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9  Fault Testing
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The good news is that 
the tests don’t show 
any other problems
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9.1  Overview and Fault Models

The faulty state
and transitions into and out of it

Burn-in testing

Fault testing

Fault removal
Fault 
masking

Error removal
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TEST GENERATION 
(Preset/Adaptive)

TEST VALIDATION TEST APPLICATION

FUNCTIONAL 
(Exhaustive/ 
Heuristic)

STRUCTURAL 
(Analytic/ 
Heuristic)

THEORETICAL EXPERIMENTAL EXTERNALLY 
CONTROLLED

INTERNALLY 
CONTROLLED

FAULT 
MODEL 
switch- 
or gate- 
level 
(single/ 
multiple 
stuck-at, 
bridging, 
etc.)

FAULT 
COVER- 
AGE

DIAG- 
NOSIS 
EXTENT 
none 
(check- 
out, go/ 
no-go)  
to full 
resolu- 
tion

ALGO- 
RITHM 
D-algo- 
rithm, 
boolean 
differ- 
ence, 
etc.

SIMULA- 
TION 
software 
(parallel, 
deductive, 
concur- 
rent) or 
hardware 
(simulation 
engine)

FAULT 
INJEC- 
TION

MANUAL AUTO- 
MATIC 
(ATE)

TEST 
MODE 
(BIST)

CONCUR- 
RENT 
on-line 
testing 
(self- 
checked 
design)

FAULT TESTING
(Engineering, Manufacturing, Maint enance)

off-line testing

FAULT TESTINGA Taxonomy of 
Fault Testing

Correct design?
Correct implementation?
Correct operation?

Engineering
Manufacturing

Maintenance

Off-line testing
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Requirements and Setup for Testing

Reference value

Test pattern
source

Circuit under test
(CUT)

Comparator
Pass/Fail

Testability requires controllability and observability
(redundancy may reduce testability if we are not careful; e.g., TMR)

Reference value can come from a “gold” version or from a table

Test patterns may be randomly generated, come from a preset list, 
or be selected according to previous test outcomes

Test results may be compressed into a “signature” before comparing

Test application may be off-line or on-line (concurrent)

Easier to test if direct access to 
some inner points is possible
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Importance and Limitations of Testing

“Trying to improve software quality by increasing the amount of 
testing is like trying to lose weight by weighing yourself more often.”
Steve C. McConnell

“Program testing can be used to show the presence of bugs, 
but never to show their absence!”  Edsger W. Dijkstra

Test coverage may be well below 100% (model inaccuracies and 
impossibility of dealing with all combinations of the modeled faults)

Important to detect faults as early as possible
Approximate cost of catching a fault at various levels

Component $1
Board $10
System $100
Field $1000
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Fault Models at Different Abstraction Levels
Fault model is an abstract specification of the types of deviations in 
logic values that one expects in the circuit under test

Can be specified at various levels: transistor, gate, function, system

Transistor-level faults 
Caused by defects, shorts/opens, electromigration, transients, . . .
May lead to high current, incorrect output, intermediate voltage, . . .
Modeled as stuck-on/off, bridging, delay, coupling, crosstalk faults
Quickly become intractable because of the large model space

Function-level faults 
Selected in an ad hoc manner based on the function of a block
(decoder, ALU, memory)

System-level faults (malfunctions, in our terminology) 
Will discuss later in Part V
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Gate- or Logic-Level Fault Models
Most popular models (due to their accuracy and relative tractability)

Line stuck faults
Stuck-at-0 (s-a-0)
Stuck-at-1 (s-a-1)

Line open faults 
Often can be modeled as s-a-0 or s-a-1

Delay faults (less tractable than the previous fault types)
Signals experience unusual delays

A

B

C

S

K

s-a-0
Line bridging faults

Unintended connection
(wired OR/AND)

Short
(OR)

