
Winter 2021 Parallel Processing, Some Broad Topics Slide 1

Part V
Some Broad Topic

Winter 2021 Parallel Processing, Some Broad Topics Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Introduction to Parallel Processing: Algorithms and Architectures
(Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by
the author in connection with teaching the graduate-level course
ECE 254B: Advanced Computer Architecture: Parallel Processing,
at the University of California, Santa Barbara. Instructors can use
these slides in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised

First Spring 2005 Spring 2006 Fall 2008 Fall 2010

Winter 2013 Winter 2014 Winter 2016

Winter 2019* Winter 2021*

*Chapters 17-18 only

Winter 2021 Parallel Processing, Some Broad Topics Slide 3

V Some Broad Topics

Study topics that cut across all architectural classes:
• Mapping computations onto processors (scheduling)
• Ensuring that I/O can keep up with other subsystems
• Storage, system, software, and reliability issues

Topics in This Part

Chapter 17 Emulation and Scheduling

Chapter 18 Data Storage, Input, and Output

Chapter 19 Reliable Parallel Processing

Chapter 20 System and Software Issues

Winter 2021 Parallel Processing, Some Broad Topics Slide 4

17 Emulation and Scheduling

Mapping an architecture or task system onto an architecture
• Learn how to achieve algorithm portability via emulation
• Become familiar with task scheduling in parallel systems

Topics in This Chapter

17.1 Emulations Among Architectures

17.2 Distributed Shared Memory

17.3 The Task Scheduling Problem

17.4 A Class of Scheduling Algorithms

17.5 Some Useful Bounds for Scheduling

17.6 Load Balancing and Dataflow Systems

Winter 2021 Parallel Processing, Some Broad Topics Slide 5

17.1 Emulations Among Architectures

Usefulness of emulation:

a. Develop algorithms/schedules quickly for a new architecture
b. Program/schedule on a user-friendly architecture, then emulate it
c. Show versatility of a new architecture by emulating the hypercube on it

Need for scheduling:

a. Assign tasks to compute nodes so as to optimize system performance
b. The goal of scheduling is to make best use of nodes and links
c. Once derived, schedules may be adjusted via load balancing

EmulationScheduling

Task graph Architecture 1 Architecture 2

Winter 2021 Parallel Processing, Some Broad Topics Slide 6

Virtual Network Embedding (VNE)

VN requests &
substrate net:

Topologies
Nodes, capacities
Links, capacities

Image source: “FELL: A Flexible Virtual Network Embedding
Algorithm with Guaranteed Load Balancing,” Proc. ICC, 2011

VNE algorithm:

Map VN nodes to
substrate nodes

Map VN links to
substrate links/paths

Observe limits

Optimize

Winter 2021 Parallel Processing, Some Broad Topics Slide 7

Simple Emulation Results

Two general emulation results:

1. Emulation via graph embedding

Slowdown  dilation  congestion  load factor
Example: K2 emulating Kp

In general, the effects are not multiplicative

2. PRAM emulating a degree-d network

EREW PRAM can emulate any degree-d network with slowdown O(d)

Load factor = p/2

Congestion = p2/4
Dilation = 1

Emulation

Architecture 1: Guest Architecture 2: Host
We saw, for example, that
a 2q-node hypercube has
the 2q-node cycle as a
subgraph (is Hamiltonian),
but not a balanced binary
tree with 2q – 1 nodes

Winter 2021 Parallel Processing, Some Broad Topics Slide 8

Versatility of the Butterfly Network

Fig. 17.1 Converting a routing step in a degree-3
network to three permutations or perfect matchings.

 0

1

2

3

u 0

u 1

u 2

u 3

v 0

v 1

2

v 3

v

u 0

u 1

u 2

u 3

v 0

v 1

2

v 3

v

0

0

 0

 0

0

0

0

0

 1

1

1

1

1

 1

 1

1

2

 2

 2

2

2

2

 2

 2

u v 3 3

u 0

u 1

u 2

u

v 0

v 1

2

v

v

u 0

u 1

u 2

v 0

v 1

2 v

u 0

u 1

u 2

u

v 0

v 1

2

v

v

3 3 3 3

A (wrapped) butterfly
can emulate any
degree-d network with
O(d log p) slowdown

Thus, butterfly is a
bounded-degree
network that is
universally efficient

Idea used in proof:
One communication
step in a degree-d
network can be
decomposed into at
most d permutation
routing steps

Winter 2021 Parallel Processing, Some Broad Topics Slide 9

17.2 Distributed Shared Memory

Use hash function to map
memory locations to modules

p locations  p modules,
not necessarily distinct

With high probability, at most
O(log p) of the p locations will
be in modules located in the
same row

Average slowdown = O(log p)
Fig. 17.2 Butterfly distributed-memory
machine emulating the PRAM.

Randomized
emulation of the
p-processor PRAM
on p-node butterfly

dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows q

One of p =

processors
q Memory module

holding m/p
memory locations

P M P M P M P M

Each node =
router +
processor +
memory

2 (q + 1)

Winter 2021 Parallel Processing, Some Broad Topics Slide 10

PRAM Emulation with Butterfly MIN

Less efficient than Fig. 17.2,
which uses a smaller butterfly

Fig. 17.3 Distributed-memory machine, with a butterfly
multistage interconnection network, emulating the PRAM.

M
dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rowsq

POne of p =2
processors

q Memory module
holding m/p
memory locations

Emulation of the p-processor PRAM on (p logp)-node butterfly, with memory
modules and processors connected to the two sides; O(log p) avg. slowdown

By using p / (log p) physical
processors to emulate the
p-processor PRAM, this new
emulation scheme becomes
quite efficient (pipeline the
memory accesses of the log p
virtual processors assigned to
each physical processor)

Winter 2021 Parallel Processing, Some Broad Topics Slide 11

Deterministic Shared-Memory Emulation

Deterministic emulation
of p-processor PRAM
on p-node butterfly

dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows q

One of p =

processors
q Memory module

holding m/p
memory locations

P M P M P M P M

Each node =
router +
processor +
memory

2 (q + 1)

Store log2 m copies of each of
the m memory location contents

Time-stamp each updated value

A “write” is complete once a
majority of copies are updated

A “read” is satisfied when a
majority of copies are accessed
and the one with latest time
stamp is used

Why it works: A few congested
links won’t delay the operation

Write set Read set

log2 m copies

Winter 2021 Parallel Processing, Some Broad Topics Slide 12

PRAM Emulation Using Information Dispersal

Fig. 17.4 Illustrating the information dispersal approach
to PRAM emulation with lower data redundancy.

Instead of (log m)-fold replication of data, divide each data element
into k pieces and encode the pieces using a redundancy factor of 3,
so that any k / 3 pieces suffice for reconstructing the original data

Recunstruction
algorithm

Original data word
and its k pieces

The k pieces
after encoding
(approx. three
times larger)

Original data word recovered
from k /3 encoded pieces

Up-to-date
pieces

Possible read set
of size 2k/3

Possible update set
of size 2k/3

Winter 2021 Parallel Processing, Some Broad Topics Slide 13

17.3 The Task Scheduling Problem

Task scheduling parameters
and “goodness” criteria

Running times for tasks
Creation (static /dynamic)
Importance (priority)
Relationships (precedence)
Start times (release times)
End times (deadlines)

Fig. 17.5 Example task system showing
communications or dependencies.

