
Oct. 2020 Part III – Faults: Logical Deviations Slide 1

Oct. 2020 Part III – Faults: Logical Deviations Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Dependable Computing: A Multilevel Approach (traditional print
or on-line open publication, TBD). It is updated regularly by the
author as part of his teaching of the graduate course ECE 257A,
Fault-Tolerant Computing, at Univ. of California, Santa Barbara.
Instructors can use these slides freely in classroom teaching or
for other educational purposes. Unauthorized uses, including
distribution for profit, are strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised

First Sep. 2006 Oct. 2007 Oct. 2009 Oct. 2012 Oct. 2013

Jan. 2015 Oct. 2015 Oct. 2018 Oct. 2019

Oct. 2020

Oct. 2020 Part III – Faults: Logical Deviations Slide 3

9 Fault Testing

Oct. 2020 Part III – Faults: Logical Deviations Slide 4

The good news is that
the tests don’t show
any other problems

Oct. 2020 Part III – Faults: Logical Deviations Slide 5

Oct. 2020 Part III – Faults: Logical Deviations Slide 6

9.1 Overview and Fault Models

The faulty state
and transitions into and out of it

Burn-in testing

Fault testing

Fault removal
Fault
masking

Error removal

Oct. 2020 Part III – Faults: Logical Deviations Slide 7

TEST GENERATION
(Preset/Adaptive)

TEST VALIDATION TEST APPLICATION

FUNCTIONAL
(Exhaustive/
Heuristic)

STRUCTURAL
(Analytic/
Heuristic)

THEORETICAL EXPERIMENTAL EXTERNALLY
CONTROLLED

INTERNALLY
CONTROLLED

FAULT
MODEL
switch-
or gate-
level
(single/
multiple
stuck-at,
bridging,
etc.)

FAULT
COVER-
AGE

DIAG-
NOSIS
EXTENT
none
(check-
out, go/
no-go)
to full
resolu-
tion

ALGO-
RITHM
D-algo-
rithm,
boolean
differ-
ence,
etc.

SIMULA-
TION
software
(parallel,
deductive,
concur-
rent) or
hardware
(simulation
engine)

FAULT
INJEC-
TION

MANUAL AUTO-
MATIC
(ATE)

TEST
MODE
(BIST)

CONCUR-
RENT
on-line
testing
(self-
checked
design)

FAULT TESTING
(Engineering, Manufacturing, Maint enance)

off-line testing

FAULT TESTINGA Taxonomy of
Fault Testing

Correct design?
Correct implementation?
Correct operation?

Engineering
Manufacturing

Maintenance

Off-line testing

Oct. 2020 Part III – Faults: Logical Deviations Slide 8

Requirements and Setup for Testing

Reference value

Test pattern
source

Circuit under test
(CUT)

Comparator
Pass/Fail

Testability requires controllability and observability
(redundancy may reduce testability if we are not careful; e.g., TMR)

Reference value can come from a “gold” version or from a table

Test patterns may be randomly generated, come from a preset list,
or be selected according to previous test outcomes

Test results may be compressed into a “signature” before comparing

Test application may be off-line or on-line (concurrent)

Easier to test if direct access to
some inner points is possible

Oct. 2020 Part III – Faults: Logical Deviations Slide 9

Importance and Limitations of Testing

“Trying to improve software quality by increasing the amount of
testing is like trying to lose weight by weighing yourself more often.”
Steve C. McConnell

“Program testing can be used to show the presence of bugs,
but never to show their absence!” Edsger W. Dijkstra

Test coverage may be well below 100% (model inaccuracies and
impossibility of dealing with all combinations of the modeled faults)

Important to detect faults as early as possible
Approximate cost of catching a fault at various levels

Component $1
Board $10
System $100
Field $1000

Oct. 2020 Part III – Faults: Logical Deviations Slide 10

Fault Models at Different Abstraction Levels
Fault model is an abstract specification of the types of deviations in
logic values that one expects in the circuit under test

Can be specified at various levels: transistor, gate, function, system

Transistor-level faults
Caused by defects, shorts/opens, electromigration, transients, . . .
May lead to high current, incorrect output, intermediate voltage, . . .
Modeled as stuck-on/off, bridging, delay, coupling, crosstalk faults
Quickly become intractable because of the large model space

Function-level faults
Selected in an ad hoc manner based on the function of a block
(decoder, ALU, memory)

System-level faults (malfunctions, in our terminology)
Will discuss later in Part V

