
Oct. 2023 Part I – Introduction: Dependable Systems Slide 1

Oct. 2023 Part I – Introduction: Dependable Systems Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Dependable Computing: A Multilevel Approach (traditional print
or on-line open publication, TBD). It is updated regularly by the
author as part of his teaching of the graduate course ECE 257A,
Fault-Tolerant Computing, at Univ. of California, Santa Barbara.
Instructors can use these slides freely in classroom teaching or
for other educational purposes. Unauthorized uses, including
distribution for profit, are strictly prohibited. © Behrooz Parhami

RevisedRevisedRevisedRevisedReleasedEdition

Sep. 2013Oct. 2012Oct. 2009Oct. 2007Sep. 2006First

Sep. 2019Sep. 2018Sep. 2015Jan. 2015

Oct. 2023Sep.02023

Oct. 2023 Part I – Introduction: Dependable Systems Slide 3

ECE 257A: Fault-Tolerant Computing

Course
Introduction

Oct. 2023 Part I – Introduction: Dependable Systems Slide 4

Oct. 2023 Part I – Introduction: Dependable Systems Slide 5

How the Cover Image Relates to Our Course
Dependability as weakest-link attribute:
Under stress, the weakest link will break,
even if all other links are superstrong

Safety factor (use of redundancy):
Provide more resources than needed for
the minimum acceptable functionality

Additional resources not helpful if:

- failures are not independent

- Some critical component fails

- Improve the least reliable part first

Oct. 2023 Part I – Introduction: Dependable Systems Slide 6

About the Name of This Course

Fault-tolerant computing: a discipline that began in the late 1960s –
1st Fault-Tolerant Computing Symposium (FTCS) was held in 1971

In the early 1980s, the name “dependable computing” was proposed for
the field to account for the fact that tolerating faults is but one approach
to ensuring reliable computation. The terms “fault tolerance” and “fault-
tolerant” were so firmly established, however, that people started to use
“dependable and fault-tolerant computing.”

In 2000, the premier conference of the field was merged with another
and renamed “Int’l Conf. on Dependable Systems and Networks” (DSN)

In 2004, IEEE began the publication of IEEE Trans. On Dependable
and Secure Systems (inclusion of the term “secure” is for emphasis,
because security was already accepted as an aspect of dependability)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 7

Why This Course Shouldn’t Be Needed

In an ideal world, methods for dealing with faults, errors, and other
impairments in hardware and software would be covered within
every computer engineering course that has a design component

Analogy: We do not teach structural engineers about building
bridges in one course and about bridge safety and structural integrity
during high winds or earthquakes in another (optional) course

Logic Design:

fault testing,
self-checking

Parallel Comp.:

reliable commun.,
reconfiguration

Programming:

bounds checking,
checkpointing

Fault-Tolerant Computing

Oct. 2023 Part I – Introduction: Dependable Systems Slide 8

Brief History of Dependable Computing

1970s: The field developed quickly (international conference,
many research projects and groups, experimental systems)

1980s: The field matured (textbooks, theoretical developments,
use of ECCs in solid-state memories, RAID concept),
but also suffered some loss of focus and interest
because of the extreme reliability of integrated circuits

2000s: Resurgence of interest owing to less reliable fabrication at
ultrahigh densities and “crummy” nanoelectronic components

1960s: NASA and military agencies supported research for
long-life space missions and battlefield computing

1950s: Early ideas by von Neumann (multichannel, with voting)
and Moore-Shannon (“crummy” relays)

1990s: Increased complexity at chip and system levels made
verification, testing, and testability prime study topics

1940s: ENIAC, with 17.5K vacuum tubes and 1000s of other electrical
elements, failed once every 2 days (avg. down time = minutes)

2010s: Integration of reliability, safety, privacy, and security concerns,
particularly in the cloud, artificial intelligence systems, and IoT

Oct. 2023 Part I – Introduction: Dependable Systems Slide 9

Dependable Computing in the 2020s
There are still ambitious projects; space and elsewhere

Harsh environments (vibration, pressure, temperatures)
External influences (radiation, micrometeoroids)
Need for autonomy (commun. delays, unmanned probes)
Life & death situations (transportation, self-driving cars)

The need is expanding
More complex systems (supercomputers in our pockets)
Critical applications (medicine, transportation, finance)
Expanding pool of unsophisticated users
Continued rise in maintenance costs
Digital-only data (needs more rigorous backup)

The emphasis is shifting
COTS-based hardware, with software assist
Integrated HW/SW/firmware systems-on-chip
Swarms of units with disposable subsystems
Fairness, equity, and social-justice concerns

Oct. 2023 Part I – Introduction: Dependable Systems Slide 10

Pretest: Failures and Probabilities
This test will not be graded or even collected, so answer the test
questions truthfully and to the best of your ability / knowledge

Question 1: Name a disaster that was caused by computer hardware or
software failure. How do you define “disaster” and “failure”?

Question 4: In a game show, there is a prize
behind one of 3 doors with equal probabilities.
You pick Door A. The host opens Door B to
reveal that there is no prize behind it. The host
then gives you a chance to switch to Door C.
Is it better to switch or to stick to your choice?

A B C

Question 3: Which do you think is more likely: the event that everyone
in this class was born in the first half of the year or the event that at
least two people were born on the same day of the year?

Question 2: Which of these patterns is more random?

Oct. 2023 Part I – Introduction: Dependable Systems Slide 11

Pretest (Continued): Causes of Mishaps

Question 5: Does this photo depict a mishap due to design flaw,
implementation bug, procedural inadequacies, or human error?

Oct. 2023 Part I – Introduction: Dependable Systems Slide 12

Pretest (Continued): Reliability and Risk

Question 7: Which is more reliable: Plane X or Plane Y that carries four
times as many passengers as Plane X and is twice as likely to crash?

Question 9: Which surgeon would you prefer for an operation that you
must undergo: Surgeon A, who has performed some 500 operations of
the same type, with 5 of his patients perishing during or immediately
after surgery, or Surgeon B, who has a perfect record in 25 operations?

Question 8: Which is more reliable: a 4-wheel vehicle with one spare
tire or an 18-wheeler with 2 spare tires?

Question 10: Which is more probable at your home or office: a power
failure or an Internet outage? Which is likely to last longer?

Question 6: Name an emergency backup system (something not
normally used unless another system fails) that is quite commonplace

If you had trouble with 3 or more questions, you really need this course!

Oct. 2023 Part I – Introduction: Dependable Systems Slide 13

August 1, 2007 – Interstate 35W
Bridge 9340 over the Mississippi, in Minneapolis
(40-year old bridge was judged structurally deficient in 1990)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 14

History of Bridge 9340 in Minneapolis
1967: Opens to traffic

1990: Dept. of Transportation
classifies bridge as
“structurally deficient”

1993: Inspection frequency
doubled to yearly

2001: U. Minn. engineers
deem bridge struc. deficient

1999: Deck and railings fitted
with de-icing system

2004-07: Fatigue potential
and remedies studied

Summer 2007: $2.4M of
repairs/maintenance
on deck, lights, joints

2007: Inspection plan chosen
over reinforcements

Sep. 18, 2008:
Replacement
bridge opens

Aug. 1, 2007: Collapses
at 6:05 PM, killing 7

Oct. 2023 Part I – Introduction: Dependable Systems Slide 15

What Do We Learn from Bridges that Collapse?

Opening day of the
Tacoma Narrows Bridge,
July 1, 1940

Nov. 7, 1940

One catastrophic bridge collapse
every 30 years or so

See the following amazing video clip (Tacoma Narrows Bridge):

http://www.enm.bris.ac.uk/research/nonlinear/tacoma/tacnarr.mpg

“ . . . failures appear to be inevitable in the
wake of prolonged success, which encourages
lower margins of safety. Failures in turn lead to
greater safety margins and, hence, new
periods of success.”

Henry Petroski, To Engineer is Human

Oct. 2023 Part I – Introduction: Dependable Systems Slide 16

. . . or from “Unsinkable” Ships that Sink?

“The major difference between a thing that might go wrong and a thing that cannot
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong,
it usually turns out to be impossible to get at or repair.”

Douglas Adams, author of The Hitchhiker’s Guide to the Galaxy

Titanic begins
its maiden voyage
from Queenstown,
April 11, 1912
(1:30 PM)

April 15, 1912
(2:20 AM)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 17

. . . or from Poorly Designed High-Tech Trains?

