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VI   Implementation Aspects
Study real parallel machines in MIMD and SIMD classes:

• Examine parallel computers of historical significance
• Learn from modern systems and implementation ideas
• Bracket our knowledge with history and forecasts

Topics in This Part
Chapter 21   Shared-Memory MIMD Machines
Chapter 22   Message-Passing MIMD Machines
Chapter 23   Data-Parallel SIMD Machines
Chapter 24   Past, Present, and Future
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21  Shared-Memory MIMD Machines
Learn about practical shared-variable parallel architectures:

• Contrast centralized and distributed shared memories
• Examine research prototypes and production machines

Topics in This Chapter
21.1   Variations in Shared Memory
21.2   MIN-Based BBN Butterfly
21.3   Vector-Parallel Cray Y-MP
21.4   Latency-Tolerant Tera MTA
21.5   CC-NUMA Stanford DASH
21.6   SCI-Based Sequent NUMA-Q
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21.1  Variations in Shared Memory

Fig. 21.1    Classification of shared-memory hardware architectures 
and example systems that will be studied in the rest of this chapter.

Central 
Main 
Memory

Distributed 
Main 
Memory

Single Copy of 
Modifiable Data

UMA

BBN Butterfly 
  Cray Y-MP

COMA
CC-NUMA

Tera MTA

NUMA

  Stanford DASH 
Sequent NUMA-Q

CC-UMA

Multiple Copies of 
  Modifiable Data



Fall  2010 Parallel Processing, Implementation Aspects Slide 7

C.mmp: A Multiprocessor of Historical Significance

Fig. 21.2   Organization of the C.mmp multiprocessor.
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Shared Memory Consistency Models 

Sequential consistency (strictest and most intuitive); mandates that the 
interleaving of reads and writes be the same from the viewpoint of all 
processors. This provides the illusion of a FCFS single-port memory. 
Processor consistency (laxer); only mandates that writes be observed 
in the same order by all processors. This allows reads to overtake writes, 
providing better performance due to out-of-order execution.
Weak consistency separates ordinary memory accesses from synch 
accesses that require memory to become consistent. Ordinary read and 
write accesses can proceed as long as there is no pending synch 
access, but the latter must wait for all preceding accesses to complete.
Release consistency is similar to weak consistency, but recognizes two 
synch accesses, called “acquire” and “release”, that sandwich protected 
shared accesses. Ordinary read /write accesses can proceed only when 
there is no pending acquire access from the same processor and a
release access must wait for all reads and writes to be completed.

Varying latencies makes each processor’s view of the memory different
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21.2  MIN-Based BBN Butterfly

Fig. 21.3    Structure 
of a processing node 
in the BBN Butterfly. 
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21.3  Vector-Parallel Cray Y-MP

Fig. 21.5   Key 
elements of 
the Cray Y-MP 
processor. 
Address 
registers, 
address 
function units, 
instruction 
buffers, and 
control not 
shown.
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Cray Y-MP’s Interconnection Network 

Fig. 21.6   The processor-to-memory interconnection network of Cray Y-MP.
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21.4  Latency-Tolerant Tera MTA

Fig. 21.7    
The instruction 
execution 
pipelines of 
Tera MTA. 
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21.5  CC-NUMA Stanford DASH

Fig. 21.8     The architecture of Stanford DASH.
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21.6  SCI-Based Sequent NUMA-Q

Fig. 21.9   The 
physical placement 
of Sequent’s quad 
components on a 
rackmount 
baseboard (not to 
scale) 
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Details of the IQ-Link in Sequent NUMA-Q

Fig. 21.11   
Block diagram of 
the IQ-Link board.
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22  Message-Passing MIMD Machines

Topics in This Chapter
22.1   Mechanisms for Message Passing
22.2   Reliable Bus-Based Tandem NonStop
22.3   Hypercube-Based nCUBE3
22.4   Fat-Tree-Based Connection Machine 5
22.5   Omega-Network-Based IBM SP2
22.6   Commodity-Driven Berkeley NOW

