
Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 1

Part IV
Low-Diameter Architectures

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by
the author in connection with teaching the graduate-level course
ECE 254B: Advanced Computer Architecture: Parallel Processing,
at the University of California, Santa Barbara. Instructors can use
these slides in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019 Winter 2020 Winter 2021

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 3

IV Low-Diameter Architectures

Study the hypercube and related interconnection schemes:
• Prime example of low-diameter (logarithmic) networks
• Theoretical properties, realizability, and scalability
• Complete our view of the “sea of interconnection nets”

Topics in This Part

Chapter 13 Hypercubes and Their Algorithms

Chapter 14 Sorting and Routing on Hypercubes

Chapter 15 Other Hypercubic Architectures

Chapter 16 A Sampler of Other Networks

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 4

13 Hypercubes and Their Algorithms

Study the hypercube and its topological/algorithmic properties:
• Develop simple hypercube algorithms (more in Ch. 14)
• Learn about embeddings and their usefulness

Topics in This Chapter

13.1 Definition and Main Properties

13.2 Embeddings and Their Usefulness

13.3 Embedding of Arrays and Trees

13.4 A Few Simple Algorithms

13.5 Matrix Multiplication

13.6 Inverting a Lower-Triangular Matrix

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 5

13.1 Definition and Main Properties

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

P P P

P P P

P P P

0

1

2

3

4

5

6

7

8

Intermediate
architectures:
logarithmic or
sublogarithmic

diameter

Begin studying networks that are intermediate between
diameter-1 complete network and diameter-p1/2 mesh

Complete
network

n/2 log n log n / log log n n 1 1 n 2

Sublogarithmic diameter Superlogarithmic diameter

PDN Star,
pancake

Binary tree,
hypercube

Torus Ring Linear
array

Winter 2021 Parallel Processing, Mesh-Based Architectures Slide 6

Very-High-Dimensional Meshes and Tori

qD mesh with m processors along each dimension: p = mq

Diameter D = q(m – 1) = q (p1/q – 1)
Bisection width: B = p1–1/q when m = p1/q is even
Node degree d = 2q

qD torus with m processors along each dimension = m-ary q-cube

What happens when q becomes as large as log2 p?
Diameter D = q (p1/q – 1) = log2 p * = O(log p)
Bisection width: B = p1–1/q = p / p1/q = p/2 * = O(p)
Node degree d = 2q = log2 p ** = O(log p)

qD torus with 2 processors along each dimension same as mesh

* What is the value of m = p1/q = p1/log2 p ?
m = p1/log2 p mlog2 p = p m = 2

** When m = 2, node degree becomes q instead of 2q

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 7

Hypercube and Its History
Binary tree has logarithmic diameter, but small bisection
Hypercube has a much larger bisection
Hypercube is a mesh with the maximum possible number of dimensions

2 2 2 . . . 2
 q = log2 p

We saw that increasing the number of dimensions made it harder to
design and visualize algorithms for the mesh
Oddly, at the extreme of log2 p dimensions, things become simple again!

Brief history of the hypercube (binary q-cube) architecture
Concept developed: early 1960s [Squi63]
Direct (single-stage) and indirect (multistage) versions: mid 1970s

Initial proposals [Peas77], [Sull77] included no hardware
Caltech’s 64-node Cosmic Cube: early 1980s [Seit85]

Introduced an elegant solution to routing (wormhole switching)
Several commercial machines: mid to late 1980s

Intel PSC (personal supercomputer), CM-2, nCUBE (Section 22.3)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 8

Basic Definitions

Hypercube is generic term;
3-cube, 4-cube, . . . , q-cube
in specific cases

0 1
00 01

10 11

(a) Binary 1-cube,
built of two
binary 0-cubes,
labeled 0 and 1

(b) Binary 2-cube,
built of two
binary 1-cubes,
labeled 0 and 1

0

1

(c) Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1

0

000 001

010 011

100 101

110 111

1

000

001

010

011

100

101

110

111

(d) Binary 4-cube, bui lt of two binary 3-cubes, labeled 0 and 1

0 1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Fig. 13.1
The recursive
structure of
binary
hypercubes.

Parameters:

p = 2q

B = p/2 = 2q–1

D = q = log2p

d = q = log2p

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 9

Only sample
wraparound
links are
shown to
avoid clutter

The 64-Node
Hypercube

Isomorphic to
the 4 4 4
3D torus
(each has
64 6/2 links)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 10

Neighbors of a Node in a Hypercube

xq–1xq–2 . . . x2x1x0 ID of node x

xq–1xq–2 . . . x2x1x0 dimension-0 neighbor; N0(x)
xq–1xq–2 . . . x2x1x0 dimension-1 neighbor; N1(x)
. .
. .
. .
xq–1xq–2 . . . x2x1x0 dimension-(q–1) neighbor; Nq–1(x)

The q
neighbors
of node x

Nodes whose labels differ in k bits
(at Hamming distance k) connected
by shortest path of length k

Both node- and edge-symmetric

Strengths: symmetry, log diameter,
and linear bisection width

Weakness: poor scalability

Dim 0

Dim 1

Dim 2 Dim 3

0100 0101

0110

0000
1100

1101

1111

0111

0011

x

1011

0010

1010

x

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 11

Dilation: Longest path onto which an edge is mapped (routing slowdown)
Congestion: Max number of edges mapped onto one edge (contention slowdown)
Load factor: Max number of nodes mapped onto one node (processing slowdown)

13.2 Embeddings and Their Usefulness

Fig. 13.2
Embedding a
seven-node
binary tree
into 2D
meshes of
various sizes.

0

2

4 3

1

6 5

0 2

4 3

1 6

5

0,1

2

4

3

6

5

6

0 1

3,4

2,5

a b

c d e f

a b

c

d

e

f

a b

c

d

e

f

b

f c, d

Dilation = 1
Congestion = 1
Load factor = 1

Dilation = 2
Congestion = 2
Load factor = 1

Dilation = 1
Congestion = 2
Load factor = 2 Expansion:

ratio of the
number of
nodes (9/7, 8/7,
and 4/7 here)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 12

13.3 Embedding of Arrays and Trees
Hamiltonicity is an important property of a graph
A graph with n nodes is Hamiltonian if the n-node cycle is its subgraph

More generally, embedding of cycles of various lengths in an intact or
faulty network of nodes may be sought

Bridges of Konigsberg: Find a path that crosses each bridge once

Hamiltonian Non-Hamiltonian Hamiltonian?

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 13

Hamiltonicity of the Hypercube

Alternate inductive proof: Hamiltonicity of the q-cube
is equivalent to the existence of a q-bit Gray code

Fig. 13.3 Hamiltonian cycle in the q-cube.

(q – 1)-cube 0

x

(q – 1)-cube 1

N (x)k

N (x)q–1

N (N (x)) q–1 k

(q – 1)-bit
Gray code

000 . . . 000
000 . . . 001
000 . . . 011

.

.

.
100 . . . 000

0
0
0

0
1

1
1
1

100 . . . 000
.
.
.

000 . . . 011
000 . . . 010
000 . . . 000
(q – 1)-bit
Gray code
in reverse

Basis: q-bit Gray code beginning with the all-0s codeword
and ending with 10q–1 exists for q = 2: 00, 01, 11, 10

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 14

Mesh/Torus Embedding in a Hypercube

Is a mesh or torus a subgraph of the hypercube of the same size?

Dim 0

Dim 1

Dim 2 Dim 3

Column 0

Column 1

Column 2

Column 3

Fig. 13.5 The 4 4 mesh/torus is a subgraph of the 4-cube.