Train built for demonstrating magnetic levitation technology in northwest Germany
rams into maintenance vehicle left on track at 200 km/h, killing 23 of 29 aboard

Transrapid
maglev train on
its test track

Sep. 22, 2006

Official investigation blames the accident on human error (train was allowed to
depart before a clearance phone call from maintenance crew)

Not a good explanation; even low-tech trains have obstacle detection systems

Even if manual protocol is fully adequate under normal conditions, any engineering
design must take unusual circumstances into account (abuse, sabotage, terrorism)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 18

Design Flaws in Computer Systems
Hardware example: Intel Pentium processor, 1994
For certain operands, the FDIV instruction yielded a wrong quotient
Amply documented and reasons well-known (overzealous optimization)

Software example: Patriot missile guidance, 1991
Missed intercepting a scud missile in 1st Gulf War, causing 28 deaths
Clock reading multiplied by 24-bit representation of 1/10 s (unit of time)
caused an error of about 0.0001%; normally, this would cancel out in
relative time calculations, but owing to ad hoc updates to some (not all)
calls to a routine, calculated time was off by 0.34 s (over 100 hours),
during which time a scud missile travels more than 0.5 km

User interface example: Therac 25 machine, mid 1980s1

Serious burns and some deaths due to overdose in radiation therapy
Operator entered “x” (for x-ray), realized error, corrected by entering “e”
(for low-power electron beam) before activating the machine; activation
was so quick that software had not yet processed the override

1 Accounts of the reasons vary

Oct. 2023 Part I – Introduction: Dependable Systems Slide 19

Causes of Human Errors in Computer Systems
1. Personal factors (35%): Lack of skill, lack of interest or motivation,
fatigue, poor memory, age or disability

2. System design (20%): Insufficient time for reaction, tedium, lack of
incentive for accuracy, inconsistent requirements or formats

3. Written instructions (10%): Hard to understand, incomplete or
inaccurate, not up to date, poorly organized

4. Training (10%): Insufficient, not customized to needs, not up to date

5. Human-computer interface (10%): Poor display quality, fonts used,
need to remember long codes, ergonomic factors

6. Accuracy requirements (10%): Too much expected of operator

7. Environment (5%): Lighting, temperature, humidity, noise

Because “the interface is the system” (according to a popular saying),
items 2, 5, and 6 (40%) could be categorized under user interface

Oct. 2023 Part I – Introduction: Dependable Systems Slide 20

Oct. 2023 Part I – Introduction: Dependable Systems Slide 21

Properties of a Good User Interface
1. Simplicity: Easy to use, clean and unencumbered look

2. Design for error: Makes errors easy to prevent, detect, and reverse;
asks for confirmation of critical actions

3. Visibility of system state: Lets user know what is happening inside
the system from looking at the interface

4. Use of familiar language: Uses terms that are known to the user
(there may be different classes of users, each with its own vocabulary)

5. Minimal reliance on human memory: Shows critical info on screen;
uses selection from a set of options whenever possible

6. Frequent feedback: Messages indicate consequences of actions

7. Good error messages: Descriptive, rather than cryptic

8. Consistency: Similar/different actions produce similar/different
results and are encoded with similar/different colors and shapes

Oct. 2023 Part I – Introduction: Dependable Systems Slide 22

Example from

On August 17, 2006, a class-two incident occurred at the Swedish
atomic reactor Forsmark. A short-circuit in the electricity network
caused a problem inside the reactor and it needed to be shut down
immediately, using emergency backup electricity.

However, in two of the four generators, which run on AC, the AC/DC
converters died. The generators disconnected, leaving the reactor in
an unsafe state and the operators unaware of the current state of the
system for approximately 20 minutes.

A meltdown, such as the one in Chernobyl, could have occurred.

Coincidence of problems in multiple protection levels seems to be
a recurring theme in many modern-day mishaps -- emergency
systems had not been tested with the grid electricity being off

Forum on Risks to the Public in Computers and Related Systems
http://catless.ncl.ac.uk/Risks/
(Peter G. Neumann, moderator)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 23

Worst Stock Market Computer Failure

Firms and individual investors prevented from buying or selling stocks
to minimize their capital gains taxes

A spokesman said the problems were “very technical” and involved
corrupt data

Delaying end of financial year was considered, but not implemented;
eventually, the system became operational at 3:45 PM and trading
was allowed to continue until 8:00 PM

London Stock Exchange confirmed it had a fault in its electronic feed
that sends the prices to dealers, but it gave no further explanation

April 5, 2000: Computer failure halts the trading for nearly 8 hours at
the London Stock Exchange on its busiest day (end of financial year)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 24

A Few News Items in

July 2012: A320 Lost 2 of 3 Hydraulic Systems on Takeoff

No loss of life; only passenger discomfort. Full account of incident not yet
available, but it shows that redundancy alone is not sufficient protection

May 2012: Automatic Updates Considered Zombieware

Software updates take up much time/space; no one knows what’s in them

September 2013: No password Safe from New Cracking Software

A new freely available software can crack passwords of up to 55 symbols
by guessing a lot of common letter combinations

February 2012: Programming Error Doomed Russian Mars Probe

Fails to escape earth orbit due to simultaneous reboot of two subsystems

March 2012: Eighteen Companies Sued over Mobile Apps

Facebook, Apple, Twitter, and Yelp are among the companies sued over
gathering data from the address books of millions of smartphone users

Oct. 2023 Part I – Introduction: Dependable Systems Slide 25

How We Benefit from Failures

“When a complex system succeeds, that success
masks its proximity to failure. . . . Thus, the failure
of the Titanic contributed much more to the design
of safe ocean liners than would have her success.
That is the paradox of engineering and design.”

Henry Petroski, Success through Failure: The Paradox
of Design, Princeton U. Press, 2006, p. 95

1940 20061912

Oct. 2023 Part I – Introduction: Dependable Systems Slide 26

Take-Home Survey Form: Due Next Class

Main reason for taking this course

List one important fact about yourself that is not evident from your
academic record or CV

Use the space below or overleaf for any additional comments on your
academic goals and/or expectations from this course

From the lecture topics on the course’s website, pick one topic that you
believe to be most interesting

Personal and contact info: Name, Perm#, e-mail address, phone #(s),
degrees & institutions, academic level, GPA, units completed, advisor

e.g.: interest, advisor’s suggestion, have to (not enough grad courses)

e.g.: I like to solve mathematical, logical, and word puzzles

Oct. 2023 Part I – Introduction: Dependable Systems Slide 27

1 Background and Motivation

Oct. 2023 Part I – Introduction: Dependable Systems Slide 28

“I should get this remote
control looked at.”

Oct. 2023 Part I – Introduction: Dependable Systems Slide 29

Oct. 2023 Part I – Introduction: Dependable Systems Slide 30

1.1 The Need for Dependability
Hardware problems
Permanent incapacitation due to shock, overheating, voltage spike
Intermittent failure due to overload, timing irregularities, crosstalk
Transient signal deviation due to alpha particles, external interference

Software problems
Counter or buffer overflow
Out-of-range, unreasonable, or unanticipated input
Unsatisfied loop termination condition

Dec. 2004: “Comair runs a 15-year old scheduling software package from
SBS International (www.sbsint.com). The software has a hard limit of 32,000
schedule changes per month. With all of the bad weather last week, Comair
apparently hit this limit and then was unable to assign pilots to planes.”
It appears that they were using a 16-bit integer format to hold the count.

June 1996: Explosion of the Ariane 5 rocket 37 s into its maiden flight was
due to a silly software error. For an excellent exposition of the cause, see:
http://www.comp.lancs.ac.uk/computing/users/dixa/teaching/CSC221/ariane.pdf

These can also be classified as design flaws

Oct. 2023 Part I – Introduction: Dependable Systems Slide 31

The Curse of Complexity

Computer engineering is the art and science of
translating user requirements we do not fully understand;
into hardware and software we cannot precisely analyze;
to operate in environments we cannot accurately predict;
all in such a way that the society at large is given
no reason to suspect the extent of our ignorance.1

1Adapted from definition of structural engineering: Ralph Kaplan, By Design: Why There Are No Locks
on the Bathroom Doors in the Hotel Louis XIV and Other Object Lessons, Fairchild Books, 2004, p. 229

Microsoft Windows NT (1992): 4M lines of code
Microsoft Windows XP (2002): 40M lines of code

Intel Pentium processor (1993): 4M transistors
Intel Pentium 4 processor (2001): 40M transistors
Intel Itanium 2 processor (2002): 500M transistors

Oct. 2023 Part I – Introduction: Dependable Systems Slide 32

Defining Failure

Failure is an unacceptable difference between expected
and observed performance.1

1 Definition used by the Tech. Council on Forensic Engineering of the Amer. Society of Civil Engineers

A structure (building or bridge) need not collapse
catastrophically to be deemed a failure

Reasons of typical Web site failures
Hardware problems: 15%
Software problems: 34%
Operator error: 51%

ImplementationSpecification ?