1

2

3

4

5

6
7

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8) 

1

p

Output

Types of scheduling algorithms

Preemptive/nonpreemptive,
fine/medium/coarse grain

Winter 2021 Parallel Processing, Some Broad Topics Slide 14

Job-Shop Scheduling

Time0 2 4 6 8 10 12 14
0

2

4

6S
t
a
f
f

8

Tb1 Tc1

Ta1

Ta2

Tb2

Td2

Tb3
Td1

Job Task Machine Time Staff
Ja Ta1 M1 2 3
Ja Ta2 M3 6 2
Jb Tb1 M2 5 2
Jb Tb2 M1 3 3
Jb Tb3 M2 3 2
Jc Tc1 M3 4 2
Jd Td1 M1 5 4
Jd Td2 M2 2 1

M1 M2 M3
Time0 2 4 6 8 10 12 14

0

2

4

6S
t
a
f
f

8

Tb1

Tc1

Ta1

Ta2

Tb2

Td2

Tb3
Td1

Winter 2021 Parallel Processing, Some Broad Topics Slide 15

Time0 2 4 6 8 10 12 14
0

2

4

6S
t
a
f
f

8

Tb1

Ta1

Tb2
Td1

Schedule Refinement

Job Task Machine Time Staff
Ja Ta1 M1 2 3
Ja Ta2 M3 6 2
Jb Tb1 M2 5 2
Jb Tb2 M1 3 3
Jb Tb3 M2 3 2
Jc Tc1 M3 4 2
Jd Td1 M1 5 4
Jd Td2 M2 2 1

M1 M2 M3

Tc1
Ta2

Td2

Tb3

Time0 2 4 6 8 10 12 14
0

2

4

6S
t
a
f
f

8

Tb1

Tc1

Ta1

Ta2

Tb2

Td2

Tb3
Td1

Switch?

Winter 2021 Parallel Processing, Some Broad Topics Slide 16

Complexity of Scheduling Problems
Most scheduling problems, even with 2 processors, are NP-complete

Easy, or tractable (polynomial-time), cases include:

1. Unit-time tasks, with 2 processors

2. Task graphs that are forests, with any number of processors

Surprisingly hard, or intractable, cases include:

1. Tasks of running time 1 or 2, with 2 processors (nonpreemptive)

2. Unit-time tasks on 3 or more processors

Many practical scheduling problems are solved by heuristics

Heuristics typically have decision parameters that can be tuned to make
them suitable for a particular application context

The scheduling literature is full of different heuristics and experimental
studies of their performance in different domains

Winter 2021 Parallel Processing, Some Broad Topics Slide 17

17.4 A Class of Scheduling Algorithms

With identical processors, list schedulers differ only in priority assignment

List scheduling

Assign a priority level to each task
Construct task list in priority order; tag tasks that are ready for execution
At each step, assign to an available processor the first tagged task
Update the tags upon each task termination

A possible priority assignment scheme for list scheduling:

1. Find the depth T of the task graph (indicator of min possible exec time)

2. Take T as a goal for the running time Tp

3. Determine the latest time when each task can be started if our goal is to
be met (done by “layering” the nodes, beginning with the output node)

4. Assign task priorities in order of the latest possible times, breaking ties,
e.g., by giving priority to tasks with more descendants

Winter 2021 Parallel Processing, Some Broad Topics Slide 18

1

2

3

4

5

67

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

1

p

Output

List Scheduling Example

T = 8 (execution time goal)

Latest start times: see the layered diagram

Priorities: shown on the diagram in red

A possible priority assignment scheme:

1. Find the depth T of the task graph

2. Take T as a goal for the running time Tp

3. Determine the latest possible start times

4. Assign priorities in order of latest times

8

7

6

5

4

3

2

1

13

1
2

3

4

56
78

9

10

11
12In this particular example, the tie-breaking

rule of giving priority to a task with more
descendants is of no help, but generally it
leads to improvement in execution time

Winter 2021 Parallel Processing, Some Broad Topics Slide 19

1

2

3

4

5

67

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

1

p

Output

Assignment to Processors

Fig. 17.6 Schedules with p = 1, 2, 3
processors for an example task graph
with unit-time tasks.

8

7

6

5

4

3

2

1

13

1
2

3

4

56
78

9

10

11
12

1 2 3 4 5 6 7 8 9 10 11 12 13P1

P1

P2

P3

P1

P2

1 2 3 4 6 8 10 12 13

 5 7 9 11

1 2 3 4 6 9 12 13

 5 7 10

 8 11

1 2 3 4 5 6 7 8 9 10 11 12 13
Time Step

Tasks listed in priority order
1* 2 3 4 6 5 7 8 9 10 11 12 13 t = 1 v1 scheduled
2* 3 4 6 5 7 8 9 10 11 12 13 t = 2 v2 scheduled

Winter 2021 Parallel Processing, Some Broad Topics Slide 20

Scheduling with Non-Unit-Time Tasks
x

x
x

y Output

1

2
3

1

v 1

v 3

v 5

v 2
v 4

v 6

Fig. 17.7 Example task
system with task running
times of 1, 2, or 3 units.

Fig. 17.8 Schedules with p = 1, 2, 3
processors for an example task graph
with nonuniform running times.

1 2 3 4 5 6P1

P1

P2

P3

P1

P2

1 3 4 5 6

 2

1 3 5 6

 4

1 2 3 4 5 6 7 8 9 10 11
Time Step

 2

1

23

4

5

6
7

5

4

3

1

Winter 2021 Parallel Processing, Some Broad Topics Slide 21

Fault-Tolerant Scheduling
Tasks, or nodes on which they run, may have imperfect reliabilities
[This topic to be developed further]

[Reference 1]

B. Parhami,
"A Unified
Approach to
Correctness and
Timeliness
Requirements
for Ultrareliable
Concurrent
Systems,"
Proc. 4th Int'l
Parallel
Processing
Symp.,
April 1990,
pp. 733-747.

[Reference 2]

Winter 2021 Parallel Processing, Some Broad Topics Slide 22

17.5 Some Useful Bounds for Scheduling

Brent’s scheduling theorem: Tp < T + T1/p

Ideal run time Ideal speedup

Lower bound on speedup based on
Brent’s scheduling theorem:

S > T1 / (T+T1/p) = p / (1+pT /T1)

[Compare to Amdahl’s law]

A large T /T1 ratio indicates much
sequential dependency (Amdahl’s f)

1

2

3

4

5

67

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Num ber of nodes (here 13)
T Depth of the graph (here 8) 

1

p

Output

T1

(Size of
task

graph)

T
(Depth
of task
graph)

In other words, one can always
schedule a task graph so that
the total running time does not
exceed the best possible (T1/p)
by more than the depth of the
task graph (T)

Winter 2021 Parallel Processing, Some Broad Topics Slide 23

Proof of Brent’s Theorem: Tp < T + T1/p

Let there be nt nodes scheduled
at time t ; Clearly, ∑t nt = T1

First assume the availability of an
unlimited number of processors
and schedule each node at the
earliest possible time

With only p processors, tasks
scheduled for time step t can
be executed in nt /p steps by
running them p at a time. Thus:

Tp  ∑t =1 toT nt /p
< ∑t=1 toT (nt /p + 1)

= T + (∑t nt)/p

= T + T1/p

1

2

3

4

5

6
7

8

9
10

11

x

x

x

y

Vertex v represents
Tas k or Computation j

T Laten cy with p process ors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8) 

1

p

Output

8

7

6

5

4

3

2

1

n2 = 1

n4 = 3

n6 = 2

n1 = 1

n3 = 1

n5 = 3

n7 = 1
n8 = 1

Winter 2021 Parallel Processing, Some Broad Topics Slide 24

Good-News Corollaries

Brent’s scheduling theorem: Tp < T + T1/p

Ideal run time Ideal speedup

Corollary 1: For p  T1/T we have T  Tp < 2T

T1/p  T For a sufficiently large number p of processors,
we can come within a factor of 2 of the best possible run time,
even when we use a naïve scheduling algorithm

Corollary 2: For p  T1/T we have T1/p  Tp < 2T1/p

T  T1/p If we do not have too many processors,
we can come within a factor of 2 of the best possible speedup,
even when we use a naïve scheduling algorithm

Choosing pT1/T leads to O(p) speedup and near-minimal run time

Winter 2021 Parallel Processing, Some Broad Topics Slide 25

ABCs of Parallel Processing in One Slide
A Amdahl’s Law (Speedup Formula)

Bad news – Sequential overhead will kill you, because:
Speedup = T1/Tp  1/[f + (1 – f)/p]  min(1/f, p)

Morale: For f = 0.1, speedup is at best 10, regardless of peak OPS.