We prove this to be the case for a torus (and thus for a mesh)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 15

Torus is a Subgraph of Same-Size Hypercube

A tool used in our proof

Product graph G1 G2:

Has n1 n2 nodes

Each node is labeled by a
pair of labels, one from each
component graph

Two nodes are connected if
either component of the two
nodes were connected in the
component graphs Fig. 13.4 Examples of product graphs.

The 2a 2b 2c . . . torus is the product of 2a-, 2b-, 2c-, . . . node rings
The (a + b + c + ...)-cube is the product of a-cube, b-cube, c-cube, . . .
The 2q-node ring is a subgraph of the q-cube
If a set of component graphs are subgraphs of another set, the product
graphs will have the same relationship

 =
3-by-2
torus

 =

 =

0

1

2

a

b

0a

1a

2a
0b

1b

2b

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 16

Embedding Trees in the Hypercube

The (2q – 1)-node complete binary tree
is not a subgraph of the q-cube

even weight

odd weights
even weights

odd weights

even weights

Proof by contradiction based on the parity of
node label weights (number of 1s is the labels)

The 2q-node double-rooted complete
binary tree is a subgraph of the q-cube

Fig. 13.6
The 2q-node
double-rooted
complete
binary tree is
a subgraph of
the q-cube.

New Roots

x N (N (x))
N (N (x))

2 -node double-rooted
complete binary tree

q Double-rooted tree
in the (q–1)-cube 0

Double-rooted tree
in the (q–1)-cube 1

N (x)c

N (x)b

N (x)a

b c

bc

N (N (x))
N (N (x))

c a

ca

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 17

A Useful Tree Embedding in the Hypercube

The (2q – 1)-node
complete binary tree
can be embedded
into the (q – 1)-cube

Fig. 13.7 Embedding a 15-node complete binary tree into the 3-cube.

Processor 000

001

010

011

100

101

110

111

Dim-2
link

Dim-1
links

Dim-0
links

Despite the load
factor of q, many
tree algorithms
entail no slowdown

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 18

13.4 A Few Simple Algorithms

Fig. 13.8 Semigroup computation on a 3-cube.

Semigroup computation on the q-cube
Processor x, 0 x < p do t[x] := v[x]

{initialize “total” to own value}
for k=0 to q–1 processor x, 0x<p, do

get y :=t[Nk(x)]
set t[x] := t[x] y

endfor

0

2

1

3

4

6

5

7

0-1

2-3

0-1

2-3

4-5

6-7

4-5

6-7

0-3

0-3

0-3

0-3

4-7

4-7

4-7

4-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

Commutativity
of the operator
is implicit here.

How can we
remove this
assumption?

Dim 0

Dim 1

Dim 2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 19

Parallel Prefix Computation

Fig. 13.8 Semigroup computation on a 3-cube.

Commutativity
of the operator
is implicit in this
algorithm as well.

How can we
remove this
assumption?

t : subcube “total”

u : subcube prefix
0

2

1

3

4

6

5

7

0-1

2-3

0-1

2-3

4-5

6-7

4-5

6-7

0-3

0-3

0-3

0-3

4-7

4-7

4-7

4-7

4 4-5

0 0-1

6 6-7

2 2-3

t: Subcube "total"
u: Subcube prefix

4

0

0-2

4-6

0-1

0-3

4-5

4-7

0-4

0 0-1

0-2

0-5

0-6 0-7

0-3

All "totals" 0-7

Legend t

u

Parallel prefix computation on the q-cube
Processor x, 0 x < p, do t[x] := u[x] := v[x]

{initialize subcube “total” and partial prefix}
for k=0 to q–1 processor x, 0x<p, do

get y :=t[Nk(x)]
set t[x] := t[x] y
if x > Nk(x) then set u[x] := y u[x]

endfor

Dim 0

Dim 1

Dim 2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 20

Sequence Reversal on the Hypercube

Fig. 13.11 Sequence reversal on a 3-cube.

Reversing a sequence on the q-cube
for k=0 to q–1 Processor x, 0x <p, do

get y := v[Nk(x)]
set v[x] := y

endfor

000

001

010

011

100

101

110

111

000

001

010

011

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

100
 a b

c d

e f

g h

a b

c d

e f

g
h

g h

e f

c d

a b

c d

a b

g h

e f

Dim 0

Dim 1

Dim 2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 21

Ascend, Descend, and Normal
Algorithms

Graphical depiction of ascend, descend,
and normal algorithms.

Hypercube
Dimension

q–1

3

2

1

0

Algorithm Steps
0 1 2 3 . . .

.

.

.

Ascend

Descend

Normal

0

2

1

3

4

6

5

7

0-1

2-3

0-1

2-3

4-5

6-7

4-5

6-7

0-3

0-3

0-3

0-3

4-7

4-7

4-7

4-7

4 4-5

0 0-1

6 6-7

2 2-3

t: Subcube "total"
u: Subcube prefix

4

0

0-2

4-6

0-1

0-3

4-5

4-7

0-4

0 0-1

0-2

0-5

0-6 0-7

0-3

All "totals" 0-7

Legend t

u Parallel
prefix

000

001

010

011

100

101

110

111

000

001

010

011

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

100
 a b

c d

e f

g h

a b

c d

e f

g
h

g h

e f

c d

a b

c d

a b

g h

e f

Sequence
reversal

Semigroup

0

2

1

3

4

6

5

7

0-1

2-3

0-1

2-3

4-5

6-7

4-5

6-7

0-3

0-3

0-3

0-3

4-7

4-7

4-7

4-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

Dimension-order
communication

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 22

13.5 Matrix Multiplication

Fig. 13.12 Multiplying two 2 2 matrices on a 3-cube.

0

2

1

3

4

6

5

7

1
5

2
6

3
7

4
8

1 2
3 4

5 6
7 8

000 001

010 011

100 101

110 111

1
5

2
6

3
7

4
8

1
5

2
6

3
7

4
8

1
5

1
6

3
7

3
8

2
5

2
6

4
7

4
8

1
5

1
6

3
5

3
6

2
7

2
8

4
7

4
8

14 16

5

15

28

6

32

18

19 22

43 50

R
R

A
B

R
R

A
B

RC

R
R

A
B

R
R

A
B

R := R RC A B

1. Place elements
of A and B in
registers RA & RB

of m2 processors
with the IDs 0jk

p = m3 = 2q processors, indexed as ijk (with three q/3-bit segments)

2. Replicate inputs: communicate
across 1/3 of the dimensions

3, 4. Rearrange
the data by
communicating
across the
remaining 2/3 of
dimensions so
that processor ijk
has Aji and Bik

6. Move Cjk to
processor 0jk

Dim 0

Dim 1

Dim 2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 23

Analysis of Matrix Multiplication

The algorithm involves
communication steps in
three loops, each with
q / 3 iterations (in one of
the 4 loops, 2 values are
exchanged per iteration)

Tmul (m, m3) =

O(q) = O(log m)

0

2

1

3

4

6

5

7

1
5

2
6

3
7

4
8

1 2
3 4

5 6
7 8

000 001

010 011

100 101

110 111

1
5

2
6

3
7

4
8

1
5

2
6

3
7

4
8

1
5

1
6

3
7

3
8

2
5

2
6

4
7

4
8

1
5

1
6

3
5

3
6

2
7

2
8

4
7

4
8

14 16

5

15

28

6

32

18

19 22

43 50

R
R

A
B

R
R

A
B

RC

R
R

A
B

R
R

A
B

R := R RC A B

Analysis in the case of block matrix multiplication (m m matrices):
Matrices are partitioned into p1/3 p1/3 blocks of size (m /p1/3) (m /p1/3)
Each communication step deals with m2/p2/3 block elements
Each multiplication entails 2m3/p arithmetic operations

