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Part V
Some Broad Topic
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ECE 254B: Advanced Computer Architecture: Parallel Processing,  
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these slides in classroom teaching and for other educational 
purposes. Any other use is strictly prohibited. © Behrooz Parhami
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V   Some Broad Topics

Study topics that cut across all architectural classes:
• Mapping computations onto processors (scheduling)
• Ensuring that I/O can keep up with other subsystems
• Storage, system, software, and reliability issues

Topics in This Part

Chapter 17 Emulation and Scheduling

Chapter 18 Data Storage, Input, and Output

Chapter 19 Reliable Parallel Processing

Chapter 20 System and Software Issues
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17  Emulation and Scheduling

Mapping an architecture or task system onto an architecture
• Learn how to achieve algorithm portability via emulation
• Become familiar with task scheduling in parallel systems

Topics in This Chapter

17.1 Emulations Among Architectures

17.2 Distributed Shared Memory

17.3 The Task Scheduling Problem

17.4 A Class of Scheduling Algorithms

17.5 Some Useful Bounds for Scheduling

17.6 Load Balancing and Dataflow Systems
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17.1  Emulations Among Architectures

Usefulness of emulation:

a.  Develop algorithms/schedules quickly for a new architecture
b.  Program/schedule on a user-friendly architecture, then emulate it
c.  Show versatility of a new architecture by emulating the hypercube on it

Need for scheduling:

a.  Assign tasks to compute nodes so as to optimize system performance
b.  The goal of scheduling is to make best use of nodes and links
c.  Once derived, schedules may be adjusted via load balancing

EmulationScheduling

Task graph Architecture 1 Architecture 2
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Virtual Network Embedding (VNE)

VN requests & 
substrate net:

Topologies
Nodes, capacities
Links, capacities

Image source: “FELL: A Flexible Virtual Network Embedding
Algorithm with Guaranteed Load Balancing,” Proc. ICC, 2011

VNE algorithm:

Map VN nodes to 
substrate nodes

Map VN links to 
substrate links/paths

Observe limits

Optimize
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Simple Emulation Results

Two general emulation results:

1.  Emulation via graph embedding

Slowdown  dilation  congestion  load factor
Example: K2 emulating Kp

In general, the effects are not multiplicative

2.  PRAM emulating a degree-d network

EREW PRAM can emulate any degree-d network with slowdown O(d) 

Load factor = p/2

Congestion = p2/4
Dilation = 1

Emulation

Architecture 1: Guest Architecture 2: Host
We saw, for example, that 
a 2q-node hypercube has 
the 2q-node cycle as a 
subgraph (is Hamiltonian), 
but not a balanced binary 
tree with 2q – 1 nodes
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Versatility of the Butterfly Network

Fig. 17.1   Converting a routing step in a degree-3 
network to three permutations or perfect matchings.
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A (wrapped) butterfly 
can emulate any 
degree-d network with 
O(d log p) slowdown

Thus, butterfly is a 
bounded-degree 
network that is 
universally efficient

Idea used in proof:
One communication 
step in a degree-d
network can be 
decomposed into at 
most d permutation 
routing steps
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17.2  Distributed Shared Memory

Use hash function to map 
memory locations to modules

p locations  p modules, 
not necessarily distinct

With high probability, at most 
O(log p) of the p locations will 
be in modules located in the 
same row

Average slowdown = O(log p)
Fig. 17.2   Butterfly distributed-memory 
machine emulating the PRAM. 

Randomized 
emulation of the
p-processor PRAM 
on p-node butterfly
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PRAM Emulation with Butterfly MIN

Less efficient than Fig. 17.2, 
which uses a smaller butterfly

Fig. 17.3   Distributed-memory machine, with a butterfly 
multistage interconnection network, emulating the PRAM. 
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Emulation of the p-processor PRAM on (p logp)-node butterfly, with memory 
modules and processors connected to the two sides; O(log p) avg. slowdown

By using p / (log p) physical 
processors to emulate the 
p-processor PRAM, this new 
emulation scheme becomes 
quite efficient (pipeline the 
memory accesses of the log p
virtual processors assigned to 
each physical processor)
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Deterministic Shared-Memory Emulation

Deterministic emulation 
of p-processor PRAM 
on p-node butterfly
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Store log2 m copies of each of 
the m memory location contents

Time-stamp each updated value

A “write” is complete once a 
majority of copies are updated

A “read” is satisfied when a 
majority of copies are accessed 
and the one with latest time 
stamp is used

Why it works: A few congested 
links won’t delay the operation

Write set Read set

log2 m copies
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PRAM Emulation Using Information Dispersal 

Fig. 17.4   Illustrating the information dispersal approach 
to PRAM emulation with lower data redundancy.

Instead of (log m)-fold replication of data, divide each data element 
into k pieces and encode the pieces using a redundancy factor of 3, 
so that any k / 3 pieces suffice for reconstructing the original data

Recunstruction 
algorithm 

Original data word 
and its k  pieces 

The k  pieces  
after encoding 
(approx. three  
times larger) 

 

Original data word recovered 
from k /3 encoded pieces 

Up-to-date 
pieces 

Possible read set 
of size 2k/3 

Possible update set 
of size 2k/3 
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17.3  The Task Scheduling Problem

Task scheduling parameters 
and “goodness” criteria

Running times for tasks
Creation (static /dynamic) 
Importance (priority) 
Relationships (precedence)
Start times (release times)
End times (deadlines)

Fig. 17.5   Example task system showing 
communications or dependencies.
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Job-Shop Scheduling
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Complexity of Scheduling Problems
Most scheduling problems, even with 2 processors, are NP-complete

Easy, or tractable (polynomial-time), cases include:

1. Unit-time tasks, with 2 processors

2. Task graphs that are forests, with any number of processors 

Surprisingly hard, or intractable, cases include:

1. Tasks of running time 1 or 2, with 2 processors (nonpreemptive)

2. Unit-time tasks on 3 or more processors

Many practical scheduling problems are solved by heuristics

Heuristics typically have decision parameters that can be tuned to make 
them suitable for a particular application context

The scheduling literature is full of different heuristics and experimental 
studies of their performance in different domains
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17.4  A Class of Scheduling Algorithms