B Brent’s Scheduling Theorem
Good news – Optimal scheduling is very difficult, but even a naïve
scheduling algorithm can ensure:

T1/p  Tp  T1/p + T = (T1/p)[1 + p/(T1/T)]
Result: For a reasonably parallel task (large T1/T), or for a suitably
small p (say, p  T1/T), good speedup and efficiency are possible.

C Cost-Effectiveness Adage
Real news – The most cost-effective parallel solution may not be
the one with highest peak OPS (communication?), greatest speed-up
(at what cost?), or best utilization (hardware busy doing what?).
Analogy: Mass transit might be more cost-effective than private cars
even if it is slower and leads to many empty seats.

Winter 2021 Parallel Processing, Some Broad Topics Slide 26

Cost-Effectiveness Adage in Parallel Processing

The most cost-effective parallel solution may not be the one with
- Highest peak OPS (communication?)
- Greatest speed-up (at what cost?)
- Best utilization (hardware busy doing what?)

f = 0.5
f = 0.6
f = 0.7

f = 0.8

f = 0.9Speedup s

Processors p

High
performanceCost-

effective

Why peak ops isn’t
a good measure
- 100 PFLOPS peak
- 10 PFLOPS

sustained

Utilization analogy:
- Bus, 10 riders,

50 seats
- Auto, 2 riders,

5 seats

Winter 2021 Parallel Processing, Some Broad Topics Slide 27

17.6 Load Balancing and Dataflow Systems

Task running times are not constants
A processor may run out of things to do before others complete their tasks
Some processors may remain idle, waiting to hear about prerequisite tasks
In these cases, a load balancing policy may be applied

Load balancing can be initiated by a lightly loaded or by an overburdened
processor (receiver/sender-initiated)

Unfortunately, load balancing may involve significant overhead
The ultimate in automatic load-balancing is a self-scheduling system that

tries to keep all processing resources running at maximum efficiency
There may be a central location to which processors refer for work and

where they return their results
An idle processor requests that it be assigned new work by the supervisor
This works nicely for tasks with small contexts or relatively long run times

Dynamic load balancing: Switching unexecuted tasks from overloaded
processors to less loaded ones, as we learn about execution times and
task interdependencies at run time

Winter 2021 Parallel Processing, Some Broad Topics Slide 28

Dataflow Systems

Fig. 17.9 Example dataflow graph with
token distribution at the outset (left) and
after 2 time units (right).

x

x x

y Output

1

2 3

1

v 1

v 3

v 5

v 2
v 4

v 6

x

x x

y Output

1

2 3

1

v 1

v 3

v 5

v 2
v 4

v 6

Hardware-level implementation
of a self-scheduling scheme

Computation represented
by a dataflow graph

Tokens used to keep
track of data availability

Once tokens appear on
all inputs, node is “fired,”
resulting in tokens being
removed from its inputs
and put on each output

Static dataflow: No more
than one token on edge

Dynamic dataflow:
Multiple tagged tokens on
edges; “consumed” after
matching their tags

Winter 2021 Parallel Processing, Some Broad Topics Slide 29

18 Data Storage, Input, and Output

Elaborate on problems of data distribution, caching, and I/O:
• Deal with speed gap between processor and memory
• Learn about parallel input and output technologies

Topics in This Chapter

18.1 Data Access Problems and Caching

18.2 Cache Coherence Protocols

18.3 Multithreading and Latency Hiding

18.4 Parallel I/O Technology

18.5 Redundant Disk Arrays

18.6 Interfaces and Standards

Winter 2021 Parallel Processing, Some Broad Topics Slide 30

18.1 Data Access Problems and Caching
Processor-memory speed gap is aggravated by parallelism
Centralized memory is slower; distributed memory needs remote accesses

Fig. 17.8 of
Parhami’s
Computer
Architecture
text (2005)

1990 1980 2000 2010
1

10

10

R
e

la
ti

ve
 p

e
rf

or
m

a
nc

e

Calendar year

Processor

Memory

3

6

Remedies: Judicious data distribution –- good with static data sets
Data caching –- introduces coherence problems
Latency tolerance/hiding –- e.g., via multithreading

Winter 2021 Parallel Processing, Some Broad Topics Slide 31

Why Data Caching Works

Fig. 18.1 Data storage
and access in a two-way
set-associative cache.

Placement Option 0 Placement Option 1

.

.

.

Tag
State bits

--- One cache block --- Tag
State bits

--- One cache block ---

.

.

.

.

.

.

.

.

.

Block
address

Word
offset

The two candidate words
and their tags are read out

Tag Index

Address in

Mux
0 1

Data outCache miss

=

=Com-
 pare

Com-
 pare

Hit rate r (fraction of
memory accesses
satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

Cache parameters:

Size
Block length (line width)
Placement policy
Replacement policy
Write policy

Winter 2021 Parallel Processing, Some Broad Topics Slide 32

Benefits of Caching Formulated as Amdahl’s Law

Generalized form of Amdahl’s speedup formula:

S = 1/(f1/p1 + f2/p2 + . . . + fm/pm), with f1 + f2 + . . . + fm = 1

In this case, a fraction 1 – r is slowed down by a factor (Cslow + Cfast) /Cslow,
and a fraction r is speeded up by a factor Cslow /Cfast

Fig. 18.3 of Parhami’s Computer Architecture text (2005)

Main
memory

Register
file

Access cabinet
in 30 s

Access
desktop in 2 s

Access drawer
in 5 s

Cache
memory

This corresponds to the miss-rate fraction 1 – r of accesses being unaffected
and the hit-rate fraction r (almost 1) being speeded up by a factor Cslow/Cfast

Hit rate r (fraction of memory
accesses satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

S = Cslow /Ceff

1
=

(1 – r) + Cfast/Cslow

Winter 2021 Parallel Processing, Some Broad Topics Slide 33

18.2 Cache Coherence Protocols

Fig. 18.2 Various types of cached data blocks in a parallel processor
with global memory and processor caches.

0

1

Processor-
to-memory

network

p–1

Proc.-
to-

proc.
net-
work

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

w
x

y

z 

w
y 

w
z 

x
z

w

x

y 

z

Multiple
consistent

Single
consistent

Single
inconsistent

Invalid

Winter 2021 Parallel Processing, Some Broad Topics Slide 34

Example: A Bus-Based Snoopy Protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU
write miss:
Write back
the block,
Put write
miss on bus

CPU read hit

CPU
read miss:
Put read
miss on bus

Bus write miss for this block:
Write back the block

Bus write miss for this block

CPU read miss:
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3 Finite-state control mechanism for a bus-based
snoopy cache coherence protocol.

Each transition is labeled with the event that triggers it,
followed by the action(s) that must be taken

Winter 2021 Parallel Processing, Some Broad Topics Slide 35

Implementing a Snoopy Protocol

Fig. 27.7 of Parhami’s Computer Architecture text.

A second
tags/state
storage unit
allows
snooping to
be done
concurrently
with normal
cache
operation

Tags

Cache
data
array

Duplicate tags
and state store
for snoop side

CPU

Main tags and
state store for
processor side

=?