Oct. 2020 Part III – Faults: Logical Deviations Slide 11

Gate- or Logic-Level Fault Models
Most popular models (due to their accuracy and relative tractability)

Line stuck faults
Stuck-at-0 (s-a-0)
Stuck-at-1 (s-a-1)

Line open faults
Often can be modeled as s-a-0 or s-a-1

Delay faults (less tractable than the previous fault types)
Signals experience unusual delays

A

B

C

S

K

s-a-0
Line bridging faults

Unintended connection
(wired OR/AND)

Short
(OR)

Open

Other faults
Coupling, crosstalk

Oct. 2020 Part III – Faults: Logical Deviations Slide 12

9.2 Path Sensitization and D-Algorithm
The main idea behind test design: control the faulty point from inputs
and propagate its behavior to some output

Example: s-a-0 fault
Test must force the line to 1

This method is formalized in
the D-algorithm

A

B

C

S

K

s-a-0
1/0

1

1

1/0

0

1/0

Two possible tests
(A, B, C) = (0 1 1) or (1 0 1)

Forward trace
(sensitization)

Backward trace

D-calculus
1/0 on the diagram above is represented as D
0/1 is represented as D
Encounters difficulties with XOR gates (PODEM algorithm fixes this)

Oct. 2020 Part III – Faults: Logical Deviations Slide 13

Selection of a Minimal Test Set
Each input pattern detects a subset of all possible faults of interest
(according to our fault model)

A

B

C

S

K

E

F

G

H

J

L

NM

P

R

Q

Choosing a minimal test set is a covering problem

A B C P Q
s-a-0 s-a-1 s-a-0 s-a-1

0 0 0 - - - x
0 0 1 - x - x
0 1 1 x - x -
1 0 1 x - x -

Equivalent faults: e.g., P s-a-0 L s-a-0 Q s-a-0
Q s-a-1 R s-a-1 K s-a-1

Oct. 2020 Part III – Faults: Logical Deviations Slide 14

Capabilities and Complexity of D-Algorithm

Reconvergent fan-out
Consider the s input s-a-0

PODEM solves the
problem by setting y to 0

1

1

D 1
D

D

zs

y

x

Worst-case complexity of D-algorithm is exponential in circuit size
Must consider all path combinations
XOR gates cause the behavior to approach the worst case
Average case is much better; quadratic

PODEM: Path-oriented decision making
Developed by Goel in 1981
Also exponential, but in the number of circuit inputs, not its size

Simple path sensitization does
not allow us to propagate the
fault to the primary output z

Oct. 2020 Part III – Faults: Logical Deviations Slide 15

9.3 Boolean Difference Methods
K = f(A, B, C) = AB BC CA

dK/dB = f(A, 0, C) f(A, 1, C)
= CA (A C)
= A C

A

B

C

S

K

E

F

G

H

J

L

NM

P

R

Q
s-a-0

K = PC AB

dK/dP = AB (C AB) = C(AB)

Tests that detect P s-a-0 are solutions to the equation P dK/dP = 1

(A B) C(AB) = 1 C = 1, A B

Tests that detect P s-a-1 are solutions to the equation P dK/dP = 1

(A B) C(AB) = 1 C = 1, A = B = 0

Oct. 2020 Part III – Faults: Logical Deviations Slide 16

9.4 The Complexity of Fault Testing
The satisfiability problem (SAT)
Decision problem: Is a Boolean expression satisfiable?
(i.e., can we assign values to the variables to make the result 1?)

Theorem (Cook, 1971): SAT is NP-complete
In fact, even restricted versions of SAT remain NP-complete

Theorem (Cook, 1971): 3SAT is NP-complete
In 3SAT, the logic expression is a product of 3-term OR clauses

According to the Boolean difference formulation, fault detection can
be converted to SAT (find the solutions to P dK/dP = 1)

To prove the NP-completeness of fault detection, we need to show
that SAT (or another NP-complete problem) can be converted to it

Proof of NP-completeness is due to Ibarra and Sahni [Ibar75]
A simple alternate proof by Fujiwara [Fuji82] is in the textbook

Oct. 2020 Part III – Faults: Logical Deviations Slide 17

Proof that Fault Detection is NP-Complete
Theorem (Cook, 1971): 3SAT is NP-complete

Clause-monotone SAT can be converted to fault detection in a circuit

First level has ANDs for all clauses with complemented variables

Second level has ORs for all clauses with uncomplemented variables, plus
an OR gate with level-1 outputs as its inputs (one input to this gate is y)