With identical processors, list schedulers differ only in priority assignment

List scheduling

Assign a priority level to each task
Construct task list in priority order; tag tasks that are ready for execution 
At each step, assign to an available processor the first tagged task 
Update the tags upon each task termination

A possible priority assignment scheme for list scheduling: 

1. Find the depth T of the task graph (indicator of min possible exec time) 

2. Take T as a goal for the running time Tp

3. Determine the latest time when each task can be started if our goal is to 
be met (done by “layering” the nodes, beginning with the output node) 

4. Assign task priorities in order of the latest possible times, breaking ties, 
e.g., by giving priority to tasks with more descendants 
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2. Take T as a goal for the running time Tp

3. Determine the latest possible start times

4. Assign priorities in order of latest times

8

7

6

5

4

3

2

1

13

1
2

3

4

56
78

9

10

11
12In this particular example, the tie-breaking 

rule of giving priority to a task with more 
descendants is of no help, but generally it 
leads to improvement in execution time
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Fig.  17.6   Schedules with p = 1, 2, 3 
processors for an example task graph 
with unit-time tasks. 
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Scheduling with Non-Unit-Time Tasks
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Fig.  17.7   Example task 
system with task running 
times of 1, 2, or 3 units.

Fig.  17.8   Schedules with p = 1, 2, 3 
processors for an example task graph 
with nonuniform running times. 
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Fault-Tolerant Scheduling
Tasks, or nodes on which they run, may have imperfect reliabilities
[This topic to be developed further]

[Reference 1]

B. Parhami, 
"A Unified 
Approach to 
Correctness and 
Timeliness 
Requirements 
for Ultrareliable 
Concurrent 
Systems,"
Proc. 4th Int'l 
Parallel 
Processing 
Symp., 
April 1990, 
pp. 733-747.

[Reference 2]
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17.5  Some Useful Bounds for Scheduling

Brent’s scheduling theorem: Tp <  T + T1/p

Ideal run time Ideal speedup

Lower bound on speedup based on 
Brent’s scheduling theorem:

S > T1 / (T+T1/p) = p / (1+pT /T1) 

[Compare to Amdahl’s law]

A large T /T1 ratio indicates much 
sequential dependency (Amdahl’s f)
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In other words, one can always 
schedule a task graph so that 
the total running time does not 
exceed the best possible (T1/p) 
by more than the depth of the 
task graph (T)
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Proof of Brent’s Theorem: Tp <  T + T1/p

Let there be nt nodes scheduled 
at time t ;  Clearly, ∑t nt = T1

First assume the availability of an 
unlimited number of processors 
and schedule each node at the 
earliest possible time

With only p processors, tasks 
scheduled for time step t can 
be executed in nt /p steps by 
running them p at a time. Thus:

Tp  ∑t =1 toT nt /p
<  ∑t=1 toT (nt /p + 1) 

=  T + (∑t nt)/p

=  T + T1/p
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Good-News Corollaries

Brent’s scheduling theorem: Tp <  T + T1/p

Ideal run time Ideal speedup

Corollary 1: For p  T1/T we have T  Tp < 2T

T1/p  T For a sufficiently large number p of processors, 
we can come within a factor of 2 of the best possible run time, 
even when we use a naïve scheduling algorithm

Corollary 2: For p  T1/T we have T1/p  Tp < 2T1/p

T  T1/p If we do not have too many processors, 
we can come within a factor of 2 of the best possible speedup, 
even when we use a naïve scheduling algorithm

Choosing pT1/T leads to O(p) speedup and near-minimal run time
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ABCs of Parallel Processing in One Slide
A Amdahl’s Law (Speedup Formula)

Bad news – Sequential overhead will kill you, because:
Speedup  =  T1/Tp  1/[f + (1 – f)/p]  min(1/f, p)

Morale: For f = 0.1, speedup is at best 10, regardless of peak OPS.

B Brent’s Scheduling Theorem
Good news – Optimal scheduling is very difficult, but even a naïve
scheduling algorithm can ensure:

T1/p  Tp  T1/p + T =  (T1/p)[1 + p/(T1/T)]
Result: For a reasonably parallel task (large T1/T), or for a suitably
small p (say, p  T1/T), good speedup and efficiency are possible.

C Cost-Effectiveness Adage
Real news – The most cost-effective parallel solution may not be
the one with highest peak OPS (communication?), greatest speed-up 
(at what cost?), or best utilization (hardware busy doing what?).
Analogy: Mass transit might be more cost-effective than private cars
even if it is slower and leads to many empty seats. 
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Cost-Effectiveness Adage in Parallel Processing

The most cost-effective parallel solution may not be the one with 
- Highest peak OPS (communication?) 
- Greatest speed-up (at what cost?)
- Best utilization (hardware busy doing what?)

f = 0.5
f = 0.6
f = 0.7

f = 0.8

f = 0.9Speedup s

Processors p

High 
performanceCost-

effective

Why peak ops isn’t 
a good measure
- 100 PFLOPS peak
- 10 PFLOPS

sustained

Utilization analogy:
- Bus, 10 riders, 

50 seats
- Auto, 2 riders, 

5 seats
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17.6  Load Balancing and Dataflow Systems

Task running times are not constants
A processor may run out of things to do before others complete their tasks
Some processors may remain idle, waiting to hear about prerequisite tasks
In these cases, a load balancing policy may be applied

Load balancing can be initiated by a lightly loaded or by an overburdened 
processor (receiver/sender-initiated)

Unfortunately, load balancing may involve significant overhead
The ultimate in automatic load-balancing is a self-scheduling system that 

tries to keep all processing resources running at maximum efficiency
There may be a central location to which processors refer for work and 

where they return their results
An idle processor requests that it be assigned new work by the supervisor 
This works nicely for tasks with small contexts or relatively long run times

Dynamic load balancing: Switching unexecuted tasks from overloaded 
processors to less loaded ones, as we learn about execution times and 
task interdependencies at run time 
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Dataflow Systems

Fig.  17.9   Example dataflow graph with 
token distribution at the outset (left) and 
after 2 time units (right).
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Hardware-level implementation 
of a self-scheduling scheme