Oct. 2023 Part I – Introduction: Dependable Systems Slide 33

Oct. 2023 Part I – Introduction: Dependable Systems Slide 34

Design Flaws: “To Engineer is Human”1

Complex systems almost certainly
contain multiple design flaws

1 Title of book by Henry Petroski

Example of a more subtle flaw:
Disney Concert Hall in Los Angeles
reflected light into nearby building,
causing discomfort for tenants due to
blinding light and high temperature

Redundancy in the form of
safety factor is routinely used
in buildings and bridges

Oct. 2023 Part I – Introduction: Dependable Systems Slide 35

Reliability of n-transistor system, each having failure rate l

R(t) = e–nlt

There are only 3 ways of making systems more reliable

Reduce l

Reduce n

1.0

0.8

0.6

0.4

0.2

0.0

e
–n tl

.9999 .9990 .9900

.9048

.3679

1010 810 610 410
nt

Reduce t

Alternative:
Change the reliability
formula by introducing
redundancy in system

Why Dependability Is a Concern

Fig. 1.1

Oct. 2023 Part I – Introduction: Dependable Systems Slide 36

The Three Principal Arguments

The reliability argument

l = 10–9 per transistor per hour
Reliability formula R(t) = e–nlt

The on-board computer of a 10-year
unmanned space mission can contain
only O(103) transistors if the mission
is to have a 90% success probability

The safety argument

Airline’s risk: O(103) planes  O(102) flights  10–2 computer failures / 10 hr
 0.001 crash / failure  O(102) deaths  O($107) /death = $ billions / yr

The availability argument

A central phone facility’s down time should not exceed a few minutes / yr
Mean time to failure: MTTF = 1/(nl) 
Components n = O(104), if we need 20-30 min for diagnosis and repair

1.0

0.8

0.6

0.4

0.2

0.0

e
–n tl

.9999 .9990 .9900

.9048

.3679

1010 810 610 410
nt

Fig. 1.1

Oct. 2023 Part I – Introduction: Dependable Systems Slide 37

Learning Curve: “Normal Accidents”1

Example: Risk of piloting a plane

1903 First powered flight

1908 First fatal accident

1910 Fatalities = 32 (2000 pilots worldwide)

Today Commercial airline
pilots pay normal
life insurance rates

1918 US Air Mail Service founded
Pilot life expectancy = 4 years
31 of the first 40 pilots died in service

1922 One forced landing for
every 20 hours of flight

1 Title of book by
Charles Perrow
(Ex. p. 125)

Unfortunately, the learning curve for computers
and computer-based systems is not as impressive

Oct. 2023 Part I – Introduction: Dependable Systems Slide 38

Mishaps, Accidents, and Catastrophes
Mishap: misfortune; unfortunate accident

At one time (following the initial years of highly unreliable hardware),
computer mishaps were predominantly the results of human error

Accident: unexpected (no-fault) happening causing loss or injury

Now, most mishaps are due to complexity (unanticipated interactions)

Catastrophe: final, momentous event of drastic action; utter failure

Rube Goldberg contraptions

The butterfly effect

Oct. 2023 Part I – Introduction: Dependable Systems Slide 39

1.2 A Motivating Case Study
Data availability and integrity concerns

Distributed DB system with 5 sites
Full connectivity, dedicated links
Only direct communication allowed
Sites and links may malfunction
Redundancy improves availability

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

S: Probability of a site being available
L: Probability of a link being available

Data replication methods, and a challenge

File duplication: home / mirror sites
File triplication: home / backup 1 / backup 2
Are there availability improvement methods with less redundancy?

Single-copy availability = SL
Unavailability = 1 – SL

= 1 – 0.99  0.95 = 5.95% Fi

User

Fig. 1.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 40

Data Duplication: Home and Mirror Sites

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Data unavailability reduced from 5.95% to 0.35%

Availability improved from  94% to 99.65%

Duplicated availability = 2SL – (SL)2

Unavailability = 1 – 2SL + (SL)2

= (1 – SL)2 = 0.35%

A = SL + (1 – SL)SL

Primary site
can be reached

Primary site
inaccessible

Mirror site
can be reached

S: Site availability e.g., 99%
L: Link availability e.g., 95%

Fi home

Fi mirror

User

Fig. 1.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 41

Data Triplication: Home and Two Backups

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Data unavailability reduced from 5.95% to 0.02%

Availability improved from  94% to 99.98%

Triplicated avail. = 3SL – 3(SL)2 – (SL)3

Unavailability = 1 – 3SL – 3(SL)2 + (SL)3

= (1 – SL)3 = 0.02%

S: Site availability e.g., 99%
L: Link availability e.g., 95%

Fi home Fi backup 2

User

Fi backup 1

A = SL + (1 – SL)SL + (1 – SL)2SL

Primary site
can be reached

Primary site
inaccessible

Backup 1
can be reached

Primary and
backup 1

inaccessible

Backup 2
can be reached

Fig. 1.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 42

Data Dispersion: Three of Five Pieces

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Scheme  Nonredund. Duplication Triplication Dispersion
Unavailability 5.95% 0.35% 0.02% 0.08%
Redundancy 0% 100% 200% 67%

Dispersed avail. = 6(SL)2 – 8(SL)3 + 3(SL)4

Availability = 99.92%
Unavailability = 1 – Availability = 0.08%

S: Site availability e.g., 99%
L: Link availability e.g., 95%

Piece 3 Piece 2

User

Piece 0
A = (SL)4 + 4(1 – SL)(SL)3 + 6(1 – SL)2(SL)2

All 4 pieces
can be reached

Exactly 3 pieces
can be reached

Only 2 pieces
can be reached

Piece 1

Piece 4

Fig. 1.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 43

Dispersion for Data Security and Integrity

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Piece 3 Piece 2

Piece 0

Piece 1Piece 4
a b c

f(x) = ax2+ bx + c

f(0) f(1) f(2) f(3) f(4)

l bits

5l/3 bits

Encoding with
67% redundancy

Note that two pieces
would be inadequate
for reconstruction

Fig. 1.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 44

Questions Ignored in Our Simple Example
1. How redundant copies of data are kept consistent
When a user modifies the data, how to update the redundant copies
(pieces) quickly and prevent the use of stale data in the meantime?

2. How malfunctioning sites and links are identified
Malfunction diagnosis must be quick to avoid data contamination

3. How recovery is accomplished when a malfunctioning site / link
returns to service after repair
The returning site must be brought up to date with regard to changes

4. How data corrupted by the actions of an adversary is detected
This is more difficult than detecting random malfunctions

The example does demonstrate, however, that:
 Many alternatives are available for improving dependability
 Proposed methods must be assessed through modeling
 The most cost-effective solution may be far from obvious

Oct. 2023 Part I – Introduction: Dependable Systems Slide 45

1.3 Impairments to Dependability

Oct. 2023 Part I – Introduction: Dependable Systems Slide 46

The Fault-Error-Failure Cycle

Schematic diagram of the Newcastle hierarchical model
and the impairments within one level.

Failure

Aspect Impairment

Structure Fault

 
State Error

 
Behavior

Includes both
components
and design

0 0

0
Fault Correct

signal

Replaced
with
NAND?

Fig. 1.3

Oct. 2023 Part I – Introduction: Dependable Systems Slide 47

The Four-Universe Model

Cause-effect diagram for Avižienis’ four-universe
model of impairments to dependability.

Universe Impairment

Physical Failure

 
Logical Fault

 
Informational Error

 
External Crash

Fig. 1.4

Oct. 2023 Part I – Introduction: Dependable Systems Slide 48

Unrolling the Fault-Error-Failure Cycle

Cause-effect diagram for an extended six-level
view of impairments to dependability.

