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Part IV
Low-Diameter Architectures
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IV   Low-Diameter Architectures

Study the hypercube and related interconnection schemes:
• Prime example of low-diameter (logarithmic) networks
• Theoretical properties, realizability, and scalability
• Complete our view of the “sea of interconnection nets”

Topics in This Part

Chapter 13 Hypercubes and Their Algorithms

Chapter 14 Sorting and Routing on Hypercubes

Chapter 15 Other Hypercubic Architectures

Chapter 16 A Sampler of Other Networks
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13  Hypercubes and Their Algorithms

Study the hypercube and its topological/algorithmic properties:
• Develop simple hypercube algorithms (more in Ch. 14)
• Learn about embeddings and their usefulness

Topics in This Chapter

13.1 Definition and Main Properties

13.2 Embeddings and Their Usefulness

13.3 Embedding of Arrays and Trees

13.4 A Few Simple Algorithms

13.5 Matrix Multiplication

13.6 Inverting a Lower-Triangular Matrix
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13.1  Definition and Main Properties
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Intermediate 
architectures: 
logarithmic or 
sublogarithmic 

diameter 

Begin studying networks that are intermediate between 
diameter-1 complete network and diameter-p1/2 mesh

Complete 
network 

n/2 log n log n / log log n  n  1  1 n 2 

Sublogarithmic diameter Superlogarithmic diameter 

PDN Star, 
pancake 

Binary tree, 
hypercube 

Torus Ring Linear 
array 
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Very-High-Dimensional Meshes and Tori

qD mesh with m processors along each dimension: p = mq

Diameter D = q(m – 1) = q (p1/q – 1)
Bisection width: B = p1–1/q when m = p1/q is even
Node degree d = 2q

qD torus with m processors along each dimension = m-ary q-cube 

What happens when q becomes as large as log2 p?
Diameter D = q (p1/q – 1) = log2 p * = O(log p) 
Bisection width: B = p1–1/q = p / p1/q = p/2 * = O(p) 
Node degree d = 2q = log2 p ** = O(log p) 

qD torus with 2 processors along each dimension same as mesh

*   What is the value of m = p1/q = p1/log2 p ?
m = p1/log2 p mlog2 p = p m = 2

**  When m = 2, node degree becomes q instead of 2q
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Hypercube and Its History
Binary tree has logarithmic diameter, but small bisection
Hypercube has a much larger bisection
Hypercube is a mesh with the maximum possible number of dimensions

2  2  2  . . .   2
 q = log2 p 

We saw that increasing the number of dimensions made it harder to 
design and visualize algorithms for the mesh
Oddly, at the extreme of log2 p dimensions, things become simple again! 

Brief history of the hypercube (binary q-cube) architecture 
Concept developed: early 1960s [Squi63] 
Direct (single-stage) and indirect (multistage) versions: mid 1970s

Initial proposals [Peas77], [Sull77] included no hardware 
Caltech’s 64-node Cosmic Cube: early 1980s [Seit85]

Introduced an elegant solution to routing (wormhole switching)
Several commercial machines: mid to late 1980s 

Intel PSC (personal supercomputer), CM-2, nCUBE (Section 22.3)
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Basic Definitions 

Hypercube is generic term; 
3-cube, 4-cube, . . . , q-cube 
in specific cases

0 1 
00 01 

10 11 

(a) Binary 1-cube, 
built of two  
binary 0-cubes, 
labeled 0 and 1 

(b) Binary 2-cube, 
built of two  
binary 1-cubes, 
labeled 0 and 1 
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(d) Binary 4-cube, bui lt of two binary 3-cubes, labeled 0 and 1 
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Fig. 13.1    
The recursive 
structure of 
binary 
hypercubes. 

Parameters:

p = 2q

B = p/2 = 2q–1

D = q = log2p

d = q = log2p
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Only sample 
wraparound 
links are 
shown to 
avoid clutter

The 64-Node 
Hypercube 

Isomorphic to 
the 4  4  4 
3D torus 
(each has    
64  6/2 links)
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Neighbors of a Node in a Hypercube 

xq–1xq–2 . . . x2x1x0 ID of node x

xq–1xq–2 . . . x2x1x0 dimension-0 neighbor; N0(x)
xq–1xq–2 . . . x2x1x0 dimension-1 neighbor; N1(x)
. .
. .
. .
xq–1xq–2 . . . x2x1x0 dimension-(q–1) neighbor; Nq–1(x)

The q
neighbors 
of node x

Nodes whose labels differ in k bits
(at Hamming distance k) connected
by shortest path of length k

Both node- and edge-symmetric

Strengths: symmetry, log diameter,
and linear bisection width

Weakness: poor scalability

Dim 0

Dim 1

Dim 2 Dim 3

0100 0101

0110

0000
1100

1101

1111

0111

0011

x

1011

0010

1010

x 
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Dilation: Longest path onto which an edge is mapped (routing slowdown)
Congestion: Max number of edges mapped onto one edge (contention slowdown)
Load factor: Max number of nodes mapped onto one node (processing slowdown)

13.2  Embeddings and Their Usefulness

Fig. 13.2  
Embedding a 
seven-node 
binary tree 
into 2D 
meshes of 
various sizes.
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13.3  Embedding of Arrays and Trees
Hamiltonicity is an important property of a graph
A graph with n nodes is Hamiltonian if the n-node cycle is its subgraph

More generally, embedding of cycles of various lengths in an intact or 
faulty network of nodes may be sought

Bridges of Konigsberg: Find a path that crosses each bridge once

Hamiltonian Non-Hamiltonian Hamiltonian?
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Hamiltonicity of the Hypercube

Alternate inductive proof: Hamiltonicity of the q-cube 
is equivalent to the existence of a q-bit Gray code

Fig. 13.3   Hamiltonian cycle in the q-cube.

(q – 1)-cube  0

x
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N (x)k
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100 . . . 000

0
0
0

0
1

1
1
1

100 . . . 000
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Basis: q-bit Gray code beginning with the all-0s codeword 
and ending with 10q–1 exists for q = 2:     00, 01, 11, 10
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Mesh/Torus Embedding in a Hypercube 

Is a mesh or torus a subgraph of the hypercube of the same size?
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Fig. 13.5   The 4  4 mesh/torus is a subgraph of the 4-cube.

We prove this to be the case for a torus (and thus for a mesh)
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Torus is a Subgraph of Same-Size Hypercube 

A tool used in our proof

Product graph G1  G2:

Has n1  n2 nodes

Each node is labeled by a
pair of labels, one from each
component graph

Two nodes are connected if
either component of the two
nodes were connected in the
component graphs Fig. 13.4   Examples of product graphs.