Third level has one AND gate that receives all level-2 outputs as its inputs
A test for y s-a-1 satisfies the original clause-monotone expression

Theorem: Clause-monotone SAT (CM-SAT) is NP-complete

CM-SAT has OR clauses each of which consists entirely of complemented
or uncomplemented variables, but not both

3SAT can be converted to CM-SAT by replacing each mixed OR clause
with the product of two clauses involving a new variable
Example: (xi xj x k) is replaced by (xi xj vk)(v k x k)

Oct. 2020 Part III – Faults: Logical Deviations Slide 18

9.5 Testing of Units with Memory
The presence of memory expands the number of required test cases

To test a sequential machine, we may need to apply different input
sequences for each possible initial state

Exponentially many possible input sequences

Exponentially many possible machine states

Oct. 2020 Part III – Faults: Logical Deviations Slide 19

Testing of Memory
Simple-minded approach: Write 000 . . . 00 and 111 . . . 11 into every
memory word and read out to verify proper storage and retrieval

Problems with the simple-minded approach:

 Does not test access/decoding mechanism – How do you know
the intended word was written into and read from?

 Many memory faults are pattern-sensitive, where cell operation
is affected by the values stored in nearby cells

 Modern high-density memories experience dynamic faults that
are exposed only for specific access sequences

Memory testing continues to be an active research area

Built-in self test is the only viable approach in the long term

Challenge: Any run time testing consumes some memory bandwidth

Oct. 2020 Part III – Faults: Logical Deviations Slide 20

9.6 Off-Line vs. Concurrent Testing
This section will be forthcoming.

Oct. 2020 Part III – Faults: Logical Deviations Slide 21

10 Fault Masking

Oct. 2020 Part III – Faults: Logical Deviations Slide 22

Oct. 2020 Part III – Faults: Logical Deviations Slide 23

Oct. 2020 Part III – Faults: Logical Deviations Slide 24

10.1 Fault Avoidance vs. Masking

Repair Discard Abort

Prevent Remove Expose Mask

Avoid Tolerate

Fault

Quality Assurance Testing Dynamic Redundancy Static Redundancy

Full? Full?

MonitorTest

Yes YesNo No

Perfect Fixed Restored UnaffectedInjured Screened Faulty-safe DegradedFaulty

Detect Miss DetectMiss

C i r c u i t o r S y s t e m S t a t e

Reconfigure

Mask

Conceal

Oct. 2020 Part III – Faults: Logical Deviations Slide 25

10.2 Interwoven Redundant Logic

0 1 fault in b is critical
b
c

a

d f

g
e

h
z

1

0 0

0

0

0
1

0 0
0 1 fault in c or d is
not critical (it is masked)

1 0 fault in a or h is
not critical (it is masked)

Even nonredundant circuits have some masking capability

Is there a way to exploit the inherent masking capabilities
of logic gates to achieve general fault masking?

Oct. 2020 Part III – Faults: Logical Deviations Slide 26

How Interwoven Logic Works

Let x1, x2, x3, and x4 be
4 copies of the signal x

1 0

b
c

a

d f

g
e

h
z

1 0

a1
a2
b1
b2

a1
a2
b1
b2

a3
a4
b3
b4

a3
a4
b3
b4

e1

e2

e3

e4

f1

f2

f3

f4

e1
e4
f1
f4

1 0 change is critical for AND,
subcritical for OR

0 1 change is critical for OR,
subcritical for AND

To mask h critical faults:
Number of gates multiplied by (h + 1)2

Gate inputs multiplied by h + 1

For h = 1, the scheme is known as
Quadded logic

Alternating layers of ANDs and ORs
can mask each other’s critical faults

1

1 1

1

Oct. 2020 Part III – Faults: Logical Deviations Slide 27

Interwoven Logic for Nanoelectronics
Half-adder implemented in quadded logic

From: http://ieeexplore.ieee.org/iel5/54/32070/01492293.pdf

IEEE D&T
July-Aug. 2005
pp. 328-339

b

c

a
s

b
a

c

s

Oct. 2020 Part III – Faults: Logical Deviations Slide 28

Highly Reliable Logic with “Crummy” Relays

Moore & Shannon, 1956

a: prob [contact made | energized]
1 – a: prob [contact open | energized]
c: prob [contact made | not energized]
1 – c: prob [contact open | not energized]