Failure

Aspect Impairment

Structure Fault

 
State Error

 
Behavior

Abstraction Impairment

Component Defect

 
Logic Fault

 
Information Error

 
System Malfunction

 
Service Degradation

 
Result Failure

Low-
Level

Mid-
Level

High-
Level

First
Cycle

Second
Cycle

Device

Fig. 1.5

State

Oct. 2023 Part I – Introduction: Dependable Systems Slide 49

1.4 A Multilevel Model

Device

Logic

Service

Result

State

System

Low-Level
Impaired

Mid-Level
Impaired

High-Level
Impaired

Initial
Entry

Deviation

Remedy

Legned:

Ideal

Defective

Faulty

Erroneous

Malfunctioning

Degraded

Failed

Legend:

Tolerance

Entry

Fig. 1.6

Oct. 2023 Part I – Introduction: Dependable Systems Slide 50

1.5 Examples and Analogies

Example 1.4: Automobile brake system

Defect Brake fluid piping has a weak spot or joint
Fault Brake fluid starts to leak out
Error Brake fluid pressure drops too low
Malfunction Braking force is below expectation
Degradation Braking requires higher force or takes longer
Failure Vehicle does not slow down or stop in time

Note in particular that not every defect, fault, error, malfunction, or
degradation leads to failure

Oct. 2023 Part I – Introduction: Dependable Systems Slide 51

Analogy for the Multilevel Model

An analogy for our
multi-level model of
dependable computing.
Defects, faults, errors,
malfunctions,
degradations, and
failures are
represented by pouring
water from above.
Valves represent
avoidance and
tolerance techniques.
The goal is to avoid
overflow. Fig. 1.7

Opening drain valves represents
tolerance techniques

Oct. 2023 Part I – Introduction: Dependable Systems Slide 52

1.6 Dependable Computer Systems

Long-life systems: Fail-slow, Rugged, High-reliability
Spacecraft with multiyear missions, systems in inaccessible locations
Methods: Replication (spares), error coding, monitoring, shielding

Safety-critical systems: Fail-safe, Sound, High-integrity
Flight control computers, nuclear-plant shutdown, medical monitoring
Methods: Replication with voting, time redundancy, design diversity

Non-stop systems: Fail-soft, Robust, High-availability
Telephone switching centers, transaction processing, e-commerce
Methods: HW/info redundancy, backup schemes, hot-swap, recovery

Just as performance enhancement techniques gradually migrate from
supercomputers to desktops, so too dependability enhancement
methods find their way from exotic systems into personal computers

Oct. 2023 Part I – Introduction: Dependable Systems Slide 53

2 Dependability Attributes

Oct. 2023 Part I – Introduction: Dependable Systems Slide 54

Oct. 2023 Part I – Introduction: Dependable Systems Slide 55

Oct. 2023 Part I – Introduction: Dependable Systems Slide 56

The -ilities

2.1 Aspects of Dependability

Oct. 2023 Part I – Introduction: Dependable Systems Slide 57

Concepts from Probability Theory

Cumulative distribution function: CDF
F(t) = prob[x  t] = 0 f(x)dx t

Probability density function: pdf
f(t) = prob[t  x  t + dt] / dt = dF(t) / dt

Time0 10 20 30 40 50

Time0 10 20 30 40 50

Time0 10 20 30 40 50

1.0

0.8

0.6

0.4

0.2

0.0

CDF

pdf
0.05

0.04

0.03

0.02

0.01

0.00

F(t)

f(t)

Expected value of x
Ex = - x f(x)dx = k xk f(xk)

+

Lifetimes of 20
identical systems

Covariance of x and y
yx,y = E [(x – Ex)(y – Ey)]

= E [xy] – Ex Ey

Variance of x
sx = - (x – Ex)2 f(x)dx

= k (xk – Ex)2 f(xk)

+2

Fig. 2.1

Oct. 2023 Part I – Introduction: Dependable Systems Slide 58

Some Simple Probability Distributions

CDF

pdf

F(x)

f(x)

1

Uniform Exponential Normal Binomial

CDF

pdf

CDF

pdf

CDF

Fig. 2.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 59

Layers of Safeguards
With multiple layers
of safeguards, a system
failure occurs only if
warning symptoms and
compensating actions
are missed at every layer,
which is quite unlikely

Is it really?

The computer engineering literature is full of examples of mishaps
when two or more layers of protection failed at the same time

Multiple layers increase the reliability significantly only if the “holes”
in the representation above are fairly randomly and independently
distributed, so that the probability of their being aligned is negligible

Dec. 1986: ARPANET had 7 dedicated lines between NY and Boston;
A backhoe accidentally cut all 7 (they went through the same conduit)

1% miss

1% miss

1% miss

1% miss
10–8 miss
probability

Oct. 2023 Part I – Introduction: Dependable Systems Slide 60

2.2 Reliability and MTTF
Reliability: R(t)
Probability that system remains in the
“Good” state through the interval [0, t]

Two-state
nonrepairable
system

R(t + dt) = R(t) [1 – z(t)dt]

Hazard function

Constant hazard function z(t) = l  R(t) = e–lt

(system failure rate is independent of its age)

R(t) = 1 – F(t) CDF of the system lifetime, or its unreliability

Exponential
reliability law

Mean time to failure: MTTF
MTTF =  0 t f(t)dt = 0 R(t)dt

+ +

Expected value of lifetime

Area under the reliability curve
(easily provable)

Start
state Failure

Up Down

Fig. 2.3

Oct. 2023 Part I – Introduction: Dependable Systems Slide 61

Failure Distributions of Interest

Exponential: z(t) = l
R(t) = e–lt MTTF = 1/l

Weibull: z(t) = al(lt) a–1

R(t) = e(-lt)a MTTF = (1/l) G(1 + 1/a)

Erlang:
Gen. exponential MTTF = k/l

Gamma:
Gen. Erlang
(becomes Erlang for b an integer)

Normal:
Reliability and MTTF formulas are complicated

Rayleigh: z(t) = 2l(lt)
R(t) = e(-lt)2 MTTF = (1/l) p / 2

Discrete versions

Geometric

Binomial

Discrete Weibull

R(k) = q k

Oct. 2023 Part I – Introduction: Dependable Systems Slide 62

Elaboration on Weibull Distribution
Weibull: z(t) = al(lt) a–1

R(t) = e(-lt)a

The following diagrams were taken from
http://www.rpi.edu/~albenr/presentations/Reliabilty.ppt
which is no longer available

a = 1, Constant hazard rate (exponential)

a < 1, Infant mortality

a > 4, Rising hazard (rapid wearout)

1 < a < 4, Rising hazard (fatigue, corrosion)

Weibull Plot of failures of 200 Paper Clips

number of cycles

fr
ac

ti
o
n
 f

ai
le

d

9 15 25 40 60 100

.03

.999

.99

.9

.7

.4

.2

.1

.05

b=2.6

One cycle

ln ln[1/R(t)] = a(ln t + ln l)

a = 2.6

Oct. 2023 Part I – Introduction: Dependable Systems Slide 63

Comparing Reliabilities

Reliability gain: R2 / R1

Reliability difference: R2 – R1

Reliability functions
for Systems 1 and 2

Reliability improv. index
RII = log R1(tM) / log R2(tM)

1.0

0.0

Time (t)

R (t)

R (t)

1

2

MTTF1MTTF2t

R (t)1

R (t)2
r

T (r)1 T (r)2M

G

G G

M

M

System Reliability (R)

Mission time extension
MTE2/1(rG) = T2(rG) – T1(rG)

Mission time improv. factor:
MTIF2/1(rG) = T2(rG) / T1(rG)

Reliability improvement factor
RIF2/1 = [1–R1(tM)] / [1–R2(tM)]

Example:
[1 – 0.9] / [1 – 0.99] = 10

Fig. 2.4

Oct. 2023 Part I – Introduction: Dependable Systems Slide 64

Analog of Amdahl’s Law for Reliability

Consider a system with two parts, having failure rates f and l – f

Improve the failure rate of the second part by a factor p, to (l – f)/p

Roriginal = exp(–lt) Rimproved = exp[–(f + (l – f)/p)t]

Reliability improv. index
RII = log Roriginal / log Rimproved

RII = l / (f + (l – f)/p)

Letting f / l = f, we have: RII = 1 / (f + (1 – f)/p)

Amdahl’s law: If in a unit-time computation, a fraction f doesn’t change
and the remaining fraction 1 – f is speeded up to run p times as fast,
the overall speedup will be s = 1 / (f + (1 – f)/p)

See B. Parhami’s
paper in July 2015
IEEE Computer

Oct. 2023 Part I – Introduction: Dependable Systems Slide 65

Reliability Inversion

We derive a pessimistic lower bound, which can be tight or loose

Actual reliability is unknowable

Time

Reliability

System 1

System 2

Model 1
Model 2

The more pessimistic the assumptions, the looser the bounds

But pessimism is dictated by our concern for safety

Oct. 2023 Part I – Introduction: Dependable Systems Slide 66

2.3 Availability, MTTR, and MTBF
(Interval) Availability: A(t)
Fraction of time that system is in the
“Up” state during the interval [0, t] Two-state

repairable system

Availability = Reliability, when there is no repair

Availability is a function not only of how rarely a system fails (reliability)
but also of how quickly it can be repaired (time to repair)

Pointwise availability: a(t)
Probability that system available at time t
A(t) = (1/t)  0 a(x)dx t

Steady-state availability: A = limt A(t)

MTTF MTTF m
MTTF + MTTR MTBF l + mA = = =

Repair rate
1/m = MTTR
(Will justify this
equation later)In general, m >> l, leading to A  1

Repair
Start
state

Failure

Up Down

Fig. 2.5

Oct. 2023 Part I – Introduction: Dependable Systems Slide 67

System Up and Down Times

Time

Up

Down
0 t

Time to first failure Time between failures

Repair time

t1 t2t'1 t'2

Short repair time implies
good maintainability (serviceability)

Repair
Start
state

Failure

Up Down

Fig. 2.6

Oct. 2023 Part I – Introduction: Dependable Systems Slide 68

2.4 Performability and MCBF
Performability: P
Composite measure, incorporating
both performance and reliability

Three-state degradable system

P = 2pUp2 + pUp1

Simple example
Worth of “Up2” twice that of “Up1”
pUpi = probability system is in state Upi t

pUp2 = 0.92, pUp1 = 0.06, pDown = 0.02, P = 1.90
(system performance equiv. To that of 1.9 processors on average)

Performability improvement factor of this system (akin to RIF) relative
to a fail-hard system that goes down when either processor fails:
PIF = (2 – 2  0.92) / (2 – 1.90) = 1.6

Question:
What is system
availability here?

