and shuffle-exchange connectivities.

Parallel Processing, Low-Diameter Architectures
(0) ORCllllll

Shuffle-Exchange Network

Fig. 15.17 Alternate views of an eight-node shuffle-exchange network.

Parallel Processing, Low-Diameter Architectures

Routing in Shuffle-Exchange Networks

In the 2^{q}-node shuffle network, node $x=x_{q-1} x_{q-2} \ldots x_{2} x_{1} x_{0}$ is connected to $x_{q-2} \ldots x_{2} x_{1} x_{0} x_{q-1}$ (cyclic left-shift of x)
In the 2^{q}-node shuffle-exchange network, node x is additionally connected to $x_{q-2} \ldots x_{2} x_{1} x_{0} x_{q-1}{ }^{\prime}$

01011011	Source			
11010110	Destination			
^ ^^ ^	Positions	hat differ		
01011011	Shuffle to	10110110	Exchange to	10110111
10110111	Shuffle to	011011111		
$\overline{0} 1101111$	Shuffle to	11011110		
11011110	Shuffle to	$1011110 \overline{1}$		
10111101	Shuffle to	01111011	Exchange to	01111010
01111010	Shuffle to	11110100	Exchange to	11110101
11110101	Shuffle to	11101011		
11101011	Shuffle to	11010111	Exchange to	11010110

Diameter of Shuffle-Exchange Networks

For 2^{q}-node shuffle-exchange network: $D=q=\log _{2} p, \quad d=4$
With shuffle and exchange links provided separately, as in Fig. 15.18, the diameter increases to $2 q-1$ and node degree reduces to 3

Fig. 15.18 Eight-node network with separate shuffle and exchange links.

Parallel Processing, Low-Diameter Architectures

Multistage Shuffle-

 Exchange NetworkFig. 15.19 Multistage shuffle-exchange network (omega network) is the same as butterfly network.

Parallel Processing, Low-Diameter Architectures

Slide 69

15.6 That's Not All, Folks!

When q is a power of 2 , the $2^{q} q$-node cube-connected cycles network derived from the q-cube, by replacing each node with a q-node cycle, is a subgraph of the $\left(q+\log _{2} q\right)$-cube \rightarrow CCC is a pruned hypercube Other pruning strategies are possible, leading to interesting tradeoffs

Fig. 15.20 Example of a pruned hypercube.

Möbius Cubes

Dimension-i neighbor of $x=x_{q-1} x_{q-2} \ldots x_{i+1} x_{i} \ldots x_{1} x_{0}$ is:

$$
\begin{aligned}
& x_{q-1} x_{q-2} \ldots 0 x_{i}^{\prime} \ldots x_{1} x_{0} \text { if } x_{i+1}=0\left(x_{i} \text { complemented, as in } q \text {-cube }\right) \\
& x_{q-1} x_{q-2} \ldots 1 x_{i}^{\prime} \ldots x_{1}{ }^{\prime} x_{0}^{\prime} \text { if } x_{i+1}=1\left(x_{i} \text { and bits to its right complemented }\right)
\end{aligned}
$$

For dimension $q-1$, since there is no x_{q}, the neighbor can be defined in two possible ways, leading to $0-$ and 1 -Mobius cubes
A Möbius cube has a diameter of about $1 / 2$ and an average internode distance of about $2 / 3$ of that of a hypercube

Fig. 15.21
Two 8-node Möbius cubes.

16 A Sampler of Other Networks

Complete the picture of the "sea of interconnection networks":

- Examples of composite, hybrid, and multilevel networks
- Notions of network performance and cost-effectiveness

Topics in This Chapter
16.1 Performance Parameters for Networks
16.2 Star and Pancake Networks
16.3 Ring-Based Networks
16.4 Composite or Hybrid Networks
16.5 Hierarchical (Multilevel) Networks
16.6 Multistage Interconnection Networks

16.1 Performance Parameters for Networks

A wide variety of direct interconnection networks have been proposed for, or used in, parallel computers

They differ in topological, performance, robustness, and realizability attributes.

Fig. 4.8 (expanded)
The sea of direct interconnection networks.