The 2a  2b  2c . . . torus is the product of 2a-, 2b-, 2c-, . . . node rings
The (a + b + c + ... )-cube is the product of a-cube, b-cube, c-cube, . . .
The 2q-node ring is a subgraph of the q-cube
If a set of component graphs are subgraphs of another set, the product
graphs will have the same relationship

 =
3-by-2 
torus

  =

 =

0

1

2

a

b

0a

1a

2a
0b

1b

2b
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Embedding Trees in the Hypercube 

The (2q – 1)-node complete binary tree
is not a subgraph of the q-cube

even weight

odd weights
even weights

odd weights

even weights

Proof by contradiction based on the parity of 
node label weights (number of 1s is the labels)

The 2q-node double-rooted complete
binary tree is a subgraph of the q-cube

Fig. 13.6  
The 2q-node 
double-rooted 
complete 
binary tree is 
a subgraph of 
the q-cube.

New Roots

x N (N (x)) 
N (N (x))

2  -node double-rooted 
complete binary tree

q Double-rooted tree 
in the (q–1)-cube 0

Double-rooted tree 
in the (q–1)-cube 1

N (x)c

N (x)b

N (x)a

b c

bc

N (N (x)) 
N (N (x))

c a

ca
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A Useful Tree Embedding in the Hypercube 

The (2q – 1)-node 
complete binary tree 
can be embedded 
into the (q – 1)-cube

Fig. 13.7   Embedding a 15-node complete binary tree into the 3-cube.
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Dim-2 
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Dim-1 
links 

Dim-0 
links 

Despite the load 
factor of q, many 
tree algorithms 
entail no slowdown
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13.4  A Few Simple Algorithms

Fig. 13.8    Semigroup computation on a 3-cube. 

Semigroup computation on the q-cube
Processor x, 0  x < p do t[x] := v[x]

{initialize “total” to own value}
for k=0 to q–1 processor x, 0x<p, do

get y :=t[Nk(x)]
set t[x] := t[x]  y

endfor 
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Parallel Prefix Computation

Fig. 13.8    Semigroup computation on a 3-cube. 

Commutativity 
of the operator 
is implicit in this 
algorithm as well.

How can we 
remove this 
assumption? 

t : subcube “total”

u : subcube prefix
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Parallel prefix computation on the q-cube
Processor x, 0  x < p, do t[x] := u[x] := v[x]

{initialize subcube “total” and partial prefix}
for k=0 to q–1 processor x, 0x<p, do

get y :=t[Nk(x)]
set t[x] := t[x]  y
if x > Nk(x) then set u[x] := y  u[x]

endfor

Dim 0

Dim 1

Dim 2
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Sequence Reversal on the Hypercube

Fig. 13.11    Sequence reversal on a 3-cube. 

Reversing a sequence on the q-cube
for k=0 to q–1 Processor x, 0x <p, do

get y := v[Nk(x)]
set v[x] := y

endfor
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Ascend, Descend, and Normal 
Algorithms 

Graphical depiction of ascend, descend, 
and normal algorithms.
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13.5  Matrix Multiplication

Fig. 13.12     Multiplying two 2  2 matrices on a 3-cube.
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Analysis of Matrix Multiplication

The algorithm involves 
communication steps in 
three loops, each with 
q / 3 iterations (in one of 
the 4 loops, 2 values are 
exchanged per iteration)

Tmul (m, m3) =

O(q) = O(log m)
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Analysis in the case of block matrix multiplication (m  m matrices):
Matrices are partitioned into p1/3  p1/3 blocks of size (m /p1/3)  (m /p1/3) 
Each communication step deals with m2/p2/3 block elements 
Each multiplication entails 2m3/p arithmetic operations 

Tmul(m, p)   =   m2 /p2/3  O(log p)    +    2m3/p
Communication Computation 
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Dim 1

Dim 2
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13.6  Inverting a Lower-Triangular Matrix

Tinv(m)  =  Tinv(m/2) + 2Tmul(m/2)  =  Tinv(m/2) + O(log m)  =  O(log2m)

B 0 B–1 0
For A = we have  A–1 = 

C D –D–1CB–1 D–1

0 

a ij 
i  j 

Because B and D are both lower 
triangular, the same algorithm 
can be used recursively to invert 
them in parallel

B 0 B–1 0                BB–1 0 
 = 

C D         –D–1CB–1     D–1 CB–1– DD–1CB–1 DD–1

I

I0
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Recursive Lower-Triangular Matrix Inversion Algorithm

B 0 B–1 0
For A = we have  A–1 = 

C D –D–1CB–1 D–1

0

C

B 

D 

Invert lower-triangular matrices B and D

Send B–1 and D–1 to the subcube holding C

–1

–1
–D–1CB–1

0

Inv

Inv

0

Inv

InvCompute –D–1C B–1 to in the subcube

Inv 0

Inv

Inv 0

Inv

Inv 0

Inv

Inv 0

Inv

q-cube and its four 
(q – 2)-subcubes
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14  Sorting and Routing on Hypercubes

Study routing and data movement problems on hypercubes:
• Learn about limitations of oblivious routing algorithms
• Show that bitonic sorting is a good match to hypercube

Topics in This Chapter

14.1 Defining the Sorting Problem

14.2 Bitonic Sorting on a Hypercube

14.3 Routing Problems on a Hypercube

14.4 Dimension-Order Routing

14.5 Broadcasting on a Hypercube

14.6 Adaptive and Fault-Tolerant Routing
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14.1  Defining the Sorting Problem

Review of the hypercube:

Fully symmetric with 
respect to dimensions

Typical computations 
involve communication 
across all dimensions

  

  

(c) Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1 
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Hypercube Sorting: Goals and Definitions

Arrange data in order of processor ID numbers (labels)

1-1 sorting (p items to sort, p processors) 

k-k sorting (n = kp items to sort, p processors)

0

2

1

3

4

6

5

7

The ideal parallel sorting algorithm: 

T(p) = Q((n log n)/p)

This ideal has not been achieved in all 
cases for the hypercube 

Smallest
value

Largest
value

Batcher’s odd-even merge or bitonic sort: O(log2p) time
O(log p)-time deterministic algorithm not known

Optimal algorithms known for n >> p or when average 
running time is considered (randomized)
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Hypercube Sorting: Attempts and Progress

No bull’s eye yet!