“Make” contact
(normally open)

a > c

“Break” contact
(normally closed)

a < c

x y

xy1

No matter how crummy the relays
(i.e., how close the values of a and c),
one can interconnect many of them in
a redundant series-parallel structure
to achieve arbitrarily high reliability

prob [connection made | energized] =
2a2 – a4 (> a if a > 0.62)

prob [connection made | not energized] =
2c2 – c4 (always < c)

x x

x x

a > 0.5, c < 0.5

Oct. 2020 Part III – Faults: Logical Deviations Slide 29

10.3 Static Redundancy with Replication

Condition on the module reliability:

R = Rm [1 + (1 – Rm)(2Rm – 1)]

(1 – Rm)(2Rm – 1) > 0 Rm > 1/2

V2

3

1
Voting unit

R

Rm
1.0

0.0

1.0

0.50.0

0.5

TMR better

Simplex better

RIFTMR/Simplex = (1 – Rm)/(1 – R)
= 1/[1 – Rm(2Rm – 1)]

R = 3Rm
2 – 2Rm

3 > Rm
?

TMR:

lt

R

0

0.5

1.0

ln 2
0.0

TMR

Simplex

MTTF: TMR 5/(6l)

Simplex 1/l

15
6

Oct. 2020 Part III – Faults: Logical Deviations Slide 30

A TMR Application and Its Bit-Voting Unit

Single-event upset (SEU) = Soft error
Change of state caused by a high-energy particle strike

SEU effect on DRAMs
(from SANYO website)

n+ diffusion layer

pn junction field
due to impact

TMR flip-flop for SEU tolerance

D Q

C

D Q

C

D Q

C

0

1

Data

Clock

Output0
1
2
3

Mux

Oct. 2020 Part III – Faults: Logical Deviations Slide 31

Example: SEU Hardened Flip-Flop

D

G

B

A

B

A

B

A

S

S

S

Y

Y

Y

ANQ

BNQ

CNQ

Y

Y

Y

A

A

A

A

B

C

Y

Y

Y

A

A

A

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

Y

Y

Y

AFB

BFB

CFB

A Y

For list of flip-flop hardening methods and their comparison, see:
http://klabs.org/richcontent/fpga_content/pages/notes/seu_hardening.htm

Oct. 2020 Part III – Faults: Logical Deviations Slide 32

N-Modular Redundancy (NMR)

Triple-modular redundancy (TMR) can be generalized to N units

N-modular redundancy (NMR) uses N modules along with a voter,
with N usually being odd

Example: 5MR
Operates correctly as long as
3 of the 5 modules are healthy V2

3

1
Voting unit

1

2

3

4

5

Voter complexity rises rapidly
with increasing N

Even values of N are also feasible

Example: 4MR, with 3-out-of-4 voting
Voter masks single faults; can be designed to detect double faults

Oct. 2020 Part III – Faults: Logical Deviations Slide 33

10.4 Dynamic and Hybrid Redundancy
1. Detect and replace

Dynamic redundancy (cold/hot standby)
Detection via
-- coding, watchdog timer, self-checking
-- duplication (pair-and-spares)

2. Mask in place
Static redundancy
May revert to simplex instead of duplex
Design challenges include
-- synchronization for voting
-- voting on imprecise results

3. Mask, diagnose, and reconfigure
Hybrid redundancy
Fault masked at output, but diagnosed
-- e.g., via comparison with voter output
Faulty circuit is replaced by spare
Becomes static upon spare exhaustion

V2

3

1
Voting unit

D

2

1
Detector

Spare

VS
2

3

1

4 Switch-voter
Spare

Oct. 2020 Part III – Faults: Logical Deviations Slide 34

Comparing Replication Schemes
Advantages Drawbacks

Less power Coverage factor
(cold standby)

Long life Tolerance latency
(just add spares)

Immediate masking Power/area penalty

High safety Voting critical

Immediate masking Power/area penalty

Long life and Switch-voting critical
high safety

V2

3

1
Voting unit

D

2

1
Detector

Spare

VS
2

3

1

4 Switch-voting
unitSpare

Oct. 2020 Part III – Faults: Logical Deviations Slide 35

Switch for Standby Redundancy
Standby redundancy requires an
n-to-1 switch to select the output
of the currently active module

The detectors use various info
to deduce fault conditions
-- Error coding
-- Reasonableness checks
-- Watchdog timer

D

2

1
Detector

Spare

D

2

1

Spares

D

3 D

n-to-1
switch

Once a fault has been detected,
the switch reconfigures the system
by flagging the faulty unit and
activating next spare in sequence

If we use an n-to-2 switch and compare the two selected outputs,
the configuration is known as “pair-and-spares”