Tmul(m, p) = m2 /p2/3 O(log p) + 2m3/p
Communication Computation

Dim 0

Dim 1

Dim 2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 24

13.6 Inverting a Lower-Triangular Matrix

Tinv(m) = Tinv(m/2) + 2Tmul(m/2) = Tinv(m/2) + O(log m) = O(log2m)

B 0 B–1 0
For A = we have A–1 =

C D –D–1CB–1 D–1

0

a ij
i j

Because B and D are both lower
triangular, the same algorithm
can be used recursively to invert
them in parallel

B 0 B–1 0 BB–1 0
 =

C D –D–1CB–1 D–1 CB–1– DD–1CB–1 DD–1

I

I0

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 25

Recursive Lower-Triangular Matrix Inversion Algorithm

B 0 B–1 0
For A = we have A–1 =

C D –D–1CB–1 D–1

0

C

B

D

Invert lower-triangular matrices B and D

Send B–1 and D–1 to the subcube holding C

–1

–1
–D–1CB–1

0

Inv

Inv

0

Inv

InvCompute –D–1C B–1 to in the subcube

Inv 0

Inv

Inv 0

Inv

Inv 0

Inv

Inv 0

Inv

q-cube and its four
(q – 2)-subcubes

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 26

14 Sorting and Routing on Hypercubes

Study routing and data movement problems on hypercubes:
• Learn about limitations of oblivious routing algorithms
• Show that bitonic sorting is a good match to hypercube

Topics in This Chapter

14.1 Defining the Sorting Problem

14.2 Bitonic Sorting on a Hypercube

14.3 Routing Problems on a Hypercube

14.4 Dimension-Order Routing

14.5 Broadcasting on a Hypercube

14.6 Adaptive and Fault-Tolerant Routing

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 27

14.1 Defining the Sorting Problem

Review of the hypercube:

Fully symmetric with
respect to dimensions

Typical computations
involve communication
across all dimensions

(c) Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1

0

000 001

010 011

100 101

110 111

1

Dim 2

Dim 1

Dim 0Dimension-order communication
is known as “ascend” or “descend”
(0 up to q – 1, or q – 1 down to 0)

Due to symmetry, any hypercube dimension
can be labeled as 0, any other as 1, and so on

000

001

010

011

100

101

110

111

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 28

Hypercube Sorting: Goals and Definitions

Arrange data in order of processor ID numbers (labels)

1-1 sorting (p items to sort, p processors)

k-k sorting (n = kp items to sort, p processors)

0

2

1

3

4

6

5

7

The ideal parallel sorting algorithm:

T(p) = Q((n log n)/p)

This ideal has not been achieved in all
cases for the hypercube

Smallest
value

Largest
value

Batcher’s odd-even merge or bitonic sort: O(log2p) time
O(log p)-time deterministic algorithm not known

Optimal algorithms known for n >> p or when average
running time is considered (randomized)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 29

Hypercube Sorting: Attempts and Progress

No bull’s eye yet!

There are three
categories of practical
sorting algorithms:

1. Deterministic 1-1,
O(log2p)-time

2. Deterministic k-k,
optimal for n >> p
(that is, for large k)

3. Probabilistic
(1-1 or k-k)

Pursuit of O(log p)-time algorithm
is of theoretical interest only

? log n

One of the oldest
parallel algorithms;
discovered 1960,
published 1968

Practical, deterministic

Fewer than p items

Practical, probabilistic

More than p items

1960s

1990

1988

1987

1980

log n log log n

log n (log log n) 2

(n log n)/p for n >> p

log n randomized

log p log n/log(p/n), n p/4;
 1–

log n for n = p, bitonic 2

in particular, log p for n = p

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 30

Bitonic Sequences

Bitonic sequence:

1 3 3 4 6 6 6 2 2 1 0 0
Rises, then falls

8 7 7 6 6 6 5 4 6 8 8 9
Falls, then rises

8 9 8 7 7 6 6 6 5 4 6 8
The previous sequence,
right-rotated by 2

(a)

(b)

Cyclic shift of (a)

Cyclic shift of (b)

Fig. 14.1 Examples of bitonic sequences.

In Chapter 7, we designed bitonic sorting nets

Bitonic sorting is ideally suited to hypercube

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 31

Sorting a Bitonic Sequence on a Linear Array

Fig. 14.2 Sorting a bitonic sequence on a linear array.

Bitonic sequence Shifted right half

Shift right half of data to
left half (superimpose
the two halves)

In each position, keep
the smaller of the two
values and ship the
larger value to the right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2 n1

0 1 2 n1

n/2

n/2

Time needed to
sort a bitonic
sequence on a
p-processor
linear array:

B(p) = p + p/2
+ p/4 + . . . + 2 =
2p – 2

Not competitive,
because we can
sort an arbitrary
sequence in 2p–2
unidirectional
communication
steps using odd-
even transposition

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 32

Bitonic Sorting on a Linear Array
5 9 10 15 3 7 14 12 8 1 4 13 16 11 6 2
----> <---- ----> <---- ----> <---- ----> <----
5 9 15 10 3 7 14 12 1 8 13 4 11 16 6 2
------------> <------------ ------------> <------------
5 9 10 15 14 12 7 3 1 4 8 13 16 11 6 2
----------------------------> <----------------------------
3 5 7 9 10 12 14 15 16 13 11 8 6 4 2 1
-->
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 14.3 Sorting an arbitrary sequence on a linear array through
recursive application of bitonic sorting.

Recall that
B(p) = 2p – 2

Sorting an arbitrary sequence of length p:
T(p) = T(p/2) + B(p) = T(p/2) + 2p – 2 = 4p – 4 – 2 log2p

Alternate derivation:
T(p) = B(2) + B(4) + . . . + B(p) = 2 + 6 + . . . + (2p – 2) = 4p – 4 – 2 log2p

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 33

Visualizing Bitonic Sorting on a Linear Array

Phase 1: Sort half-arrays
in opposite directions

Phase 2: Shift data leftward
to compare half-arrays

Phase 3: Send larger item
in each pair to the right

Phase 4: Sort each bitonic
half-sequence separately

Initial data sequence,
stored one per processor

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 34

For linear array, the 4p-step bitonic sorting algorithm is inferior to
odd-even transposition which requires p compare-exchange steps
(or 2p unidirectional communications)

The situation is quite different for a hypercube

14.2 Bitonic Sorting on a Hypercube

Sorting a bitonic sequence on a hypercube: Compare-exchange
values in the upper subcube (nodes with xq–1 = 1) with those in the
lower subcube (xq–1 = 0); sort the resulting bitonic half-sequences

B(q) = B(q – 1) + 1 = q

Sorting a bitonic sequence of size n on q-cube, q = log2n
for l = q – 1 downto 0 processor x, 0 x < p, do

if xl = 0
then get y := v[Nl(x)]; keep min(v(x), y); send max(v(x), y) to Nl(x)
endif

endfor

Complexity: 2q communication steps

This is a “descend” algorithm

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 35

Bitonic Sorting on a Hypercube

T(q) = T(q – 1) + B(q)
= T(q – 1) + q
= q(q + 1)/2
= O(log2 p)