=?

Processor side
cache control

Snoop side
cache control

Addr Addr Cmd Cmd Buffer Buffer
Snoop
state

System
bus

Tag

Addr Cmd

State

Getting all the
implementation
timing and
details right is
nontrivial

Winter 2021 Parallel Processing, Some Broad Topics Slide 36

Example: A Directory-Based Protocol

Fig. 18.4 States and transitions for a directory entry in a directory-based
coherence protocol (c denotes the cache sending the message).

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation,
return data value, sharing set = {c}

Read miss: Return data value,
sharing set = sharing set + {c}

Data write-back:
Sharing set = { }

Read miss: Return data value,
sharing set = {c}Write miss: Return data value,

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},
return data value

Read miss: Fetch data value, return data value,
sharing set = sharing set + {c} sharing set +

Correction to text

Winter 2021 Parallel Processing, Some Broad Topics Slide 37

Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)

When there are many more nodes (caches) than the typical size of a
sharing set, a list of sharing units may be maintained in the directory

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Processor 0 Processor 1 Processor 2 Processor 3

Memory

Noncoherent
data blocks Coherent

data block

 Cache 0 Cache 1 Cache 2 Cache 3

Head pointer

The sharing set can be maintained as a distributed doubly linked list
(will discuss in Section 18.6 in connection with the SCI standard)

Winter 2021 Parallel Processing, Some Broad Topics Slide 38

18.3 Multithreading and Latency Hiding

Latency hiding: Provide each processor with useful work to do as
it awaits the completion of memory access requests

Multithreading is one way to implement latency hiding

Fig. 18.5 The concept of multithreaded parallel computation.

Sequential
thread

Thread
computations

Remote
accesses

Scheduling
overhead

Synchronization
overhead

Idle
time

Winter 2021 Parallel Processing, Some Broad Topics Slide 39

Multithreading on a Single Processor

Threads in memory Issue pipelines Retirement and
commit pipeline

Function units
Bubble

Fig. 24.9 of Parhami’s Computer Architecture text (2005)

Here, the motivation is to reduce the performance impact of
data dependencies and branch misprediction penalty

Winter 2021 Parallel Processing, Some Broad Topics Slide 40

18.4 Parallel I/O Technology

Track 0
Track 1

Track c – 1

Sector

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

Fig. 18.6 Moving-head magnetic disk elements.

Comprehensive info about disk memory: http://www.storageview.com/guide/

Winter 2021 Parallel Processing, Some Broad Topics Slide 41

Access Time for a Disk

The three components of disk access time. Disks that spin faster
have a shorter average and worst-case access time.

1. Head movement
from current position
to desired cylinder:
Seek time (0-10s ms)

Rotation

2. Disk rotation until the desired
sector arrives under the head:
Rotational latency (0-10s ms)

3. Disk rotation until sector
has passed under the head:
Data transfer time (< 1 ms)

Sector

1
2

3

Average rotational latency =
30 000 / rpm (in ms) Seek time =

a + b(c – 1)
+ b(c – 1)1/2

Data transfer time =
Bytes / Data rate

Winter 2021 Parallel Processing, Some Broad Topics Slide 42

Amdahl’s Rules of Thumb for System Balance

The need for high-capacity, high-throughput secondary (disk) memory

Processor
speed

RAM
size

Disk I/O
rate

Number of
disks

Disk
capacity

Number of
disks

1 GIPS 1 GB 100 MB/s 1 100 GB 1

1 TIPS 1 TB 100 GB/s 1000 100 TB 100

1 PIPS 1 PB 100 TB/s 1 Million 100 PB 100 000

1 EIPS 1 EB 100 PB/s 1 Billion 100 EB 100 Million

G Giga
T Tera
P Peta
E Exa

1 RAM byte
for each IPS

100 disk bytes
for each RAM byte

1 I/O bit per sec
for each IPS

Winter 2021 Parallel Processing, Some Broad Topics Slide 43

Fig. 20.11 Trends in disk, main memory, and CPU speeds.

Growing Gap Between Disk and CPU Performance

1990 1980 2000 2010

T
im

e

Calendar year

Disk seek time

ps

ns

s

s

ms

CPU cycle time

DRAM access time

From
Parhami’s
computer
architecture
textbook,
Oxford,
2005

Winter 2021 Parallel Processing, Some Broad Topics Slide 44

Head-Per-Track Disks

Fig. 18.7 Head-per-track disk concept.

Track 0 Track 1

Track c–1

Dedicated track heads eliminate seek time
(replace it with activation time for a head)

Multiple sets of head
reduce rotational latency

Winter 2021 Parallel Processing, Some Broad Topics Slide 45

18.5 Redundant Disk Arrays

IBM ESS Model 750

High capacity
(many disks)

High reliability
(redundant data, back-up disks)

High bandwidth
(parallel accesses)

Winter 2021 Parallel Processing, Some Broad Topics Slide 46

RAID Level 0

Structure:

Striped (data broken
into blocks & written
to separate disks)

Advantages:

Spreads I/O load
across many
channels and drives

Drawbacks:

No fault tolerance
(data lost with single
disk failure)

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 47

RAID Level 1

Structure:

Each disk replaced
by a mirrored pair

Advantages:

Can double the read
transaction rate

No rebuild required

Drawbacks:

Overhead is 100%

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 48

RAID Level 2

Structure:

Data bits are written
to separate disks and
ECC bits to others

Advantages:

On-the-fly correction
High transfer rates

possible (w/ sync)

Drawbacks:

Potentially high
redundancy

High entry-level cost

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 49

RAID Level 3

Structure:

Data striped across
several disks, parity
provided on another

Advantages:

Maintains good
throughput even
when a disk fails

Drawbacks:

Parity disk forms a
bottleneck

Complex controller

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 50

RAID Level 4

Structure:

Independent blocks
on multiple disks
share a parity disk

Advantages:

Very high read rate
Low redundancy

Drawbacks:

Low write rate
Inefficient data rebuild

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 51

RAID Level 5

Structure:

Parity and data
blocks distributed on
multiple disks

Advantages:

Very high read rate
Medium write rate
Low redundancy

Drawbacks:

Complex controller
Difficult rebuild

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 52

RAID Level 6

Structure:

RAID Level 5,
extended with second
parity check scheme

Advantages:

Tolerates 2 failures
Protected even during

recovery

Drawbacks:

More complex
controller

Greater overhead

http://www.acnc.com/

Winter 2021 Parallel Processing, Some Broad Topics Slide 53

RAID Summary

Fig. 18.8 Alternative data organizations on redundant disk arrays.

