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About This Presentation
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Dependable Computing: A Multilevel Approach (traditional print 
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Fault-Tolerant Computing, at Univ. of California, Santa Barbara. 
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Error Detection
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13.1  Basics of Error Detection
High-redundancy codes

Duplication is a form of error coding: 
x represented as xx (100% redundancy)
Detects any error in one version

Two-rail logic, with each input having a true bit and a complement bit
AND: (t1, c1) (t2, c2) = (t1t2, c1  c2)
OR: (t1, c1)  (t2, c2) = (t1  t2, c1c2)
NOT: (t, c) = (c, t)
XOR: (t1, c1)  (t2, c2) = (t1c2  t2c1, t1t2  c1c2)

Encoding Decoding

XOR

f(x)

f(x)
Error
signal

x

y

Error
checking

Encoding Decoding

XNOR

f(x)

f(x)
Error
signal

x

y

Error
checking

Two-rail encoding
x represented as xx (100% redundancy)

e.g., 0 represented as 01; 1 as 10
Detects any error in one version
Detects all unidirectional errors

X X
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Hamming Distance

Definition: Hamming distance between two bit-vectors is 
the number of positions in which they differ 

Min H-dist Code capability
2 d = 1; SED
3 c = 1; SEC  or  (d = 2; DED)
4 c = 1 and d = 2; SEC/DED
5 c = 2  or  (c = 1 and d = 3; SEC/3ED)
h cEC/dED such that h = c + d + 1

A distance-2 code:
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

4      3     2     1

Codeword

Correctable
error

Detectable
error

Code-
word

Noncode-
word

00111 (01 error)

00100 (10 error)

d  c, so that d – c
represents the add’l 
detection capability
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Error Classification and Models
Goal of error tolerance methods:

Allow uninterrupted operation despite presence of certain errors
Error model – Relationship between errors and faults (or other causes)

Errors are detected/corrected through:

Encoded (redundant) data, plus code checkers 
Reasonableness checks, activity monitoring, retry   

Errors are classified as: 

Single or Multiple (according to the number of bits affected)
Inversion or Erasure (symbol or bit changed or lost)*
Random or Correlated (correlation in the form of byte or burst error)
Symmetric or Asymmetric (regarding 0  1 and 1  0 inversions)

* Nonbinary codes have substitution rather than inversion errors
Also of interest for nonelectronic systems are transposition errors

Errors are permanent by nature; transient faults, not transient errors
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Error Detection in Natural Language Texts

ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
Erasure errors

EQROR
Substitution error

ERORR
Transposition error
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Application of Coding to Error Control

INPUT

ENCODE

SEND

STORE

SEND

DECODE

OUTPUT

MANIPULATE
Protected 

by Encoding

Unprotected

A common way of applying 
information coding techniques 

Arithmetic codes can help detect 
(or correct) errors during data 
manipulations:

1.  Product codes (e.g., 15x)
2.  Residue codes (x mod 15)

Ordinary codes can be used for 
storage and transmission errors; 
they are not closed under 
arithmetic / logic operations

Error-detecting, error-correcting, 
or combination codes (e.g., 
Hamming SEC/DED)
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The Concept of Error-Detecting Codes

The simplest possible error-detecting code:
Attach an even parity bit to each k-bit data word
Check bit = XOR of all data bits
Data space: All 2k possible k-bit words
Code space: All 2k possible even-parity (k + 1)-bit codewords
Error space: All 2k possible odd-parity (k + 1)-bit noncodewords
Detects all single-bit errors

Encoding

Decoding

Data words Codewords

Noncodewords

Errors

Data space Code space

Error space

0 0 1 0 1 0 0 0 1 1
1
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Evaluation of Error-Detecting Codes

Redundancy: k data bits encoded in n = k + r bits (r redundant bits)

Encoding: Complexity (cost / time) to form codeword from data word

Decoding: Complexity (cost / time) to obtain data word from codeword
Separable codes have computation-free decoding