000

001

010

011

100

101

110

111

000

001

010

011

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

100
 b a

c c

f e

h g

a c

e g

h f

c
b

c a

b c

f h

g e

b a

c c

f e

g h

Data ordering
in lower cube

Data ordering
in upper cube

Dimension 2 Dimension 1 Dimension 0

Fig. 14.4
Sorting a
bitonic
sequence of
size 8 on the
3-cube. Dim 0

Dim 1

Dim 2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 36

14.3 Routing Problems on a Hypercube

Recall the following categories of routing algorithms:

Off-line: Routes precomputed, stored in tables
On-line: Routing decisions made on the fly

Oblivious: Path depends only on source & destination
Adaptive: Path may vary by link and node conditions

Good news for routing on a hypercube:
Any 1-1 routing problem with p or fewer packets can be solved in
O(log p) steps, using an off-line algorithm; this is a consequence
of there being many paths to choose from

Bad news for routing on a hypercube:
Oblivious routing requires W(p1/2/log p) time in the worst case

(only slightly better than mesh)
In practice, actual routing performance is usually much closer to
the log-time best case than to the worst case.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 37

Limitations of Oblivious Routing

Theorem 14.1: Let G = (V, E) be a p-node, degree-d network. Any oblivious
routing algorithm for routing p packets in G needs W(p1/2/d) worst-case time

Proof Sketch: Let Pu,v be the unique path
used for routing messages from u to v

There are p(p – 1) possible paths for
routing among all node pairs

These paths are predetermined and do not
depend on traffic within the network

Our strategy: find k node pairs ui, vi (1 i k)
such that ui uj and vi vj for i j, and
Pui,vi

all pass through the same edge e

Because 2 packets can go through a link in one step, W(k) steps
will be needed for some 1-1 routing problem

The main part of the proof consists of showing that k can be
as large as p1/2/d

v

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 38

14.4 Dimension-Order Routing
Source 01011011
Destination 11010110
Differences ^ ^^ ^
Path: 01011011

11011011
11010011
11010111
11010110

dim 0 dim 1 dim 2

0 1 2 3

q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rowsq

0

1

2

3

4

5

6

7

Hypercube

Unfold

Fold

Fig. 14.5 Unfolded 3-cube or the 32-node
butterfly network.

Unfolded hypercube
(indirect cube, butterfly)
facilitates the discussion,
visualization, and analysis
of routing algorithms

Dimension-order routing between nodes i and j in q-cube can be viewed as
routing from node i in column 0 (q) to node j in column q (0) of the butterfly

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 39

Self-Routing on a Butterfly Network

From node 3 to 6: routing tag = 011 110 = 101 “cross-straight-cross”
From node 3 to 5: routing tag = 011 101 = 110 “straight-cross-cross”
From node 6 to 1: routing tag = 110 001 = 111 “cross-cross-cross”

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Ascend Descend

Fig. 14.6 Example
dimension-order
routing paths.

Number of cross
links taken = length
of path in hypercube

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 40

Butterfly Is Not a Permutation Network
dim 0 dim 1 dim 2

0 1 2 3

A

B

C

D

A

B

C

D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 14.7 Packing is a “good”
routing problem for dimension-
order routing on the hypercube.

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 14.8 Bit-reversal permutation is
a “bad” routing problem for dimension-
order routing on the hypercube.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 41

Why Bit-Reversal Routing Leads to Conflicts?

Consider the (2a + 1)-cube and messages that must go from nodes
0 0 0 . . . 0 x1 x2 . . . xa–1 xa to nodes xa xa–1 . . . x2 x1 0 0 0 . . . 0

a + 1 zeros a + 1 zeros

If we route messages in dimension order, starting from the right end,
all of these 2a = Q(p1/2) messages will pass through node 0

Consequences of this result:

1. The Q(p1/2) delay is even worse than W(p1/2/d) of Theorem 14.1

2. Besides delay, large buffers are needed within the nodes

True or false? If we limit nodes to a constant number of message
buffers, then the Q(p1/2) bound still holds, except that messages are
queued at several levels before reaching node 0

Bad news (false): The delay can be Q(p) for some permutations

Good news: Performance usually much better; i.e., log2 p + o(log p)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 42

Wormhole Routing on a Hypercube

dim 0 dim 1 dim 2

0 1 2 3

A

B

C

D

A

B

C

D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Good/bad routing problems are good/bad for wormhole routing as well

Dimension-order routing is deadlock-free

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 43

14.5 Broadcasting on a Hypercube

Flooding: applicable to any network with all-port communication

00000 Source node

00001, 00010, 00100, 01000, 10000 Neighbors of source

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000 Distance-2 nodes

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100 Distance-3 nodes

01111, 10111, 11011, 11101, 11110 Distance-4 nodes

11111 Distance-5 node

Binomial broadcast tree with single-port communication

0
1
2
3
4
5

Time00000

10000

01000 11000

00100 01100 10100 11100

00001

00010

Fig. 14.9
The binomial
broadcast tree
for a 5-cube.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 44

Hypercube Broadcasting Algorithms

Fig. 14.10
Three
hypercube
broadcasting
schemes as
performed
on a 4-cube.

Binomial-t ree scheme (nonpipelined)

Pipelined binomial-tree scheme

Johnsson & Ho’s method

ABCD

ABCD

ABCD ABCD

A

A

A

B

B

B

C

A

A

A

A

C

C

D

B

B

B

B

 A

A

A

 A

A

A

A A

A

A

A

A

A

A

A

 A

A

A

 A

A

A

A A

To avoid clutter, only A shown

B

 B

B

 B

B

B

 B

B

B

B B C C

 C
 C

 C

C
D

D

D

D

D

D

D

C

Dim 0

Dim 1

Dim 2

Dim 3

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 45

14.6 Adaptive and Fault-Tolerant Routing

There are up to q node-disjoint and edge-disjoint shortest paths between
any node pairs in a q-cube

Thus, one can route messages around congested or failed nodes/links

A useful notion for designing adaptive wormhole routing algorithms is
that of virtual communication networks

Each of the two subnetworks
in Fig. 14.11 is acyclic

Hence, any routing scheme
that begins by using links in
subnet 0, at some point
switches the path to subnet 1,
and from then on remains in
subnet 1, is deadlock-free

0

2

1

3

4

6

5

7

0

2

1

3

4

6

5

7

Subnetwork 0 Subnetwork 1

Fig. 14.11 Partitioning a 3-cube into
subnetworks for deadlock-free routing.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 46

The fault diameter of the q-cube is q + 1.

Robustness of the Hypercube

Source

Destination

X

X

X

Three
faulty
nodes

The node that is
furthest from S is
not its diametrically
opposite node in
the fault-free
hypercube

S
Rich connectivity
provides many
alternate paths for
message routing

Dim 0

Dim 1

Dim 2

Dim 3

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 47

15 Other Hypercubic Architectures

Learn how the hypercube can be generalized or extended:
• Develop algorithms for our derived architectures
• Compare these architectures based on various criteria

Topics in This Chapter

15.1 Modified and Generalized Hypercubes

15.2 Butterfly and Permutation Networks

15.3 Plus-or-Minus-2i Network

15.4 The Cube-Connected Cycles Network

15.5 Shuffle and Shuffle-Exchange Networks

15.6 That’s Not All, Folks!

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 48

15.1 Modified and Generalized Hypercubes

Fig. 15.1 Deriving a twisted 3-cube by
redirecting two links in a 4-cycle.

Twisted 3-cube

0

2

1

3

4

6

5

7

5

3-cube and a 4-cycle in it

0

2

1

3

4

6 7

Diameter is one less than the original hypercube

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 49

Folded Hypercubes

Fig. 15.2 Deriving a
folded 3-cube by adding
four diametral links.