RAID0: Multiple disks for higher
data rate; no redundancy

RAID1: Mirrored disks

RAID2: Error-correcting code

RAID3: Bit- or byte-level striping
with parity/checksum disk

RAID4: Parity/checksum applied
to sectors,not bits or bytes

RAID5: Parity/checksum
distributed across several disks

Data organization on multiple disks

Data
disk 0

Data
disk 1

Mirror
disk 1

Data
disk 2

Mirror
disk 2

Data
disk 0

Data
disk 2

Data
disk 1

Data
disk 3

Mirror
disk 0

Parity
disk

Spare
disk

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0”

Data 1”

Data 2”

Data 0’”

Data 1’”

Data 2’”

Parity 0

Parity 1

Parity 2

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0’”

Parity 1

Data 2”

Parity 0

Data 1’”

Data 2’”

Data 0”

Data 1”

Parity 2

RAID6: Parity and 2nd check
distributed across several disks

Winter 2021 Parallel Processing, Some Broad Topics Slide 54

RAID Performance Considerations

Parity updates may become a bottleneck, because the parity changes
with every write, no matter how small

Computing sector parity for a write operation:

New parity = New data  Old data  Old parity

RAID0: Multiple disks for higher
data rate; no redundancy

RAID1: Mirrored disks

RAID2: Error-correcting code

RAID3: Bit- or byte-level striping
with parity/checksum disk

RAID4: Parity/checksum applied
to sectors,not bits or bytes

RAID5: Parity/checksum
distributed across several disks

Data organization on multiple disks

Data
disk 0

Data
disk 1

Mirror
disk 1

Data
disk 2

Mirror
disk 2

Data
disk 0

Data
disk 2

Data
disk 1

Data
disk 3

Mirror
disk 0

Parity
disk

Spare
disk

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0”

Data 1”

Data 2”

Data 0’”

Data 1’”

Data 2’”

Parity 0

Parity 1

Parity 2

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0’”

Parity 1

Data 2”

Parity 0

Data 1’”

Data 2’”

Data 0”

Data 1”

Parity 2

RAID6: Parity and 2nd check
distributed across several disks

Winter 2021 Parallel Processing, Some Broad Topics Slide 55

RAID Tradeoffs

Source: Chen, Lee, Gibson,
Katz, and Patterson, “RAID:
High-Performance Reliable
Secondary Storage,”
ACM Computing Surveys,
26(2):145-185, June 1994.

RAID5 and RAID 6
impose little penalty on
read operations

In choosing group size,
balance must be struck
between the decreasing
penalty for small writes
vs. increasing penalty
for large writes

Winter 2021 Parallel Processing, Some Broad Topics Slide 56

18.6 Interfaces and Standards
The Scalable Coherent Interface (SCI) standard: Allows the
implementation of large-scale cache-coherent parallel systems
(see Section 21.6 for a parallel computer based on SCI)

Processor 0 Processor 1 Processor 2 Processor 3

Memory

Noncoherent
data blocks Coherent

data block

 Cache 0 Cache 1 Cache 2 Cache 3

Head pointer

Fig. 18.9 Two categories of data blocks and the structure
of the sharing set in the Scalable Coherent Interface.

Winter 2021 Parallel Processing, Some Broad Topics Slide 57

Other Interface Standards

High-Performance Parallel Interface (HiPPI) ANSI standard:

Allows point-to-point connectivity between two devices
(typically a supercomputer and a peripheral)

Data rate of 0.8 or 1.6 Gb/s over a (copper) cable of 25m or less

Uses very wide cables with clock rate of only 25 MHz

Establish, then tear down connections (no multiplexing allowed)

Packet length ranges from 2 B to 4 GB, up to 1016 B of control info

HiPPI (later versions renamed GSN, or gigabyte system network)
is no longer in use and has been superseded by new, even faster
standards such as Ultra3 SCSI and Fibre Channel

Modern interfaces tend to have fewer wires with faster clock rates

Winter 2021 Parallel Processing, Some Broad Topics Slide 58

19 Reliable Parallel Processing

Develop appreciation for reliability issues in parallel systems:
• Learn methods for dealing with reliability problems
• Deal with all abstraction levels: components to systems

Topics in This Chapter

19.1 Defects, Faults, . . . , Failures

19.2 Defect-Level Methods

19.3 Fault-Level Methods

19.4 Error-Level Methods

19.5 Malfunction-Level Methods

19.6 Degradation-Level Methods

Winter 2021 Parallel Processing, Some Broad Topics Slide 59

19.1 Defects, Faults, . . . , Failures

Fig. 19.1 System states and state
transitions in our multilevel model.

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

The multilevel model of dependable computing

Abstraction level Dealing with deviant
Defect / Component Atomic parts
Fault / Logic Signal values or decisions
Error / Information Data or internal states
Malfunction / System Functional behavior
Degradation / Service Performance
Failure / Result Outputs or actions

Opportunities for fault tolerance in parallel systems:
Built-in spares, load redistribution, graceful degradation

Difficulties in achieving fault tolerance:
Change in structure, bad units disturbing good ones

Winter 2021 Parallel Processing, Some Broad Topics Slide 60

Analogy for the Multilevel Model

Fig. 19.2 An analogy
for the multilevel
model of dependable
computing.

Wall heights represent
interlevel latencies

Inlet valves represent
avoidance techniques

Drain valves represent
tolerance techniques

Concentric reservoirs are
analogues of the six model
levels (defect is innermost)

I I I I I I

I I I I I I

Many avoidance and
tolerance methods are
applicable to more than
one level, but we deal
with them at the level
for which they are most
suitable, or at which
they have been most
successfully applied

Winter 2021 Parallel Processing, Some Broad Topics Slide 61

19.2 Defect-Level Methods

Defects are caused in two ways (sideways and
downward transitions into the defective state):

a. Design slips leading to defective components
b. Component wear and aging, or harsh

operating conditions (e.g., interference)

A dormant (ineffective) defect is very hard to detect

Methods for coping with defects during dormancy:

Periodic maintenance
Burn-in testing

Goal of defect tolerance methods:

Improving the manufacturing yield
Reconfiguration during system operation

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Winter 2021 Parallel Processing, Some Broad Topics Slide 62

Defect Tolerance Schemes for Linear Arrays

Fig. 19.4 A linear array with a spare processor
and embedded switching.

 Spare or
DefectiveP0 P1 P2 P3

Bypassed

I/O

Test

I/O

Test

 Spare or
Defective

Mux
P0 P1 P2 P3

Fig. 19.3 A linear array with a spare processor
and reconfiguration switches.

Winter 2021 Parallel Processing, Some Broad Topics Slide 63

Defect Tolerance in 2D Arrays

Fig. 19.5 Two types of reconfiguration switching for 2D arrays.

Pa Pb

Pc Pd

Pa Pb

Pc Pd

Mux

Assumption: A malfunctioning processor can be bypassed in its
row/column by means of a separate switching mechanism (not shown)

Winter 2021 Parallel Processing, Some Broad Topics Slide 64

A Reconfiguration Scheme for 2D Arrays

Spare
Row

Spare Column

Fig. 19.6 A 5  5 working array
salvaged from a 6  6 redundant mesh
through reconfiguration switching.

Fig. 19.7 Seven defective
processors and their associated
compensation paths.

Winter 2021 Parallel Processing, Some Broad Topics Slide 65

Limits of Defect Tolerance

A set of three defective nodes, one of which cannot be
accommodated by the compensation-path method.

No compensation path
exists for this faulty node

Extension: We can go beyond the 3-defect limit by providing
spare rows on top and bottom and spare columns on either side

Winter 2021 Parallel Processing, Some Broad Topics Slide 66

19.3 Fault-Level Methods
Faults are caused in two ways (sideways and
downward transitions into the faulty state):

a. Design slips leading to incorrect logic circuits
b. Exercising of defective components, leading

to incorrect logic values or decisions

Classified as permanent / intermittent / transient,
local / catastrophic, and dormant / active

Faults are detected through testing:

Off-line (initially, or periodically in test mode)
On-line or concurrent (self-testing logic)

Goal of fault tolerance methods:

Allow uninterrupted operation in the presence of
faults belonging to a given class (fault model)

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Winter 2021 Parallel Processing, Some Broad Topics Slide 67

Fault Tolerance via Replication

Fig. 19.8 Fault detection or tolerance with replication.