Computation represented 
by a dataflow graph 

Tokens used to keep 
track of data availability 

Once tokens appear on 
all inputs, node is “fired,” 
resulting in tokens being 
removed from its inputs 
and put on each output

Static dataflow: No more 
than one token on edge

Dynamic dataflow:
Multiple tagged tokens on 
edges; “consumed” after 
matching their tags
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18  Data Storage, Input, and Output

Elaborate on problems of data distribution, caching, and I/O:
• Deal with speed gap between processor and memory
• Learn about parallel input and output technologies

Topics in This Chapter

18.1 Data Access Problems and Caching

18.2 Cache Coherence Protocols

18.3 Multithreading and Latency Hiding

18.4 Parallel I/O Technology

18.5 Redundant Disk Arrays

18.6 Interfaces and Standards
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18.1  Data Access Problems and Caching
Processor-memory speed gap is aggravated by parallelism
Centralized memory is slower; distributed memory needs remote accesses

Fig. 17.8 of 
Parhami’s 
Computer 
Architecture 
text (2005)
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Remedies: Judicious data distribution –- good with static data sets
Data caching –- introduces coherence problems
Latency  tolerance/hiding –- e.g., via multithreading
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Why Data Caching Works

Fig. 18.1    Data storage 
and access in a two-way 
set-associative cache. 
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Benefits of Caching Formulated as Amdahl’s Law

Generalized form of Amdahl’s speedup formula:

S =  1/(f1/p1 + f2/p2 + . . . + fm/pm),  with f1 + f2 + . . . + fm = 1

In this case, a fraction 1 – r is slowed down by a factor (Cslow + Cfast) /Cslow, 
and a fraction r is speeded up by a factor Cslow /Cfast

Fig. 18.3 of Parhami’s Computer Architecture text (2005)
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Access cabinet  
in 30 s 

Access 
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Access drawer 
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Cache 
memory 

This corresponds to the miss-rate fraction 1 – r of accesses being unaffected 
and the hit-rate fraction r (almost 1) being speeded up by a factor Cslow/Cfast

Hit rate r (fraction of memory 
accesses satisfied by cache)

Ceff = Cfast + (1 – r)Cslow

S    = Cslow /Ceff

1
=  

(1 – r) + Cfast/Cslow
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18.2  Cache Coherence Protocols

Fig. 18.2   Various types of cached data blocks in a parallel processor 
with global memory and processor caches.
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Example: A Bus-Based Snoopy Protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU 
write miss: 
Write back 
the block,  
Put write 
miss on bus

CPU read hit

CPU 
read miss:  
Put read 
miss on bus

Bus write miss for this block: 
Write back the block

Bus write miss for this block

CPU read miss: 
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3   Finite-state control mechanism for a bus-based 
snoopy cache coherence protocol.

Each transition is labeled with the event that triggers it, 
followed by the action(s) that must be taken
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Implementing a Snoopy Protocol

Fig. 27.7 of Parhami’s Computer Architecture text.

A second 
tags/state 
storage unit 
allows 
snooping to 
be done 
concurrently 
with normal 
cache 
operation

Tags 

Cache 
data 
array 

 

Duplicate tags 
and state store 
for snoop side 

CPU 

 

Main tags and 
state store for 
processor side 

=? 

=? 

Processor side 
cache control 

Snoop side 
cache control 

Addr Addr Cmd Cmd Buffer Buffer 
Snoop 
state 

System 
bus 

Tag 

Addr Cmd 

State 

Getting all the 
implementation 
timing and 
details right is 
nontrivial
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Example: A Directory-Based Protocol

Fig. 18.4   States and transitions for a directory entry in a directory-based 
coherence protocol (c denotes the cache sending the message).

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation, 
return data value, sharing set = {c}

Read miss: Return data value, 
sharing set = sharing set + {c}

Data write-back: 
Sharing set = { }

Read miss: Return data value, 
sharing set = {c}Write miss: Return data value, 

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},  
return data value

Read miss: Fetch data value, return data value, 
sharing set = sharing set + {c} sharing set +

Correction to text
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Implementing a Directory-Based Protocol

Sharing set implemented as a bit-vector (simple, but not scalable)

When there are many more nodes (caches) than the typical size of a 
sharing set, a list of sharing units may be maintained in the directory

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Processor 0 Processor 1 Processor 2 Processor 3 

Memory 

Noncoherent  
data blocks Coherent  

data block 

 Cache 0  Cache 1  Cache 2  Cache 3 

Head pointer 

The sharing set can be maintained as a distributed doubly linked list 
(will discuss in Section 18.6 in connection with the SCI standard) 
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18.3  Multithreading and Latency Hiding

Latency hiding: Provide each processor with useful work to do as 
it awaits the completion of memory access requests

Multithreading is one way to implement latency hiding

Fig. 18.5   The concept of multithreaded parallel computation.

Sequential 
thread 

Thread 
computations  

Remote 
accesses 

Scheduling 
overhead 

Synchronization 
overhead 

Idle 
time 
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Multithreading on a Single Processor

Threads in memory  Issue pipelines Retirement and 
commit pipeline 

Function units  
Bubble 

Fig. 24.9 of Parhami’s Computer Architecture text (2005)

Here, the motivation is to reduce the performance impact of 
data dependencies and branch misprediction penalty
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18.4  Parallel I/O Technology

Track 0 
Track 1 

Track c – 1 

Sector 

Recording area 

Spindle 

Direction of 
rotation 

Platter 

Read/write head 

Actuator 

Arm 

Track 2 

Fig. 18.6    Moving-head magnetic disk elements.

Comprehensive info about disk memory: http://www.storageview.com/guide/
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Access Time for a Disk

The three components of disk access time. Disks that spin faster 
have a shorter average and worst-case access time.