Learn about practical message-passing parallel architectures:
• Study mechanisms that support message passing
• Examine research prototypes and production machines
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22.1  Mechanisms for Message Passing

Fig. 22.1     The structure of a generic router.
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Router-Based Networks
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Case Studies of Message-Passing Machines
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Fig. 22.3     
Classification of 
message-passing 
hardware 
architectures and 
example systems 
that will be 
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chapter.
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22.2  Reliable Bus-Based Tandem NonStop
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High-Level Structure of the Tandem NonStop
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22.3  Hypercube-Based nCUBE3

Fig. 22.6   
An eight-node 
nCUBE 
architecture.
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22.4  Fat-Tree-Based Connection Machine 5
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The Interconnection Network in CM-5

Fig. 22.9    The fat-tree 
(hyper-tree) data network 
of  CM-5.
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22.5  Omega-Network-Based IBM SP2

Fig. 22.10     The architecture of IBM SP series of systems.
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The IBM SP2 Network Interface

Fig. 22.11    The network 
interface controller of IBM SP2.
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The Interconnection Network of IBM SP2

Fig. 22.12    A section of the high-performance switch network of IBM SP2.
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22.6  Commodity-Driven Berkeley NOW
NOW aims for building a distributed supercomputer from commercial 
workstations (high end PCs), linked via switch-based networks

Components and challenges for successful deployment of NOWs 
(aka clusters of workstations, or COWs)

Network interface hardware: System-area network (SAN), middle ground 
between LANs and specialized interconnections

Fast communication protocols: Must provide competitive parameters for 
the parameters in the LogP model (see Section 4.5)

Distributed file systems: Data files must be distributed among nodes, 
with no central warehouse or arbitration authority

Global resource management: Berkeley uses GLUnix (global-layer Unix); 
other systems of comparable functionalities include Argonne Globus, 
NSCP metacomputing system, Princeton SHRIMP, Rice TreadMarks, 
Syracuse WWVM, Virginia Legion, Wisconsin Wind Tunnel
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23  Data-Parallel SIMD Machines

Topics in This Chapter
23.1   Where Have All the SIMDs Gone?
23.2   The First Supercomputer: ILLIAC IV
23.3   Massively Parallel Goodyear MPP
23.4   Distributed Array Processor (DAP)
23.5   Hypercubic Connection Machine 2
23.6   Multiconnected MasPar MP-2

Learn about practical implementation of SIMD architectures:
• Assess the successes, failures, and potentials of SIMD
• Examine various SIMD parallel computers, old and new
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23.1  Where Have All the SIMDs Gone?

Fig. 23.1    
Functional view of 
an associative 
memory/processor.
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Search Functions in Associative Devices

Exact match: Locating data based on partial knowledge of contents

Inexact match: Finding numerically or logically proximate values

Membership: Identifying all members of a specified set

Relational: Determining values that are less than, less than or equal, etc.

Interval: Marking items that are between or outside given limits

Extrema: Finding the maximum, minimum, next higher, or next lower

Rank-based: Selecting kth or k largest/smallest elements

Ordered retrieval: Repeated max- or min-finding with elimination (sorting)
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Mixed-Mode SIMD/ MIMD Parallelism

Fig. 23.2   The architecture 
of Purdue PASM.
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23.2  The First Supercomputer: ILLIAC IV

Fig. 23.3    The 
ILLIAC IV computer 
(the inter-processor 
routing network is 
only partially shown).
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23.3  Massively Parallel Goodyear MPP

Fig. 23.4    The architecture of Goodyear MPP. 
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Processing Elements in the Goodyear MPP

Fig. 23.5    
The single-bit 
processor of 
MPP.
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23.4  Distributed Array Processor (DAP)