Repair Partial repair
Start
state

FailurePartial failure

Up 1 DownUp 2

Fig. 2.7

Oct. 2023 Part I – Introduction: Dependable Systems Slide 69

Time

Up

Down
0 tt1 t2 t'2 t'1 t3 t'3

Partial
Failure

 Total
Failure

Partial
Repair

Partially Up

System Up, Partially Up, and Down Times

Important to prevent
direct transitions to the
“Down” state (coverage)

MCBF

Repair Partial repairStart state

FailurePartial failure

Up 1 DownUp 2

Fig. 2.8

Oct. 2023 Part I – Introduction: Dependable Systems Slide 70

2.5 Integrity and Safety
Integrity and safety are similar
Integrity is inward-looking: capacity to protect system resources (e.g., data)
Safety is outward-looking: consequences of incorrect actions to users

A high-integrity system is robust
Data is not corrupted by low-severity causes

Safety is distinct from reliability: a fail-safe system may not be very
reliable in the traditional sense

Oct. 2023 Part I – Introduction: Dependable Systems Slide 71

Basic Safety Assessment

Risk: Prob. of being in “Unsafe Down” state
There may be multiple unsafe states,
each with a different consequence (cost)

Three-state
fail-safe systemSimple analysis

Lump “Safe Down” state with “Up” state;
proceed as in reliability analysis

More detailed analysis
Even though “Safe Down” state is more
desirable than “Unsafe Down”, it is still
not as desirable as the “Up” state;
so keeping it separate makes sense

We may have multiple unsafe states

Safe
Down

Unsafe
Down

Failure

Failure

Start state

Up

Fig. 2.9

Oct. 2023 Part I – Introduction: Dependable Systems Slide 72

Quantifying Safety

Risk = Frequency  Magnitude

Consequence / Unit time Events / Unit time Consequence / Event

Magnitude or severity is measured in some suitable unit (say, dollars)

Risk = Probability  Severity

When there are multiple unsafe outcomes, the probability of each is
multiplied by its severity (cost) and the results added up

Oct. 2023 Part I – Introduction: Dependable Systems Slide 73

Safety Assessment with More Transitions

Three-state
fail-safe system

Modeling safety procedures
A safe failure can become unsafe
or an unsafe failure can turn into
a more severe safety problem
due to mishandling or human error

This can be easily modeled by adding
appropriate transitions

If a repair transition is introduced
between “Safe Down” and “Up”
states, we can tackle questions
such as the expected outage of
the system in safe mode, and
thus its availability

Safe
Down

Unsafe
Down

Failure

Failure

Start state

Up

Fig. 2.10

Repair
Mishandling

Oct. 2023 Part I – Introduction: Dependable Systems Slide 74

Fallacies of Risk*
1. Sheer size: X is accepted. Y is a smaller risk than X.  Y should be accepted.

4. Ostrich’s: X has no detectable risk.  X has no unacceptable risks.

2. Converse sheer size: X is not accepted. Y is a larger risk than X.
 Y should not be accepted.

3. Naturalness: X is natural.  X should be accepted.

*Hansson, S. O.,
“Fallacies of Risk,”
Journal of Risk
Research, Vol. 7,
pp. 353-360, 2004.

5. Proof-seeking: There is no scientific proof that X is dangerous.
 No action should be taken against X.

6. Delay: If we wait, we will know more about X.
 No decision about X should be made now.

7. Technocratic: It is a scientific issue how dangerous X is.
 Scientists should decide whether or not X is acceptable.

8. Consensus: We must ask the experts about X.
 We must ask the experts about a consensus opinion on X

9. Pricing: We have to weigh the risk of X against its benefits.
 We must put a price on the risk of X

10. Infallibility: Experts and the public do not have the same attitude about X.
 The public is wrong about X

Oct. 2023 Part I – Introduction: Dependable Systems Slide 75

2.6 Privacy and Security
Privacy and security impairments are human-related
Accidental: operator carelessness, improper reaction to safety warnings
Malicious attacks: Hackers, viruses, and the like

Security is distinct from both reliability and safety: a system that
automatically locks up when a security breach is suspected may not
be very reliable or safe in the traditional sense

Privacy is compromised when
confidential or personal data are disclosed to unauthorized parties

Security is breached when
account information in a bank is improperly modified, say

Oct. 2023 Part I – Introduction: Dependable Systems Slide 76

Quantifying Security

But because security breaches are often not accidental, they are ill-
suited to probabilistic treatment

Risk = Frequency  Magnitude

Risk = Probability  Severity

In theory, security can be quantified in the same way as safety:

Oct. 2023 Part I – Introduction: Dependable Systems Slide 77

3 Combinational Modeling

Oct. 2023 Part I – Introduction: Dependable Systems Slide 78

When model
does not
match reality.

Oct. 2023 Part I – Introduction: Dependable Systems Slide 79

Oct. 2023 Part I – Introduction: Dependable Systems Slide 80

3.1 Modeling by Case Analysis

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Five-site distributed
computer system

Revisiting the motivating example: Data files to be stored on five sites
so that they remain available despite site and link malfunctions

S = Site availability (aS in textbook)

L = Link availability (aL in textbook)

Some possible strategies:
 Duplication on home site and mirror site

 Triplication on home site and 2 backups

 Data dispersion through coding

Here, we ignore the important problem
of keeping the replicas consistent
and do not worry about malfunction
detection and attendant recovery actions

Oct. 2023 Part I – Introduction: Dependable Systems Slide 81

Data Availability with Home and Mirror Sites

A = SL + (1 – SL)SL = 2SL – (SL)2

Requester

R

D

D

Home

Mirror

Assume data file must be obtained directly
from a site that holds it

For example, S = 0.99, L = 0.95, A = 0.9965
With no redundancy, A = 0.99  0.95 = 0.9405

Combinational modeling:
Consider all combinations of circumstances that
lead to availability/success (unavailability/failure)

R

D

D

R

D

D

R

D

D

R

D1 SL SL

SL
1 – L

(1 – S)L
Analysis by
considering
mutually
exclusive
subcases

Oct. 2023 Part I – Introduction: Dependable Systems Slide 82

Data Availability with Triplication
A = SL + (1 – SL)SL + (1 – SL)2SL

= 3SL – 3(SL)2 + (SL)3
Requester

R

D

DD

Home

Backup 1

For example, S = 0.99, L = 0.95, A = 0.9998
With duplication, A = 0.9965
With no redundancy, A = 0.9405

R

D

DD

R

D

D

R

D

DD

R

DD1

SL
1 – L

(1 – S)L

Backup 2

R

D

DD

R

D

DD

R

D

D

SL
1 – L (1 – S)L

1 SL SL A = SL + (1 – SL)[SL + (1 – SL)SL]

Can merge these two cases

Oct. 2023 Part I – Introduction: Dependable Systems Slide 83

Data Availability with File Dispersion

File accessible if 2 out of 4 sites accessible

A = (SL)4 + 4(1 – SL)(SL)3 + 6(1 – SL)2(SL)2

= 6(SL)2 – 8(SL)3 + 3(SL)4

Requester

R

d

dd

d

Piece 2

Encode an l-bit file into 5l/3 bits (67% redund.)
Break encoded file into 5 pieces of length l/3
Store each piece on one of the 5 sites

Any 3 of the 5 pieces can be used to
reconstruct the original file

Piece 1

Piece 4 Piece 3

Piece 5

For example, S = 0.99, L = 0.95, A = 0.9992, Redundancy = 67%
With duplication, A = 0.9965, Redundancy = 100%
With triplication, A = 0.9998, Redundancy = 200%
With no redundancy, A = 0.9405