1. Head movement  
from current position 
to desired cylinder:  
Seek time (0-10s ms) 

Rotation 

2. Disk rotation until the desired 
sector arrives under the head: 
Rotational latency (0-10s ms) 

3. Disk rotation until sector 
has passed under the head: 
Data transfer time (< 1 ms) 

Sector 

1 
2 

3 

Average rotational latency =  
30 000 / rpm  (in ms) Seek time =  

a + b(c – 1) 
+ b(c – 1)1/2

Data transfer time =  
Bytes / Data rate
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Amdahl’s Rules of Thumb for System Balance

The need for high-capacity, high-throughput secondary (disk) memory

Processor 
speed

RAM 
size 

Disk I/O 
rate

Number of 
disks

Disk 
capacity

Number of 
disks

1 GIPS 1 GB 100 MB/s 1 100 GB 1

1 TIPS 1 TB 100 GB/s 1000 100 TB 100

1 PIPS 1 PB 100 TB/s 1 Million 100 PB 100 000

1 EIPS 1 EB 100 PB/s 1 Billion 100 EB 100 Million

G Giga
T Tera
P Peta
E Exa

1 RAM byte
for each IPS

100 disk bytes
for each RAM byte

1 I/O bit per sec
for each IPS
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Fig. 20.11   Trends in disk, main memory, and CPU speeds. 

Growing Gap Between Disk and CPU Performance
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T
im
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Disk seek time 
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CPU cycle time 
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From 
Parhami’s 
computer 
architecture 
textbook, 
Oxford, 
2005
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Head-Per-Track Disks

Fig. 18.7    Head-per-track disk concept.

Track 0 Track 1

Track c–1

Dedicated track heads eliminate seek time 
(replace it with activation time for a head)

Multiple sets of head 
reduce rotational latency
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18.5  Redundant Disk Arrays

IBM ESS Model 750

High capacity
(many disks)

High reliability
(redundant data, back-up disks)

High bandwidth
(parallel accesses)
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RAID Level 0

Structure:

Striped (data broken 
into blocks & written 
to separate disks)

Advantages:

Spreads I/O load 
across many 
channels and drives

Drawbacks:

No fault tolerance
(data lost with single 
disk failure)

http://www.acnc.com/ 
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RAID Level 1

Structure:

Each disk replaced 
by a mirrored pair

Advantages:

Can double the read 
transaction rate

No rebuild required

Drawbacks:

Overhead is 100%

http://www.acnc.com/ 
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RAID Level 2

Structure:

Data bits are written 
to separate disks and 
ECC bits to others

Advantages:

On-the-fly correction
High transfer rates 

possible (w/ sync)

Drawbacks:

Potentially high 
redundancy

High entry-level cost

http://www.acnc.com/ 
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RAID Level 3

Structure:

Data striped across 
several disks, parity 
provided on another

Advantages:

Maintains good 
throughput even 
when a disk fails

Drawbacks:

Parity disk forms a 
bottleneck

Complex controller

http://www.acnc.com/ 
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RAID Level 4

Structure:

Independent blocks 
on multiple disks 
share a parity disk

Advantages:

Very high read rate
Low redundancy

Drawbacks:

Low write rate
Inefficient data rebuild

http://www.acnc.com/ 
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RAID Level 5

Structure:

Parity and data 
blocks distributed on 
multiple disks

Advantages:

Very high read rate
Medium write rate
Low redundancy

Drawbacks:

Complex controller
Difficult rebuild

http://www.acnc.com/ 
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RAID Level 6

Structure:

RAID Level 5, 
extended with second 
parity check scheme

Advantages:

Tolerates 2 failures
Protected even during 

recovery

Drawbacks:

More complex 
controller

Greater overhead

http://www.acnc.com/ 
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RAID Summary

Fig. 18.8   Alternative data organizations on redundant disk arrays. 

RAID0: Multiple disks for higher 
data rate; no redundancy 

RAID1: Mirrored disks 

RAID2: Error-correcting code 

RAID3: Bit- or byte-level striping 
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RAID6: Parity and 2nd check 
distributed across several disks 
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RAID Performance Considerations

Parity updates may become a bottleneck, because the parity changes 
with every write, no matter how small

Computing sector parity for a write operation:

New parity = New data  Old data  Old parity

RAID0: Multiple disks for higher 
data rate; no redundancy 

RAID1: Mirrored disks 

RAID2: Error-correcting code 

RAID3: Bit- or byte-level striping 
with parity/checksum disk 

RAID4: Parity/checksum applied 
to sectors,not bits or bytes 

RAID5: Parity/checksum 
distributed across several disks 

Data organization on multiple disks 

Data 
disk 0 

Data 
disk 1 

Mirror 
disk 1 

Data 
disk 2 

Mirror 
disk 2 

Data 
disk 0 
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Data 
disk 1 
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disk 0 

Parity 
disk  

Spare 
disk  
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Data 2 
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RAID6: Parity and 2nd check 
distributed across several disks 
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RAID Tradeoffs

Source: Chen, Lee, Gibson, 
Katz, and Patterson, “RAID: 
High-Performance Reliable 
Secondary Storage,” 
ACM Computing Surveys, 
26(2):145-185, June 1994. 

RAID5 and RAID 6 
impose little penalty on 
read operations

In choosing group size, 
balance must be struck 
between the decreasing 
penalty for small writes 
vs. increasing penalty 
for large writes
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18.6  Interfaces and Standards
The Scalable Coherent Interface (SCI) standard: Allows the 
implementation of large-scale cache-coherent parallel systems 
(see Section 21.6 for a parallel computer based on SCI) 

Processor 0 Processor 1 Processor 2 Processor 3 

Memory 

Noncoherent  
data blocks Coherent  

data block  

 Cache 0  Cache 1  Cache 2  Cache 3 

Head pointer 

Fig. 18.9   Two categories of data blocks and the structure 
of the sharing set in the Scalable Coherent Interface. 
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Other Interface Standards

High-Performance Parallel Interface (HiPPI) ANSI standard:

Allows point-to-point connectivity between two devices 
(typically a supercomputer and a peripheral)

Data rate of 0.8 or 1.6 Gb/s over a (copper) cable of 25m or less

Uses very wide cables with clock rate of only 25 MHz

Establish, then tear down connections (no multiplexing allowed)

Packet length ranges from 2 B to 4 GB, up to 1016 B of control info

HiPPI (later versions renamed GSN, or gigabyte system network)  
is no longer in use and has been superseded by new, even faster 
standards such as Ultra3 SCSI and Fibre Channel

Modern interfaces tend to have fewer wires with faster clock rates
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19  Reliable Parallel Processing

Develop appreciation for reliability issues in parallel systems:
• Learn methods for dealing with reliability problems
• Deal with all abstraction levels: components to systems

Topics in This Chapter

19.1 Defects, Faults, . . . , Failures

19.2 Defect-Level Methods

19.3 Fault-Level Methods

19.4 Error-Level Methods

19.5 Malfunction-Level Methods

19.6 Degradation-Level Methods
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19.1  Defects, Faults, . . . , Failures

Fig. 19.1  System states and state 
transitions in our multilevel model.