Oct. 2020 Part III – Faults: Logical Deviations Slide 36

Fault Detection in Standby Redundancy

Activity monitoring D

2

1
Detector

Spare

Duplication and comparison

Self-checking design

Oct. 2020 Part III – Faults: Logical Deviations Slide 37

Preview of Self-Checking Design

Covered in Chapter 15 Function
unit

Status

Encoded
input

Encoded
output

Self-checking
checker

Function
unit 1

Encoded
input

Self-checking
checker

Function
unit 2

Encoded
output

Self-checking
checker

Function unit designed
such that internal faults manifest
themselves as invalid outputs

Can remove this checker
if we do not expect both units
to fail and Function unit 2
translates any noncodeword
input into noncode output

Output of multiple checkers may be
combined in self-checking manner

Oct. 2020 Part III – Faults: Logical Deviations Slide 38

Switch for Hybrid Redundancy
Hybrid redundancy with n active
and s spare modules requires an
(n + s)-to-n switch to select the
outputs of the active modules

Self-purging redundancy is a variant
of hybrid redundancy in which all
modules are active at the outset,
but they are purged as they
disagree with the majority output

VS
2

3

1

4 Switch-voting
Spare

Voting unit in self-purging
redundancy is a threshold voter that
considers the inputs with weights of
1 (active) or 0 (purged) Switch built of

iterative cells

...

Oct. 2020 Part III – Faults: Logical Deviations Slide 39

10.5 Time Redundancy
Retry upon a detected fault: particularly useful for transient faults

Recomputation not useful with permanent faults

Can make recomputation work by slightly changing the operands,
but this is not always applicable

Compute a (2b) instead of (2a) b

Compute b + a or –(–a – b) instead of a + b

Oct. 2020 Part III – Faults: Logical Deviations Slide 40

10.6 Variations and Complications

Static redundancy makes fault testing more challenging

For static redundancy to be effective, we must ensure that initially all
redundant components are fault-free

Mode

0

1

2

3

V2

3

1
Voting unitVoting unit

Controllable,
but not
observable

Oct. 2020 Part III – Faults: Logical Deviations Slide 41

Applications of NMR and Hybrid Redundancy

NASA’s Space Shuttle (retired in 2012):

Used 5-way redundancy in hardware
Originally, 3 operational units + 2 spares

(one warm, one cold)
More recently, 4 operational + 1 spare

Also, uses 2 independently developed
software systems (Design diversity)

Japanese Shinkansen “Bullet” Train

Triple-duplex system (6-fold redundancy)

Oct. 2020 Part III – Faults: Logical Deviations Slide 42

11 Design for Testability

Oct. 2020 Part III – Faults: Logical Deviations Slide 43

"Someone in this house flunked his earth science
test because someone else in this house told him
that love makes the world go around!"

Oct. 2020 Part III – Faults: Logical Deviations Slide 44

Oct. 2020 Part III – Faults: Logical Deviations Slide 45

11.1 The Importance of Testability
A small circuit with a limited number of inputs and outputs can be
tested with a reasonable amount of effort and time

A complex unit, such as a microprocessor, cannot be tested solely
based on its input/output behavior

Hence, the need for provisions in the design to facilitate testing

Oct. 2020 Part III – Faults: Logical Deviations Slide 46

11.2 Testability Modeling

To allow detection of a fault in point A of a logic circuit, we need to:

Be able to control that point from the primary inputs

Be able to observe that point from the primary outputs

Thus, good testability requires
good controllability and
good observability

for every node in the circuit

Circuit under test (CUT)

A

Oct. 2020 Part III – Faults: Logical Deviations Slide 47

Quantifying Controllability

N(0) = 7
N(1) = 1
CTF = 0.25

N(0) = 1
N(1) = 7
CTF = 0.25

Coutput = (Si Cinput i /k) CTF

1.0
0.3
0.5

0.15

A line with very low controllability
is a good test point candidate

0

Control point

Controllability C of a line has a
value between 0 and 1

Derive C values by proceeding
from inputs (C = 1) to outputs

k-input, 1-output components

f-way fan-out C
C / (1 + log2 f)
for each of f
fan-out lines

Controllability transfer factor

CTF = 1 – N(0) – N(1)
N(0) + N(1)

N(0): # input patterns leading to 0 output
N(1): # input patterns leading to 1 output