Oct. 2023 Part I – Introduction: Dependable Systems Slide 84

3.2 Series and Parallel Systems

A series system is composed of n
units all of which must be healthy
for the system to function properly

R = P Ri

Example: Redundant system of
valves in series with regard to
stuck-on-shut malfunctions
(tolerates stuck-on-open valves)

Example: Redundant system of
valves in parallel with regard to
to stuck-on-open malfunctions
(tolerates stuck-on-shut valves)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 85

Series System: Implications to Design

Assume exponential reliability law

Ri = exp[– li t]

R = P Ri = exp[– (Sli) t]

Given the reliability goal r, find the required value of Sli

Assign a failure rate “budget” to each unit and proceed with its design

May have to reallocate budgets if design proves impossible or costly

Oct. 2023 Part I – Introduction: Dependable Systems Slide 86

Parallel System
A parallel system is composed of n
units, the health of one of which is
enough for proper system operation

1 – R = P (1 – Ri)  R = 1 – P (1 – Ri)

That is, the system fails only if all units
malfunction

Example: Redundant system of
valves in series with regard to
stuck-on-open malfunctions
(tolerates stuck-on-open valves)

Example: Redundant system of
valves in parallel with regard to
stuck-on-shut malfunctions
(tolerates stuck-on-shut valves)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 87

Parallel System: Implications to Design

Assume exponential reliability law

Ri = exp[– li t]

1 – R = P (1 – Ri)

Given the reliability goal r, find the required value of 1 – r = P (1 – Ri)

Assign a failure probability “budget” to each unit

For example, with identical units, 1 – Rm =
n

1 – r
Assume r = 0.9999, n = 4  1– Rm = 0.1 (module reliability must be 0.9)
Conversely, for r = 0.9999 and Rm = 0.9, n = 4 is needed

Oct. 2023 Part I – Introduction: Dependable Systems Slide 88

The Perils of Modeling

An example two-way parallel system:
In a passenger plane, the failure rate of the cabin pressurizing system
is 10–5/hr (loss of cabin pressure occurs once per 105 hours of flight)

Assuming failure independence, both systems fail at a rate of 10–10/hr

Alternate reasoning
Probability of cabin pressure system failure in 10-hour flight is 10–4

Probability of oxygen masks failing to deploy in 10-hour flight is 10–4

Probability of both systems failing in 10-hour flight is 10–8

Why is this result different from that of our earlier analysis (10–9)?
Which one is correct?

Failure rate of the oxygen-mask deployment system is also 10–5/hr

Fatality probability for a 10-hour flight is about 10–10  10 = 10–9

(10–9 or less is generally deemed acceptable)

Probability of death in a car accident is 1/6000 per year (>10–7/hr)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 89

Cabin Pressure and Oxygen Masks

When we multiply the two per-hour failure rates and then take the
flight duration into account, we are assuming that only the failure of
the two systems within the same hour is catastrophic

This produces an optimistic reliability estimate (1 – 10–9)

0 1 2 3 4 5 6 7 8 9 10

Masks
fail

Pressure
is lost

0 1 2 3 4 5 6 7 8 9 10

Masks
fail

Pressure
is lost

When we multiply the two flight-long failure rates, we are assuming
that the failure of these systems would be catastrophic at any time

This produces a pessimistic reliability estimate (1 – 10–8)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 90

The Concept of Coverage

For r = 0.9999 and Ri = 0.9, n = 4 is needed

Standby sparing: One unit works;
others are also active concurrently
or they may be inactive (spares)

When a malfunction of the main unit is detected, it is removed from
service and an alternate unit is brought on-line; our analysis thus far
assumes perfect malfunction detection and reconfiguration

R = 1 – (1 – Rm)n = Rm
1 – (1 – Rm)n

1 – (1 – Rm)

Let the probability of correct malfunction detection and successful
reconfiguration be c (coverage factor, c < 1)

R = Rm See [Siew92], p. 288
1 – cn(1 – Rm)n

1 – c(1 – Rm)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 91

Impact of Coverage on System Reliability

Assume Rm = 0.95
Plot R as a function of n for
c = 0.9, 0.95, 0.99, 0.999, 0.9999, 1

c: prob. of correct malfunction detection
and successful reconfiguration

R = Rm
1 – cn(1 – Rm)n

1 – c(1 – Rm)

Unless c is near-perfect,
adding more spares has no
significant effect on reliability

In practice c is not a constant
and may deteriorate with more
spares; so too many spares
may be detrimental to reliability

R

n
2 4 8 16 32

0.9

0.99

0.999

0.9999

0.99999

0.999999

c = 0.9

c = 0.95

c = 0.99

c = 0.999

c = 1
c = 0.9999

Oct. 2023 Part I – Introduction: Dependable Systems Slide 92

3.3 Classes of k-out-of-n Systems

There are n modules, any k of which are
adequate for proper system functioning

V2

3

1

Example: System with 2-out-of-3 voting
Assume perfect voter

R = R1 R2 R3 + R1 R2 (1 – R3) + R2 R3 (1 – R1) + R3 R1 (1 – R2)

With all units having the same reliability Rm and imperfect voter:

R = (3Rm
2 – 2Rm

3) Rv Triple-modular redundancy (TMR)

R = Sj = k to n ()Rm
j (1 – Rm)n–j k-out-of-n system in general

n
j

Assuming that any 2 malfunctions in TMR lead to failure is pessimistic
With binary outputs, we can model compensating errors
(when two malfunctioning modules produce 0 and 1 outputs)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 93

n-Modular Redundancy with Replicated Voters

Voters (all but the final one in a chain) no longer critical components

V2

3

1

V5

6

4

V8

9

7

V2

3

1

5

6

4

V8

9

7V

V

V

V

V

Can model as a series system of 2-out-of-3 subsystems

Oct. 2023 Part I – Introduction: Dependable Systems Slide 94

Consecutive k-out-of-n:G (k-out-of-n:F) System

Units are ordered and the functioning (failure)
of k consecutive units leads to proper system
function (system failure)

Ordering may be linear (usual case) or circular

Example: System of street lights may be considered
a consecutive 2-out-of-n:F system

Example: The following
redundant bus reconfiguration
scheme is a consecutive
2-out-of-4:G system

From
module

Redundant
bus lines

Common control for
shift-switch settings:
up, straight, or down

Oct. 2023 Part I – Introduction: Dependable Systems Slide 95

3.4 Reliability Block Diagrams
The system functions properly if a
string of healthy units connect one
side of the diagram to the other

1 – R = (1 – R1 R2) (1 – R3 R4)

Example: Parallel connection
of series pairs of valves
(tolerates one stuck-on-shut
and one stuck-on-open valve)

3

1

4

2

Example: Series connection
of parallel pairs of valves
(tolerates one stuck-on-shut
and one stuck-on-open valve)

3

1

4

2

R = [1 – (1 – R1)(1 – R3)] 
[1 – (1 – R2)(1 – R4)]

Oct. 2023 Part I – Introduction: Dependable Systems Slide 96

Non-Series/Parallel Systems
The system functions properly if a
string of healthy units connect one
side of the diagram to the other

R = R3  prob(system OK | Unit 3 OK)

+ (1 – R3)  prob(system OK | Unit 3 not OK)

R3OK = [1 – [1 – R1(1 – (1 – R2)(1 – R5))] (1 – R6)]R4

2 431

5

6We can think of Unit 5 as being
able to replace Units 2 and 3

R3OK =R1R5R4

R3OK

R3OK

431

5

6

431

5

6

2 2

Units 2 and 5 in parallel

Oct. 2023 Part I – Introduction: Dependable Systems Slide 97

Analysis Using Success Paths

R  1 – Pi (1 – Rith success path)

R  1 – (1 – R1R5R4) [*]
(1 – R1R2R3R4)(1 – R6R3R4)

2 431

5

6

This yields an upper bound on
reliability because it considers
the paths to be independent

2 431

5

6 43

1 4

With equal module reliabilities:
R  1 – (1 – Rm

3)2 (1 – Rm
4)

If we expand [*] by multiplying out, removing any power for the various
reliabilities, we get an exact reliability expression
R = 1 – (1 – R1R4R5)(1 – R3R4R6 – R1R2R3R4 + R1R2R3R4R6)

= R3R4R6 + R1R2R3R4 – R1R2R3R4R6 + R1R4R5 – R1R3R4R5R6

–R1R2R3R4R5 + R1R2R3R4R5R6 (Verify for the case of equal Rj)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 98

3.5 Reliability Graphs
A reliability graph is a schematic representation of system components,
their interactions, and their roles in proper system operation

Use generalized series-parallel connections to visualize success paths,
which are directed paths from a source node to a sink node (both unique)