Hardware replication:

Duplication with comparison
Pair and spare
Triplication with voting

Coded
inputs Decode

 1

Decode
 2

Compute
 1

Compare

Mismatch
detected

Encode

Coded
outputs

Coded
inputs Decode

 1

Decode
 2

Decode
 3

Vote Encode

Coded
outputs

Non-codeword
detected

Compute
 2

Compute
 3

Compute
 1

Compute
 2

These schemes involve high
redundancy (100 or 200%)

Lower redundancy possible
in some cases: e.g., periodic
balanced sorting networks
can tolerate certain faults if
provided with extra stages

Winter 2021 Parallel Processing, Some Broad Topics Slide 68

Fault Detection and Bypassing

Fig. 19.9 Regular butterfly and extra-stage butterfly networks.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

q Columns
0 1 2

q+1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 2 3

Winter 2021 Parallel Processing, Some Broad Topics Slide 69

19.4 Error-Level Methods

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Errors are caused in two ways (sideways and
downward transitions into the erroneous state):

a. Design slips leading to incorrect initial state
b. Exercising of faulty circuits, leading to

deviations in stored values or machine state

Classified as single / multiple, inversion / erasure,
random / correlated, and symmetric / asymmetric

Errors are detected through:

Encoded (redundant) data, plus code checkers
Reasonableness checks or activity monitoring

Goal of error tolerance methods:

Allow uninterrupted operation in the presence of
errors belonging to a given class (error model)

Winter 2021 Parallel Processing, Some Broad Topics Slide 70

Application of Coding to Error Control

INPUT

ENCODE

SEND

STORE

SEND

DECODE

OUTPUT

MANIPULATE
Protected

by Encoding

Unprotected

Fig. 19.10 A common way of applying
information coding techniques.

Arithmetic codes can help detect
(or correct) errors during data
manipulations:

1. Product codes (e.g., 15x)
2. Residue codes (x mod 15)

Ordinary codes can be used for
storage and transmission errors;
they are not closed under
arithmetic / logic operations

Error-detecting, error-correcting,
or combination codes (e.g.,
Hamming SEC/DED)

Winter 2021 Parallel Processing, Some Broad Topics Slide 71

Algorithm-Based Error Tolerance

2 1 6 1

5 3 4 4

3 2 7 4

M r =

2 1 6 1

5 3 4 4

3 2 7 4

2 6 1 1

M f =

2 1 6

5 3 4

3 2 7

M =

2 1 6

5 3 4

3 2 7

2 6 1

M c =

Matrix M Row checksum matrix

Column checksum matrix Full checksum matrix

Error coding applied to data structures, rather than at the level of atomic
data elements

Example: mod-8
checksums used
for matrices

If Z = X  Y then
Zf = Xc  Yr

In Mf, any single
error is correctable
and any 3 errors
are detectable

Four errors may
go undetected

Winter 2021 Parallel Processing, Some Broad Topics Slide 72

19.5 Malfunction-Level Methods

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Malfunctions are caused in two ways (sideways and
downward transitions into the malfunctioning state):

a. Design slips leading to incorrect modules
b. Propagation of errors to outside the module

boundary, leading to incorrect interactions

Module or subsystem malfunctions are sometimes
referred to as system-level “faults”

Malfunctions are identified through diagnosis:

Begin with a trusted fault-free core, and expand
Process diagnostic data from multiple sources

Goal of malfunction tolerance methods:

Allow uninterrupted (possibly degraded) operation
in the presence of certain expected malfunctions

Winter 2021 Parallel Processing, Some Broad Topics Slide 73

Malfunction Diagnosis in Parallel Systems

Fig. 19.11 A testing graph and the resulting diagnosis matrix.

In a p-processor system in which processors can test each other, the
diagnosis information can be viewed as a p  p matrix of test outcomes
(Dij represents the assessment of process i regarding processor j)

P P

P

x x 1 0 1
x x 1 0 x
1 1 x 0 x
0 0 0 x 0
1 x x 0 x

D =0 2

4

P1

P 3

Assume that a healthy processor can reliably indicate the status of another
processor, but that a malfunctioning processor cannot be trusted

p4 considers p0 healthy

p0 considers p3

malfunctioningThe given matrix D is
consistent with two
conclusions:

1. Only P3 is
malfunctioning

2. Only P3 is healthy

Winter 2021 Parallel Processing, Some Broad Topics Slide 74

Diagnosability Models and Reconfiguration

Problem: Given a diagnosis matrix, identify:

1. All malfunctioning units (complete diagnosability)
2. At least one malfunctioning unit (sequential diagnosability)
3. A subset of processors guaranteed to contain all malfunctioning ones

The last option is useful only if the designated subset is not much larger
than the set of malfunctioning modules

When one or more malfunctioning modules have been identified, the
system must be reconfigured to allow it to function without the
unavailable resources. Reconfiguration may involve:

1. Recovering state info from removed modules or from back-up storage
2. Reassigning tasks and reallocating data
3. Restarting the computation at the point of interruption or from scratch

In bus-based systems, we isolate the bad modules and proceed;
otherwise, we need schemes similar to those used for defect tolerance

Winter 2021 Parallel Processing, Some Broad Topics Slide 75

Malfunction Tolerance with Low Redundancy

Fig. 19.12 Reconfigurable 4  4 mesh with one spare.

The following scheme uses only one spare processor for a 2D mesh
(no increase in node degree), yet it allows system reconfiguration to
circumvent any malfunctioning processor, replacing it with the spare
via relabeling of the nodes

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

11 12 13 14

15 0 1

 2 3 4 5

 6 7 8 9

10Spare

Malfn.

Winter 2021 Parallel Processing, Some Broad Topics Slide 76

19.6 Degradation-Level Methods

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Degradations are caused in two ways (sideways
and downward transitions into the degraded state):

a. Design slips leading to substandard modules
b. Removal of malfunctioning modules, leading

to fewer computational resources

A system that can degrade “gracefully” is fail-soft;
otherwise it is fail-hard

Graceful degradation has two key requirements:

System: Diagnosis and reconfiguration
Application: Scalable and robust algorithms

Goal of degradation tolerance methods:

Allow continued operation while malfunctioning
units are repaired (hot-swap capability is a plus)

Winter 2021 Parallel Processing, Some Broad Topics Slide 77

Fail-Hard and Fail-Soft Systems

Fig. 19.13 Performance variations in three example parallel computers.

Performance

P
max

P
min Performance Threshold

Off-Line Repair

t t' t t' t t" t'

Time

1 1 2 2 3 2 3

S
1

S
3

S2

S , S2 3

S2

S3

S
1

Fail-hard system with performance
Pmax up to the failure time t1 as well as
after off-line repair at time t'1

Fail-soft system with gradually
degrading performance level and with
off-line or on-line repair capability

Winter 2021 Parallel Processing, Some Broad Topics Slide 78

Checkpointing for Recovery from Malfunctions

Figure 19.14 Checkpointing, its overhead, and pitfalls.

Long-running computation

Divided into 6 segments

Checkpointing overhead

Time

Completion
w/o checkpoints

Completion
with checkpoints

Task 0

Task 1

Task 2

Consistent checkpoints Inconsistent checkpoints

Checkpoints added

Periodically save partial results and computation state in stable storage
Upon detected malfunction, roll back the computation to last checkpoint

Winter 2021 Parallel Processing, Some Broad Topics Slide 79

The Robust Algorithm Approach

Figure 19.15 Two types of incomplete meshes,
with and without bypass links.