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

The multilevel model of dependable computing

Abstraction level       Dealing with deviant
Defect / Component Atomic parts  
Fault / Logic Signal values or decisions
Error / Information Data or internal states
Malfunction / System Functional behavior
Degradation / Service Performance
Failure / Result Outputs or actions

Opportunities for fault tolerance in parallel systems:
Built-in spares, load redistribution, graceful degradation

Difficulties in achieving fault tolerance:
Change in structure, bad units disturbing good ones 
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Analogy for the Multilevel Model

Fig. 19.2   An analogy 
for the multilevel 
model of dependable 
computing. 

Wall heights represent 
interlevel latencies 

Inlet valves represent 
avoidance techniques 

Drain valves represent 
tolerance techniques 

Concentric reservoirs are 
analogues of the six model 
levels (defect is innermost) 

I I I I I I 

I I I I I I 

Many avoidance and 
tolerance methods are 
applicable to more than 
one level, but we deal 
with them at the level 
for which they are most 
suitable, or at which 
they have been most 
successfully applied
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19.2  Defect-Level Methods

Defects are caused in two ways (sideways and 
downward transitions into the defective state):

a.  Design slips leading to defective components
b.  Component wear and aging, or harsh 

operating conditions (e.g., interference)

A dormant (ineffective) defect is very hard to detect 

Methods for coping with defects during dormancy:

Periodic maintenance 
Burn-in testing   

Goal of defect tolerance methods:

Improving the manufacturing yield
Reconfiguration during system operation 

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED
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Defect Tolerance Schemes for Linear Arrays

Fig. 19.4    A linear array with a spare processor 
and embedded switching.

 Spare or     
DefectiveP0 P1 P2 P3

Bypassed

I/O

Test

I/O

Test

 Spare or     
Defective

Mux
P0 P1 P2 P3

Fig. 19.3    A linear array with a spare processor 
and reconfiguration switches.
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Defect Tolerance in 2D Arrays

Fig. 19.5    Two types of reconfiguration switching for 2D arrays.

Pa Pb

Pc Pd

Pa Pb

Pc Pd

Mux

Assumption: A malfunctioning processor can be bypassed in its 
row/column by means of a separate switching mechanism (not shown)
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A Reconfiguration Scheme for 2D Arrays

Spare 
Row

Spare Column

Fig. 19.6    A 5  5 working array 
salvaged from a 6  6 redundant mesh 
through reconfiguration switching.

Fig. 19.7    Seven defective 
processors and their associated 
compensation paths.
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Limits of Defect Tolerance

A set of three defective nodes, one of which cannot be 
accommodated by the compensation-path method.

No compensation path 
exists for this faulty node

Extension: We can go beyond the 3-defect limit by providing 
spare rows on top and bottom and spare columns on either side
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19.3  Fault-Level Methods
Faults are caused in two ways (sideways and 
downward transitions into the faulty state):

a.  Design slips leading to incorrect logic circuits
b.  Exercising of defective components, leading

to incorrect logic values or decisions

Classified as permanent / intermittent / transient, 
local / catastrophic, and dormant / active

Faults are detected through testing:

Off-line (initially, or periodically in test mode) 
On-line or concurrent (self-testing logic)   

Goal of fault tolerance methods:

Allow uninterrupted operation in the presence of
faults belonging to a given class (fault model) 

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED
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Fault Tolerance via Replication

Fig. 19.8   Fault detection or tolerance with replication. 

Hardware replication:

Duplication with comparison
Pair and spare
Triplication with voting
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     3

Compute 
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These schemes involve high 
redundancy (100 or 200%)

Lower redundancy possible 
in some cases: e.g., periodic 
balanced sorting networks 
can tolerate certain faults if 
provided with extra stages 
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Fault Detection and Bypassing

Fig. 19.9   Regular butterfly and extra-stage butterfly networks. 
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19.4  Error-Level Methods

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Errors are caused in two ways (sideways and 
downward transitions into the erroneous state):

a.  Design slips leading to incorrect initial state
b.  Exercising of faulty circuits, leading to

deviations in stored values or machine state

Classified as single / multiple, inversion / erasure, 
random / correlated, and symmetric / asymmetric

Errors are detected through:

Encoded (redundant) data, plus code checkers 
Reasonableness checks or activity monitoring   

Goal of error tolerance methods:

Allow uninterrupted operation in the presence of
errors belonging to a given class (error model) 
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Application of Coding to Error Control

INPUT

ENCODE

SEND

STORE

SEND

DECODE

OUTPUT

MANIPULATE
Protected 

by Encoding

Unprotected

Fig. 19.10   A common way of applying 
information coding techniques. 