Slide 73

Diameter and Average Distance

Diameter D (indicator of worst-case message latency)
Routing diameter $D(R)$; based on routing algorithm R
Average internode distance Δ (indicator of average-case latency)
Routing average internode distance $\Delta(R)$

Sum of distances from corner node:
$2 \times 1+3 \times 2+2 \times 3$
$+1 \times 4=18$

Sum of distances from center node:
$4 \times 1+4 \times 2=12$

For the 3×3 mesh:

$$
\begin{gathered}
\Delta=(4 \times 18+4 \times 15+12) \\
/(9 \times 8)=2 \\
{[\text { or } 144 / 81=16 / 9]}
\end{gathered}
$$

Sum of distances from side node:
$3 \times 1+3 \times 2+$
$2 \times 3=15$
For the 3×3 torus:

$$
\Delta=(4 \times 1+4 \times 2) / 8
$$

$$
=1.5[\text { or } 12 / 9=4 / 3]
$$

Finding the average internode distance of a 3×3 mesh.

Bisection Width

Indicator or random communication capacity

Fig. 16.2 A network whose bisection width is not as large at it appears.
Hard to determine; Intuition can be very misleading
Node bisection and link bisection

Determining the Bisection Width

Establish upper bound by taking a number of trial cuts. Then, try to match the upper bound by a lower bound.

An embedding of K_{9} into 3×3 mesh

Bisection width $=4 \times 5=20$

Establishing a lower bound on B :

Embed K_{p} into p-node network

Let c be the maximum congestion
$B \geq\left\lfloor p^{2} / 4\right\rfloor / c$

Example for Bounding the Bisection Width

Embed K_{9} into
3×3 mesh
Observe the max congestion of 7
$\left\lfloor p^{2} / 4\right\rfloor=20$
Must cut at least
3 bundles to sever 20 paths

Bisection width of a 3×3 mesh is at least 3

Given the upper bound of 4:
$3 \leq B \leq 4$

Degree-Diameter Relationship

Age-old question: What is the best way to interconnect p nodes of degree d to minimize the diameter D of the resulting network?
Alternatively: Given a desired diameter D and nodes of degree d, what is the max number of nodes p that can be accommodated?

Moore bounds (digraphs)
$p \leq 1+d+d^{2}+\ldots+d^{D}=\left(d^{D+1}-1\right) /(d-1)$
$D \geq \log _{d}[p(d-1)+1]-1$
Only ring and K_{p} match these bounds
Moore bounds (undirected graphs)
$p \leq 1+d+d(d-1)+\ldots+d(d-1)^{D-1}$
$=1+d\left[(d-1)^{D}-1\right] /(d-2)$
$D \geq \log _{d-1}[(p-1)(d-2) / d+1]$
Only ring with odd size p and a few other networks match these bounds

Moore Graphs

A Moore graph matches the bounds on diameter and number of nodes.
For $d=2$, we have $p \leq 2 D+1$
Odd-sized ring satisfies this bound
For $d=3$, we have $p \leq 3 \times 2^{D}-2$
$D=1$ leads to $p \leq 4$ (K_{4} satisfies the bound)
$D=2$ leads to $p \leq 10$ and the first nontrivial example (Petersen graph)

Fig. 16.1 The 10-node Petersen graph.

Parallel Processing, Low-Diameter Architectures

How Good Are Meshes and Hypercubes?

For $d=4$, we have $D \geq \log _{3}[(p+1) / 2]$
So, 2D mesh and torus networks are far from optimal in diameter, whereas butterfly is asymptotically optimal within a constant factor

For $d=\log _{2} p$ (as for d-cube), we have $D=\Omega(d / \log d$)
So the diameter d of a d-cube is a factor of log d over the best possible We will see that star graphs match this bound asymptotically

Summary:

For node degree d, Moore's bounds establish the lowest possible diameter D that we can hope to achieve with p nodes, or the largest number p of nodes that we can hope to accommodate for a given D.

Coming within a constant factor of the bound is usually good enough; the smaller the constant factor, the better.