Each module name labels one edge: module failure = edge disconnect

An edge labeled “” is never disconnected

A

B

C

D

E

F

G

H

J

L

K
M

Source Sink


N

Oct. 2023 Part I – Introduction: Dependable Systems Slide 99

3.6 The Fault-Tree Method

Quick guide to fault trees: http://www.weibull.com/basics/fault-tree/index.htm

Fault tree handbook:
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf

Top-down approach to failure analysis:

Start at the top (tree root) with an undesirable event called a “top event”
and then determine all the possible ways that the top event can occur

Analysis proceeds by determining how the top event can be caused by
individual or combined lower-level undesirable events

Chapter 38 in Handbook of Performability Engineering, Springer, 2008

Example:
Top event is “being late for work”
Clock radio not turning on, family emergency, bus not running on time
Clock radio won’t turn on if there is a power failure and battery is dead

Oct. 2023 Part I – Introduction: Dependable Systems Slide 100

Fault Tree Analysis: The Process

Basic events (leaf, atomic) Composite events

1. Identify “top event”

2. Identify -level contributors to top event

3. Use logic gate to connect 1st level to top

4. Identify 2nd-level contributors

5. Link 2nd level to 1st level

AND gate

OR gate

Other
symbols

XOR
(not used

in reliability
analysis)

k/n k-out-of-n
gate

External
event

Enabling
condition

Inhibit
gate

6. Repeat until done

Oct. 2023 Part I – Introduction: Dependable Systems Slide 101

Fault Tree Analysis: Cut Set
A cut set is any set of initiators so that the
failure of all of them induces the top event

Minimal cut set: A cut set for which
no subset is also a cut set

Minimal cut sets for this example:
{a, b}, {a, d}, {b, c}

Just as logic circuits can be transformed to
different (simpler) ones, fault trees can be
manipulated to obtain equivalent forms

da b

cb

Path set: Any set of initiators so that if all
are failure-free, the top event is inhibited
(to derive path sets, exchange AND gates
and OR gates and then find cut sets)

What are the path sets for this example?

Oct. 2023 Part I – Introduction: Dependable Systems Slide 102

Converting Fault Trees to Reliability Block Diagrams
Minimal cut sets for this example:
{a, b}, {a, d}, {b, c}

Another example:
Minimal cut set {a,b}, {a,c}, {a,d}, {c,d,e, f}

da b

cb

Construct a fault tree for the above
Derive a reliability block diagram
What are the path sets for this example?

Applications of cut sets:
1. Evaluation of reliability
2. Common-cause failure assessment
3. Small cut set  high vulnerability

b

a

d b

c

Oct. 2023 Part I – Introduction: Dependable Systems Slide 103

Hierarchy of Combinational Models

Fault trees
with repeated elements

Reliability graphs

Reliability
block diagrams

Fault trees
with no repetition

Oct. 2023 Part I – Introduction: Dependable Systems Slide 104

4 State-Space Modeling

Oct. 2023 Part I – Introduction: Dependable Systems Slide 105

Oct. 2023 Part I – Introduction: Dependable Systems Slide 106

Oct. 2023 Part I – Introduction: Dependable Systems Slide 107

What Is State-Space Modeling?
With respect to availability of resources and computational capabilities,
a system can be viewed as being in one of several possible states

State transitions:
System moves from one state to another
as resource availability and computational
power change due to various events

State-space modeling entails quantifying
transition probabilities so as to determine the
probability of the system being in each state;
from this, we derive reliability, availability,
safety, and other desired parameters

The number of states can be large, if we want to make fine distinctions,
or it can be relatively small if we lump similar states together

Great

Lousy

Good

So-so

0.86

0.08

0.04

0.02

Oct. 2023 Part I – Introduction: Dependable Systems Slide 108

4.1 Markov Chains and Models
Represented by a state diagram with transition probabilities
Sum of all transition probabilities out of each state is 1

s(t + 1) = s(t) M
s(t + h) = s(t) Mh

The state of the system is characterized by the vector (s0, s1, s2, s3)
(1, 0, 0, 0) means that the system is in state 0
(0.5, 0.5, 0, 0) means that the system is in state 0 or 1 with equal prob’s
(0.25, 0.25, 0.25, 0.25) represents complete uncertainty

0

3

1

2

0.3

0.5 0.4

0.1

0.3
0.4

0.1

0.2

Must sum to 1

Transition matrix: M =

0.3 0.4 0.3 0
0.5 0.4 0 0.1
0 0.2 0.7 0.1
0.4 0 0.3 0.3

Example:
(s0,s1,s2,s3) = (0.5, 0.5, 0, 0)M = (0.4, 0.4, 0.15, 0.05)
(s0,s1,s2,s3) = (0.4,0.4,0.15,0.05)M = (0.34,0.365,0.225,0.07)

Markov matrix
(rows sum to 1)

Self loops
not shown

Oct. 2023 Part I – Introduction: Dependable Systems Slide 109

Stochastic Sequential Machines
Transition taken from state s under input j is not uniquely determined
Rather, a number of states may be entered with different probabilities

There will be a separate transition (Markov) matrix for each input value

0

3

1

2

0.3

0.5 0.4

0.1

0.3
0.4

0.1

0.2

Transitions, j = 0: M =

0.3 0.4 0.3 0
0.5 0.4 0 0.1
0 0.2 0.7 0.1
0.4 0 0.3 0.3

A Markov chain can be viewed as a
stochastic sequential machine with no input

Self loops and
transitions for j = 1

not shown

Transitions, j = 1: M =

0.5 0.2 0.1 0.2
0.1 0.4 0.4 0.1
0.3 0 0.2 0.5
0.2 0.6 0 0.2

Oct. 2023 Part I – Introduction: Dependable Systems Slide 110

Sample Applications of Markov Modeling

“Hidden Markov Model” for recognition problems

Markov model for
programmer workflow

Oct. 2023 Part I – Introduction: Dependable Systems Slide 111

Merging States in a Markov Model

l
m

011

110

101
All solid lines l
Dashed lines m

111 010

100

000

001

3l
3

m

2l
2

m

l
1

m
0

Failed state if TMR

Simpler equivalent
model for 3-unit
fail-soft system

Whether or not states are merged
depends on the model’s semantics

There are three
identical units
1 = Unit is up
0 = Unit is down

Oct. 2023 Part I – Introduction: Dependable Systems Slide 112

4.2 Modeling Nonrepairable Systems

Reliability as a function of time:
R(t) = p1(t) = e–lt

Rate of change for the probability of
being in state 1 is –l
p1 = –lp1

p1 + p0 = 1

1 0
l

Two-state system:
the label l on this
transition means
that over time dt, the
transition will occur
with probability ldt
(we are dealing with
a continuous-time
Markov model)

p0 = 1 – e–lt

p1 = e–lt

1

Time

Initial condition: p1(0) = 1

Start
state Failure

Up Down

Oct. 2023 Part I – Introduction: Dependable Systems Slide 113

k-out-of-n Nonrepairable Systems

n n – 1 nl n – 2 (n–1)l k k – 1 kl… 0 …

pn = –nlpn

pn–1 = nlpn – (n – 1)lpn–1.
.
.
pk = (k + 1)lpk+1 – klpk

pn + pn–1 + . . . + pk + pF = 1

F

pn = e–nlt

pn–1 = ne–(n–1)lt(1 – e–lt)
.
.
.
pk = ()e–(n–k)lt(1 – e–lt)k

pF = 1 – Sj=k to n pj

n
k

Initial condition: pn(0) = 1

In this case, we do not need to resort to more general method of solving
linear differential equations (LaPlace transform, to be introduced later)

The first equation is solvable directly, and each additional equation
introduces only one new variable

Oct. 2023 Part I – Introduction: Dependable Systems Slide 114

4.3 Modeling Repairable Systems

Availability as a function of time:
A(t) = p1(t) = m/(l + m) + l/(l + m) e–(l+m)t

Derived in a later slide

In steady state (equilibrium), transitions
into/out-of each state must “balance out”

–lp1 + mp0 = 0
p1 + p0 = 1

1 0
l

m

The label m on this
transition means
that over time dt,
repair will occur with
probability mdt
(constant repair rate
as well as constant
failure rate)

p1 = m/(l + m)
p0 = l/(l + m)

1

Steady-state availability

Time

Repair

Start
state

Failure

Up Down

Oct. 2023 Part I – Introduction: Dependable Systems Slide 115

Multiple Failure States

Safety evaluation:

Total risk of system is Sfailure states cj pj

In steady state (equilibrium), transitions
into/out-of each state must “balance out”