Folded 3-cube

0

2

1

3

4

6

5

7

5

A diametral path in the 3-cube

0

2

1

3

4

6 7

Fig. 15.3
Folded 3-cube
viewed as
3-cube with a
redundant
dimension.

Rotate
180
degrees

Folded 3-cube with
Dim-0 links removed

0

2

7

5

4

6

3

1

5

0

2

1

3

4

6 7

After renaming, diametral
links replace dim-0 links

5

1

3 7

Diameter is half that of
the original hypercube

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 50

Generalized Hypercubes

A hypercube is a power or homogeneous product network
q-cube = (oo)q ; q th power of K2

Generalized hypercube = qth power of Kr

(node labels are radix-r numbers)
Node x is connected to y iff x and y differ in one digit
Each node has r – 1 dimension-k links

Example: radix-4 generalized hypercube
Node labels are radix-4 numbers

x0

x1

x2

x3

Dimension-0 links

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 51

Bijective Connection Graphs

Beginning with a c-node seed network, the network size is recursively
doubled in each step by linking nodes in the two halves via an arbitrary
one-to-one mapping. Number of nodes = c 2q

Hypercube is a special case, as are many hypercube variant networks
(twisted, crossed, mobius, . . . , cubes)

Bijective
mapping

Special case of c = 1:
Diameter upper bound is q
Diameter lower bound is an open problem (it is better than q + 1/2)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 52

15.2 Butterfly and Permutation Networks

Fig. 7.4
Butterfly
and
wrapped
butterfly
networks.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Dim 0 Dim 1 Dim 2

0 1 2 3

0

1

2

3

4

5

6

7

Dim 1 Dim 2
Dim 0

0

1

2

3

4

5

6

7

2 rows, q + 1 columns
q

2 rows, q columns
q

1 2 3 = 0

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 53

Structure of Butterfly Networks
0

1

2

3

4

5

6

7

D im 0 D im 1 D im 2

0 1 2 3

D im 3

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
4

The 16-row butterfly network.

Fig. 15.5 Butterfly network
with permuted dimensions.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Dim 1 Dim 0 Dim 2

0 1 2 3

Switching these
two row pairs
converts this to
the original
butterfly network.
Changing the
order of stages in
a butterfly is thus
equi valent to a
relabeling of the
rows (in this
example, row xyz
becomes row xzy)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 54

Fat Trees

Fig. 15.6 Two representations of a fat tree.

P1

P0

P3

P4

P2
P5

P7 P8

P6

Skinny tree?

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

Front view:
Binary tree

Side view:
Inverted
binary tree

1 3 5 7

1 2 3
5 6 7

1 2
3 4 5 6 7

Fig. 15.7
Butterfly
network
redrawn as
a fat tree.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 55

Butterfly as Multistage Interconnection Network

Fig. 6.9 Example of a multistage
memory access network

Generalization of the butterfly network
High-radix or m-ary butterfly, built of m m switches
Has mq rows and q + 1 columns (q if wrapped)

0 1 2 3
log p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 0 1 2 3
log p + 1 Columns of 2-by-2 Switches

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7
 0
 1
 2
 3
 4
 5
 6
 7

2

Fig. 15.8 Butterfly network
used to connect modules
that are on the same side

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 56

Beneš Network

Fig. 15.9 Beneš network formed from two back-to-back butterflies.

A 2q-row Beneš network:
Can route any 2q 2q permutation
It is “rearrangeable”

0 1 2 3 4
2 log p – 1 Columns of 2-by-2 Switches

000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7

Processors Memory Banks

000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7

2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 57

Routing Paths in a Beneš Network

Fig. 15.10 Another example of a Beneš network.

0 1 2 3 4 5 6

2q + 1 Columns

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 Rows,q

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 Inputsq+1 2 Outputs
q+1

To which
memory
modules
can we
connect
proc 4
without
rearranging
the other
paths?

What
about
proc 6?

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 58

15.3 Plus-or-Minus-2i Network

Fig. 15.11 Two representations of the eight-node PM2I network.

The hypercube is a subgraph of the PM2I network

±4

±1
0 1 2 3 4 5 6 7

±2
0

2

1

3

4

6

5

7

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 59

Unfolded PM2I
Network

Fig. 15.12 Augmented
data manipulator network.

Data manipulator network
was used in Goodyear
MPP, an early SIMD
parallel machine.

“Augmented” means that
switches in a column are
independent, as opposed
to all being set to same
state (simplified control).

0 1 2 3

q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows
q

a

b

a

b

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 60

15.4 The Cube-Connected Cycles Network

The cube-connected
cycles network (CCC)
is the earliest
example of what later
became known as
X-connected cycles,
with X being an
arbitrary network

Transform a p-node,
degree-d network into
a pd-node, degree-3
network by replacing
each of the original
network nodes with a
d-node cycle

L0

L1

L2

L3L4

L5

L7

L6

x

Original
degree-8 node
in a network,
with its links
labeled L0
through L7

x0

x1

x2

x3x4

x5

x7

x6

L0

L1

L2

L3L4

L5

L7

L6

Replacement
8-node cycle,
with each of
its 8 nodes
accommodating
one of the links
L0 through L7

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 61

A View of The CCC Network

Fig. 15.14 Alternate derivation
of CCC from a hypercube.

0

2

1

3

4

6

5

7

0,0
0,1

0,2

1,0

4,2

2,1

Replacing each node of a high-dimensional
q-cube by a cycle of length q is how CCC
was originally proposed

Example of
hierarchical
substitution
to derive a
lower-cost
network from
a basis
network

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 62

Another View of the Cube-Connected Cycles Network

Fig. 15.13 A wrapped butterfly (left)
converted into cube-connected cycles.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

q columns/dimensions
0 1 2

0

1

2

3

4

5

6

7

Dim 1 Dim 2
Dim 0

0

1

2

3

4

5

6

7

q columns
1 2 3 = 0

2 rows
q

The cube-connected
cycles network (CCC)
can be viewed as a
simplified wrapped
butterfly whose node
degree is reduced
from 4 to 3.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 63

Emulation of a 6-Cube by a 64-Node CCC

With proper node mapping,
dim-0 and dim-1 neighbors
of each node will map onto
the same cycle

Suffices to show how to
communicate along other
dimensions of the 6-cube

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 64

Emulation of Hypercube Algorithms by CCC

Node (x, j) is communicating
along dimension j; after the
next rotation, it will be linked
to its dimension-(j + 1)
neighbor.

Hypercube
Dimension

q–1

3

2

1

0

Algorithm Steps
0 1 2 3 . . .

.

.

.

Ascend

Descend

Normal

2 bitsm m bits
Cycle ID = x Proc ID = y

N (x)

x, j–1

x, j

x, j+1

 , j–1j–1

, j

, j+1

Dim j–1

Dim j

Dim j+1
 , j–1

Cycle
 x

 , j

N (x)

j+1

N (x)j+1

N (x)j

N (x)j

Fig. 15.15 CCC emulating
a normal hypercube algorithm.