There are three 
categories of practical 
sorting algorithms:

1. Deterministic 1-1, 
O(log2p)-time

2. Deterministic k-k, 
optimal for n >> p
(that is, for large k)

3. Probabilistic 
(1-1 or k-k)

Pursuit of O(log p)-time algorithm 
is of theoretical interest only

 

 

? log n 

One of the oldest 
parallel algorithms; 
discovered 1960, 
published 1968 

Practical, deterministic 

Fewer than p items 

Practical, probabilistic 

More than p items 

1960s 

1990 

1988 

1987 

1980 

log n log log n 

log n (log log n) 2 

(n log n)/p  for  n >> p 

log n   randomized 

log p log n/log(p/n), n p/4;  
 1–    

log  n for n = p, bitonic  2 

in particular, log p for n = p 
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Bitonic Sequences

Bitonic sequence:

1  3  3  4  6  6  6  2  2  1  0  0      
Rises, then falls

8  7  7  6  6  6  5  4  6  8  8  9      
Falls, then rises

8  9  8  7  7  6  6  6  5  4  6  8     
The previous sequence, 
right-rotated by 2 

(a)

(b)

Cyclic shift of (a)

Cyclic shift of (b)

Fig. 14.1    Examples of bitonic sequences. 

In Chapter 7, we designed bitonic sorting nets

Bitonic sorting is ideally suited to hypercube
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Sorting a Bitonic Sequence on a Linear Array

Fig. 14.2    Sorting a bitonic sequence on a linear array. 

Bitonic sequence Shifted right half 

Shift right half of data to 
left half (superimpose 
the two halves) 

In each position, keep 
the smaller of the two 
values and ship the 
larger value to the right 

Each half is a bitonic 
sequence that can be 
sorted independently 

0 1 2 n1 

0 1 2 n1 

n/2 

n/2 

Time needed to 
sort a bitonic 
sequence on a 
p-processor 
linear array:

B(p) = p + p/2 
+ p/4 + . . . + 2 = 
2p – 2

Not competitive, 
because we can 
sort an arbitrary 
sequence in 2p–2 
unidirectional 
communication 
steps using odd-
even transposition 
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Bitonic Sorting on a Linear Array
5   9  10  15   3   7  14  12   8   1   4  13  16  11   6   2
---->   <---- ---->   <---- ---->   <---- ---->   <----
5   9  15  10   3   7  14  12   1   8  13   4  11  16   6   2
------------>   <------------ ------------>   <------------
5   9  10  15  14  12   7   3   1   4   8  13  16  11   6   2
---------------------------->   <----------------------------
3   5   7   9  10  12  14  15  16  13  11   8   6   4   2   1
------------------------------------------------------------>
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

Fig. 14.3    Sorting an arbitrary sequence on a linear array through 
recursive application of bitonic sorting. 

Recall that   
B(p) = 2p – 2

Sorting an arbitrary sequence of length p:
T(p) = T(p/2) + B(p) = T(p/2) + 2p – 2  =  4p – 4 – 2 log2p

Alternate derivation:
T(p) = B(2) + B(4) + . . . + B(p) = 2 + 6 + . . . + (2p – 2) = 4p – 4 – 2 log2p
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Visualizing Bitonic Sorting on a Linear Array

Phase 1: Sort half-arrays 
in opposite directions

Phase 2: Shift data leftward 
to compare half-arrays

Phase 3: Send larger item 
in each pair to the right

Phase 4: Sort each bitonic 
half-sequence separately

Initial data sequence, 
stored one per processor
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For linear array, the 4p-step bitonic sorting algorithm is inferior to 
odd-even transposition which requires p compare-exchange steps 
(or 2p unidirectional communications) 

The situation is quite different for a hypercube

14.2  Bitonic Sorting on a Hypercube

Sorting a bitonic sequence on a hypercube: Compare-exchange 
values in the upper subcube (nodes with xq–1 = 1) with those in the 
lower subcube (xq–1 = 0); sort the resulting bitonic half-sequences

B(q) = B(q – 1) + 1 = q

Sorting a bitonic sequence of size n on q-cube, q = log2n
for l = q – 1 downto 0 processor x, 0  x < p, do

if xl = 0
then get y := v[Nl(x)]; keep min(v(x), y); send max(v(x), y) to Nl(x)
endif

endfor

Complexity: 2q communication steps

This is a “descend” algorithm
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Bitonic Sorting on a Hypercube

T(q) = T(q – 1) + B(q)
= T(q – 1) + q
= q(q + 1)/2
= O(log2 p)
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c 
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c a 
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f h 

g e 

b a 
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f e 

g h 

Data ordering 
in lower cube 

Data ordering 
in upper cube 

Dimension 2 Dimension 1 Dimension 0 

Fig. 14.4    
Sorting a 
bitonic 
sequence of 
size 8 on the 
3-cube. Dim 0

Dim 1

Dim 2
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14.3  Routing Problems on a Hypercube

Recall the following categories of routing algorithms:

Off-line: Routes precomputed, stored in tables
On-line: Routing decisions made on the fly

Oblivious: Path depends only on source & destination
Adaptive: Path may vary by link and node conditions

Good news for routing on a hypercube:
Any 1-1 routing problem with p or fewer packets can be solved in 
O(log p) steps, using an off-line algorithm; this is a consequence 
of there being many paths to choose from

Bad news for routing on a hypercube:
Oblivious routing requires W(p1/2/log p) time in the worst case 

(only slightly better than mesh)
In practice, actual routing performance is usually much closer to 
the log-time best case than to the worst case.
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Limitations of Oblivious Routing

Theorem 14.1: Let G = (V, E) be a p-node, degree-d network. Any oblivious 
routing algorithm for routing p packets in G needs W(p1/2/d) worst-case time

Proof Sketch: Let Pu,v be the unique path 
used for routing messages from u to v

There are p(p – 1) possible paths for
routing among all node pairs

These paths are predetermined and do not 
depend on traffic within the network

Our strategy: find k node pairs ui, vi (1  i  k) 
such that ui  uj and vi  vj for i  j, and 
Pui,vi

all pass through the same edge e

Because  2 packets can go through a link in one step, W(k) steps 
will be needed for some 1-1 routing problem

The main part of the proof consists of showing that k can be 
as large as p1/2/d

v
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14.4  Dimension-Order Routing
Source 01011011
Destination 11010110
Differences ^ ^^ ^
Path: 01011011

11011011
11010011
11010111
11010110

dim 0 dim 1 dim 2

0        1        2        3

q + 1 Columns

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

2  Rowsq

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

Hypercube

Unfold

Fold

Fig. 14.5    Unfolded 3-cube or the 32-node 
butterfly network. 

Unfolded hypercube 
(indirect cube, butterfly) 
facilitates the discussion, 
visualization, and analysis 
of routing algorithms

Dimension-order routing between nodes i and j in q-cube can be viewed as 
routing from node i in column 0 (q) to node j in column q (0) of the butterfly 
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Self-Routing on a Butterfly Network

From node 3 to 6: routing tag = 011  110 = 101 “cross-straight-cross”
From node 3 to 5: routing tag = 011  101 = 110 “straight-cross-cross”
From node 6 to 1: routing tag = 110  001 = 111 “cross-cross-cross”

dim 0 dim 1 dim 2 

0        1        2        3 

0  
  
1  
  
2  
  
3  
  
4  
  
5  
  
6  
  
7 

0  
  
1  
  
2  
  
3  
  
4  
  
5  
  
6  
  
7 

Ascend Descend 

Fig. 14.6   Example 
dimension-order 
routing paths. 