Layout Area and Longest Wire

The VLSI layout area required by an interconnection network is intimately related to its bisection width B

If B wires must cross the bisection in 2D layout of a network and wire separation is 1 unit, the smallest dimension of the VLSI chip will be $\geq B$
The chip area will thus be $\Omega\left(B^{2}\right)$ units p-node 2D mesh needs $\mathrm{O}(p)$ area p-node hypercube needs at least $\Omega\left(p^{2}\right)$ area

The longest wire required in VLSI layout affects network performance
For example, any 2D layout of a p-node hypercube requires wires of length $\Omega\left((p / \log p)^{1 / 2}\right)$; wire length of a mesh does not grow with size When wire length grows with size, the per-node performance is bound to degrade for larger systems, thus implying sublinear speedup

Measures of Network Cost-Effectiveness

Composite measures, that take both the network performance and its implementation cost into account, are useful in comparisons

One such measure is the degree-diameter product, $d D$
Mesh / torus: $\quad \Theta\left(p^{1 / 2}\right)$
$\left.\begin{array}{ll}\text { Binary tree: } & \Theta(\log p) \\ \text { Pyramid: } & \Theta(\log p)\end{array}\right\}$ Not quite similar in cost-performance
Hypercube: $\Theta\left(\log ^{2} p\right)$
However, this measure is somewhat misleading, as the node degree d is not an accurate measure of cost; e.g., VLSI layout area also depends on wire lengths and wiring pattern and bus based systems have low node degrees and diameters without necessarily being cost-effective

Robustness must be taken into account in any practical comparison of interconnection networks (e.g., tree is not as attractive in this regard)

16.2 Star and Pancake Networks

Fig. 16.3 The four-dimensional star graph.

Has $p=q$! nodes
Each node labeled with a string $x_{1} x_{2} \ldots x_{q}$ which is a permutation of $\{1,2, \ldots, q\}$

Node $x_{1} x_{2} \ldots x_{i} \ldots x_{q}$ is connected to $x_{i} x_{2} \ldots x_{1} \ldots x_{q}$ for each i (note that x_{1} and x_{i} are interchanged)

When the i th symbol is switched with x_{1}, the corresponding link is called a dimension-i link $d=q-1 ; D=\lfloor 3(q-1) / 2\rfloor$
$D, d=\mathrm{O}(\log p / \log \log p)$

Routing in the Star Graph

Source node
Dimension-2 link to
Dimension-6 link to
Last symbol now adjusted
Dimension-2 link to
Dimension-5 link to
Last 2 symbols now adjusted
Dimension-2 link to
Dimension-4 link to
Last 3 symbols now adjusted
Dimension-2 link to
Dimension-3 link to
Last 4 symbols now adjusted
Dimension-2 link (Dest'n)

The diameter of star is in fact somewhat less $D=\lfloor 3(q-1) / 2\rfloor$

Clearly, this is not a shortestpath routing algorithm.

Correction to text, p. 328: diameter is not $2 q-3$

We need a maximum of two routing steps per symbol, except that last two symbols need at most 1 step for adjustment $\rightarrow D \leq 2 q-3$

Star's Sublogarithmic Degree and Diameter

$d=\Theta(q)$ and $D=\Theta(q)$; but how is q related to the number p of nodes?
$p=q!\cong e^{-q} q^{q}(2 \pi q)^{1 / 2} \quad$ [using Striling's approximation to $q!$]
$\ln p \cong-q+(q+1 / 2) \ln q+\ln (2 \pi) / 2=\Theta(q \log q)$ or $q=\Theta(\log p / \log \log p)$
Hence, node degree and diameter are sublogarithmic
Star graph is asymptotically optimal to within a constant factor with regard to Moore's diameter lower bound

Routing on star graphs is simple and reasonably efficient; however, virtually all other algorithms are more complex than the corresponding algorithms on hypercubes

Network diameter	4	5	6	7	8	9
Star nodes	24	--	120	720	--	5040
Hypercube nodes	16	32	64	128	256	512

Parallel Processing, Low-Diameter Architectures

The Star-Connected Cycles Network

Fig. 16.4 The four-dimensional star-connected cycles network.