Oct. 2020 Part III – Faults: Logical Deviations Slide 48

Quantifying Observability

0.15
0.15
0.15

0.6

A line with very low observability
is a good test point candidate

1

Observation point

k-input, 1-output components

N(sp) = 1
N(ip) = 3
OTF = 0.25

Oinput i = Ooutput OTF

f-way fan-out 1 – Pj(1 – Oj) Oj for line j

Observability O of a line has a
value between 0 and 1

Derive O values by proceeding
from outputs (O = 1) to inputs

Observability transfer factor

OTF = N(sp)
N(sp) + N(ip)

N(sp): # ways of sensitizing a path to output
N(ip): # ways of inhibiting a path to output

N(sp) = 1
N(ip) = 3
OTF = 0.25

Oct. 2020 Part III – Faults: Logical Deviations Slide 49

Quantifying Testability

Testability = Controllability Observability

1.0
0.3
0.5

0.15

Controllabilities

0.15
0.15
0.15

0.6

Observabilities

0.15
0.045
0.075

0.09

Testabilities

Overall testability of a circuit = Average of line testabilities

Oct. 2020 Part III – Faults: Logical Deviations Slide 50

11.3 Testpoint Insertion
Increase controllability and observability via the insertion of degating
mechanisms and control points

Design for dual-mode operation
Normal mode
Test mode

Degate

Control/Observe

A B

Muxes

Partitioned
design

A B

Normal mode

A B

Test mode
for A

Oct. 2020 Part III – Faults: Logical Deviations Slide 51

11.4 Sequential Scan Techniques
Increase controllability and observability via provision of mechanisms
to set and observe internal flip-flops

Scan design
Shift desired states into FF
Shift out FF states to observe

Combinational logic...

FF FF

...

Mode control

Combinational logic...

FF FF

...

Partial scan design:
Mitigates the excessive overhead
of a full scan design

Oct. 2020 Part III – Faults: Logical Deviations Slide 52

11.5 Boundary Scan Design

Allows us to apply arbitrary
inputs to circuit parts whose
inputs would otherwise not
be externally accessible

Boundary scan elements of
multiple parts are cascaded
together into a scan path

Any digital circuit

Scan in

Scan out

Test clock

Mode select

From: http://www.asset-intertech.com/pdfs/boundaryscan_tutorial.pdf

Parallel out

Parallel in

Oct. 2020 Part III – Faults: Logical Deviations Slide 53

Basic Boundary Scan Cell

From: http://www.asset-intertech.com/pdfs/boundaryscan_tutorial.pdf

Oct. 2020 Part III – Faults: Logical Deviations Slide 54

11.6 Built-in Self-Test (BIST)
Reference value

Test pattern
source

Circuit under test
(CUT)

Comparison
Pass/Fail

Test patterns may be generated (pseudo)randomly – e.g., via LFSRs

Decision may be based on compressed test results

Ordinary testing

Test pattern
generation

Circuit under test
(CUT)

Decision
Pass/Fail

Built-in self-testing

Oct. 2020 Part III – Faults: Logical Deviations Slide 55

12 Replication and Voting

Oct. 2020 Part III – Faults: Logical Deviations Slide 56

“Fire. Bad. Those in favour?”

Oct. 2020 Part III – Faults: Logical Deviations Slide 57

Oct. 2020 Part III – Faults: Logical Deviations Slide 58

12.1 Hardware Redundancy Overview
Data path methods:
Replication in space (costly)

Duplicate and compare
Triplicate and vote
Pair-and-spare
NMR/hybrid

Replication in time (slow?)
Recompute and compare
Recompute and vote
Alternating logic
Recompute after shift
Recompute after swap
Replicate operand segments

Mixed space-time replication
Monitoring (imperfect coverage)

Watchdog timer
Activity monitor

Low-redundancy coding
Parity prediction
Residue checking
Self-checking design

Control unit methods:
Coding of control signals
Control-flow watchdog
Self-checking design

Data path

.

.

.

.

.

.

…
…

…
…

…

…
Inputs Outputs

Control unit

Control
signals

Condition
signalsGlue logic

Glue logic methods:
Self-checking design

Oct. 2020 Part III – Faults: Logical Deviations Slide 59

12.2 Replication in Space

Pair-and-spare

VS
2

3

1

4 Switch-voting unit
Spare

V2

3

1
Voting unit

C

1

Comparator

2 Error

C

1

Comparators

2 Error

C

1

2 Error

S

Switch

NMR/Hybrid

Duplicate and compare

Triplicate and vote

The following schemes have
already been discussed in
connection with fault masking

Oct. 2020 Part III – Faults: Logical Deviations Slide 60

TMR with Imperfect Voting Unit

Condition on the voting unit reliability
Rv > 1 / [3Rm – 2Rm

2]
V2

3

1
Voting unit

TMR better

Rv

Rm
0.5 1.0

0.885

0.95

0.75
0.56 0.94

Simplex better

Condition on the module reliability

3 – 9 – 8/Rv

4
3 + 9 – 8/Rv

4
< Rm <

dRv
min/dRm = (–3+4Rm) / (3Rm –2Rm

2)2

Example: Rv = 0.95 requires that
0.56 < Rm < 0.94

R = Rv(3Rm
2 – 2Rm

3) > Rm
?