Number of cross 
links taken = length 
of path in hypercube
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Butterfly Is Not a Permutation Network
dim 0 dim 1 dim 2

0        1        2        3
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D 
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4 
 
5 
 
6 
 
7

0 
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2 
 
3 
 
4 
 
5 
 
6 
 
7

Fig. 14.7    Packing is a “good” 
routing problem for dimension-
order routing on the hypercube. 

dim 0 dim 1 dim 2

0        1        2        3
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4 
 
5 
 
6 
 
7
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3 
 
4 
 
5 
 
6 
 
7

Fig. 14.8    Bit-reversal permutation is 
a “bad” routing problem for dimension-
order routing on the hypercube. 



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 41

Why Bit-Reversal Routing Leads to Conflicts?

Consider the (2a + 1)-cube and messages that must go from nodes 
0 0 0 . . . 0 x1 x2 . . . xa–1 xa to nodes  xa xa–1 . . . x2 x1 0 0 0 . . . 0

a + 1 zeros a + 1 zeros

If we route messages in dimension order, starting from the right end, 
all of these 2a = Q(p1/2) messages will pass through node 0

Consequences of this result:

1. The Q(p1/2) delay is even worse than W(p1/2/d) of Theorem 14.1

2. Besides delay, large buffers are needed within the nodes

True or false? If we limit nodes to a constant number of message 
buffers, then the Q(p1/2) bound still holds, except that messages are 
queued at several levels before reaching node 0 

Bad news (false): The delay can be Q(p) for some permutations

Good news: Performance usually much better; i.e., log2 p + o(log p)
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Wormhole Routing on a Hypercube

dim 0 dim 1 dim 2

0        1        2        3
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0        1        2        3
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Good/bad routing problems are good/bad for wormhole routing as well

Dimension-order routing is deadlock-free
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14.5  Broadcasting on a Hypercube

Flooding: applicable to any network with all-port communication

00000 Source node

00001, 00010, 00100, 01000, 10000 Neighbors of source

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000 Distance-2 nodes

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100 Distance-3 nodes

01111, 10111, 11011, 11101, 11110 Distance-4 nodes

11111  Distance-5 node

Binomial broadcast tree with single-port communication

0 
1 
2 
3 
4 
5 

Time00000

10000

01000 11000

00100 01100 10100 11100

00001

00010

Fig. 14.9   
The binomial 
broadcast tree 
for a 5-cube.
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Hypercube Broadcasting Algorithms

Fig. 14.10   
Three 
hypercube 
broadcasting 
schemes as 
performed 
on a 4-cube. 
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14.6  Adaptive and Fault-Tolerant Routing

There are up to q node-disjoint and edge-disjoint shortest paths between 
any node pairs in a q-cube

Thus, one can route messages around congested or failed nodes/links 

A useful notion for designing adaptive wormhole routing algorithms is 
that of virtual communication networks

Each of the two subnetworks 
in Fig. 14.11 is acyclic

Hence, any routing scheme 
that begins by using links in 
subnet 0, at some point 
switches the path to subnet 1, 
and from then on remains in 
subnet 1, is deadlock-free

0

2

1

3

4

6

5

7

0

2

1

3

4

6

5

7

Subnetwork 0 Subnetwork 1

Fig. 14.11   Partitioning a 3-cube into 
subnetworks for deadlock-free routing. 



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 46

The fault diameter of the q-cube is q + 1.

Robustness of the Hypercube

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Source

Destination

X

X

X

Three 
faulty 
nodes

The node that is 
furthest from S is 
not its diametrically 
opposite node in 
the fault-free 
hypercube

S
Rich connectivity 
provides many 
alternate paths for 
message routing

Dim 0

Dim 1

Dim 2

Dim 3
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15  Other Hypercubic Architectures

Learn how the hypercube can be generalized or extended:
• Develop algorithms for our derived architectures
• Compare these architectures based on various criteria

Topics in This Chapter

15.1 Modified and Generalized Hypercubes

15.2 Butterfly and Permutation Networks

15.3 Plus-or-Minus-2i Network

15.4 The Cube-Connected Cycles Network

15.5 Shuffle and Shuffle-Exchange Networks

15.6 That’s Not All, Folks!
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15.1  Modified and Generalized Hypercubes

Fig. 15.1   Deriving a twisted 3-cube by 
redirecting two links in a 4-cycle.

Twisted 3-cube

0

2

1

3

4

6

5

7

5

3-cube and a 4-cycle in it

0

2

1

3

4

6 7

Diameter is one less than the original hypercube
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Folded Hypercubes

Fig. 15.2   Deriving a 
folded 3-cube by adding 
four diametral links.

Folded 3-cube

0

2

1

3

4

6

5

7

5

A diametral path in the 3-cube

0

2

1

3

4

6 7

Fig. 15.3 
Folded 3-cube 
viewed as 
3-cube with a 
redundant 
dimension.

Rotate 
180  
degrees

Folded 3-cube with 
Dim-0 links removed

0

2

7

5

4

6

3

1

5

0

2

1

3

4

6 7

After renaming, diametral 
links replace dim-0 links 

5

1

3 7

Diameter is half that of 
the original hypercube
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Generalized Hypercubes

A hypercube is a power or homogeneous product network
q-cube  = (oo)q ; q th power of K2

Generalized hypercube = qth power of Kr

(node labels are radix-r numbers) 
Node x is connected to y iff x and y differ in one digit 
Each node has r – 1 dimension-k links

Example: radix-4 generalized hypercube
Node labels are radix-4 numbers

x0

x1

x2

x3

Dimension-0 links
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Bijective Connection Graphs

Beginning with a c-node seed network, the network size is recursively 
doubled in each step by linking nodes in the two halves via an arbitrary 
one-to-one mapping. Number of nodes = c 2q

Hypercube is a special case, as are many hypercube variant networks 
(twisted, crossed, mobius, . . . , cubes)

Bijective
mapping

Special case of c = 1: 
Diameter upper bound is q
Diameter lower bound is an open problem (it is better than q + 1/2)
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15.2  Butterfly and Permutation Networks

Fig. 7.4    
Butterfly 
and 
wrapped 
butterfly 
networks.
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Structure of Butterfly Networks
0 

1  

2  

3  

4  

5  

6  

7  

D im  0 D im  1 D im  2 

0 1  2  3  

D im  3 
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15 
4  

The 16-row butterfly network.