Open

Other faults
Coupling, crosstalk
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9.2  Path Sensitization and D-Algorithm
The main idea behind test design: control the faulty point from inputs 
and propagate its behavior to some output

Example: s-a-0 fault
Test must force the line to 1

This method is formalized in 
the D-algorithm

A

B

C

S

K

s-a-0
1/0

1

1

1/0

0

1/0

Two possible tests
(A, B, C) = (0 1 1)  or  (1 0 1)

Forward trace
(sensitization)

Backward trace

D-calculus
1/0 on the diagram above is represented as D
0/1 is represented as D
Encounters difficulties with XOR gates (PODEM algorithm fixes this)
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Selection of a Minimal Test Set
Each input pattern detects a subset of all possible faults of interest 
(according to our fault model)

A

B

C

S

K

E

F

G

H

J

L

NM

P

R

Q

Choosing a minimal test set is a covering problem

A B C P Q
s-a-0  s-a-1 s-a-0  s-a-1

0 0 0 - - - x
0 0 1 - x - x
0 1 1 x     - x    -
1 0 1 x     - x    -

Equivalent faults:  e.g., P s-a-0  L s-a-0  Q s-a-0
Q s-a-1  R s-a-1  K s-a-1
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Capabilities and Complexity of D-Algorithm

Reconvergent fan-out
Consider the s input s-a-0

PODEM solves the 
problem by setting y to 0

1

1

D 1
D

D

zs

y

x

Worst-case complexity of D-algorithm is exponential in circuit size
Must consider all path combinations
XOR gates cause the behavior to approach the worst case
Average case is much better; quadratic

PODEM: Path-oriented decision making
Developed by Goel in 1981
Also exponential, but in the number of circuit inputs, not its size

Simple path sensitization does 
not allow us to propagate the 
fault to the primary output z
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9.3  Boolean Difference Methods
K = f(A, B, C) = AB  BC  CA

dK/dB =  f(A, 0, C)  f(A, 1, C)
=  CA  (A  C) 
=  A  C

A

B

C

S

K

E

F

G

H

J

L

NM

P

R

Q
s-a-0

K = PC  AB

dK/dP =  AB  (C  AB) = C(AB)

Tests that detect P s-a-0 are solutions to the equation P dK/dP = 1

(A  B) C(AB) = 1  C = 1, A  B

Tests that detect P s-a-1 are solutions to the equation P dK/dP = 1

(A  B) C(AB) = 1  C = 1, A = B = 0
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9.4  The Complexity of Fault Testing
The satisfiability problem (SAT)
Decision problem: Is a Boolean expression satisfiable? 
(i.e., can we assign values to the variables to make the result 1?)

Theorem (Cook, 1971): SAT is NP-complete
In fact, even restricted versions of SAT remain NP-complete

Theorem (Cook, 1971): 3SAT is NP-complete
In 3SAT, the logic expression is a product of 3-term OR clauses

According to the Boolean difference formulation, fault detection can 
be converted to SAT (find the solutions to P dK/dP = 1)

To prove the NP-completeness of fault detection, we need to show 
that SAT (or another NP-complete problem) can be converted to it

Proof of NP-completeness is due to Ibarra and Sahni [Ibar75]
A simple alternate proof by Fujiwara [Fuji82] is in the textbook
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Proof that Fault Detection is NP-Complete
Theorem (Cook, 1971): 3SAT is NP-complete

Clause-monotone SAT can be converted to fault detection in a circuit

First level has ANDs for all clauses with complemented variables

Second level has ORs for all clauses with uncomplemented variables, plus 
an OR gate with level-1 outputs as its inputs (one input to this gate is y)

Third level has one AND gate that receives all level-2 outputs as its inputs
A test for y s-a-1 satisfies the original clause-monotone expression

Theorem: Clause-monotone SAT (CM-SAT) is NP-complete

CM-SAT has OR clauses each of which consists entirely of complemented 
or uncomplemented variables, but not both