Capability: Classes of error that can be detected
Greater detection capability generally involves more redundancy
To detect d bit-errors, a minimum code distance of d + 1 is required

Closure: Arithmetic and other operations done directly on codewords 
(rather than in 3 stages: decode, operate, and encode)

Examples of code detection capabilities:
Single, double, b-bit burst, byte, unidirectional, . . . errors
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13.2  Checksum Codes
Ex.: 12-digit UPC-A universal product code—Computing the check digit:
Add the odd-indexed digits and multiply the sum by 3
Add the sum of even-indexed digits to previous result
Subtract the total from the next higher multiple of 10

Capabilities:
Detects all single-digit errors
Detects most, but not all, transposition errors

Checking:
Verify that weighted mod-10 sum of all 12 digits is 0

Example:
Sum odd indexed digits: 0 + 6 + 0 + 2 + 1 + 5 = 14
Multiply by 3: 14  3 = 42
Add even-indexed digits: 42 + 3 + 0 + 0 + 9 + 4 = 58
Compute check digit: 60 – 58 = 2

Bar code uses 7 bits 
per digit, with different 
encodings on the right 
and left halves and 
different parities at 
various positions

1 2 3 4 5 6 7 8 9 10 11
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Characterization of Checksum Codes
Given a data vector x1, x2, . . . , xn, encode the data by attaching the 

checksum xn+1 to the end, such that Sj=1 to n+1 wj xj = 0 mod A

The elements wj of the weight vector w are predetermined constants

Capabilities:
Detects all errors adding an error magnitude that is not a multiple of A

Checking:
Verify that weighted mod-A sum of all elements is 0

Example:
For the UPC-A checksum scheme, we have 
w = 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1
A = 10

Variant: Vector elements may be XORed rather than added together

1 2 3 4 5 6 7 8 9 10 11
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13.3  Weight-Based and Berger Codes
Constant-weight codes

Definition: All codewords have the same number of 1s 

Can detect all unidirectional errors

Maximum number of codewords obtained 
when weight of n-bit codewords is n/2

A weight-2 code:
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000
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Check part

Berger Codes

Definition: Separable code that has the count of 0s within the data part 
attached as a binary number that forms the check part 

Alternative – attach the 1’s-complement of the number of 1s

Can detect all unidirectional errors

log2(k + 1) check bits for k data bits

A Berger code:
000000  110
000001  101
000010  101
000011  100
. . .

100111  010
101000  100
. . .

111110  001
111111  000

Jay M. Berger 
(IBM)
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13.4  Cyclic Codes
Definition: Any cyclic shift of a codeword produces another codeword 

To encode data (1101001), multiply its associated polynomial by G(x)
1 + x + x3 + x6

 1 + x + x3  

1 + x + x3 + x6 + x + x2 + x4 + x7 + x3 + x4 + x6 + x9 

1 + x2 +     x7 + x9

1 0 1 0 0 0 0 1 0 1

A k-bit data word corresponds to a polynomial of degree k – 1
Data = 1101001:   D(x) = 1 + x + x3 + x6 (addition is mod 2)

The code has a generator polynomial of degree r = n – k
G(x) = 1 + x + x3

Detects all burst errors of width less than n – k
Burst error polynomial xjE(x), where E(x) is of degree less than n – k
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Cyclic Codes: Encoding and Decoding

Encoding: Multiplication by the generator polynomial G(x) 

B(x) = (x + x3) D(x) V(x) = D(x) + B(x) = (1 + x + x3) D(x)

Decoding: Division by the generator polynomial G(x) 

FF FF FF V(x) 

D(x) 

x3 x 1G(x): 

FF FF FF

V(x) 

D(x) 

x3 x 1G(x): 

B(x) 
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Separable Cyclic Codes