Ascend, descend,
and normal algorithms.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 65

15.5 Shuffle and Shuffle-Exchange Networks

Fig. 15.16 Shuffle, exchange, and shuffle–exchange connectivities.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Shuffle Exchange Shuffle-Exchange Alternate
Structure

Unshuffle

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 66

Shuffle-Exchange Network

Fig. 15.17 Alternate views of an eight-node shuffle–exchange network.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

S
SE S

SE

S

SE
S

SE

S
SE

S

SE
S

SE

S

SE

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 67

Routing in Shuffle-Exchange Networks

In the 2q-node shuffle network, node x = xq–1xq–2 . . . x2x1x0

is connected to xq–2 . . . x2x1x0xq–1 (cyclic left-shift of x)

In the 2q-node shuffle-exchange network, node x is
additionally connected to xq–2 . . . x2x1x0xq–1

01011011 Source
11010110 Destination
^ ^^ ^ Positions that differ

01011011 Shuffle to 10110110 Exchange to 10110111
10110111 Shuffle to 01101111
01101111 Shuffle to 11011110
11011110 Shuffle to 10111101
10111101 Shuffle to 01111011 Exchange to 01111010
01111010 Shuffle to 11110100 Exchange to 11110101
11110101 Shuffle to 11101011
11101011 Shuffle to 11010111 Exchange to 11010110

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 68

Diameter of Shuffle-Exchange Networks

For 2q-node shuffle-exchange network: D = q = log2p, d = 4

With shuffle and exchange links provided separately, as in Fig. 15.18,
the diameter increases to 2q – 1 and node degree reduces to 3

0 1 2 3 4 5 6 7

0

3

6

2

5

1

4

7

Exchange
(dotted)

Shuffle
(solid)

Fig. 15.18 Eight-node network with separate shuffle and exchange links.

E
S

S

S

S

S

S S

S

E

E

E

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 69

Multistage
Shuffle-

Exchange
Network

Fig. 15.19
Multistage
shuffle–exchange
network
(omega network)
is the same as
butterfly network.

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

q Columns q Columns
0 1 2 0 1 2

A

A

A

A

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 70

15.6 That’s Not All, Folks!

D = log2 p + 1

d = (log2 p + 1)/2

B = p/4

When q is a power of 2, the 2qq-node cube-connected cycles network
derived from the q-cube, by replacing each node with a q-node cycle,
is a subgraph of the (q + log2q)-cube CCC is a pruned hypercube

Other pruning strategies are possible, leading to interesting tradeoffs

Fig. 15.20 Example of a pruned hypercube.

000

001

010

011

100

101

110

111

All dimension-0
links are kept

Even-dimension
links are kept in
the even subcube

Odd-dimension
links are kept in
the odd subcube

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 71

Möbius Cubes

Dimension-i neighbor of x = xq–1xq–2 ... xi+1xi ... x1x0 is:

xq–1xq–2 ... 0xi... x1x0 if xi+1 = 0 (xi complemented, as in q-cube)

xq–1xq–2 ... 1xi... x1x0 if xi+1 = 1 (xi and bits to its right complemented)

For dimension q – 1, since there is no xq, the neighbor can be defined
in two possible ways, leading to 0- and 1-Mobius cubes

A Möbius cube has a diameter of about 1/2 and an average internode
distance of about 2/3 of that of a hypercube

0

2

1

3

4

6

5

7

6

0-Mobius cube

0

2

1

3

7

4 5

1-Mobius cube

Fig. 15.21
Two 8-node
Möbius cubes.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 72

16 A Sampler of Other Networks

Complete the picture of the “sea of interconnection networks”:
• Examples of composite, hybrid, and multilevel networks
• Notions of network performance and cost-effectiveness

Topics in This Chapter

16.1 Performance Parameters for Networks

16.2 Star and Pancake Networks

16.3 Ring-Based Networks

16.4 Composite or Hybrid Networks

16.5 Hierarchical (Multilevel) Networks

16.6 Multistage Interconnection Networks

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 73

16.1 Performance Parameters for Networks

A wide variety of direct
interconnection networks
have been proposed for, or
used in, parallel computers

They differ in topological,
performance, robustness,
and realizability attributes.

Fig. 4.8 (expanded)
The sea of direct
interconnection networks.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 74

Diameter and Average Distance
Diameter D (indicator of worst-case message latency)

Routing diameter D(R); based on routing algorithm R

Average internode distance D (indicator of average-case latency)
Routing average internode distance D(R)

For the 3 3 mesh:
D = (418+415+12)

/ (9 8) = 2
[or 144/81 = 16/9]

Finding the average internode distance of a 3 3 mesh.

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Sum of distances
from corner node:
2 1 + 3 2 + 2 3
+ 1 4 = 18

Sum of distances
from side node:
3 1 + 3 2 +
2 3 = 15

Sum of distances
from center node:
4 1 + 4 2 = 12 Average distance:

(4 18 + 4 15 +
1 12) / (9 x 8) = 2

For the 3 3 torus:
D = (4 1 + 4 2) / 8

= 1.5 [or 12/9 = 4 /3]

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 75

Bisection Width
31

30

29

0 1
2

3

4

5

6

7

8

9

20

21

22

23

24

25

26

27

28

10

11

12

13

14
15 16 17

18

19

Fig. 16.2 A network
whose bisection width is
not as large at it appears.

Node bisection and
link bisection

Indicator or random
communication
capacity

Hard to determine;
Intuition can be
very misleading

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 76

Determining the Bisection Width

Establish upper bound by taking a number of trial cuts.
Then, try to match the upper bound by a lower bound.

Establishing
a lower
bound on B:

Embed Kp
into p-node
network

Let c be the
maximum
congestion

B p2/4/c

P 0 P 1 P 2

P 3 P 4 P 5

P 6 P 7 P 8

0 1 2

3 4 5

6 7 8

7

7

An embedding of
K into 3 3 mesh 9

P 0

P 1

P
2

P 3

P 4 P 5

P 6

P
7

P 8

Bisection width = 4 5 = 20

K 9

Improved,
corrected
version of
this diagram
on next slide

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 77

Example for Bounding the Bisection Width

Embed K9 into
3 3 mesh

Observe the max
congestion of 7

p2/4 = 20

Must cut at least
3 bundles to
sever 20 paths

Bisection width of
a 3 3 mesh is at
least 3

Given the upper
bound of 4:
3 B 4

7 6

4 5

77

5
6

75 6

7

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 78

Degree-Diameter Relationship

Age-old question: What is the best way to interconnect p nodes
of degree d to minimize the diameter D of the resulting network?

Alternatively: Given a desired diameter D and nodes of degree d,
what is the max number of nodes p that can be accommodated?

Moore bounds (digraphs)

p 1 + d + d2 + . . . + dD = (dD+1–1)/(d–1)
D logd [p(d – 1) + 1] – 1

Only ring and Kp match these bounds
x

d nodes
d 2 nodes

Moore bounds (undirected graphs)

p 1 + d + d(d – 1) + . . . + d(d – 1)D–1

= 1 + d [(d – 1)D – 1]/(d – 2)
D logd–1[(p – 1)(d – 2)/d + 1]

Only ring with odd size p and a few other
networks match these bounds

x

d nodes
d (d – 1) nodes

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 79

Moore Graphs

A Moore graph matches the bounds on diameter and number of nodes.

For d = 2, we have p 2D + 1
Odd-sized ring satisfies this bound

11010

01101

1001111100

00111

11001

10101

10110

0111001011

Fig. 16.1 The 10-node Petersen graph.

For d = 3, we have p 3 2D – 2
D = 1 leads to p 4 (K4 satisfies the bound)
D = 2 leads to p 10 and the first nontrivial example (Petersen graph)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 80

How Good Are Meshes and Hypercubes?

For d = 4, we have D log3[(p + 1)/2]

So, 2D mesh and torus networks are far from optimal in diameter,
whereas butterfly is asymptotically optimal within a constant factor

For d = log2 p (as for d-cube), we have D = W(d / logd)
So the diameter d of a d-cube is a factor of log d over the best possible
We will see that star graphs match this bound asymptotically

Summary:

For node degree d, Moore’s bounds establish the lowest possible
diameter D that we can hope to achieve with p nodes, or the largest
number p of nodes that we can hope to accommodate for a given D.