Fig. 15.5    Butterfly network 
with permuted dimensions.
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Dim 1 Dim 0 Dim 2 

0 1 2 3 

Switching these 
two row pairs 
converts this to 
the original 
butterfly network. 
Changing the 
order of stages in 
a butterfly is thus 
equi valent to a 
relabeling of the 
rows (in this 
example, row xyz 
becomes row xzy) 



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 54

Fat Trees

Fig. 15.6    Two representations of a fat tree.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Skinny tree?

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

Front view: 
Binary tree

Side view: 
Inverted  
binary tree

1 3 5 7

1 2 3
5 6 7

1 2
3 4 5 6 7

Fig. 15.7    
Butterfly 
network 
redrawn as 
a fat tree.
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Butterfly as Multistage Interconnection Network

Fig. 6.9    Example of a multistage 
memory access network 

Generalization of the butterfly network
High-radix or m-ary butterfly, built of m  m switches
Has mq rows and q + 1 columns (q if wrapped)

0        1        2        3
log  p Columns of 2-by-2 Switchesp Processors p Memory Banks
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1111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 
13 
14 
15

2 0        1        2        3
log  p + 1 Columns of 2-by-2 Switches

000 
001 
010 
011 
100 
101 
110 
111 
000 
001 
010 
011 
100 
101 
110 
111

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7

2

Fig. 15.8    Butterfly network 
used to connect modules 
that are on the same side 
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Beneš Network

Fig. 15.9    Beneš network formed from two back-to-back butterflies.

A 2q-row Beneš network:
Can route any 2q  2q permutation
It is “rearrangeable”
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Routing Paths in a Beneš Network

Fig. 15.10    Another example of a Beneš network.

0        1        2        3        4        5        6

2q + 1 Columns
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  7 
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11 
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13 
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2      Inputsq+1 2      Outputs
q+1

To which 
memory 
modules 
can we 
connect 
proc 4 
without 
rearranging 
the other 
paths?

What 
about 
proc 6?
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15.3  Plus-or-Minus-2i Network

Fig. 15.11   Two representations of the eight-node PM2I network. 

The hypercube is a subgraph of the PM2I network 
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Unfolded PM2I 
Network

Fig. 15.12   Augmented 
data manipulator network. 

Data manipulator network 
was used in Goodyear 
MPP, an early SIMD 
parallel machine. 

“Augmented” means that 
switches in a column are 
independent, as opposed 
to all being set to same 
state (simplified control).
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15.4  The Cube-Connected Cycles Network

The cube-connected 
cycles network (CCC) 
is the earliest 
example of what later 
became known as 
X-connected cycles, 
with X being an 
arbitrary network

Transform a p-node, 
degree-d network into 
a pd-node, degree-3 
network by replacing 
each of the original 
network nodes with a 
d-node cycle

L0

L1

L2

L3L4

L5

L7

L6

x

Original 
degree-8 node 
in a network, 
with its links 
labeled L0 
through L7

x0

x1

x2

x3x4

x5

x7

x6

L0

L1

L2

L3L4

L5

L7

L6

Replacement 
8-node cycle, 
with each of 
its 8 nodes 
accommodating 
one of the links 
L0 through L7 
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A View of The CCC Network

Fig. 15.14    Alternate derivation 
of CCC from a hypercube. 
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Replacing each node of a high-dimensional 
q-cube by a cycle of length q is how CCC 
was originally proposed

Example of 
hierarchical 
substitution 
to derive a 
lower-cost 
network from 
a basis 
network
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Another View of the Cube-Connected Cycles Network

Fig. 15.13    A wrapped butterfly (left) 
converted into cube-connected cycles. 
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The cube-connected 
cycles network (CCC) 
can be viewed as a 
simplified wrapped 
butterfly whose node 
degree is reduced 
from 4 to 3.



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 63

Emulation of a 6-Cube by a 64-Node CCC

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

With proper node mapping, 
dim-0 and dim-1 neighbors 
of each node will map onto 
the same cycle

Suffices to show how to 
communicate along other 
dimensions of the 6-cube
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Emulation of Hypercube Algorithms by CCC

Node (x, j) is communicating 
along dimension j; after the 
next rotation, it will be linked 
to its dimension-(j + 1) 
neighbor.

Hypercube 
Dimension

q–1

3 
 
2 
 
1 
 
0

Algorithm Steps
0        1        2        3      .  .  .  

. 

. 

.

Ascend

Descend

Normal

2   bitsm m  bits
Cycle ID = x Proc ID = y

N    (x)

x, j–1

x, j

x, j+1

 , j–1j–1

, j

, j+1

Dim j–1

Dim j

Dim j+1
 , j–1

Cycle 
    x

 , j

N    (x)

j+1

N    (x)j+1

N (x)j

N (x)j

Fig. 15.15    CCC emulating 
a normal hypercube algorithm. 

Ascend, descend, 
and normal algorithms.
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15.5  Shuffle and Shuffle-Exchange Networks

Fig. 15.16    Shuffle, exchange, and shuffle–exchange connectivities. 
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Shuffle-Exchange Network

Fig. 15.17    Alternate views of an eight-node shuffle–exchange network. 
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Routing in Shuffle-Exchange Networks

In the 2q-node shuffle network, node x = xq–1xq–2 . . . x2x1x0

is connected to xq–2 . . . x2x1x0xq–1 (cyclic left-shift of x)

In the 2q-node shuffle-exchange network, node x is
additionally connected to xq–2 . . . x2x1x0xq–1

01011011  Source
11010110  Destination
^   ^^ ^  Positions that differ

01011011  Shuffle to  10110110 Exchange to  10110111
10110111  Shuffle to  01101111
01101111  Shuffle to  11011110
11011110  Shuffle to  10111101
10111101  Shuffle to  01111011 Exchange to  01111010
01111010  Shuffle to  11110100 Exchange to  11110101
11110101  Shuffle to  11101011
11101011  Shuffle to  11010111 Exchange to  11010110
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Diameter of Shuffle-Exchange Networks

For 2q-node shuffle-exchange network: D = q = log2p, d = 4

With shuffle and exchange links provided separately, as in Fig. 15.18,
the diameter increases to 2q – 1 and node degree reduces to 3

0 1 2 3 4 5 6 7

0

3

6
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5
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4

7

Exchange 
(dotted)

Shuffle 
(solid)

Fig. 15.18    Eight-node network with separate shuffle and exchange links. 
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Multistage 
Shuffle-

Exchange 
Network

Fig. 15.19    
Multistage 
shuffle–exchange 
network 
(omega network) 
is the same as 
butterfly network. 
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15.6  That’s Not All, Folks!