Arithmetic codes can help detect 
(or correct) errors during data 
manipulations:

1.  Product codes (e.g., 15x)
2.  Residue codes (x mod 15)

Ordinary codes can be used for 
storage and transmission errors; 
they are not closed under 
arithmetic / logic operations

Error-detecting, error-correcting, 
or combination codes (e.g., 
Hamming SEC/DED)
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Algorithm-Based Error Tolerance

2 1 6 1

5 3 4 4

3 2 7 4

M r = 

2 1 6 1

5 3 4 4

3 2 7 4

2 6 1 1

M f = 

2 1 6

5 3 4

3 2 7

M = 

2 1 6

5 3 4

3 2 7

2 6 1

M c = 

Matrix M Row checksum matrix

Column checksum matrix Full checksum matrix

Error coding applied to data structures, rather than at the level of atomic 
data elements

Example: mod-8 
checksums used 
for matrices

If Z = X  Y then 
Zf = Xc  Yr

In Mf, any single 
error is correctable 
and any 3 errors 
are detectable

Four errors may 
go undetected
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19.5  Malfunction-Level Methods

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Malfunctions are caused in two ways (sideways and 
downward transitions into the malfunctioning state):

a.  Design slips leading to incorrect modules
b.  Propagation of errors to outside the module

boundary, leading to incorrect interactions

Module or subsystem malfunctions are sometimes 
referred to as system-level “faults”

Malfunctions are identified through diagnosis:

Begin with a trusted fault-free core, and expand 
Process diagnostic data from multiple sources   

Goal of malfunction tolerance methods:

Allow uninterrupted (possibly degraded) operation 
in the presence of certain expected malfunctions 
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Malfunction Diagnosis in Parallel Systems

Fig. 19.11    A testing graph and the resulting diagnosis matrix. 

In a p-processor system in which processors can test each other, the 
diagnosis information can be viewed as a p  p matrix of test outcomes 
(Dij represents the assessment of process i regarding processor j)

P P

P

x x 1 0 1 
x x 1 0 x 
1 1 x 0 x 
0 0 0 x 0 
1 x x 0 x

D =0 2

4

P1

P 3

Assume that a healthy processor can reliably indicate the status of another 
processor, but that a malfunctioning processor cannot be trusted

p4 considers p0 healthy

p0 considers p3

malfunctioningThe given matrix D is 
consistent with two 
conclusions:

1. Only P3 is 
malfunctioning

2. Only P3 is healthy
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Diagnosability Models and Reconfiguration

Problem: Given a diagnosis matrix, identify:

1. All malfunctioning units (complete diagnosability)
2. At least one malfunctioning unit (sequential diagnosability)
3. A subset of processors guaranteed to contain all malfunctioning ones

The last option is useful only if the designated subset is not much larger 
than the set of malfunctioning modules

When one or more malfunctioning modules have been identified, the 
system must be reconfigured to allow it to function without the 
unavailable resources. Reconfiguration may involve:

1. Recovering state info from removed modules or from back-up storage
2. Reassigning tasks and reallocating data
3. Restarting the computation at the point of interruption or from scratch

In bus-based systems, we isolate the bad modules and proceed; 
otherwise, we need schemes similar to those used for defect tolerance



Winter 2021 Parallel Processing, Some Broad Topics Slide 75

Malfunction Tolerance with Low Redundancy

Fig. 19.12    Reconfigurable 4  4 mesh with one spare. 

The following scheme uses only one spare processor for a 2D mesh 
(no increase in node degree), yet it allows system reconfiguration to 
circumvent any malfunctioning processor, replacing it with the spare 
via relabeling of the nodes
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19.6  Degradation-Level Methods

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Degradations are caused in two ways (sideways 
and downward transitions into the degraded state):

a.  Design slips leading to substandard modules
b.  Removal of malfunctioning modules, leading

to fewer computational resources

A system that can degrade “gracefully” is fail-soft; 
otherwise it is fail-hard

Graceful degradation has two key requirements:

System: Diagnosis and reconfiguration 
Application: Scalable and robust algorithms   

Goal of degradation tolerance methods:

Allow continued operation while malfunctioning 
units are repaired (hot-swap capability is a plus) 
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Fail-Hard and Fail-Soft Systems

Fig. 19.13    Performance variations in three example parallel computers. 
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Checkpointing for Recovery from Malfunctions

Figure 19.14    Checkpointing, its overhead, and pitfalls.

Long-running computation

Divided into 6 segments

Checkpointing overhead

Time

Completion 
w/o checkpoints

Completion 
with checkpoints

Task 0
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Task 2

Consistent checkpoints Inconsistent checkpoints

Checkpoints added

Periodically save partial results and computation state in stable storage
Upon detected malfunction, roll back the computation to last checkpoint
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The Robust Algorithm Approach

Figure 19.15    Two types of incomplete meshes, 
with and without bypass links.

Scalable mesh algorithm: Can run on different mesh sizes

Robust mesh algorithm: Can run on incomplete mesh, with its performance 
degrading gracefully as the number of unavailable nodes increases
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The End of the Line: System Failure

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Failures are caused in two ways (sideways and 
downward transitions into the failed state):

a.  It is hard to believe, but some systems do not 
work as intended from the outset

b.  Degradation beyond an acceptable threshold

It is instructive to skip a level and relate failures of a 
gracefully degrading system directly to malfunctions

Then, failures can be attributed to:

1. Isolated malfunction of a critical subsystem 
2. Catastrophic malfunctions (space-domain)
3. Accumulation of malfunctions (time-domain)
4. Resource exhaustion

Experimental studies have shown that the first two 
causes of failures are the most common 
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20  System and Software Issues

Fill void in covering system, software and application topics:
• Introduce interaction and synchronization issues
• Review progress in system and application software

Topics in This Chapter

20.1 Coordination and Synchronization

20.2 Parallel Programming

20.3 Software Portability and Standards

20.4 Parallel Operating Systems

20.5 Parallel File Systems

20.6 Hardware/Software Interaction
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20.1  Coordination and Synchronization
Task interdependence is often more complicated than 
the simple prerequisite structure thus far considered

Process B: 
––– 
––– 
 
 
 
  
 
 
receive x 
––– 
––– 
––– 
–––

   B 
waits

Time

Process A: 
––– 
––– 
––– 
––– 
––– 
––– 
send x 
––– 
––– 
––– 
––– 
––– 
–––

t 
 
 
 
t 
 
t

1 
 
 
 
2 
 
3

A B
Schematic 
representation 
of data 
dependence

Details of 
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Fig. 20.1   Automatic synchronization in message-passing systems.
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Synchronization with Shared Memory

Accomplished by accessing specially designated shared control variables 

The fetch-and-add instruction constitutes a useful atomic operation 

If the current value of x is c, fetch-and-add(x, a) returns c to the 
process and overwrites x = c with the value c + a

A second process executing fetch-and-add(x, b) then gets the now current 
value c + a and modifies it to c + a + b