Coming within a constant factor of the bound is usually good enough;
the smaller the constant factor, the better.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 81

Layout Area and Longest Wire

The VLSI layout area required by an interconnection network is
intimately related to its bisection width B

The longest wire required in VLSI layout affects network performance

For example, any 2D layout of a p-node hypercube requires wires of
length W((p / logp)1/2); wire length of a mesh does not grow with size

When wire length grows with size, the per-node performance is bound
to degrade for larger systems, thus implying sublinear speedup

If B wires must cross the bisection in 2D layout
of a network and wire separation is 1 unit, the
smallest dimension of the VLSI chip will be B

The chip area will thus be W(B2) units
p-node 2D mesh needs O(p) area
p-node hypercube needs at least W(p2) area

B wires crossing a bisection

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 82

Measures of Network Cost-Effectiveness

Composite measures, that take both the network performance and its
implementation cost into account, are useful in comparisons

Robustness must be taken into account in any practical comparison of
interconnection networks (e.g., tree is not as attractive in this regard)

One such measure is the degree-diameter product, dD

Mesh / torus: Q(p1/2)
Binary tree: Q(logp)
Pyramid: Q(logp)
Hypercube: Q(log2p)

However, this measure is somewhat misleading, as the node degree d
is not an accurate measure of cost; e.g., VLSI layout area also depends
on wire lengths and wiring pattern and bus based systems have low
node degrees and diameters without necessarily being cost-effective

Not quite similar in cost-performance

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 83

16.2 Star and Pancake Networks

Fig. 16.3 The four-dimensional star graph.

Has p = q ! nodes

Each node labeled with a
string x1x2 ...xq which is a
permutation of {1, 2, ... , q}

Node x1x2 ...xi ...xq is
connected to xix2 ...x1 ...xq

for each i (note that x1

and xi are interchanged)

When the i th symbol is
switched with x1 , the
corresponding link is
called a dimension-i link

d = q – 1; D = 3(q – 1)/2

D, d = O(log p / log log p)

1234 4231

2134 3241
2431

3421

4321

2413

23413124
1324

2314

3214

1423

4123

2143

1243

4213

3142

1342

4312

1432

4132

3412

3

2

3 2

3

2

4

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 84

Routing in the Star Graph

Source node 1 5 4 3 6 2
Dimension-2 link to 5 1 4 3 6 2
Dimension-6 link to 2 1 4 3 6 5

Last symbol now adjusted
Dimension-2 link to 1 2 4 3 6 5
Dimension-5 link to 6 2 4 3 1 5

Last 2 symbols now adjusted
Dimension-2 link to 2 6 4 3 1 5
Dimension-4 link to 3 6 4 2 1 5

Last 3 symbols now adjusted
Dimension-2 link to 6 3 4 2 1 5
Dimension-3 link to 4 3 6 2 1 5

Last 4 symbols now adjusted
Dimension-2 link (Dest’n) 3 4 6 2 1 5

We need a maximum of two routing steps per symbol, except that last
two symbols need at most 1 step for adjustment D 2q – 3

The diameter
of star is in fact
somewhat less
D = 3(q–1)/2

Clearly, this is
not a shortest-
path routing
algorithm.

Correction to text,
p. 328: diameter is
not 2q – 3

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 85

Star’s Sublogarithmic Degree and Diameter

d = Q(q) and D = Q(q); but how is q related to the number p of nodes?

p = q ! e–qqq (2pq)1/2 [using Striling’s approximation to q !]

ln p –q + (q+1/2) lnq + ln(2p)/2 = Q(q logq) or q = Q(logp / log logp)

Hence, node degree and diameter are sublogarithmic

Star graph is asymptotically optimal to within a constant factor with regard
to Moore’s diameter lower bound

Routing on star graphs is simple and reasonably efficient; however,
virtually all other algorithms are more complex than the corresponding
algorithms on hypercubes

Network diameter 4 5 6 7 8 9
Star nodes 24 -- 120 720 -- 5040
Hypercube nodes 16 32 64 128 256 512

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 86

The Star-Connected Cycles Network

Fig. 16.4 The four-dimensional
star-connected cycles network.

Replace degree-(q – 1)
nodes with (q – 1)-cycles

This leads to a scalable
version of the star graph
whose node degree of 3
does not grow with size

The diameter of SCC is
about the same as that of
a comparably sized CCC
network

However, routing and
other algorithms for SCC
are more complex

1234,4

3

2

3 2

3

2
1234,3

4
1234,2

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 87

Pancake Networks

Similar to star networks in terms of
node degree and diameter

Dimension-i neighbor obtained by
“flipping” the first i symbols;
hence, the name “pancake”

1234

2134
3214

4321Dim 2

Dim 3

Dim 4

Source node 1 5 4 3 6 2
Dimension-2 link to 5 1 4 3 6 2
Dimension-6 link to 2 6 3 4 1 5

Last 2 symbols now adjusted
Dimension-4 link to 4 3 6 2 1 5

Last 4 symbols now adjusted
Dimension-2 link (Dest’n) 3 4 6 2 1 5

We need two flips per symbol in
the worst case; D 2q – 3

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 88

Cayley Networks

Group:

A semigroup with an identity element
and inverses for all elements.

Example 1: Integers with addition or
multiplication operator form a group.

Example 2: Permutations, with the
composition operator, form a group.

Node x

xg1

xg2

xg3
Gen g1

Gen g2

Gen g3

Star and pancake networks are
instances of Cayley graphs

Cayley graph:

Node labels are from a group G, and
a subset S of G defines the
connectivity via the group operator

Node x is connected to node y
iff xg = y for some g S

Elements of S are “generators”
of G if every element of G can
be expressed as a finite
product of their powers

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 89

Star as a Cayley Network

Fig. 16.3 The four-dimensional star graph.

Four-dimensional star:

Group G of the
permutations of {1, 2, 3, 4}

The generators are the
following permutations:
(1 2) (3) (4)
(1 3) (2) (4)
(1 4) (2) (3)

The identity element is:
(1) (2) (3) (4)

1234 4231

2134 3241
2431

3421

4321

2413

23413124
1324

2314

3214

1423

4123

2143

1243

4213

3142

1342

4312

1432

4132

3412

3

2

3 2

3

2

4
(1 4) (2) (3)

(1 3) (2) (4)

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 90

16.3 Ring-Based Networks

Fig. 16.5 A 64-node ring-of-rings architecture composed
of eight 8-node local rings and one second-level ring.

Rings are simple,
but have low
performance and
lack robustness

Message
source

Local Ring
Remote
Ring

S

D

Message
destination

Hence, a variety
of multilevel and
augmented ring
networks have
been proposed

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 91

Chordal Ring
Networks

Fig. 16.6
Unidirectional ring,
two chordal rings,
and node
connectivity in
general.

Given one chord
type s, the optimal
length for s is
approximately p1/2

0

4

26

7

3

1

5

0

4

26

7

3

1

5

(a) (b)

v

(a)

v+1v–1

v+s

v+sv–s

v–s 1

k–1k–1

1

sk–1

s1
.

. .
.

..

s =100

4

26

7

3

1

5

(b)

(a)

(d) (c)

(b)

Routing algorithm:
Greedy routing

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 92

Chordal Rings Compared to Torus Networks

Fig. 16.7 Chordal rings redrawn to show
their similarity to torus networks.