D = log2 p + 1

d = (log2 p + 1)/2

B = p/4

When q is a power of 2, the 2qq-node cube-connected cycles network 
derived from the q-cube, by replacing each node with a q-node cycle, 
is a subgraph of the (q + log2q)-cube    CCC is a pruned hypercube 

Other pruning strategies are possible, leading to interesting tradeoffs 

Fig. 15.20    Example of a pruned hypercube. 
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All dimension-0 
links are kept 

Even-dimension 
links are kept in 
the even subcube 

Odd-dimension 
links are kept in 
the odd subcube 
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Möbius Cubes 

Dimension-i neighbor of x = xq–1xq–2 ... xi+1xi ... x1x0 is: 

xq–1xq–2 ... 0xi... x1x0 if  xi+1 = 0 (xi complemented, as in q-cube)

xq–1xq–2 ... 1xi... x1x0 if  xi+1 = 1 (xi and bits to its right complemented)

For dimension q – 1, since there is no xq, the neighbor can be defined 
in two possible ways, leading to 0- and 1-Mobius cubes

A Möbius cube has a diameter of about 1/2 and an average internode 
distance of about 2/3 of that of a hypercube

0

2

1

3

4

6

5

7

6

0-Mobius cube 

0

2

1

3

7

4 5

1-Mobius cube 

Fig. 15.21    
Two 8-node 
Möbius cubes. 
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16  A Sampler of Other Networks

Complete the picture of the “sea of interconnection networks”:
• Examples of composite, hybrid, and multilevel networks
• Notions of network performance and cost-effectiveness

Topics in This Chapter

16.1 Performance Parameters for Networks

16.2 Star and Pancake Networks

16.3 Ring-Based Networks

16.4 Composite or Hybrid Networks

16.5 Hierarchical (Multilevel) Networks

16.6 Multistage Interconnection Networks
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16.1  Performance Parameters for Networks

A wide variety of direct 
interconnection networks 
have been proposed for, or 
used in, parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes.

Fig. 4.8 (expanded)
The sea of direct 
interconnection networks.
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Diameter and Average Distance
Diameter D (indicator of worst-case message latency)

Routing diameter D(R); based on routing algorithm R

Average internode distance D (indicator of average-case latency)
Routing average internode distance D(R)

For the 3  3 mesh:
D = (418+415+12)

/ (9  8) = 2 
[or 144/81 = 16/9]

Finding the average internode distance of a 3  3 mesh.

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

Sum of distances 
from corner node: 
2  1  + 3   2 + 2  3 
+ 1  4 = 18 

Sum of distances 
from side node: 
3  1 + 3   2 +  
2  3 = 15 

Sum of distances 
from center node: 
4  1  + 4   2 = 12 Average distance:  

(4  18 + 4  15 +  
1  12) / (9 x 8) = 2 

For the 3  3 torus:
D = (4  1 + 4  2) / 8 

= 1.5 [or 12/9 = 4 /3]
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Bisection Width
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15 16 17 

18 

19 

Fig. 16.2    A network 
whose bisection width is 
not as large at it appears.

Node bisection and 
link bisection

Indicator or random 
communication 
capacity

Hard to determine; 
Intuition can be 
very misleading
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Determining the Bisection Width

Establish upper bound by taking a number of trial cuts.
Then, try to match the upper bound by a lower bound.

Establishing 
a lower 
bound on B:

Embed Kp
into p-node 
network

Let c be the 
maximum 
congestion

B  p2/4/c

P 0 P 1 P 2 

P 3 P 4 P 5 

P 6 P 7 P 8 

0 1 2 

3 4 5 

6 7 8 

7 

7 

An embedding of  
K   into 3  3 mesh 9 

P 0 

P 1 

P 
2 

P 3 

P 4 P 5 

P 6 

P 
7 

P 8 

Bisection width = 4  5 = 20 

K 9 

Improved,
corrected
version of 
this diagram 
on next slide
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Example for Bounding the Bisection Width

Embed K9 into 
3  3 mesh

Observe the max 
congestion of 7

p2/4 = 20

Must cut at least 
3 bundles to 
sever 20 paths

Bisection width of 
a 3  3 mesh is at 
least 3

Given the upper 
bound of 4:
3  B  4

7 6

4 5

77

5
6

75 6

7
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Degree-Diameter Relationship

Age-old question: What is the best way to interconnect p nodes 
of degree d to minimize the diameter D of the resulting network? 

Alternatively: Given a desired diameter D and nodes of degree d, 
what is the max number of nodes p that can be accommodated?

Moore bounds (digraphs)

p  1 + d + d2 + . . . + dD = (dD+1–1)/(d–1)
D  logd [p(d – 1) + 1] – 1

Only ring and Kp match these bounds
x

d nodes
d 2 nodes

Moore bounds (undirected graphs)

p  1 + d + d(d – 1) + . . . + d(d – 1)D–1

= 1 + d [(d – 1)D – 1]/(d – 2)
D  logd–1[(p – 1)(d – 2)/d + 1]

Only ring with odd size p and a few other
networks match these bounds

x

d nodes
d (d – 1) nodes
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Moore Graphs

A Moore graph matches the bounds on diameter and number of nodes.

For d = 2, we have p  2D + 1
Odd-sized ring satisfies this bound

11010

01101

1001111100

00111

11001

10101

10110

0111001011

Fig. 16.1    The 10-node Petersen graph.

For d = 3, we have p  3  2D – 2 
D = 1 leads to p  4 (K4 satisfies the bound)
D = 2 leads to p  10 and the first nontrivial example (Petersen graph)
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How Good Are Meshes and Hypercubes?

For d = 4, we have D  log3[(p + 1)/2]

So, 2D mesh and torus networks are far from optimal in diameter, 
whereas butterfly is asymptotically optimal within a constant factor 

For d = log2 p (as for d-cube), we have D = W(d / logd) 
So the diameter d of a d-cube is a factor of log d over the best possible
We will see that star graphs match this bound asymptotically

Summary:

For node degree d, Moore’s bounds establish the lowest possible 
diameter D that we can hope to achieve with p nodes, or the largest 
number p of nodes that we can hope to accommodate for a given D. 