Let D(x) and G(x) be the data and generator polynomials

Example: 7-bit code with 4 data bits and 3 check bits, G(x) = 1 + x + x3

Data = 1 0 0 1, D(x) = 1 + x3

x3D(x) = x3 + x6 = (x + x2) mod (1 + x + x3)
V(x)   = x + x2 + x3 +       x6

Codeword  =  0     1     1     1     0    0    1

Encoding:

Multiply D(x) by xn–k and divide the result by G(x) to get the remainder 
polynomial R(x) of degree less than n – k

Form the codeword V(x) = R(x) + xn–kD(x), which is divisible by G(x)

Check part             Data part

aka CRC = cyclic
redundancy check

Single parity bit:
G(x) = x + 1
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13.5  Arithmetic Error-Detecting Codes
Unsigned addition 0010 0111 0010 0001

+ 0101 1000 1101 0011
–––––––––––––––––

Correct sum 0111 1111 1111 0100
Erroneous sum 1000 0000 0000 0100


Stage generating an
erroneous carry of 1

How a single carry error 
can lead to an arbitrary 
number of bit-errors 
(inversions)

The arithmetic weight of an error: Min number of signed powers of 2 that 
must be added to the correct value to turn it into the erroneous result 
(contrast with Hamming weight of an error)

Example 1 Example 2
------------------------------------------------------------------------ --------------------------------------------------------------------------

Correct value 0111 1111 1111 0100 1101 1111 1111 0100
Erroneous value 1000 0000 0000 0100 0110 0000 0000 0100
Difference (error) 16 = 24 –32752 = –215 + 24

Min-weight BSD 0000 0000 0001 0000 –1000 0000 0001 0000
Arithmetic weight        1 2
Error type Single, positive Double, negative
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Codes for Arithmetic Operations

Arithmetic error-detecting codes:

Are characterized by arithmetic weights of detectable errors

Allow direct arithmetic on coded operands 

We will discuss two classes of arithmetic error-detecting codes, 
both of which are based on a check modulus A (usually a small 
odd number)

Product or AN codes
Represent the value N by the number AN

Residue (or inverse residue) codes
Represent the value N by the pair (N, C),
where C is N mod A or (N – N mod A) mod A
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Product or AN Codes

For odd A, all weight-1 arithmetic errors are detected 

Arithmetic errors of weight  2 may go undetected 

e.g., the error 32 736 = 215 – 25 undetectable with A = 3, 11, or 31

Error detection: check divisibility by A

Encoding/decoding: multiply/divide by A

Arithmetic also requires multiplication and division by A

Product codes are nonseparate (nonseparable) codes
Data and redundant check info are intermixed
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Low-Cost Product Codes

Use low-cost check moduli of the form A = 2a – 1   

Multiplication by A = 2a – 1: done by shift-subtract
(2a – 1)N = 2aN – N

Division by A = 2a – 1: done a bits at a time as follows 

Given y = (2a – 1)x, find x by computing 2a x – y
. . . xxxx 0000   – . . . xxxx xxxx   =    . . . xxxx xxxx
Unknown 2a x Known (2a – 1)x Unknown x

Theorem: Any unidirectional error with arithmetic weight of at most a – 1 
is detectable by a low-cost product code based on A = 2a – 1
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Arithmetic on AN-Coded Operands

Add/subtract is done directly: Ax  Ay = A(x  y)

Direct multiplication results in: Aa  Ax = A2ax

The result must be corrected through division by A

For division, if z = qd + s, we have: Az = q(Ad) + As

Thus, q is unprotected
Possible cure: premultiply the dividend Az by A
The result will need correction

Square rooting leads to a problem similar to division

A2x  =  Ax  which is not the same as A x 
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Residue and Inverse Residue Codes

Represent N by the pair (N, C(N)), where C(N) = N mod A

Residue codes are separate (separable) codes

Separate data and check parts make decoding trivial

Encoding: Given N, compute C(N) = N mod A

Low-cost residue codes use A = 2a – 1

To compute N mod (2a – 1), add a-bit segments of N, modulo 2a – 1
(no division is required)