3SAT can be converted to CM-SAT by replacing each mixed OR clause 
with the product of two clauses involving a new variable
Example: (xi  xj  x k) is replaced by (xi  xj  vk)(v k  x k)
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9.5  Testing of Units with Memory
The presence of memory expands the number of required test cases

To test a sequential machine, we may need to apply different input 
sequences for each possible initial state

Exponentially many possible input sequences

Exponentially many possible machine states
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Testing of Memory
Simple-minded approach: Write 000 . . . 00 and 111 . . . 11 into every 
memory word and read out to verify proper storage and retrieval

Problems with the simple-minded approach:

 Does not test access/decoding mechanism – How do you know 
the intended word was written into and read from?

 Many memory faults are pattern-sensitive, where cell operation 
is affected by the values stored in nearby cells

 Modern high-density memories experience dynamic faults that 
are exposed only for specific access sequences

Memory testing continues to be an active research area

Built-in self test is the only viable approach in the long term

Challenge: Any run time testing consumes some memory bandwidth
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9.6  Off-Line vs. Concurrent Testing
This section will be forthcoming.
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10  Fault Masking
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10.1  Fault Avoidance vs. Masking

Repair Discard Abort

Prevent Remove Expose Mask

Avoid Tolerate

Fault

Quality Assurance Testing Dynamic Redundancy Static Redundancy

Full? Full?

MonitorTest

Yes YesNo No

Perfect Fixed Restored UnaffectedInjured Screened Faulty-safe DegradedFaulty

Detect Miss DetectMiss

C i r c u i t     o r     S y s t e m     S t a t e

Reconfigure

Mask

Conceal
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10.2  Interwoven Redundant Logic

0  1 fault in b is critical
b
c

a

d f

g
e

h
z

1

0 0

0

0

0
1

0 0
0  1 fault in c or d is 
not critical (it is masked)

1  0 fault in a or h is 
not critical (it is masked)

Even nonredundant circuits have some masking capability

Is there a way to exploit the inherent masking capabilities 
of logic gates to achieve general fault masking?
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How Interwoven Logic Works

Let x1, x2, x3, and x4 be 
4 copies of the signal x

1  0

b
c

a

d f

g
e

h
z

1  0

a1
a2
b1
b2

a1
a2
b1
b2

a3
a4
b3
b4

a3
a4
b3
b4

e1

e2

e3

e4

f1

f2

f3

f4

e1
e4
f1
f4

1  0 change is critical for AND, 
subcritical for OR

0  1 change is critical for OR, 
subcritical for AND

To mask h critical faults: 
Number of gates multiplied by (h + 1)2

Gate inputs multiplied by h + 1

For h = 1, the scheme is known as 
Quadded logic

Alternating layers of ANDs and ORs 
can mask each other’s critical faults

1

1 1

1
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Interwoven Logic for Nanoelectronics
Half-adder implemented in quadded logic

From: http://ieeexplore.ieee.org/iel5/54/32070/01492293.pdf

IEEE D&T
July-Aug. 2005
pp. 328-339

b

c

a
s

b
a

c

s
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Highly Reliable Logic with “Crummy” Relays

Moore & Shannon, 1956

a: prob [contact made | energized]
1 – a: prob [contact open | energized]
c: prob [contact made | not energized]
1 – c: prob [contact open | not energized]

“Make” contact
(normally open)

a > c

“Break” contact
(normally closed)

a < c

x y

xy1

No matter how crummy the relays
(i.e., how close the values of a and c), 
one can interconnect many of them in 
a redundant series-parallel structure 
to achieve arbitrarily high reliability

prob [connection made | energized] = 
2a2 – a4 (> a if a > 0.62)

prob [connection made | not energized] = 
2c2 – c4 (always < c)

x x

x x

a > 0.5, c < 0.5
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10.3  Static Redundancy with Replication

Condition on the module reliability:

R = Rm [1 + (1 – Rm)(2Rm – 1)]

(1 – Rm)(2Rm – 1) > 0    Rm > 1/2

V2

3

1
Voting unit

R

Rm
1.0

0.0

1.0

0.50.0

0.5

TMR better

Simplex better

RIFTMR/Simplex = (1 – Rm)/(1 – R) 
= 1/[1 – Rm(2Rm – 1)]

R = 3Rm
2 – 2Rm

3 >  Rm
?