Scalable mesh algorithm: Can run on different mesh sizes

Robust mesh algorithm: Can run on incomplete mesh, with its performance
degrading gracefully as the number of unavailable nodes increases

 0 1 2

 6 5 4

 7 8 9

 13 12 11 10

 3 0 1 2

 6 5 4

 7 8 9

 13121110

 3

Winter 2021 Parallel Processing, Some Broad Topics Slide 80

The End of the Line: System Failure

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Failures are caused in two ways (sideways and
downward transitions into the failed state):

a. It is hard to believe, but some systems do not
work as intended from the outset

b. Degradation beyond an acceptable threshold

It is instructive to skip a level and relate failures of a
gracefully degrading system directly to malfunctions

Then, failures can be attributed to:

1. Isolated malfunction of a critical subsystem
2. Catastrophic malfunctions (space-domain)
3. Accumulation of malfunctions (time-domain)
4. Resource exhaustion

Experimental studies have shown that the first two
causes of failures are the most common

Winter 2021 Parallel Processing, Some Broad Topics Slide 81

20 System and Software Issues

Fill void in covering system, software and application topics:
• Introduce interaction and synchronization issues
• Review progress in system and application software

Topics in This Chapter

20.1 Coordination and Synchronization

20.2 Parallel Programming

20.3 Software Portability and Standards

20.4 Parallel Operating Systems

20.5 Parallel File Systems

20.6 Hardware/Software Interaction

Winter 2021 Parallel Processing, Some Broad Topics Slide 82

1

2

3

4

5

6
7

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p

1

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

1

p

Output

20.1 Coordination and Synchronization
Task interdependence is often more complicated than
the simple prerequisite structure thus far considered

Process B:
–––
–––

receive x
–––
–––
–––
–––

 B
waits

Time

Process A:
–––
–––
–––
–––
–––
–––
send x
–––
–––
–––
–––
–––
–––

t

t

t

1

2

3

A B
Schematic
representation
of data
dependence

Details of
dependence

{
Commu-
nication
latency

Fig. 20.1 Automatic synchronization in message-passing systems.

Winter 2021 Parallel Processing, Some Broad Topics Slide 83

Synchronization with Shared Memory

Accomplished by accessing specially designated shared control variables

The fetch-and-add instruction constitutes a useful atomic operation

If the current value of x is c, fetch-and-add(x, a) returns c to the
process and overwrites x = c with the value c + a

A second process executing fetch-and-add(x, b) then gets the now current
value c + a and modifies it to c + a + b

Why atomicity of fetch-and-add is important: With ordinary instructions,
the 3 steps of fetch-and-add for A and B may be interleaved as follows:

Process A Process B Comments
Time step 1 read x A’s accumulator holds c
Time step 2 read x B’s accumulator holds c
Time step 3 add a A’s accumulator holds c + a
Time step 4 add b B’s accumulator holds c + b
Time step 5 store x x holds c + a
Time step 6 store x x holds c + b (not c + a + b)

Winter 2021 Parallel Processing, Some Broad Topics Slide 84

Barrier Synchronization

Make each processor, in a designated set, wait at a barrier until all other
processors have arrived at the corresponding points in their computations

Software implementation via fetch-and-add or similar instruction

Hardware implementation via an AND tree (raise flag, check AND result)

A problem with the AND-tree:
If a processor can be randomly
delayed between raising it flag
and checking the tree output,
some processors might cross
the barrier and lower their flags
before others have noticed the
change in the AND tree output

Solution: Use two AND trees
for alternating barrier points

Set
AND
tree

fo
fo
fo

fo

0
1
2

p–1 S

R

Q

Reset
AND
tree

fe
fe
fe

fe

0
1
2

p–1

Barrier
SignalFlip-

flop

Fig. 20.4 Example of hardware aid for
fast barrier synchronization [Hoar96].

Winter 2021 Parallel Processing, Some Broad Topics Slide 85

Synchronization Overhead

Fig. 20.3 The performance benefit of less frequent synchronization.

P1P0 P3P2 P1P0 P3P2

Time

Synchro-
nization
overhead

Done

Done

Given that AND
is a semigroup
computation, it is
only a small step
to generalize it to
a more flexible
“global combine”
operation

Reduction of synchronization overhead:
1. Providing hardware aid to do it faster
2. Using less frequent synchronizations

Winter 2021 Parallel Processing, Some Broad Topics Slide 86

20.2 Parallel Programming

Some approaches to the development of parallel programs:

a. Automatic extraction of parallelism
b. Data-parallel programming
c. Shared-variable programming
d. Communicating processes
e. Functional programming

Examples of, and implementation means for, these approaches:

a. Parallelizing compilers
b. Array language extensions, as in HPF
c. Shared-variable languages and language extensions
d. The message-passing interface (MPI) standard
e. Lisp-based languages

Winter 2021 Parallel Processing, Some Broad Topics Slide 87

Automatic Extraction of Parallelism

An ironic, but common, approach to using parallel computers:

Force naturally parallel computations into sequential molds by coding
them in standard languages

Apply the powers of intelligent compilers to determine which of these
artificially sequentialized computations can be performed concurrently

Parallelizing compilers extract parallelism from sequential programs,
primarily through concurrent execution of loop iterations:

for i = 2 to k do
for j = 2 to k do

ai,j : = (ai,j–1 + ai,j+1)/2
endfor

endfor

Various iteration of the i loop can be executed on a different processor
with complete asynchrony due to their complete independence

Winter 2021 Parallel Processing, Some Broad Topics Slide 88

Data-Parallel Programming

Has its roots in the math-based APL language that had array data types
and array operations (binary and reduction operations on arrays)

C  A + B {array add}
x  + /V {reduction}
U  + /V  W {inner product}

APL’s powerful operators allowed the composition of very complicated
computations in a few lines (a write-only language?)

Fortran-90 (superset of Fortran-77) had extensions for array operations

A = SQRT(A) + B ** 2 {A and B are arrays}
WHERE (B /= 0) A = A /B

When run on a distributed-memory machine, some Fortran-90 constructs
imply interprocessor communication

A = S/2 {assign scalar value to array}
A(I:J) = B(J:I:–1) {assign a section of B to A}
A(P) = B {A(P(I)) = B(I) for all I}
S = SUM(B) {may require gather operation}

Winter 2021 Parallel Processing, Some Broad Topics Slide 89

Data-Parallel Languages

High Performance Fortran (HPF) extends Fortran-90 by:

Adding new directives and language constructs
Imposing some restrictions for efficiency reasons

HPF directives assist the compiler in data distribution, but do not
alter the program’s semantics (in Fortran-90, they are interpreted as
comments and thus ignored)

!HPF ALIGN A(I) WITH B(I + 2)

Data-parallel extensions have also been implemented for several
other programming languages

C* language introduced in 1987 by TMC
pC++, based on the popular C++

Winter 2021 Parallel Processing, Some Broad Topics Slide 90

Other Approaches to Parallel Programming

Shared-variable programming

Languages: Concurrent Pascal, Modula-2, Sequent C

Communicating processes

Languages: Ada, Occam
Language-independent libraries: MPI standard

Functional programming

Based on reduction and evaluation of expressions
There is no concept of storage, assignment, or branching
Results are obtained by applying functions to arguments

One can view a functional programming language as allowing only
one assignment of value to each variable, with the assigned value
maintained throughout the course of the computation

Winter 2021 Parallel Processing, Some Broad Topics Slide 91

20.3 Software Portability and Standards

Portable parallel applications that can run on any parallel machine have
been elusive thus far

Program portability requires strict adherence to design and specification
standards that provide machine-independent views or logical models

Programs are developed according to these logical models and are then
adapted to specific hardware by automatic tools (e.g., compilers)

HPF is an example of a standard language that, if implemented correctly,
should allow programs to be easily ported across platforms

Two other logical models are: MPI and PVM

Winter 2021 Parallel Processing, Some Broad Topics Slide 92

The Message Passing Interface (MPI) Standard

The MPI Forum, a consortium of parallel computer vendors and software
development specialists, specified a library of functions that implement
the message-passing model of parallel computation

MPI provides a high-level view of a message-passing environment that
can be mapped to various physical systems

Software implemented using MPI functions can be easily ported among
machines that support the MPI model