Example: Compute 0101 1101 1010 1110 mod 15
0101 + 1101 = 0011 (addition with end-around carry)
0011 + 1010 = 1101
1101 + 1110 = 1100 The final residue mod 15
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Arithmetic on Residue-Coded Operands
Add/subtract: Data and check parts are handled separately

(x, C(x))  (y, C(y)) = (x  y, (C(x)  C(y)) mod A)

Multiply
(a, C(a))  (x, C(x)) = (a  x, (C(a)C(x)) mod A)

Divide/square-root: difficult

    Main 
Arithmetic 
Processor

   Check 
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error 
Indicator

A

Arithmetic processor 
with residue checking
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13.6  Other Error-Detecting Codes

Codes for erasure errors

Assume n total symbols, k info symbol, n – m erasures allowed
Info can be recovered from any m symbols in an n-symbol codeword
When m = k, the erasure code is optimal

Codes for byte errors

Bytes are common units of data representation, storage, transmission
So, it makes sense to tie our error detection capability to bytes
Example: Single-byte-error-correcting, double-byte-error-detecting code

Codes for burst errors

With serial data or scratched disk surface, adjacent bits can be affected
Example: Single-bit-error-correcting, 6-bit-burst-error-detecting code
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Higher-Level Error Coding Methods

We have applied coding to data at the bit-string or word level

It is also possible to apply coding at higher levels

Data structure level – Robust data structures

Application level – Algorithm-based error tolerance
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Error Correction
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14.1  Basics of Error Correction
High-redundancy codes

Triplication is a form of error coding: 
x represented as xxx (200% redundancy)
Corrects any error in one version
Detects two nonsimultaneous errors

With a larger replication factor, more errors can be corrected

Encoding Decoding

f(x)x y

f(x)

f(x)

If we triplicate the voting unit to obtain 3 results, 
we are essentially performing the operation f(x) 
on coded inputs, getting coded outputs

V

Our challenge here is to come up with strong correction capabilities, 
using much lower redundancy (perhaps an order of magnitude less)

To correct all single-bit errors in an n-bit code, we must have 2r > n, 
or 2r > k + r, which leads to about log2 k check bits, at least
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The Concept of Error-Correcting Codes

A conceptually simple error-correcting code:
Arrange the k data bits into a k1/2  k1/2 square array
Attach an even parity bit to each row and column of the array
Row/Column check bit = XOR of all row/column data bits
Data space: All 2k possible k-bit words
Redundancy: 2k1/2 + 1 check bits for k data bits
Corrects all single-bit errors (lead to distinct noncodewords)
Detects all double-bit errors (some triples go undetected)

Encoding

Decoding

Data words Codewords

Noncodewords

Errors

Data space Code space

Error space

0  1  1 0
0  1  0 1
1  0  1 0
1  0  0 1

0

To be avoided 
at all cost



Nov. 2020 Part IV – Errors: Informational Distortions Slide 34

Evaluation of Error-Correcting Codes

Redundancy: k data bits encoded in n = k + r bits (r redundant bits)

Encoding: Complexity (circuit / time) to form codeword from data word

Decoding: Complexity (circuit / time) to obtain data word from codeword

Capability: Classes of error that can be corrected
Greater correction capability generally involves more redundancy
To correct c bit-errors, a minimum code distance of 2c + 1 is required

Combined error correction/detection capability:
To correct c errors and additionally detect d errors (d > c), 
a minimum code distance of c + d + 1 is required

Example: Hamming SEC/DED code has a code distance of 4

Examples of code correction capabilities:
Single, double, byte, b-bit burst, unidirectional, . . . errors
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Hamming Distance for Error Correction

Red dots represent codewords

Yellow dots, noncodewords 
within distance 1 of codewords, 
represent correctable errors

Blue dot, within distance 2 of 
three different codewords 
represents a detectable error

Simultaneous single error 
correction and double error 
detection requires that there not 
be points within distance 2 of 
some codewords that are also 
within distance 1 of another