TMR:

lt

R

0

0.5

1.0

ln 2
0.0

TMR

Simplex

MTTF: TMR 5/(6l)

Simplex 1/l

15
6
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A TMR Application and Its Bit-Voting Unit

Single-event upset (SEU) = Soft error
Change of state caused by a high-energy particle strike 

SEU effect on DRAMs 
(from SANYO website)

n+ diffusion layer

pn junction field
due to impact

TMR flip-flop for SEU tolerance

D Q

C

D Q

C

D Q

C

0

1

Data

Clock

Output0
1
2
3

Mux
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Example: SEU Hardened Flip-Flop

D

G

B

A

B

A

B

A

S

S

S

Y

Y

Y

ANQ

BNQ

CNQ

Y

Y

Y

A

A

A

A

B

C

Y

Y

Y

A

A

A

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

Y

Y

Y

AFB

BFB

CFB

A          Y

For list of flip-flop hardening methods and their comparison, see:
http://klabs.org/richcontent/fpga_content/pages/notes/seu_hardening.htm
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N-Modular Redundancy (NMR)

Triple-modular redundancy (TMR) can be generalized to N units

N-modular redundancy (NMR) uses N modules along with a voter, 
with N usually being odd

Example: 5MR
Operates correctly as long as 
3 of the 5 modules are healthy V2

3

1
Voting unit

1

2

3

4

5

Voter complexity rises rapidly 
with increasing N

Even values of N are also feasible

Example: 4MR, with 3-out-of-4 voting
Voter masks single faults; can be designed to detect double faults
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10.4  Dynamic and Hybrid Redundancy
1. Detect and replace

Dynamic redundancy (cold/hot standby)
Detection via 
-- coding, watchdog timer, self-checking
-- duplication (pair-and-spares)

2. Mask in place
Static redundancy
May revert to simplex instead of duplex
Design challenges include
-- synchronization for voting
-- voting on imprecise results

3. Mask, diagnose, and reconfigure
Hybrid redundancy
Fault masked at output, but diagnosed
-- e.g., via comparison with voter output
Faulty circuit is replaced by spare
Becomes static upon spare exhaustion

V2

3

1
Voting unit

D

2

1
Detector

Spare

VS
2

3

1

4 Switch-voter
Spare
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Comparing Replication Schemes
Advantages Drawbacks

Less power Coverage factor
(cold standby)

Long life Tolerance latency
(just add spares)

Immediate masking Power/area penalty

High safety Voting critical

Immediate masking Power/area penalty

Long life and Switch-voting critical
high safety

V2

3

1
Voting unit

D

2

1
Detector

Spare

VS
2

3

1

4 Switch-voting
unitSpare
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Switch for Standby Redundancy
Standby redundancy requires an 
n-to-1 switch to select the output 
of the currently active module

The detectors use various info 
to deduce fault conditions
-- Error coding
-- Reasonableness checks
-- Watchdog timer

D

2

1
Detector

Spare

D

2

1

Spares

D

3 D

n-to-1 
switch

Once a fault has been detected, 
the switch reconfigures the system 
by flagging the faulty unit and 
activating next spare in sequence

If we use an n-to-2 switch and compare the two selected outputs, 
the configuration is known as “pair-and-spares”
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Fault Detection in Standby Redundancy

Activity monitoring D

2

1
Detector

Spare

Duplication and comparison

Self-checking design
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Preview of Self-Checking Design