Fig. 23.6   
The bit-serial 
processor of 
DAP. 
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DAP’s High-Level Structure

Fig. 23.7    The high-level 
architecture of DAP system.
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23.5  Hypercubic Connection Machine 2

Fig. 23.8    
The architecture 
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The Simple Processing Elements of CM-2

Fig. 23.9    The bit-serial ALU of CM-2.
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23.6  Multiconnected MasPar MP-2

Fig. 23.10    
The architecture 
of MasPar MP-2.
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The Interconnection Network of MasPar MP-2

Fig. 23.11    The physical packaging of processor clusters 
and the 3-stage global router in MasPar MP-2 .
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The Processing Nodes of MasPar MP-2

Fig. 23.12    
Processor 
architecture in 
MasPar MP-2.
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24  Past, Present, and Future
Put the state of the art in context of history and future trends:

• Quest for higher performance, and where it is leading us
• Interplay between technology progress and architecture

Topics in This Chapter
24.1   Milestones in Parallel Processing
24.2   Current Status, Issues, and Debates
24.3   TFLOPS, PFLOPS, and Beyond
24.4   Processor and Memory Technologies
24.5   Interconnection Technologies
24.6   The Future of Parallel Processing
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24.1  Milestones in Parallel Processing
1840s Desirability of computing multiple values at the same time was 
noted in connection with Babbage’s Analytical Engine 
1950s von Neumann’s and Holland’s cellular computers were proposed
1960s The ILLIAC IV SIMD machine was designed at U Illinois based 
on the earlier SOLOMON computer
1970s Vector machines, with deeply pipelined function units, emerged 
and quickly dominated the supercomputer market; early experiments 
with shared memory multiprocessors, message-passing multicomputers, 
and gracefully degrading systems paved the way for further progress
1980s Fairly low-cost and massively parallel supercomputers, using 
hypercube and related interconnection schemes, became available
1990s Massively parallel computers with mesh or torus interconnection, 
and using wormhole routing, became dominant
2000s Commodity and network-based parallel computing took hold, 
offering speed, flexibility, and reliability for server farms and other areas
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24.2  Current Status, Issues, and Debates

Design choices and key debates:

Architecture
General- or special-purpose system?
SIMD, MIMD, or hybrid?

Interconnection
Shared-medium, direct, or multistage?
Custom or commodity?

Routing
Oblivious or adaptive?
Wormhole, packet, or virtual cut-through?

Programming
Shared memory or message passing?
New languages or libraries?

Related user concerns:

Cost per MIPS 
Scalability, longevity

Cost per MB/s
Expandability, reliability

Speed, efficiency
Overhead, saturation limit 

Ease of programming
Software portability
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24.3  TFLOPS, PFLOPS, and Beyond

Fig. 24.1    Milestones in the Accelerated Strategic Computing 
Initiative (ASCI) program, sponsored by the US Department of 
Energy, with extrapolation up to the PFLOPS level. 
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Performance Milestones in Supercomputers
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24.4  Processor and Memory Technologies

Fig. 24.2  Key parts of the CPU in the Intel Pentium Pro microprocessor. 
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24.5  Interconnection Technologies
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Fig. 24.3   Changes in the ratio of a 1-cm wire delay to 
device switching time as the feature size is reduced. 



Fall  2010 Parallel Processing, Implementation Aspects Slide 51

Intermodule and Intersystem Connection Options

Fig. 24.4    Various types of intermodule and intersystem connections.
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System Interconnection Media

Fig. 24.5    The three commonly used media for 
computer and network connections.
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24.6  The Future of Parallel Processing

Asynchronous design for its speed and greater energy economy: 
Because pure asynchronous circuits create some difficulties, designs 
that are locally synchronous and globally asynchronous are flourishing 
Intelligent memories to help remove the memory wall:
Memory chips have high internal bandwidths, but are limited by pins in 
how much data they can handle per clock cycle
Reconfigurable systems for adapting hardware to application needs:
Raw hardware that can be configured via “programming” to adapt to 
application needs may offer the benefits of special-purpose processing
Network and grid computing to allow flexible, ubiquitous access:
Resource of many small and large computers can be pooled together 
via a network, offering supercomputing capability to anyone