The following visualization, though not completely accurate, is still useful
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14.2  Hamming Codes

d3 d2 d1 d0 p2 p1 p0

Data bits       Parity bitsExample: Uses multiple parity bits, each 
applied to a different subset of data bits

Encoding: 3 XOR networks to form parity bits

Checking: 3 XOR networks to verify parities

Decoding: Trivial (separable code)

Redundancy: 3 check bits for 4 data bits
Unimpressive, but gets better with more data bits
(7, 4); (15, 11); (31, 26); (63, 57); (127, 120)

Capability: Corrects any single-bit error

s2 = d3  d2  d1  p2

s1 = d3  d1  d0  p1

s0 = d2  d1  d0  p0

s2 s1 s0 Error

0  0  0 None

0  0  1 p0

0  1  0 p1

0  1  1 d0

1  0  0 p2

1  0  1 d2

1  1  0 d3

1  1  1 d1

s2 s1 s0

Syndrome



Nov. 2020 Part IV – Errors: Informational Distortions Slide 37

Matrix Formulation of Hamming SEC Code

d3 d2 d1 d0 p2 p1 p0

Data bits       Parity bits

d3  d2  d1  d0 p2 p1 p0

1   1   1   0   1   0   0
1   0   1   1   0   1   0
0   1   1   1   0   0   1 s2 s1 s0 Error

0  0  0 None

0  0  1 p0

0  1  0 p1

0  1  1 d0

1  0  0 p2

1  0  1 d2

1  1  0 d3

1  1  1 d1

Parity check matrix

d3  

d2  

d1  

d0 

p2 

p1  

p0

s2 

s1  

s0

 =

Data bits       Parity bits

SyndromeReceived 
word

Syndrome matches the p2 column 
in the parity check matrix

Matrix-vector multiplication is done 
with AND/XOR, instead of /+
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Matrix Rearrangement for Simpler Correction

p0 p1 d0 p2 d2 d3 d1

Data and parity bits

p0 p1 d0  p2 d2  d3  d1

0   0   0   1   1   1   1
0   1   1   0   0   1   1
1   0   1   0   1   0   1 s2 s1 s0 Error

0  0  0 None

0  0  1 p0

0  1  0 p1

0  1  1 d0

1  0  0 p2

1  0  1 d2

1  1  0 d3

1  1  1 d1

p0  

p1  

d0  

p2 

d2 

d3  

d1

s2 

s1  

s0

 =

Data and parity bits

Syndrome indicates 
error in position 4 

1   2   3   4   5  6   7
Position number

s2 
s1  
s0

Decoder

0 1-7

Data and parity bits

Corrected 
version

1-7

1-7

Matrix columns 
are binary rep’s 
of column indices
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Hamming Generator Matrix

d3 d2 d1 d0 p2 p1 p0

Data bits       Parity bits
d3  d2  d1  d0

1   0   0   0
0   1   0   0
0   0   1   0
0   0   0   1
1   1   1   0
1   0   1   1
0   1   1   1

Generator matrix

d3  

d2  

d1  

d0 

 =

CodewordData word

d3  

d2  

d1  

d0 

p2 

p1  

p0

Recall that matrix-vector multiplication 
is done with AND/XOR, instead of /+

Data bits

Richard W. Hamming
(Bell Labs,
Naval Postgraduate 
School)
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Generalization to Wider Hamming SEC Codes

p0 p1 d0  p2 .   .   .

0   0   0   . . .  1   1   1
: : : . . .   :    :    :
0   1   1   . . .  0   1   1
1   0   1   . . .  1   0   1

p0  

p1  

d0  

p2 

.

.

.

sr-1 

: 
s1  

s0

 =

Data and parity bits

1   2   3   2r–1 
Position number

sr-1 
:

s1  
s0

Decoder

2r-1

Data and parity bits

Corrected 
version

2r-1

2r-1

n k = n – r 

7 4

15 11

31 26

63 57

127 120

255 247

511 502

1023 1013

Condition for general 
Hamming SEC code: 
n = k + r = 2r – 1

Matrix columns 
are binary rep’s 
of column indices
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1   1   1   . . .  1   1   1   1
0
:
0
0

pr

sr

A Hamming SEC/DED Code

p0 p1 d0  p2 .   .   .