Covered in Chapter 15 Function
unit

Status

Encoded 
input

Encoded 
output

Self-checking 
checker

Function
unit 1

Encoded 
input

Self-checking 
checker

Function
unit 2

Encoded 
output

Self-checking 
checker

Function unit designed 
such that internal faults manifest 
themselves as invalid outputs

Can remove this checker 
if we do not expect both units 
to fail and Function unit 2 
translates any noncodeword 
input into noncode output

Output of multiple checkers may be 
combined in self-checking manner
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Switch for Hybrid Redundancy
Hybrid redundancy with n active 
and s spare modules requires an 
(n + s)-to-n switch to select the 
outputs of the active modules

Self-purging redundancy is a variant 
of hybrid redundancy in which all 
modules are active at the outset, 
but they are purged as they 
disagree with the majority output

VS
2

3

1

4 Switch-voting
Spare

Voting unit in self-purging 
redundancy is a threshold voter that 
considers the inputs with weights of 
1 (active) or 0 (purged) Switch built of 

iterative cells

...
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10.5  Time Redundancy
Retry upon a detected fault: particularly useful for transient faults

Recomputation not useful with permanent faults

Can make recomputation work by slightly changing the operands, 
but this is not always applicable

Compute a  (2b) instead of (2a)  b

Compute b + a or –(–a – b) instead of a + b
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10.6  Variations and Complications

Static redundancy makes fault testing more challenging

For static redundancy to be effective, we must ensure that initially all 
redundant components are fault-free

Mode

0

1

2

3

V2

3

1
Voting unitVoting unit

Controllable, 
but not 
observable
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Applications of NMR and Hybrid Redundancy

NASA’s Space Shuttle (retired in 2012):

Used 5-way redundancy in hardware
Originally, 3 operational units + 2 spares 

(one warm, one cold)
More recently, 4 operational + 1 spare

Also, uses 2 independently developed 
software systems (Design diversity)

Japanese Shinkansen “Bullet” Train

Triple-duplex system (6-fold redundancy)
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11  Design for Testability
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"Someone in this house flunked his earth science 
test because someone else in this house told him 
that love makes the world go around!"
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11.1  The Importance of Testability
A small circuit with a limited number of inputs and outputs can be 
tested with a reasonable amount of effort and time

A complex unit, such as a microprocessor, cannot be tested solely 
based on its input/output behavior

Hence, the  need for provisions in the design to facilitate testing
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11.2  Testability Modeling

To allow detection of a fault in point A of a logic circuit, we need to:

Be able to control that point from the primary inputs

Be able to observe that point from the primary outputs

Thus, good testability requires 
good controllability and 
good observability

for every node in the circuit

Circuit under test (CUT)

A
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Quantifying Controllability

N(0) = 7
N(1) = 1
CTF = 0.25

N(0) = 1
N(1) = 7
CTF = 0.25

Coutput = (Si Cinput i /k)  CTF

1.0
0.3
0.5

0.15

A line with very low controllability 
is a good test point candidate

0

Control point

Controllability C of a line has a 
value between 0 and 1 

Derive C values by proceeding 
from inputs (C = 1) to outputs

k-input, 1-output components

f-way fan-out C
C / (1 + log2 f)
for each of f
fan-out lines

Controllability transfer factor

CTF = 1 – N(0) – N(1)
N(0) + N(1)

N(0): # input patterns leading to 0 output
N(1): # input patterns leading to 1 output
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Quantifying Observability

0.15
0.15
0.15

0.6

A line with very low observability 
is a good test point candidate

1

Observation point

k-input, 1-output components

N(sp) = 1
N(ip) = 3
OTF = 0.25

Oinput i = Ooutput  OTF

f-way fan-out 1 – Pj(1 – Oj) Oj for line j

Observability O of a line has a 
value between 0 and 1 

Derive O values by proceeding 
from outputs (O = 1) to inputs

Observability transfer factor

OTF = N(sp)
N(sp) + N(ip)