Why atomicity of fetch-and-add is important: With ordinary instructions, 
the 3 steps of fetch-and-add for A and B may be interleaved as follows:

Process A Process B Comments
Time step 1 read x A’s accumulator holds c
Time step 2 read x B’s accumulator holds c
Time step 3 add a A’s accumulator holds c + a
Time step 4 add b B’s accumulator holds c + b
Time step 5 store x x holds c + a
Time step 6 store x x holds c + b (not c + a + b)
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Barrier Synchronization

Make each processor, in a designated set, wait at a barrier until all other 
processors have arrived at the corresponding points in their computations

Software implementation via fetch-and-add or similar instruction

Hardware implementation via an AND tree (raise flag, check AND result)

A problem with the AND-tree:
If a processor can be randomly 
delayed between raising it flag 
and checking the tree output, 
some processors might cross 
the barrier and lower their flags 
before others have noticed the 
change in the AND tree output

Solution: Use two AND trees 
for alternating barrier points 

Set 
AND 
tree

fo 
fo 
fo 
 
fo

0 
1 
2 
 
p–1 S

R

Q

Reset 
AND 
tree

fe 
fe 
fe 
 
fe

0 
1 
2 
 
p–1

Barrier 
SignalFlip- 

flop

Fig. 20.4    Example of hardware aid for 
fast barrier synchronization [Hoar96].
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Synchronization Overhead

Fig. 20.3    The performance benefit of less frequent synchronization.
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Time
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Done
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Given that AND 
is a semigroup 
computation, it is 
only a small step 
to generalize it to 
a more flexible 
“global combine” 
operation

Reduction of synchronization overhead:
1. Providing hardware aid to do it faster
2. Using less frequent synchronizations
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20.2  Parallel Programming

Some approaches to the development of parallel programs:

a. Automatic extraction of parallelism
b. Data-parallel programming
c. Shared-variable programming
d. Communicating processes
e. Functional programming

Examples of, and implementation means for, these approaches:

a. Parallelizing compilers
b. Array language extensions, as in HPF
c. Shared-variable languages and language extensions
d. The message-passing interface (MPI) standard
e. Lisp-based languages
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Automatic Extraction of Parallelism

An ironic, but common, approach to using parallel computers:

Force naturally parallel computations into sequential molds by coding 
them in standard languages

Apply the powers of intelligent compilers to determine which of these 
artificially sequentialized computations can be performed concurrently

Parallelizing compilers extract parallelism from sequential programs, 
primarily through concurrent execution of loop iterations:

for i = 2 to k do
for j = 2 to k do

ai,j : = (ai,j–1 + ai,j+1)/2
endfor

endfor

Various iteration of the i loop can be executed on a different processor 
with complete asynchrony due to their complete independence
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Data-Parallel Programming

Has its roots in the math-based APL language that had array data types 
and array operations (binary and reduction operations on arrays)

C  A + B {array add}
x  + /V {reduction}
U  + /V  W {inner product}

APL’s powerful operators allowed the composition of very complicated 
computations in a few lines (a write-only language?)

Fortran-90 (superset of Fortran-77) had extensions for array operations

A = SQRT(A) + B ** 2 {A and B are arrays}
WHERE (B /= 0)  A = A /B

When run on a distributed-memory machine, some Fortran-90 constructs 
imply interprocessor communication

A = S/2 {assign scalar value to array}
A(I:J) = B(J:I:–1) {assign a section of B to A}
A(P) = B          {A(P(I)) = B(I) for all I}
S = SUM(B) {may require gather operation}
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Data-Parallel Languages

High Performance Fortran (HPF) extends Fortran-90 by:

Adding new directives and language constructs
Imposing some restrictions for efficiency reasons

HPF directives assist the compiler in data distribution, but do not 
alter the program’s semantics (in Fortran-90, they are interpreted as 
comments and thus ignored)

!HPF ALIGN A(I) WITH B(I + 2)

Data-parallel extensions have also been implemented for several 
other programming languages

C* language introduced in 1987 by TMC
pC++, based on the popular C++ 
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Other Approaches to Parallel Programming

Shared-variable programming 

Languages: Concurrent Pascal, Modula-2, Sequent C 

Communicating processes 

Languages: Ada, Occam
Language-independent libraries: MPI standard

Functional programming 

Based on reduction and evaluation of expressions
There is no concept of storage, assignment, or branching
Results are obtained by applying functions to arguments

One can view a functional programming language as allowing only 
one assignment of value to each variable, with the assigned value 
maintained throughout the course of the computation
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20.3  Software Portability and Standards

Portable parallel applications that can run on any parallel machine have 
been elusive thus far

Program portability requires strict adherence to design and specification 
standards that provide machine-independent views or logical models

Programs are developed according to these logical models and are then 
adapted to specific hardware by automatic tools (e.g., compilers)

HPF is an example of a standard language that, if implemented correctly, 
should allow programs to be easily ported across platforms

Two other logical models are: MPI and PVM
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The Message Passing Interface (MPI) Standard

The MPI Forum, a consortium of parallel computer vendors and software 
development specialists, specified a library of functions that implement 
the message-passing model of parallel computation

MPI provides a high-level view of a message-passing environment that 
can be mapped to various physical systems

Software implemented using MPI functions can be easily ported among 
machines that support the MPI model

MPI includes functions for:
Point-to-point communication (blocking/nonblocking send/receive, …)
Collective communication (broadcast, gather, scatter, total exchange, …)
Aggregate computation (barrier, reduction, and scan or parallel prefix)
Group management (group construction, destruction, inquiry, …)
Communicator specification (inter-/intracommunicator construction, 

destruction, …)
Virtual topology specification (various topology definitions, …) 
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The Parallel Virtual Machine (PVM) Standard

Software platform for developing and running parallel applications on a 
set of independent heterogeneous computers, variously interconnected

PVM defines a suite of user-interface primitives that support both the 
shared-memory and the message-passing programming paradigms

These primitives provide functions similar to those of MPI and are 
embedded within a procedural host language (usually Fortran or C)

A support process or daemon (PVMD) runs independently on each host, 
performing message routing and control functions