0   0   0   . . .  1   1   1
: : : . . .   :    :    :
0   1   1   . . .  0   1   1
1   0   1   . . .  1   0   1

p0  

p1  

d0  

p2 

.

.

.

sr-1 

: 
s1  

s0

 =

Data and parity bits

1   2   3   2r–1 
Position number

Add an extra row of 
all 1s and a column 
with only one 1 to the 
parity check matrix

Parity check matrix Syndrome
Received 

word

sr-1 
:

s1  
s0

Decoder

2r-1

Data and 
parity bits

Corrected 
version

2r-1

2r-1

sr

q
Not single error

Easy to verify that the appropriate “correction” 
is made for all 4 combinations of (sr,q) values
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14.3  Linear Codes
Hamming codes are examples of linear codes
Linear codes may be defined in many other ways

u =  G  d

n-bit codeword
n  k

generator 
matrix

k-bit data word
(Column vector)

Multiplication, 
with XOR/AND

s =  H  v

(n–k)-bit syndrome

(n–k)  n
parity check 

matrix

n-bit suspect word
(Column vector)

Multiplication, 
with XOR/AND
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14.4  Reed-Solomon and BCH Codes

BCH codes: Named in honor of Bose, Chaudhuri, Hocquenghem

Reed-Solomon codes: Special case of BCH code

Example: A popular variant is RS(255, 223) with 8-bit symbols
223 bytes of data, 32 check bytes, redundancy  14%
Can correct errors in up to 16 bytes anywhere in the 255-byte codeword
Used in CD players, digital audio tape, digital television
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Reed-Solomon Codes

With k data symbols, require 2t check symbols, each s bits wide, to correct 
up to t symbol errors; hence, RS(k + 2t, k) has distance 2t + 1
The number k of data symbols must satisfy k  2s – 1 – 2t  (s grows with k)

Generator polynomial: g(x) = (x – a)(x – a2)(x – a3)(x – a4); 
a is a primitive root mod 7  integers from 1 to 6 are powers of a mod 7 
31 = 3; 32 = 2; 33 = 6; 34 = 4; 35 = 5; 36 = 1

Pick a = 3  g(x) = (x – 3)(x – 32)(x – 33)(x – 34) 
= (x – 3)(x – 2)(x – 6)(x – 4) = x4 + 6x3 + 3x2 + 2x + 4

k data symbols 2t check symbols

Example: RS(6, 2) code, with 2 data and 2t = 4 check symbols (7-valued)  
 up to t = 2 symbol errors correctable; hence, RS(6, 2) has distance 5

As usual, the codeword is the product of g(x) and the info polynomial;
convertible to matrix-by-vector multiply by deriving a generator matrix G
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Elements of Galois Field GF(23)
A primitive element a of GF(23) is one that generates all nonzero 
elements of the field by its powers

Here are three different representation of the elements of GF(23) 

Power Polynomial Vector

--

1

a
a2

a3

a4

a5

a6

0

1

a
a2

a + 1

a2 + a
a2 + a + 1

a2 + 1

000

001

010

100

011

110

111

101



Nov. 2020 Part IV – Errors: Informational Distortions Slide 46

BCH Codes

BCH(15, 7) code: Capable of correcting any two errors

Correct the deficiency of Reed-Solomon code; have a fixed alphabet
We usually choose the alphabet {0, 1}

Generator polynomial: g(x) = 1 + x4 + x6 + x7 + x8

[0 1 1 0 0 1 0 1 1 0 0 0 0 1 0] 

1000 1000
0100 0001
0010 0011
0001 0101
1100 1111
0110 1000
0011 0001
1101 0011
1010 0101
0101 1111
1110 1000
0111 0001
1111 0011
1011 0101
1001 1111