N(sp): # ways of sensitizing a path to output
N(ip): # ways of inhibiting a path to output

N(sp) = 1
N(ip) = 3
OTF = 0.25
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Quantifying Testability

Testability = Controllability  Observability 

1.0
0.3
0.5

0.15

Controllabilities

0.15
0.15
0.15

0.6

Observabilities

0.15
0.045
0.075

0.09

Testabilities

Overall testability of a circuit = Average of line testabilities 
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11.3  Testpoint Insertion
Increase controllability and observability via the insertion of degating 
mechanisms and control points

Design for dual-mode operation
Normal mode
Test mode

Degate

Control/Observe

A B

Muxes

Partitioned
design

A B

Normal mode

A B

Test mode
for A
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11.4  Sequential Scan Techniques
Increase controllability and observability via provision of mechanisms 
to set and observe internal flip-flops

Scan design
Shift desired states into FF
Shift out FF states to observe

Combinational logic...

FF FF

...

Mode control

Combinational logic...

FF FF

...

Partial scan design:
Mitigates the excessive overhead 
of a full scan design
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11.5  Boundary Scan Design

Allows us to apply arbitrary 
inputs to circuit parts whose 
inputs would otherwise not 
be externally accessible

Boundary scan elements of 
multiple parts are cascaded 
together into a scan path

Any digital circuit

Scan in

Scan out

Test clock

Mode select

From: http://www.asset-intertech.com/pdfs/boundaryscan_tutorial.pdf

Parallel out

Parallel in
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Basic Boundary Scan Cell

From: http://www.asset-intertech.com/pdfs/boundaryscan_tutorial.pdf
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11.6  Built-in Self-Test (BIST)
Reference value

Test pattern
source

Circuit under test
(CUT)

Comparison
Pass/Fail

Test patterns may be generated (pseudo)randomly – e.g., via LFSRs

Decision may be based on compressed test results

Ordinary testing

Test pattern
generation

Circuit under test
(CUT)

Decision
Pass/Fail

Built-in self-testing
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12  Replication and Voting
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“Fire. Bad. Those in favour?”
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12.1  Hardware Redundancy Overview
Data path methods:
Replication in space (costly)

Duplicate and compare
Triplicate and vote
Pair-and-spare
NMR/hybrid

Replication in time (slow?)
Recompute and compare
Recompute and vote
Alternating logic
Recompute after shift
Recompute after swap
Replicate operand segments

Mixed space-time replication
Monitoring (imperfect coverage)

Watchdog timer
Activity monitor

Low-redundancy coding
Parity prediction
Residue checking
Self-checking design

Control unit methods:
Coding of control signals
Control-flow watchdog
Self-checking design

Data path

.

.

.

.

.

.

…
…

…
…

…

…
Inputs Outputs

Control unit

Control 
signals

Condition 
signalsGlue logic

Glue logic methods:
Self-checking design
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12.2  Replication in Space

Pair-and-spare

VS
2

3

1

4 Switch-voting unit
Spare

V2

3

1
Voting unit

C

1

Comparator

2 Error

C

1

Comparators

2 Error

C

1

2 Error

S

Switch

NMR/Hybrid

Duplicate and compare

Triplicate and vote

The following schemes have 
already been discussed in 
connection with fault masking
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TMR with Imperfect Voting Unit

Condition on the voting unit reliability
Rv > 1 / [3Rm – 2Rm

2]
V2

3

1
Voting unit

TMR better

Rv

Rm
0.5 1.0

0.885

0.95

0.75
0.56 0.94

Simplex better

Condition on the module reliability

3 – 9 – 8/Rv

4
3 +   9 – 8/Rv

4
< Rm <

dRv
min/dRm = (–3+4Rm) / (3Rm –2Rm

2)2

Example: Rv = 0.95 requires that
0.56 < Rm < 0.94

R = Rv(3Rm
2 – 2Rm

3) > Rm
?