MPI includes functions for:
Point-to-point communication (blocking/nonblocking send/receive, …)
Collective communication (broadcast, gather, scatter, total exchange, …)
Aggregate computation (barrier, reduction, and scan or parallel prefix)
Group management (group construction, destruction, inquiry, …)
Communicator specification (inter-/intracommunicator construction,

destruction, …)
Virtual topology specification (various topology definitions, …)

Winter 2021 Parallel Processing, Some Broad Topics Slide 93

The Parallel Virtual Machine (PVM) Standard

Software platform for developing and running parallel applications on a
set of independent heterogeneous computers, variously interconnected

PVM defines a suite of user-interface primitives that support both the
shared-memory and the message-passing programming paradigms

These primitives provide functions similar to those of MPI and are
embedded within a procedural host language (usually Fortran or C)

A support process or daemon (PVMD) runs independently on each host,
performing message routing and control functions

PVMDs perform the following functions:
Exchange network configuration information
Allocate memory to in-transit packets
Coordinate task execution on associated hosts

The available pool of processors may change dynamically
Names can be associated with groups or processes
Group membership can change dynamically
One process can belong to many groups
Group-oriented functions (bcast, barrier) take group names as arguments

Winter 2021 Parallel Processing, Some Broad Topics Slide 94

20.4 Parallel Operating Systems

Classes of parallel processors:

Back-end, front-end, stand-alone

Stand-alone system: A special OS is included that can run on one,
several, or all of the processors in a floating or distributed (master-slave
or symmetric) fashion

Most parallel OSs are based on Unix

Back-end system: Host computer has a standard OS, and manages
the parallel processor essentially like a coprocessor or I/O device

Front-end system: Similar to backend system, except that the parallel
processor handles its own data (e.g., an array processor doing radar
signal processing) and relies on the host computer for certain
postprocessing functions, diagnostic testing, and interface with users

Winter 2021 Parallel Processing, Some Broad Topics Slide 95

The Mach Operating System

To make a compact, modular kernel possible, Mach incorporates a small
set of basic abstractions:

a. Task: A “container” for resources like virtual address space and ports
b. Thread: A program with little context; a task may contain many threads
c. Port: A communication channel along with certain access rights
d. Message: A basic unit of information exchange
e. Memory object: A “handle” to part of a task’s virtual memory

Unix Compatibility

User
Processes

Servers Distr.
Shared
 Mem.

Proc.
Alloc.

Ext'l
Mem.Network

Message

User Mode

Supervisor Mode

Mach Kernel: Virtual Memory Management,
Port/Message Management, and Scheduling

Fig. 20.5 Functions of the
supervisor and user modes in
the Mach operating system.

Mach is based on Unix and has
many similarities with it

Winter 2021 Parallel Processing, Some Broad Topics Slide 96

Some Features of The Mach OS

Unlike Unix, whose memory consists of contiguous areas, Mach’s virtual
address space contains pages with separate protection and inheritance

Messages in Mach are communicated via ports

Messages are typed according to their data and can be sent over a port
only if the sending / receiving thread has the appropriate access rights

For efficiency, messages involving a large amount of data do not actually
carry the data; instead a pointer to the actual data pages is transmitted

Copying of the data to the receiver’s pages occurs only upon data access

Mach scheduler assigns to each thread a time quantum upon starting its
execution. When the time quantum expires, a context switch is made to a
thread with highest priority, if such a thread is awaiting execution

To avoid starvation of low-priority threads (and to favor interactive tasks
over computation-intensive ones), priorities are reduced based on “age”;
the more CPU time a thread uses, the lower its priority becomes.

Winter 2021 Parallel Processing, Some Broad Topics Slide 97

20.5 Parallel File Systems
A parallel file system
efficiently maps data
access requests by
the processors to
high-bandwidth data
transfers between
primary and
secondary memories

Fig. 20.6 Handling of a large read
request by a parallel file system [Hell93].

User space in
(distributed) shared memory

User process

Message

High-bandwidth data transfer

File system
library

Read

Message

DISP: READ: COPYRD:
Cache access

DISKRD:
Disk access

File system
dispatcher
process

File system
worker
thread

Create
thread

To avoid a performance bottleneck, a parallel file system must be a highly
parallel and scalable program that can deal with many access scenarios:

a. Concurrent file access by independent processes
b. Shared access to files by cooperating processes
c. Access to large data sets by a single process

Winter 2021 Parallel Processing, Some Broad Topics Slide 98

20.6 Hardware /Software Interaction

A parallel application should be executable, with little or no modification,
on a variety of hardware platforms that differ in architecture and scale

Changeover from an 8-processor to 16-processor configuration, say,
should not require modification in the system or application programs

Ideally, upgrading should be done by simply plugging in new processors,
along with interconnects, and rebooting

Scalability in time: Introduction of faster processors and interconnects
leads to an increase in system performance with little or no redesign
(difficult at present but may become possible in future via the adoption of
implementation and interfacing standards)

Scalability in space: Computational power can be increased by simply
plugging in more processors (many commercially available parallel
processors are scalable in space within a range; say 4-256 processors)

Winter 2021 Parallel Processing, Some Broad Topics Slide 99

Speedup and Amdahl’s Law Revisited

Speedup, with the problem size n explicitly included, is:

S(n, p) = T(n, 1) /T(n, p)

The total time pT(n, p) spent by the processors can be divided into
computation time C(n, p) and overhead time

H(n, p) = pT(n, p) – C(n, p)

Assuming for simplicity that we have no redundancy

C(n, p) = T(n, 1)
H(n, p) = pT(n, p) – T(n, 1)
S(n, p) = p / [1 + H(n, p) /T(n, 1)]
E(n, p) = S(n, p) /p = 1 / [1 + H(n, p) /T(n, 1)]

If the overhead per processor, H(n, p)/p, is a fixed fraction f of T(n, 1),
speedup and efficiency become:

S(n, p) = p / (1 + pf) < 1/f {Alternate form of Amdahl’s law}
E(n, p) = 1 / (1 + pf)

Winter 2021 Parallel Processing, Some Broad Topics Slide 100

Maintaining a Reasonable Efficiency

Speedup and efficiency formulas

E(n, p) = S(n, p) /p = 1 / (1 + pf)

Assume that efficiency is to be kept above 50%, but the arguments
that follow apply to any fixed efficiency target

For E(n, p) > ½ to hold, we need pf < 1 or p < 1/f

That is, for a fixed problem size and assuming that the per-processor
overhead is a fixed fraction of the single-processor running time, there
is a limit to the number of processors that can be used cost-effectively

Going back to our efficiency equation E(n, p) = 1 / [1 + H(n, p) /T(n, 1)],
we note that keeping E(n, p) above ½ requires:

T(n, 1) > H(n, p)

Generally, the cumulative overhead H(n, p) goes up with both n and p,
whereas T(n, 1) only depends on n

Winter 2021 Parallel Processing, Some Broad Topics Slide 101

Scaled Speedup and Isoefficiency

The growth in problem size that can counteract the effect of increase in
machine size p in order to achieve a fixed efficiency is referred to as the
isoefficiency function n(p) which can be obtained from:

T(n, 1) = H(n, p)

Scaled speedup of p/2 or more is achievable for suitably large problems

Because the execution time T(n, p) = [T(n, 1) + H(n, p)] /p grows with
problem size for good efficiency, usefulness of scaled speedup is limited

Graphical depiction of the
limit to cost-effective
utilization of processors

For many problems, good
efficiency can be achieved
provided that we sufficiently
scale up the problem size p

T(n, 1)

H(n, p)fixed n

E(n, p) = ½

Fixed n H(n, p)

T(n, 1)

p