The ILLIAC IV
interconnection
scheme, often
described as
8 8 mesh or
torus, was really
a 64-node
chordal ring with
skip distance 8.

0 1 2

3

6 7

4 5

0 1 2

3

6 7

4

8

5

A class of chordal rings, studied at UCSB (two-part paper in IEEE
TPDS, August 2005) have a diameter of D = 2

Perfect difference {0, 1, 3}: All numbers in the range 1-6 mod 7
can be formed as the difference of two numbers in the set.

Perfect Difference Networks

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 93

Periodically Regular Chordal Rings

Fig. 16.8 Periodically regular chordal ring.

Modified greedy routing: first route to the head of a group;
then use pure greedy routing

0

4

26

7

3

1

5

Group 0

s1
s0

s0

s2

Group 0

Group 1

Group 2

Group p/g – 1

Group i

Nodes 0
to g – 1

Nodes g
to 2g – 1

Nodes 2g
to 3g – 1

Nodes ig
to (i+1)g – 1

Nodes p – g
to p – 1

A skip link leads to
the same relative
position in the
destination
group

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 94

Some Properties of PRC Rings

Fig. 16.9 VLSI layout for a 64-node
periodically regular chordal ring.

0

1

2

3

4

5

63

6

7
To 3
To 6

Remove some skip links
for cost-performance
tradeoff; similar in nature
to CCC network with
longer cycles

Fig. 16.10 A PRC
ring redrawn as a
butterfly- or ADM-
like network.

31 30 29

0 1 2 3

4 5 6 7

8 9

20 21 22 23

24 25 26 27

28

10 11

12 13 14 15

16 17 18 19

Dimension 1
s = nil

Dimension 2
s = 4

Dimension 1
s = 8

Dimension 1
s = 16

No skip in this
dimension

1

2

3

4

b

a

d

c

f

e g

b

a

d

c

f

e

g

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 95

16.4 Composite or Hybrid Networks

Motivation: Combine the connectivity schemes from
two (or more) “pure” networks in order to:

 Achieve some advantages from each structure

 Derive network sizes that are otherwise unavailable

 Realize any number of performance /cost benefits

A very large set of combinations have been tried

New combinations are still being discovered

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 96

Composition by Cartesian Product Operation

Fig. 13.4 Examples of product graphs.

Properties of product
graph G = G G:

Nodes labeled (x , x),
x V , x V

p = pp
d = d + d
D = D + D
D = D + D

Routing: G -first
(x ,x) (y ,x)

 (y ,y)

Broadcasting

Semigroup & parallel
prefix computations

 =
3-by-2
torus

 =

 =

0

1

2

a

b

0a

1a

2a
0b

1b

2b

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 97

Other Properties and Examples of Product Graphs

Fig. 16.11 Mesh of trees compared with mesh-connected trees.

If G and G are Hamiltonian, then the p p torus is a subgraph of G
For results on connectivity and fault diameter, see [Day00], [AlAy02]

Mesh of trees (Section 12.6) Product of two trees

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 98

16.5 Hierarchical (Multilevel) Networks

Can be defined
from the bottom up
or from the top down

We have already seen
several examples of
hierarchical networks:
multilevel buses (Fig. 4.9);
CCC; PRC rings

Fig. 16.13 Hierarchical or multilevel bus network.

Take first-level ring
networks and
interconnect them
as a hypercube

Take a top-level
hypercube and
replace its nodes
with given networks

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 99

Example: Mesh of Meshes Networks

EW

N

S

Fig. 16.12 The mesh of meshes network
exhibits greater modularity than a mesh.

The same idea can be used
to form ring of rings,
hypercube of hypercubes,
complete graph of complete
graphs, and more generally,
X of Xs networks

When network topologies at
the two levels are different,
we have X of Ys networks

Generalizable to three levels
(X of Ys of Zs networks),
four levels, or more

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 100

Example: Swapped Networks

Two-level swapped network with 2 2 mesh as its nucleus.

0 1

2 3

Level-1 link

00 10

20 30

01 11

21 31

02 12

22 32

03 13

23 33

Level-2 link

Build a p2-node network using p-node building blocks (nuclei or clusters)
by connecting node i in cluster j to node j in cluster i

Cluster # Node #

Cluster # Node #

We can
square the
network
size by
adding
one link
per node

Also known in the literature as OTIS (optical transpose interconnect system) network

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 101

Swapped Networks Are Maximally Fault-Tolerant

One case of
several cases
in the proof,
corresponding
to source and
destination
nodes being
in different
clusters

For any connected, degree-d basis network G, Swap(G) = OTIS(G) has
the maximal connectivity of d and can thus tolerate up to d – 1 faults

Source: Chen, Xiao, Parhami,
IEEE TPDS, March 2009

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 102

Example: Biswapped Networks

Build a 2p2-node network using p-node building blocks (nuclei or clusters)
by connecting node i in cluster j of part 0 to node j in cluster i of part 1

p-node
basis
network

p copies

Two
parts

0

1

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 103

Data-Center Networks

Data-center communication patterns are different from parallel processors
Current networks are variations of the fat-tree concept

Two competing approaches:
- Specialized hardware and communication protocols (e.g., InfiniBand)
- Commodity Ethernet switches and routers for interconnecting clusters

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 104

16.6 Multistage Interconnection Networks

Numerous indirect or
multistage interconnection
networks (MINs) have been
proposed for, or used in,
parallel computers

They differ in topological,
performance, robustness,
and realizability attributes

We have already seen the
butterfly, hierarchical bus,
beneš, and ADM networks

Fig. 4.8 (modified)
The sea of indirect
interconnection networks.

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 105

Self-Routing Permutation Networks

Do there exist self-routing permutation networks? (The butterfly network
is self-routing, but it is not a permutation network)

Permutation routing through a MIN is the same problem as sorting

Fig. 16.14 Example of sorting on a binary radix sort network.

7 (111)
 0 (000)
 4 (100)
 6 (110)
 1 (001)
 5 (101)
 3 (011)
 2 (010)

7 (111)

0 (000)

4 (100)

6 (110)

1 (001)

5 (101)

3 (011)

2 (010)

0
 1
 3
 2

5

7
 4
 6

0
 1
 3
 2

6

4
 5
 7

Sort by
MSB

Sort by
LSB

Sort by the
middle bit

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 106

Partial List of Important MINs

Augmented data manipulator (ADM): aka unfolded PM2I (Fig. 15.12)

Banyan: Any MIN with a unique path between any input and any output (e.g. butterfly)

Baseline: Butterfly network with nodes labeled differently

Beneš: Back-to-back butterfly networks, sharing one column (Figs. 15.9-10)

Bidelta: A MIN that is a delta network in either direction

Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)

Data manipulator: Same as ADM, but with switches in a column restricted to same state

Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1

for 2 2 switches) and path label, composed of concatenating switch output labels

leading from an input to an output depends only on the output

Flip: Reverse of the omega network (inputs outputs)

Indirect cube: Same as butterfly or omega

Omega: Multi-stage shuffle-exchange network; isomorphic to butterfly (Fig. 15.19)

Permutation: Any MIN that can realize all permutations

Rearrangeable: Same as permutation network

Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 107

16.6* Natural and Human-Made Networks
Since multistage networks will move to Part II’ (shared memory),
the new version of this subsection will discuss the classes of
small-world and scale-free networks

Example of a
collaboration
network
(e.g., co-authors
of papers)
showing clusters
and inter-cluster
connectivity

Image credit:
Univ. Leiden

Winter 2021 Parallel Processing, Low-Diameter Architectures Slide 108

Professional Connections Networks

Image credit:
LinkedIn