Coming within a constant factor of the bound is usually good enough; 
the smaller the constant factor, the better.
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Layout Area and Longest Wire

The VLSI layout area required by an interconnection network is 
intimately related to its bisection width B

The longest wire required in VLSI layout affects network performance

For example, any 2D layout of a p-node hypercube requires wires of 
length W((p / logp)1/2); wire length of a mesh does not grow with size

When wire length grows with size, the per-node performance is bound 
to degrade for larger systems, thus implying sublinear speedup

If B wires must cross the bisection in 2D layout 
of a network and wire separation is 1 unit, the 
smallest dimension of the VLSI chip will be  B

The chip area will thus be W(B2) units 
p-node 2D mesh needs O(p) area
p-node hypercube needs at least W(p2) area

B wires crossing a bisection 
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Measures of Network Cost-Effectiveness

Composite measures, that take both the network performance and its 
implementation cost into account, are useful in comparisons

Robustness must be taken into account in any practical comparison of 
interconnection networks (e.g., tree is not as attractive in this regard)

One such measure is the degree-diameter product, dD

Mesh / torus: Q(p1/2)
Binary tree: Q(logp)
Pyramid: Q(logp)
Hypercube: Q(log2p)

However, this measure is somewhat misleading, as the node degree d
is not an accurate measure of cost; e.g., VLSI layout area also depends 
on wire lengths and wiring pattern and bus based systems have low 
node degrees and diameters without necessarily being cost-effective

Not quite similar in cost-performance
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16.2  Star and Pancake Networks

Fig. 16.3    The four-dimensional star graph.

Has p = q ! nodes 

Each node labeled with a 
string x1x2 ...xq which is a 
permutation of {1, 2, ... , q} 

Node x1x2 ...xi ...xq is 
connected to xix2 ...x1 ...xq

for each i (note that x1

and xi are interchanged) 

When the i th symbol is 
switched with x1 , the 
corresponding link is 
called a dimension-i link 

d = q – 1; D = 3(q – 1)/2

D, d = O(log p / log log p)
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23413124
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3214
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Routing in the Star Graph

Source node   1 5 4 3 6 2
Dimension-2 link to 5 1 4 3 6 2  
Dimension-6 link to 2 1 4 3 6 5

Last symbol now adjusted
Dimension-2 link to 1 2 4 3 6 5
Dimension-5 link to 6 2 4 3 1 5

Last 2 symbols now adjusted
Dimension-2 link to 2 6 4 3 1 5
Dimension-4 link to 3 6 4 2 1 5

Last 3 symbols now adjusted
Dimension-2 link to 6 3 4 2 1 5
Dimension-3 link to 4 3 6 2 1 5

Last 4 symbols now adjusted
Dimension-2 link (Dest’n) 3 4 6 2 1 5

We need a maximum of two routing steps per symbol, except that last 
two symbols need at most 1 step for adjustment   D  2q – 3 

The diameter 
of star is in fact 
somewhat less 
D = 3(q–1)/2

Clearly, this is 
not a shortest-
path routing 
algorithm.

Correction to text, 
p. 328: diameter is 
not 2q – 3 
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Star’s Sublogarithmic Degree and Diameter

d = Q(q) and D = Q(q); but how is q related to the number p of nodes?

p = q !  e–qqq (2pq)1/2 [ using Striling’s approximation to q ! ] 

ln p  –q + (q+1/2) lnq + ln(2p)/2 = Q(q logq) or q = Q(logp / log logp)

Hence, node degree and diameter are sublogarithmic

Star graph is asymptotically optimal to within a constant factor with regard
to Moore’s diameter lower bound

Routing on star graphs is simple and reasonably efficient; however,
virtually all other algorithms are more complex than the corresponding
algorithms on hypercubes

Network diameter 4 5 6 7 8 9
Star nodes 24 -- 120 720 -- 5040
Hypercube nodes 16 32 64 128 256 512
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The Star-Connected Cycles Network

Fig. 16.4    The four-dimensional 
star-connected cycles network.

Replace degree-(q – 1) 
nodes with (q – 1)-cycles 

This leads to a scalable 
version of the star graph 
whose node degree of 3 
does not grow with size

The diameter of SCC is 
about the same as that of 
a comparably sized CCC 
network

However, routing and 
other algorithms for SCC 
are more complex

1234,4

3

2

3 2

3

2
1234,3

4
1234,2



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 87

Pancake Networks

Similar to star networks in terms of 
node degree and diameter 

Dimension-i neighbor obtained by 
“flipping” the first i symbols; 
hence, the name “pancake”

1234

2134
3214

4321Dim 2

Dim 3

Dim 4

Source node   1 5 4 3 6 2
Dimension-2 link to 5 1 4 3 6 2  
Dimension-6 link to 2 6 3 4 1 5

Last 2 symbols now adjusted
Dimension-4 link to 4 3 6 2 1 5

Last 4 symbols now adjusted
Dimension-2 link (Dest’n) 3 4 6 2 1 5

We need two flips per symbol in 
the worst case; D  2q – 3 
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Cayley Networks

Group:

A semigroup with an identity element 
and inverses for all elements. 

Example 1: Integers with addition or 
multiplication operator form a group.

Example 2: Permutations, with the 
composition operator, form a group.

Node x

xg1

xg2

xg3
Gen g1

Gen g2

Gen g3

Star and pancake networks are 
instances of Cayley graphs

Cayley graph:

Node labels are from a group G, and 
a subset S of G defines the 
connectivity via the group operator 

Node x is connected to node y
iff xg = y for some g  S

Elements of S are “generators” 
of G if every element of G can 
be expressed as a finite 
product of their powers
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Star as a Cayley Network

Fig. 16.3    The four-dimensional star graph.

Four-dimensional star:

Group G of the 
permutations of {1, 2, 3, 4}

The generators are the 
following permutations:
(1  2) (3) (4)
(1  3) (2) (4)
(1  4) (2) (3)

The identity element is:
(1) (2) (3) (4)

1234 4231

2134 3241
2431

3421

4321

2413

23413124
1324

2314

3214

1423
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4213
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3 2

3

2

4
(1  4) (2) (3)

(1  3) (2) (4)
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16.3  Ring-Based Networks

Fig. 16.5    A 64-node ring-of-rings architecture composed 
of eight 8-node local rings and one second-level ring.

Rings are simple, 
but have low 
performance and 
lack robustness

Message 
source

Local Ring
Remote 
Ring

S

D

Message 
destination

Hence, a variety 
of multilevel and 
augmented ring 
networks have 
been proposed
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Chordal Ring 
Networks

Fig. 16.6   
Unidirectional ring, 
two chordal rings, 
and node 
connectivity in 
general.

Given one chord 
type s, the optimal 
length for s is 
approximately p1/2
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Routing algorithm: 
Greedy routing
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Chordal Rings Compared to Torus Networks

Fig. 16.7   Chordal rings redrawn to show 
their similarity to torus networks.

The ILLIAC IV 
interconnection 
scheme, often 
described as 
8  8 mesh or 
torus, was really 
a 64-node 
chordal ring with 
skip distance 8.