–lp2 + mp1 + mp0 =0
–mp1 + l1p2 = 0
p2 + p1 + p0 = 1

p2 = m/(l + m)
p1 = l1/(l + m)
p0 = l0/(l + m)

Failure state j has
a cost (penalty) cj

associated with it

l1

m

2

0

1

l0

m

l1 + l0 = l

1

Time

p2(t)

p1(t)

p0(t)

Failed,
type 1

Failed,
type 2

Failure

Failure

Start state

Good

Repair

Repair

Oct. 2023 Part I – Introduction: Dependable Systems Slide 116

4.4 Modeling Fail-Soft Systems

Performability evaluation:

Performability = Soperational states bj pj

–l2p2 + m2p1 = 0
l1p1 – m1p0 = 0
p2 + p1 + p0 = 1

p2 = d
p1 = dl2/m2

p0 = dl1l2/(m1m2) Operational state j
has a benefit bj

associated with it

l2

m1

2 01
l1

m2Let d = 1/[1+ l2/m2+ l1l2/(m1m2)]

Example: l2 = 2l, l1 = l, m1 = m2 = m (single repairperson or facility),
b2 = 2, b1 = 1, b0 = 0

P = 2p2 + p1 = 2d + 2dl/m = 2(1 + l/m)/(1+2 l/m+ 2l2/m2)

2 01
Start
state

Repair

Failure

Partial repair

Partial failure

Oct. 2023 Part I – Introduction: Dependable Systems Slide 117

Fail-Soft System with Imperfect Coverage
–l2p2 + m2p1 = 0
l2(1 – c)p2 + l1p1 – m1p0 = 0
p2 + p1 + p0 = 1

If a unit’s malfunction
goes undetected,
the system fails

l2c

m1

2 01
l1

m2
We solve this in the
special case of l2 = 2l,
l1 = l, m2 = m1 = m

Let r = m / l

We can also consider coverage for the repair direction

l2(1 – c)

2 01
Start
state

Repair

Failure

Partial repair

Partial failure

p0 = 2[(1 – c)r + 1]/ [1+ (4 – 2c)r + 2r2]

p1 = 2r/ [1 + (4 – 2c)r + 2r2]

p2 = r2/ [1 + (4 – 2c)r + 2r2]

Oct. 2023 Part I – Introduction: Dependable Systems Slide 118

4.5 Solving Markov Models

1 0
l

m

To solve linear differential equations with constant coefficients:
1. Convert to algebraic equations using LaPlace transform
2. Solve the algebraic equations
3. Use inverse LaPlace transform to find original solutions

p1(t) = –lp1(t) + mp0(t)
p0(t) = –mp0(t) + lp1(t)

sP1(s) – p1(0) = –lP1(s) + mP0(s)
sP0(s) – p0(0) = –mP0(s) + lP1(s)

P1(s) = (s + m) / [s2 + (l + m)s]
P0(s) = l / [s2 + (l + m)s]

1

0

p1(t) = m/(l + m) + l/(l + m) e–(l+m)t

p0(t) = l/(l + m) – l/(l + m) e–(l+m)t

LaPlace Transform Table
Time domain Xform domain
k k/s
e–at 1/(s + a)
tn–1e–at/(n–1)! 1/(s + a)n

kh(t) kH(s)
h(t)+ g(t) H(s)+ G(s)
h(t) sH(s) –h(0)

Start
state

Oct. 2023 Part I – Introduction: Dependable Systems Slide 119

Inverse LaPlace Transform

1 0
l

m

To find the solutions via inverse LaPlace transform:
1. Manipulate expressions into sum of terms, each of which takes

one of the forms shown under H(s)
2. Find the inverse transform for each term

(s + m) / [s2 + (l + m)s] =
1/[s + (l + m)] + m/[s2 + (l + m)s]

P1(s) = (s + m) / [s2 + (l + m)s]
P0(s) = l / [s2 + (l + m)s]

LaPlace Transform Table
Time domain Xform domain
k k/s
e–at 1/(s + a)
tn–1e–at/(n–1)! 1/(s + a)n

kh(t) kH(s)
h(t)+ g(t) H(s)+ G(s)
h(t) sH(s) –h(0)

Start
state

1/[s2 + (l + m)s] = a/s + b/[s + (l + m)]

1 = a[s + (l + m)] + bs  a + b = 0

a = 1/(l + m) b = –1/(l + m)

Oct. 2023 Part I – Introduction: Dependable Systems Slide 120

4.6 Dependability Modeling in Practice
A birth-and-death process is a special case of Markov model with states
appearing in a chain and transitions allowed only between adjacent states

This model is used in queuing theory, where the customers’ arrival rate
and provider’s service rate determine the queue size and waiting time

Transition from state j to state j + 1 is an arrival or birth

Transition from state j to state j – 1 is a departure or death

Closed-form solution for state probabilities are difficult to obtain in general

Steady-state prob.’s are easily obtained: pj = p0 l0l1 ... lj–1 / (m1m2 ... mj)

l0

m2

0 1

l1

m1

l2

3

m3

2 n

Number of states
is finite or infinite

Oct. 2023 Part I – Introduction: Dependable Systems Slide 121

Birth-and-Death Process: Special Case 1
Constant arrival (birth) and departure (death) rates, infinite chain

Ex.: Bank customers arriving at random, and a single teller serving them
(State number is the customer queue size)

Let r = l / m be the ratio of birth and death rates

l

m

0 1

l

m

l
3

m

2

Steady-state prob.’s for the general case: pj = p0 l0l1 ... lj–1 / (m1m2 ... mj)

When li = l and mi = m, we have: pj = p0(l/m)j = p0 rj

p0(1 + r + r2 + . . .) = 1 yields p0 = 1 – r and pj = (1 – r)rj

Finite chain: If n is the last state, then pn = (1 – r)(rn + rn+1 + . . .) = rn

. . .

. . .

Oct. 2023 Part I – Introduction: Dependable Systems Slide 122

Birth-and-Death Process: Special Case 2
Gracefully degrading system with n identical modules

State k corresponds to k modules being unavailable

If there are s identical service providers (repair persons), the departure
or death transition rate is capped at sm

Steady-state probabilities for the n + 1 states with s service providers
(M/M/s/n/n queue) can be found:

pj = (n – j + 1) (l/m) pj–1/ j for j = 1, 2, . . . , s

pj = (n – j + 1) (l/m) pj–1/ s for j = s + 1, s + 2, . . . , n

nl

m

0 1

(n – 1)l

m

(n – 2)l
3

m

2 n

2m 2m
3m

m
2m

nm

l

...

Equation for p0

[Siew92], p. 347

Oct. 2023 Part I – Introduction: Dependable Systems Slide 123

TMR System with Repair

Mean time to failure evaluation:
See Textbook’s Example 4.11 for derivation
MTTF = 5/(6l) + m/(6l2) = [5/(6l)](1 + 0.2m/l)

–3lp3 + mp2 = 0
–(m + 2l)p2 + 3lp3 = 0
p3 + p2 + pF = 1

Assume the voter is perfect
Upon first module malfunction,
we switch to duplex operation
with comparison

3l
3 F2 2l

m

Steady-state analysis of no use
p3 = p2 = 0, pF = 1

MTTF Comparisons (l = 10–6/hr, m = 0.1/hr)
Nonredundant 1/l 1M hr
TMR 5/(6l) 0.833M hr
TMR with repair [5/(6l)](1 + 0.2m/l) 16,668M hr

MTTF
for TMR

Improvement
due to repair

Improvement
factor

Oct. 2023 Part I – Introduction: Dependable Systems Slide 124

The Dependability Modeling Process

Choose modeling approach
Combinational
State-space

Solve model

Derive model parameters

Interpret results

Validate model and results

Construct model

Iterate until
results are
satisfactory

Oct. 2023 Part I – Introduction: Dependable Systems Slide 125

Software Aids for Reliability Modeling
PTC Windchill (formerly Relex; specializes in reliability engineering)

Fault tree analysis; Markov analysis
https://www.ptc.com/en/products/windchill

Iowa State University
HIMAP: http://ecpe.ece.iastate.edu/dcnl/Tools/tools_HIMAP.htm

University of Virginia
Galileo (manual): http://www.cs.virginia.edu/~ftree/

See Appendix D, pp. 504-518, of [Shoo02] for more programs

Virginia Tech thesis (2004): “Tools and Techniques for Evaluating
Reliability Trade-offs for Nano-Architectures”
https://vtechworks.lib.vt.edu/bitstream/handle/10919/9918/bhaduri_debayan_thesis.pdf

More limited tools from MATLAB or some MATLAB-based systems
Nanolab: IEEE Trans. Nanotechnology, Vol. 4, No. 4, pp. 381-394, July 2005