Replace degree- $(q-1)$ nodes with ($q-1$)-cycles

This leads to a scalable version of the star graph whose node degree of 3 does not grow with size

The diameter of SCC is about the same as that of a comparably sized CCC network

However, routing and other algorithms for SCC are more complex

Pancake Networks

Similar to star networks in terms of node degree and diameter
Dimension-i neighbor obtained by "flipping" the first i symbols; hence, the name "pancake"

We need two flips per symbol in the worst case; $D \leq 2 q-3$

Source node Dimension-2 link to Dimension-6 link to
Last 2 symbols now adjusted Dimension-4 link to

$$
\begin{array}{llllll}
1 & 5 & 4 & 3 & 6 & 2 \\
5 & 1 & 4 & 3 & 6 & 2 \\
2 & 6 & 3 & 4 & 1 & 5 \\
\hline
\end{array}
$$

$$
436215
$$

Last 4 symbols now adjusted
Dimension-2 link (Dest'n) 3462115

Cayley Networks

Star and pancake networks are instances of Cayley graphs

Elements of S are "generators" of G if every element of G can be expressed as a finite product of their powers

Group:

A semigroup with an identity element and inverses for all elements.

Example 1: Integers with addition or multiplication operator form a group.

Example 2: Permutations, with the composition operator, form a group.

Cayley graph:

Node labels are from a group G, and a subset S of G defines the connectivity via the group operator \otimes

Node x is connected to node y
iff $x \otimes \gamma=y$ for some $\gamma \in S$

Star as a Cayley Network

Four-dimensional star:

Group G of the permutations of $\{1,2,3,4\}$

The generators are the following permutations:
(1 2) (3) (4)
$(13)(2)(4)$
$(14)(2)(3)$
The identity element is:
(1) (2) (3) (4)

Fig. 16.3 The four-dimensional star graph.

Parallel Processing, Low-Diameter Architectures

16.3 Ring-Based Networks

Rings are simple, but have low performance and lack robustness

Hence, a variety of multilevel and augmented ring networks have been proposed

Fig. 16.5 A 64-node ring-of-rings architecture composed of eight 8-node local rings and one second-level ring.

Parallel Processing, Low-Diameter Architectures

Chordal Rings Compared to Torus Networks

The ILLIAC IV interconnection scheme, often described as 8×8 mesh or torus, was really a 64-node chordal ring with skip distance 8.

Fig. 16.7 Chordal rings redrawn to show their similarity to torus networks.

Perfect Difference Networks

A class of chordal rings, studied at UCSB (two-part paper in IEEE TPDS, August 2005) have a diameter of $D=2$

> Perfect difference $\{0,1,3\}$: All numbers in the range $1-6 \bmod 7$ can be formed as the difference of two numbers in the set.

Periodically Regular Chordal Rings

Fig. 16.8 Periodically regular chordal ring.
Modified greedy routing: first route to the head of a group; then use pure greedy routing

Parallel Processing, Low-Diameter Architectures

Some Properties of PRC Rings

Fig. 16.9 VLSI layout for a 64-node periodically regular chordal ring.

Remove some skip links for cost-performance tradeoff; similar in nature to CCC network with longer cycles

Fig. 16.10 A PRC ring redrawn as a butterfly- or ADMlike network.

Parallel Processing, Low-Diameter Architecture $\$$
Dimension 1

16.4 Composite or Hybrid Networks

Motivation: Combine the connectivity schemes from two (or more) "pure" networks in order to:

- Achieve some advantages from each structure
- Derive network sizes that are otherwise unavailable
- Realize any number of performance / cost benefits

A very large set of combinations have been tried
New combinations are still being discovered

Composition by Cartesian Product Operation

Fig. 13.4 Examples of product graphs.

Properties of product graph $G=G^{\prime} \times G^{\prime \prime}$:
Nodes labeled ($x^{\prime}, x^{\prime \prime}$),
$x^{\prime} \in V^{\prime}, x^{\prime \prime} \in V^{\prime \prime}$
$p=p^{\prime} p^{\prime \prime}$
$d=d^{\prime}+d^{\prime \prime}$
$D=D^{\prime}+D^{\prime \prime}$
$\Delta=\Delta^{\prime}+\Delta^{\prime \prime}$
Routing: G^{\prime}-first

$$
\begin{aligned}
\left(x^{\prime}, x^{\prime \prime}\right) & \rightarrow\left(y^{\prime}, x^{\prime \prime}\right) \\
& \rightarrow\left(y^{\prime}, y^{\prime \prime}\right)
\end{aligned}
$$

Broadcasting
Semigroup \& parallel prefix computations

Parallel Processing, Low-Diameter Architectures

Other Properties and Examples of Product Graphs

If G^{\prime} and $G^{\prime \prime}$ are Hamiltonian, then the $p^{\prime} \times p^{\prime \prime}$ torus is a subgraph of G For results on connectivity and fault diameter, see [Day00], [AIAy02]

Fig. 16.11 Mesh of trees compared with mesh-connected trees.