PVMDs perform the following functions:
Exchange network configuration information
Allocate memory to in-transit packets
Coordinate task execution on associated hosts

The available pool of processors may change dynamically
Names can be associated with groups or processes
Group membership can change dynamically
One process can belong to many groups
Group-oriented functions (bcast, barrier) take group names as arguments
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20.4  Parallel Operating Systems

Classes of parallel processors: 

Back-end, front-end, stand-alone

Stand-alone system: A special OS is included that can run on one, 
several, or all of the processors in a floating or distributed (master-slave 
or symmetric) fashion  

Most parallel OSs are based on Unix

Back-end system: Host computer has a standard OS, and manages 
the parallel processor essentially like a coprocessor or I/O device

Front-end system: Similar to backend system, except that the parallel 
processor handles its own data (e.g., an array processor doing radar 
signal processing) and relies on the host computer for certain 
postprocessing functions, diagnostic testing, and interface with users
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The Mach Operating System

To make a compact, modular kernel possible, Mach incorporates a small 
set of basic abstractions:

a. Task: A “container” for resources like virtual address space and ports
b. Thread: A program with little context; a task may contain many threads
c. Port: A communication channel along with certain access rights
d. Message: A basic unit of information exchange
e. Memory object: A “handle” to part of a task’s virtual memory

Unix Compatibility

User 
Processes

Servers Distr. 
Shared 
 Mem.

Proc. 
Alloc.

Ext'l 
Mem.Network 

Message

User Mode

Supervisor Mode

Mach Kernel: Virtual Memory Management, 
Port/Message Management, and Scheduling

Fig. 20.5    Functions of the 
supervisor and user modes in 
the Mach operating system.

Mach is based on Unix and has 
many similarities with it
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Some Features of The Mach OS

Unlike Unix, whose memory consists of contiguous areas, Mach’s virtual 
address space contains pages with separate protection and inheritance

Messages in Mach are communicated via ports

Messages are typed according to their data and can be sent over a port 
only if the sending / receiving thread has the appropriate access rights 

For efficiency, messages involving a large amount of data do not actually 
carry the data; instead a pointer to the actual data pages is transmitted

Copying of the data to the receiver’s pages occurs only upon data access

Mach scheduler assigns to each thread a time quantum upon starting its 
execution. When the time quantum expires, a context switch is made to a 
thread with highest priority, if such a thread is awaiting execution

To avoid starvation of low-priority threads (and to favor interactive tasks 
over computation-intensive ones), priorities are reduced based on “age”; 
the more CPU time a thread uses, the lower its priority becomes.
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20.5  Parallel File Systems
A parallel file system 
efficiently maps data 
access requests by 
the processors to 
high-bandwidth data 
transfers between 
primary and 
secondary memories

Fig. 20.6    Handling of a large read 
request by a parallel file system [Hell93].
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To avoid a performance bottleneck, a parallel file system must be a highly 
parallel and scalable program that can deal with many access scenarios:

a.  Concurrent file access by independent processes
b.  Shared access to files by cooperating processes
c.  Access to large data sets by a single process
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20.6  Hardware /Software Interaction

A parallel application should be executable, with little or no modification, 
on a variety of hardware platforms that differ in architecture and scale

Changeover from an 8-processor to 16-processor configuration, say, 
should not require modification in the system or application programs

Ideally, upgrading should be done by simply plugging in new processors, 
along with interconnects, and rebooting

Scalability in time: Introduction of faster processors and interconnects 
leads to an increase in system performance with little or no redesign 
(difficult at present but may become possible in future via the adoption of 
implementation and interfacing standards)

Scalability in space: Computational power can be increased by simply 
plugging in more processors (many commercially available parallel 
processors are scalable in space within a range; say 4-256 processors)
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Speedup and Amdahl’s Law Revisited

Speedup, with the problem size n explicitly included, is:

S(n, p)  =  T(n, 1) /T(n, p)

The total time pT(n, p) spent by the processors can be divided into 
computation time C(n, p) and overhead time

H(n, p) = pT(n, p) – C(n, p)

Assuming for simplicity that we have no redundancy

C(n, p) = T(n, 1)
H(n, p) = pT(n, p) – T(n, 1) 
S(n, p)  =  p / [1 + H(n, p) /T(n, 1)]
E(n, p)  = S(n, p) /p = 1 / [1 + H(n, p) /T(n, 1)]

If the overhead per processor, H(n, p)/p, is a fixed fraction f of T(n, 1), 
speedup and efficiency become:

S(n, p)  =  p / (1 + pf)  < 1/f {Alternate form of Amdahl’s law}
E(n, p)  =  1 / (1 + pf)



Winter 2021 Parallel Processing, Some Broad Topics Slide 100

Maintaining a Reasonable Efficiency

Speedup and efficiency formulas

E(n, p)  =  S(n, p) /p =  1 / (1 + pf)

Assume that efficiency is to be kept above 50%, but the arguments 
that follow apply to any fixed efficiency target

For E(n, p) > ½  to hold, we need pf < 1 or p <  1/f

That is, for a fixed problem size and assuming that the per-processor 
overhead is a fixed fraction of the single-processor running time, there 
is a limit to the number of processors that can be used cost-effectively

Going back to our efficiency equation E(n, p) = 1 / [1 + H(n, p) /T(n, 1)], 
we note that keeping E(n, p) above ½ requires:

T(n, 1)  >  H(n, p)

Generally, the cumulative overhead H(n, p) goes up with both n and p, 
whereas T(n, 1) only depends on n
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Scaled Speedup and Isoefficiency

The growth in problem size that can counteract the effect of increase in 
machine size p in order to achieve a fixed efficiency is referred to as the 
isoefficiency function n(p) which can be obtained from:

T(n, 1)  =  H(n, p)

Scaled speedup of p/2 or more is achievable for suitably large problems

Because the execution time  T(n, p)  =  [T(n, 1) + H(n, p)] /p  grows with 
problem size for good efficiency, usefulness of scaled speedup is limited

Graphical depiction of the 
limit to cost-effective 
utilization of processors

For many problems, good 
efficiency can be achieved 
provided that we sufficiently 
scale up the problem size p
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