0 1 2

3

6 7

4 5

0 1 2

3

6 7

4

8

5

A class of chordal rings, studied at UCSB (two-part paper in IEEE 
TPDS, August 2005) have a diameter of D = 2

Perfect difference {0, 1, 3}: All numbers in the range 1-6 mod 7 
can be formed as the difference of two numbers in the set.  

Perfect Difference Networks
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Periodically Regular Chordal Rings

Fig. 16.8   Periodically regular chordal ring.

Modified greedy routing: first route to the head of a group; 
then use pure greedy routing

0

4

26

7

3

1

5

Group 0

s1
s0

s0

s2

Group 0 

Group 1 

Group 2 

Group p/g – 1 

Group i 

Nodes 0  
to g – 1 

Nodes g  
to 2g – 1 

Nodes 2g  
to 3g – 1 

Nodes ig 
to (i+1)g – 1 

Nodes p – g 
to p – 1 

A skip link leads to 
the same relative 
position in the 
destination  
group 
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Some Properties of PRC Rings

Fig. 16.9   VLSI layout for a 64-node 
periodically regular chordal ring.
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63
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7
To 3
To 6

Remove some skip links 
for cost-performance 
tradeoff; similar in nature 
to CCC network with 
longer cycles

Fig. 16.10   A PRC 
ring redrawn as a 
butterfly- or ADM-
like network.
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16.4  Composite or Hybrid Networks

Motivation: Combine the connectivity schemes from 
two (or more) “pure” networks in order to: 

 Achieve some advantages from each structure

 Derive network sizes that are otherwise unavailable

 Realize any number of performance /cost benefits 

A very large set of combinations have been tried

New combinations are still being discovered
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Composition by Cartesian Product Operation

Fig. 13.4    Examples of product graphs. 

Properties of product 
graph G = G  G:

Nodes labeled (x , x), 
x   V , x  V

p = pp
d = d  + d
D = D + D
D = D + D

Routing: G -first
(x ,x)   (y ,x) 

 (y ,y)

Broadcasting

Semigroup & parallel 
prefix computations

 =
3-by-2 
torus

  =

 =

0

1

2

a

b

0a

1a

2a
0b

1b

2b
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Other Properties and Examples of Product Graphs

Fig. 16.11    Mesh of trees compared with mesh-connected trees.

If G and G are Hamiltonian, then the p  p torus is a subgraph of G
For results on connectivity and fault diameter, see [Day00], [AlAy02]

Mesh of trees (Section 12.6) Product of two trees
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16.5  Hierarchical (Multilevel) Networks

Can be defined 
from the bottom up 
or from the top down

We have already seen 
several examples of 
hierarchical networks: 
multilevel buses (Fig. 4.9); 
CCC; PRC rings

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 16.13    Hierarchical or multilevel bus network.

Take first-level ring 
networks and 
interconnect them 
as a hypercube

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Take a top-level 
hypercube and 
replace its nodes 
with given networks



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 99

Example: Mesh of Meshes Networks

EW

N

S

Fig. 16.12    The mesh of meshes network 
exhibits greater modularity than a mesh.

The same idea can be used 
to form ring of rings, 
hypercube of hypercubes, 
complete graph of complete 
graphs, and more generally, 
X of Xs networks

When network topologies at 
the two levels are different, 
we have X of Ys networks

Generalizable to three levels 
(X of Ys of Zs networks), 
four levels, or more
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Example: Swapped Networks

Two-level swapped network with 2  2 mesh as its nucleus.

0 1

2 3

Level-1 link

00 10

20 30

01 11

21 31

02 12

22 32

03 13

23 33

Level-2 link

Build a p2-node network using p-node building blocks (nuclei or clusters) 
by connecting node i in cluster j to node j in cluster i

Cluster # Node #

Cluster # Node #

We can 
square the 
network 
size by 
adding 
one link 
per node

Also known in the literature as OTIS (optical transpose interconnect system) network
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Swapped Networks Are Maximally Fault-Tolerant

One case of 
several cases 
in the proof, 
corresponding 
to source and 
destination 
nodes being 
in different 
clusters

For any connected, degree-d basis network G, Swap(G) = OTIS(G) has 
the maximal connectivity of d and can thus tolerate up to d – 1 faults

Source: Chen, Xiao, Parhami, 
IEEE TPDS, March 2009
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Example: Biswapped Networks

Build a 2p2-node network using p-node building blocks (nuclei or clusters) 
by connecting node i in cluster j of part 0 to node j in cluster i of part 1

p-node 
basis 
network

p copies

Two 
parts

0

1
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Data-Center Networks

Data-center communication patterns are different from parallel processors
Current networks are variations of the fat-tree concept

Two competing approaches:
- Specialized hardware and communication protocols (e.g., InfiniBand)
- Commodity Ethernet switches and routers for interconnecting clusters
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16.6  Multistage Interconnection Networks

Numerous indirect  or 
multistage interconnection 
networks (MINs) have been 
proposed for, or used in, 
parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes

We have already seen the 
butterfly, hierarchical bus, 
beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect 
interconnection networks.
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Self-Routing Permutation Networks

Do there exist self-routing permutation networks? (The butterfly network 
is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting     

Fig. 16.14    Example of sorting on a binary radix sort network.

7  (111) 
 0  (000) 
 4  (100) 
 6  (110) 
 1  (001) 
 5  (101) 
 3  (011) 
 2  (010) 
 

7  (111) 
 

0  (000) 
 

4  (100) 
 

6  (110) 
 

1  (001) 
 

5  (101) 
 

3  (011) 
 

2  (010) 
 

0 
 1 
 3 
 2 
 

5 
 

7 
 4 
 6 
 

0 
 1 
 3 
 2 
 

6 
 

4 
 5 
 7 
 

Sort by 
MSB 

 

Sort by 
LSB 

 

Sort by the 
middle bit 

 



Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 106

Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)

Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)

Baseline: Butterfly network with nodes labeled differently

Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)

Bidelta: A MIN that is a delta network in either direction 

Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)

Data manipulator: Same as ADM, but with switches in a column restricted to same state  

Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1 

for 2  2 switches) and path label, composed of concatenating switch output labels 

leading from an input to an output depends only on the output

Flip: Reverse of the omega network (inputs  outputs)

Indirect cube: Same as butterfly or omega

Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)

Permutation: Any MIN that can realize all permutations

Rearrangeable: Same as permutation network

Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged
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16.6*  Natural and Human-Made Networks
Since multistage networks will move to Part II’ (shared memory), 
the new version of this subsection will discuss the classes of 
small-world and scale-free networks

Example of a 
collaboration 
network 
(e.g., co-authors 
of papers) 
showing clusters 
and inter-cluster 
connectivity

Image credit:
Univ. Leiden
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Professional Connections Networks

Image credit:
LinkedIn