16.5 Hierarchical (Multilevel) Networks

We have already seen several examples of hierarchical networks: multilevel buses (Fig. 4.9); CCC; PRC rings
Can be defined from the bottom up

Fig. 16.13 Hierarchical or multilevel bus network. or from the top down

Take first-level ring networks and interconnect them as a hypercube

Take a top-level hypercube and replace its nodes with given networks

Parallel Processing, Low-Diameter Architectures
Slide 98

Example: Mesh of Meshes Networks

The same idea can be used to form ring of rings, hypercube of hypercubes, complete graph of complete graphs, and more generally, X of X s networks

When network topologies at the two levels are different, we have X of Y s networks

Generalizable to three levels (X of $Y \mathrm{~s}$ of $Z \mathrm{~s}$ networks), four levels, or more

Fig. 16.12 The mesh of meshes network exhibits greater modularity than a mesh.

Parallel Processing, Low-Diameter Architectures

Example: Swapped Networks

Build a p^{2}-node network using p-node building blocks (nuclei or clusters) by connecting node i in cluster j to node j in cluster i

Also known in the literature as OTIS (optical transpose interconnect system) network

Level-2 link

We can square the network size by adding one link per node

Level-1 link

Two-level swapped network with 2×2 mesh as its nucleus.

Swapped Networks Are Maximally Fault-Tolerant

For any connected, degree-d basis network $G, \operatorname{Swap}(G)=\operatorname{OTIS}(G)$ has the maximal connectivity of d and can thus tolerate up to $d-1$ faults

One case of several cases in the proof, corresponding to source and destination nodes being in different clusters

Source: Chen, Xiao, Parhami, IEEE TPDS, March 2009

Slide 101

Example: Biswapped Networks

Build a $2 p^{2}$-node network using p-node building blocks (nuclei or clusters) by connecting node i in cluster j of part 0 to node j in cluster i of part 1

Data-Center Networks

Data-center communication patterns are different from parallel processors Current networks are variations of the fat-tree concept

Two competing approaches:

- Specialized hardware and communication protocols (e.g., InfiniBand)
- Commodity Ethernet switches and routers for interconnecting clusters

16.6 Multistage Interconnection Networks

Numerous indirect or multistage interconnection networks (MINs) have been proposed for, or used in, parallel computers

They differ in topological, performance, robustness, and realizability attributes

We have already seen the butterfly, hierarchical bus, beneš, and ADM networks

Fig. 4.8 (modified) The sea of indirect interconnection networks.

Slide 104

Self-Routing Permutation Networks

Do there exist self-routing permutation networks? (The butterfly network is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14 Example of sorting on a binary radix sort network.

Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)
Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)
Baseline: Butterfly network with nodes labeled differently
Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)
Bidelta: A MIN that is a delta network in either direction
Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)
Data manipulator: Same as ADM, but with switches in a column restricted to same state
Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1
for 2×2 switches) and path label, composed of concatenating switch output labels
leading from an input to an output depends only on the output
Flip: Reverse of the omega network (inputs \times outputs)
Indirect cube: Same as butterfly or omega
Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)
Permutation: Any MIN that can realize all permutations
Rearrangeable: Same as permutation network
Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged

Parallel Processing, Low-Diameter Architectures

16.6* Natural and Human-Made Networks

Since multistage networks will move to Part II' (shared memory), the new version of this subsection will discuss the classes of small-world and scale-free networks

Example of a collaboration network
(e.g., co-authors of papers) showing clusters and inter-cluster connectivity

Parallel Processing, Low-Diameter Architectures

Professional Connections Networks

Parallel Processing, Low-Diameter Architectures