When Rv = 1 – e is close to 1, we have
1/Rv 1 + e and (1 – 8e)0.5 1 – 4e, leading to 0.5 + e < Rm < 1 – e

Oct. 2020 Part III – Faults: Logical Deviations Slide 61

TMR with Compensating Faults

V2

3

1
Voting unit

Example: Rm = 0.998, p0 = p1 = 0.001

R = 0.999,984 + 0.000,006 = 0.999,990
Basic TMR Compensation

RIFTMR/Simplex = 0.002 / 0.000,016 = 125

RIFCompen/TMR = 0.000,016 / 0.000,010 = 1.6

Rm = 1 – p0 – p1 (0- and 1-fault probabilities)

R = (3Rm
2 – 2Rm

3) + 6p0p1Rm

Oct. 2020 Part III – Faults: Logical Deviations Slide 62

12.3 Replication in Time
Can be slow, but in many control applications, extra time is available

Interleaving of the primary and
duplicate computations saves time

Schedule
with 1 adder

+

+

+ +

 + +

Duplicate
computation

+

+

Duplicate
computation

Computation flowgraph,
and schedule with 2 adders

t0

t0 + 1

t0 + 2

Oct. 2020 Part III – Faults: Logical Deviations Slide 63

Recompute and Compare/Vote
Repeat computation and store the results for comparison or voting

Comparison or voting need not be done
right away; primary result may be used
in further computations, with the result
subsequently validated, if appropriate+ +

 + +

Duplicate
computation

+ +

Triplicate
computation

Use as operand in
further computations,

while awaiting
confirmation of validity

On a simultaneous
multithreading
architecture, multiple
instruction streams
may be interspersed

Some Cray machines
take advantage of
extensive hardware
resources to execute
instructions twice

Oct. 2020 Part III – Faults: Logical Deviations Slide 64

12.4 Mixed Space/Time Replication
Instead of duplicating the computation with no hardware change (slow)
or duplicating the entire hardware (costly), we can add some hardware

to make the interleaved recomputations more efficient

Recomputation with same
hardware resources (T = 5,
excluding compare time)

Original
computation

(T = 3)

+

+

Recomputation
with the inclusion
of an extra adder
(T = 3, excluding
compare time)+ +

 + +

+

+

Duplicate
computation

Consider the effect
of including a
second adder

Oct. 2020 Part III – Faults: Logical Deviations Slide 65

12.5 Switching and Voting Units

If in the case of 3-way disagreement
any of the inputs can be chosen,
then a simple design is possible

One can perform pseudo voting that yields the median of 3 analog
signals (Dennis, N.G., Microelectronics and Reliability, Aug. 1974)

Median and mean voting are also possible with digital signals

This design can be readily generalized
to a larger number of inputs

2

3

1
x1

x2

x3

y

Compare

0

1

Disagree

We begin with some simple voting unit designs:

Oct. 2020 Part III – Faults: Logical Deviations Slide 66

Implementing a Bit-Voting Unit
TMR bit-voting: y = x1x2 x2x3 x3x1

(carry output of a single-bit full-adder)
What about 5MR, 7MR? V2

3

1
Bit-voting unit

x1

x2

x3

y

Other designs are also possible
Arithmetic: add the bits, compare to threshold
Mux-based
Selection-based (majority of bit values is their median)

3-out-of-5 voting unit built of 2-input gates Two mux-based designs for a 3-out-of-5 bit-voting unit

Gate-level design quickly explodes in size

Oct. 2020 Part III – Faults: Logical Deviations Slide 67

Complexity of Different Bit-Voting Unit Designs

Cost of majority bit-voting units as a function of the number n of inputs

Oct. 2020 Part III – Faults: Logical Deviations Slide 68

Majority-Friendly Nanotechnologies

Certain new nanotechnologies offer efficient majority gates

Can we use majority gates as building-blocks in realizing voters?