= [x x x x x x x x]

Received word

Parity check matrix

Syndrome

BCH(511, 493) used as 
DEC code in a video 
coding standard for 
videophones

BCH(40, 32) used as 
SEC/DED code in ATM
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14.5  Arithmetic Error-Correcting Codes
––––––––––––––––––––––––––––––––––––––––
Positive Syndrome Negative Syndrome

error mod 7 mod 15 error mod 7 mod 15
––––––––––––––––––––––––––––––––––––––––

1 1 1 –1 6 14
2 2 2 –2 5 13
4 4 4 –4 3 11
8 1 8 –8 6 7

16 2 1 –16 5 14
32 4 2 –32 3 13
64 1 4 –64 6 11

128 2 8 –128 5 7
256 4 1 –256 3 14
512 1 2 –512 6 13

1024 2 4 –1024 5 11
2048 4 8 –2048 3 7

––––––––––––––––––––––––––––––––––––––––
4096 1 1 –4096 6 14
8192 2 2 –8192 5 13

16,384 4 4 –16,384 3 11
32,768 1 8 –32,768 6 7

––––––––––––––––––––––––––––––––––––––––

Error syndromes for 
weight-1 arithmetic 
errors in the (7, 15) 
biresidue code

Because all the 
syndromes in this 
table are different, 
any weight-1 
arithmetic error is 
correctable by the 
(mod 7, mod 15) 
biresidue code
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Properties of Biresidue Codes
Biresidue code with relatively prime low-cost check moduli A = 2a – 1 
and B = 2b – 1 supports a  b bits of data for weight-1 error correction 

Representational redundancy = (a + b)/(ab) = 1/a + 1/b

n k 

7 4

15 11

31 26

63 57

127 120

255 247

511 502

1023 1013Compare with Hamming SEC code

a b n=k+a+b k=ab

3 4 19 12

5 6 41 30

7 8 71 56

11 12 143 120

15 16 271 240
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Arithmetic on Biresidue-Coded Operands
Similar to residue-checked arithmetic for addition and multiplication, 
except that two residues are involved

Divide/square-root: remains difficult

Arithmetic processor 
with biresidue checking

    Main 
Arithmetic 
Processor

   Check 
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error 
Indicator

A

D(z)

D(x)

D(y)

s

B

s



Nov. 2020 Part IV – Errors: Informational Distortions Slide 50

14.6  Other Error-Correcting Codes

Reed-Muller codes: Have a recursive construction, with smaller codes 
used to build larger ones

Turbo codes: Highly efficient separable 
codes, with iterative (soft) decoding

Encoder 1

Encoder 2Interleaver

Data

Code

Low-density parity check (LDPC) codes: Each parity check is defined 
on a small set of bits, so error checking is fast; correction is more difficult

Information dispersal: Encoding data into n pieces, such that any k of 
the pieces are adequate for reconstructing the data
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Higher-Level Error Coding Methods

We have applied coding to data at the bit-string or word level

It is also possible to apply coding at higher levels

Data structure level – Robust data structures

Application level – Algorithm-based error tolerance
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Preview of Algorithm-Based Error Tolerance

2 1 6 1

5 3 4 4

3 2 7 4

M r = 

2 1 6 1

5 3 4 4

3 2 7 4

2 6 1 1

M f = 

2 1 6

5 3 4

3 2 7

M = 

2 1 6

5 3 4

3 2 7

2 6 1

M c = 

Matrix M Row checksum matrix

Column checksum matrix Full checksum matrix

Error coding applied to data structures, rather than at the level of atomic 
data elements

Example: mod-8 
checksums used 
for matrices

If Z = X  Y then 
Zf = Xc  Yr

In Mf, any single 
error is correctable 
and any 3 errors 
are detectable

Four errors may 
go undetected
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Self-Checking Modules
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Earl checks his balance at the bank.
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15.1  Checking of Function Units
Function

unit

Status

Encoded 
input

Encoded 
output

Self-checking 
code checker

Function unit designed in a 
way that faults/errors/malfns 
manifest themselves as 
invalid (error-space) outputs, 
which are detectable by an 
external code checker