When Rv = 1 – e is close to 1, we have 
1/Rv  1 + e and (1 – 8e)0.5  1 – 4e, leading to 0.5 + e < Rm < 1 – e



Oct. 2020 Part III – Faults: Logical Deviations Slide 61

TMR with Compensating Faults

V2

3

1
Voting unit

Example: Rm = 0.998, p0 = p1 = 0.001 

R = 0.999,984 + 0.000,006 = 0.999,990
Basic TMR  Compensation

RIFTMR/Simplex = 0.002 / 0.000,016 = 125

RIFCompen/TMR = 0.000,016 / 0.000,010 = 1.6

Rm = 1 – p0 – p1    (0- and 1-fault probabilities)

R = (3Rm
2 – 2Rm

3) + 6p0p1Rm
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12.3   Replication in Time
Can be slow, but in many control applications, extra time is available

Interleaving of the primary and 
duplicate computations saves time

Schedule 
with 1 adder

+

+



+ +

 + +



Duplicate 
computation

+

+



Duplicate 
computation

Computation flowgraph, 
and schedule with 2 adders

t0

t0 + 1

t0 + 2
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Recompute and Compare/Vote
Repeat computation and store the results for comparison or voting

Comparison or voting need not be done 
right away; primary result may be used 
in further computations, with the result 
subsequently validated, if appropriate+ +

 + +



Duplicate 
computation

+ +



Triplicate 
computation

Use as operand in 
further computations, 

while awaiting 
confirmation of validity

On a simultaneous 
multithreading 
architecture, multiple 
instruction streams 
may be interspersed

Some Cray machines 
take advantage of 
extensive hardware 
resources to execute 
instructions twice
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12.4  Mixed Space/Time Replication
Instead of duplicating the computation with no hardware change (slow) 
or duplicating the entire hardware (costly), we can add some hardware 

to make the interleaved recomputations more efficient

Recomputation with same 
hardware resources (T = 5, 
excluding compare time)

Original
computation

(T = 3)

+

+



Recomputation 
with the inclusion 
of an extra adder
(T = 3, excluding 
compare time)+ +

 + +



+

+



Duplicate 
computation

Consider the effect 
of including a 
second adder
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12.5  Switching and Voting Units

If in the case of 3-way disagreement 
any of the inputs can be chosen, 
then a simple design is possible

One can perform pseudo voting that yields the median of 3 analog 
signals (Dennis, N.G., Microelectronics and Reliability, Aug. 1974)

Median and mean voting are also possible with digital signals

This design can be readily generalized 
to a larger number of inputs

2

3

1
x1

x2

x3

y

Compare

0

1

Disagree

We begin with some simple voting unit designs:
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Implementing a Bit-Voting Unit
TMR bit-voting: y = x1x2  x2x3  x3x1

(carry output of a single-bit full-adder)
What about 5MR, 7MR? V2

3

1
Bit-voting unit

x1

x2

x3

y

Other designs are also possible
Arithmetic: add the bits, compare to threshold
Mux-based
Selection-based (majority of bit values is their median)

3-out-of-5 voting unit built of 2-input gates Two mux-based designs for a 3-out-of-5 bit-voting unit

Gate-level design quickly explodes in size
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Complexity of Different Bit-Voting Unit Designs

Cost of majority bit-voting units as a function of the number n of inputs



Oct. 2020 Part III – Faults: Logical Deviations Slide 68

Majority-Friendly Nanotechnologies

Certain new nanotechnologies offer efficient majority gates

Can we use majority gates as building-blocks in realizing voters?
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Recursive Construction of Large Voters

At-least-l-out-of-n
threshold counting 
network built from a 
multiplexer and two 
smaller threshold 
counting networks