In the early 1990s, it was unclear whether the TFLOPS performance 
milestone would be reached with a thousand or so GFLOPS nodes or
with a million or so simpler MFLOPS processors
The eventual answer was closer to 1K × GFLOPS than 1M × MFLOPS
PFLOPS performance was achieved in more or less the same manner
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Parallel Processing for Low-Power Systems

Figure 25.1 of Parhami’s computer architecture textbook.
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Peak Performance of Supercomputers
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Dongarra, J., “Trends in High Performance Computing,”
Computer J., Vol. 47, No. 4, pp. 399-403, 2004. [Dong04]
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From: 
“Robots After All,” 

by H. Moravec, 
CACM, pp. 90-97, 

October 2003.

Mental power in four scales

Evolution of Computer Performance/Cost
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Two Approaches to Parallel Processing

The topology-independent approach is currently dominant

Architecture (topology) and algorithm considered in tandem

+ Potentially very high performance
– Large effort to develop efficient algorithms

Users interact with topology-independent platforms

+ Less steep learning curve
+ Program portability
– Sacrifice some performance for ease of use

Main examples:
Virtual shared memory
Message-passing interface
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ABCs of Parallel Processing in One Slide
A Amdahl’s Law (Speedup Formula)

Bad news – Sequential overhead will kill you, because:
Speedup  =  T1/Tp ≤ 1/[f + (1 – f)/p] ≤ min(1/f, p)

Morale: For f = 0.1, speedup is at best 10, regardless of peak OPS.

B Brent’s Scheduling Theorem
Good news – Optimal scheduling is very difficult, but even a naive
scheduling algorithm can ensure:

T1/p ≤ Tp < T1/p + T∞ =  (T1/p)[1 + p/(T1/T∞)]
Result: For a reasonably parallel task (large T1/T∞), or for a suitably
small p (say, p < T1/T∞), good speedup and efficiency are possible.

C Cost-Effectiveness Adage
Real news – The most cost-effective parallel solution may not be
the one with highest peak OPS (communication?), greatest speed-up 
(at what cost?), or best utilization (hardware busy doing what?).
Analogy: Mass transit might be more cost-effective than private cars
even if it is slower and leads to many empty seats. 
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Gordon Bell Prize for High-Performance Computing

Different hardware/software combinations have won the competition

Supercomputer performance improvement has outpaced Moore’s law; 
however, progress shows signs of slowing down due to lack of funding

In past few years, improvements have been due to faster uniprocessors 
(2004 NRC Report Getting up to Speed: The Future of Supercompuing)

Established in 1988 by Gordon Bell, one of the pioneers in the field
Prizes are given annually in several categories (there are small cash 
awards, but the prestige of winning is the main motivator)
The two key categories are as follows; others have varied over time
Peak performance: The entrant must convince the judges that the 
submitted program runs faster than any other comparable application
Price/Performance: The entrant must show that performance of the 
application divided by the list price of the smallest system needed to 
achieve the reported performance is better than that of any other entry



Fall  2010 Parallel Processing, Implementation Aspects Slide 60

Recent Gordon Bell Prizes, November 2008
Performance in a Scientific Application: superconductor simulation
Oak Ridge National Lab: Cray XT Jaguar, 150 000 cores, 1.35 PFLOPS

http://www.supercomputingonline.com/
article.php?sid=16648

Special Prize for Algorithm Innovation
Lawrence Berkeley National Lab: harnessing potential of nanostructures
http://newscenter.lbl.gov/press-releases/2008/11/24/berkeley-lab-team-wins-
special-acm-gordon-bell-prize-for-algorithm-innovation/
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