Oct. 2020 Part III – Faults: Logical Deviations Slide 69

Recursive Construction of Large Voters

At-least-l-out-of-n
threshold counting
network built from a
multiplexer and two
smaller threshold
counting networks

Recursively-built
5-out-of-9 voter

x1, x2, x3

x1, x2, x3

x1, x2, x3

x4

x4

x9

x6

x6
x8

x8

x4

x4

x5

x5

x5

x5

x5

x6

x6

x7

x7

x7

Oct. 2020 Part III – Faults: Logical Deviations Slide 70

Voting at the Word Level

Using bit-by-bit voting may be dangerous

One might think that in this example, any of the
module outputs could be correct, so that
producing 1 0 at the output isn’t all that wrong

x1 = 0 0
x2 = 1 0
x3 = 1 1
y = 1 0

However, with bit-by-bit voting, the output may
be different from all inputs

x1 = 0 0 0
x2 = 1 0 1
x3 = 1 1 0
y = 1 0 0

Design of bit- and word-voting networks discussed in:
Parhami, B., “Voting Networks,” IEEE TR, Aug. 1991

Oct. 2020 Part III – Faults: Logical Deviations Slide 71

12.6 Variations and Design Issues

V2

3

1
Voting unit

NMR/simplex: Voting unit is replaced with

a unit that can also detects disagreements

When a faulty unit is detected, that unit and

one other unit are removed from service

This makes all votes unambiguous and also improves systems lifetime

Self-purging redundancy: Modules

purged when they disagree with the

output and the threshold of the voting

unit is adjusted accordingly

(purged modules produce 0 outputs)
Module
output

T

Q

RS

Oct. 2020 Part III – Faults: Logical Deviations Slide 72

Alternating Logic: Basic Ideas

Transmission of data over unreliable wires or buses
Send data; store at receiving end
Send bitwise complement of data
Compare the two versions
Detects wires s-a-0 or s-a-1, as well as many transients

The dual of a Boolean function f(x1, x2, . . . , xn) is another function
fd(x1, x2, . . . , xn) such that fd(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)

Fact: Obtain the dual of f by exchanging AND and OR operators in its
logical expression. For example, the dual of f = ab c is fd = (a b)c

f

fd

Inputs

Compl.
inputs

Error

Output
Advantages of this
approach compared
with duplication include
a smaller probability
of common errors

Oct. 2020 Part III – Faults: Logical Deviations Slide 73

Alternating Logic: Self-Dual Functions

A function f is self-dual if f(x1, x2, . . . , xn) = fd(x1, x2, . . . , xn)

With a self-dual function f, the functions f and fd in the diagram above
can be computed by using the same circuit twice (time redundancy)

f

fd

Inputs

Compl.
inputs

Error

Output
For example, both the
sum a b c and
carry ab bc ca
outputs of a full-adder
are self-dual functions

Many functions of practical interest are self-dual

Use same circuit twice

Examples (proofs left as exercise)
A k-bit binary adder, with 2k + 1 inputs and k + 1 outputs, is self-dual
So are 1’s-complement and 2’s-complement versions of such an adder

Oct. 2020 Part III – Faults: Logical Deviations Slide 74

Recomputing with Transformed Operands

Alternating logic is a special case of the following general scheme, with
its encoding and decoding functions being bitwise complementation

Recompute after shift
When f is binary addition, we can use shifts for encoding and decoding
Shifting causes the adder circuits to be exercised differently each time
Originally proposed for ALUs with bit-slice organization

f

g

Inputs

Error

Output

e dInputs

Encode Decode

Recompute after swap
When f is binary addition, we can use swaps for encoding and decoding

Swap the two operands; e.g., compute b + a instead of a + b
Swap upper and lower halves of the two operands (modified adder)

XNOR if lower path finds
complement of the result

Oct. 2020 Part III – Faults: Logical Deviations Slide 75

Time-Redundant, Segmented Addition
Instead of using a k-bit adder twice for error detection or 3 times for
error correction, one can segment the operands into 2 or 3 parts and
similarly segment the adder; perform replicated addition on operand
segments and use comparison/voting to detect/correct error

C

FF

Error

cout

Lower half
of adder

Upper half
of adder

Comparator

xL

xH

yL

yH

cin

Various other segmentation
schemes have been suggested

Example: 16-bit adder with
4-way segmentation and voting

Sum computed in two cycles:
The lower half in cycle 1, and
the upper half in cycle 2

Townsend, Abraham, and Swartzlander, 2003