Recursively-built 
5-out-of-9 voter

x1, x2, x3

x1, x2, x3

x1, x2, x3

x4

x4

x9

x6

x6
x8

x8

x4

x4

x5

x5

x5

x5

x5

x6

x6

x7

x7

x7
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Voting at the Word Level

Using bit-by-bit voting may be dangerous

One might think that in this example, any of the 
module outputs could be correct, so that 
producing  1 0  at the output isn’t all that wrong

x1 = 0  0
x2 = 1  0
x3 = 1  1
y = 1  0

However, with bit-by-bit voting, the output may 
be different from all inputs

x1 = 0  0  0
x2 = 1  0  1
x3 = 1  1  0
y = 1  0  0

Design of bit- and word-voting networks discussed in:
Parhami, B., “Voting Networks,” IEEE TR, Aug. 1991
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12.6  Variations and Design Issues

V2

3

1
Voting unit

NMR/simplex: Voting unit is replaced with 

a unit that can also detects disagreements

When a faulty unit is detected, that unit and 

one other unit are removed from service

This makes all votes unambiguous and also improves systems lifetime

Self-purging redundancy: Modules 

purged when they disagree with the 

output and the threshold of the voting 

unit is adjusted accordingly 

(purged modules produce 0 outputs)
Module
output

T

Q

RS
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Alternating Logic: Basic Ideas

Transmission of data over unreliable wires or buses
Send data; store at receiving end
Send bitwise complement of data
Compare the two versions
Detects wires s-a-0 or s-a-1, as well as many transients

The dual of a Boolean function f(x1, x2, . . . , xn) is another function 
fd(x1, x2, . . . , xn) such that fd(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) 

Fact: Obtain the dual of f by exchanging AND and OR operators in its 
logical expression. For example, the dual of f = ab  c is fd = (a  b)c

f

fd

Inputs

Compl. 
inputs

Error

Output
Advantages of this 
approach compared 
with duplication include 
a smaller probability 
of common errors
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Alternating Logic: Self-Dual Functions

A function f is self-dual if f(x1, x2, . . . , xn) = fd(x1, x2, . . . , xn) 

With a self-dual function f, the functions f and fd in the diagram above 
can be computed by using the same circuit twice (time redundancy)

f

fd

Inputs

Compl. 
inputs

Error

Output
For example, both the 
sum a  b  c and 
carry ab  bc  ca
outputs of a full-adder 
are self-dual functions

Many functions of practical interest are self-dual

Use same circuit twice

Examples (proofs left as exercise)
A k-bit binary adder, with 2k + 1 inputs and k + 1 outputs, is self-dual
So are 1’s-complement and 2’s-complement versions of such an adder
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Recomputing with Transformed Operands

Alternating logic is a special case of the following general scheme, with 
its encoding and decoding functions being bitwise complementation

Recompute after shift
When f is binary addition, we can use shifts for encoding and decoding
Shifting causes the adder circuits to be exercised differently each time
Originally proposed for ALUs with bit-slice organization

f

g

Inputs

Error

Output

e dInputs

Encode Decode

Recompute after swap
When f is binary addition, we can use swaps for encoding and decoding

Swap the two operands; e.g., compute b + a instead of a + b
Swap upper and lower halves of the two operands (modified adder)

XNOR if lower path finds 
complement of the result
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Time-Redundant, Segmented Addition
Instead of using a k-bit adder twice for error detection or 3 times for 
error correction, one can segment the operands into 2 or 3 parts and 
similarly segment the adder; perform replicated addition on operand 
segments and use comparison/voting to detect/correct error

C

FF

Error

cout

Lower half 
of adder

Upper half 
of adder

Comparator

xL

xH

yL

yH

cin

Various other segmentation 
schemes have been suggested

Example: 16-bit adder with 
4-way segmentation and voting

Sum computed in two cycles: 
The lower half in cycle 1, and
the upper half in cycle 2

Townsend, Abraham, and Swartzlander, 2003