Input

Code 
space

Error 
space

Code 
space

Error 
space

Output

f

Implementation of the 
desired functionality 
with coded values

ff
Circuit function 
with the fault f

OR

Four possibilities:

Both function unit and checker okay

Only function unit okay (false alarm 
may be raised, but this is safe)

Only checker okay (we have either no 
output error or a detectable error)

Neither function unit nor checker okay 
(use 2-output checker; a single check 
signal stuck-at-okay goes undetected, 
leading to fault accumulation)
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Cascading of Self-Checking Modules

Function
unit 1

Encoded 
input

Self-checking 
checker

Function
unit 2

Encoded 
output

Self-checking 
checker

Given self-checking modules that 
have been designed separately, 
how does one combine them into 
a self-checking system?

Can remove this checker 
if we do not expect both units 
to fail and Function unit 2 
translates any noncodeword 
input into noncode output

Output of multiple checkers may be 
combined in self-checking manner

Code 
space

Error 
space

Code 
space

Error 
space

Output

f

ff OR

Input

Input 
uncheckedf

Input checked 
(don’t care)

ff

?
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15.2  Error Signal and Their Combining

Function
unit 1

Encoded 
input

Self-checking 
checker

Function
unit 2

Encoded 
output

Self-checking 
checker

In Out

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 1 1 
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1 

Simplified truth table 
if we denote 
01 and 10 as G,
00 and 11 as B

In      Out

B  B B
B  G B
G B B
G G G

Circuit to 
combine 
error 
signals
(two-rail 
checker)

01 or 10: G
00 or 11: B

Show that this circuit is self-testing
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15.3  Totally Self-Checking Design
A module is totally self-checking 
if it is self-checking and self-testing

If the dashed red arrow option is 
used too often, faults may go 
undetected for long periods of time, 
raising the danger of a second fault 
invalidating the self-checking design

A self-checking circuit is self-testing if any 
fault from the class covered is revealed at 
output by at least one code-space input, 
so that the fault is guaranteed to be 
detectable during normal circuit operation

Code 
space

Error 
space

Code 
space

Error 
space

Output

f

ff OR

Input

Input 
uncheckedf

Input checked 
(don’t care)

Note that if we don’t 
explicitly ensure this, 
tests for some of the 
faults may belong to 
the input error space

The self-testing property allows us to focus on a small set of faults, 
thus leading to more economical self-checking circuit implementations 
(with a large fault set, cost would be prohibitive)

ff

?
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Self-Monitoring Design

A module is self monitoring with respect to the fault class F if it is

(1) Self-checking with respect to F, or

(2) Totally self-checking wrt the fault class Finit  F, chosen such that 
all faults in F develop in time as a sequence of simpler faults, 
the first of which is in Finit

Example: 
A unit that is totally-self-checking wrt single 
faults may be deemed self-monitoring wrt to 
multiple faults, provided that multiple faults 
develop one by one and slowly over time

The self-monitoring design approach requires the more stringent 
totally-self-checking property to be satisfied for a small, manageable 
set of faults, while also protecting the unit against a broader fault class

Finit F – Finit

f1 f2

f3

Fault-free
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15.4  Self-Checking Checkers
Conventional code checker

Input
Code 
space

Error 
space

Outputf

0

1

f

Pleasant 
surprise:
The self-
checking 
version is 
simpler!

Input
Self-checking code checker

Code 
space

Error 
space

Outputf

01

00

f

10

11

f

ff

ff ?

Example: 5-input odd-parity checker

s-a-0 fault 
on output?

e

Example: 5-input odd-parity checker

e0

e1
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TSC Checker for m-out-of-2m Code

Divide the 2m bits into two disjoint subsets A and B of m bits each
Let v and w be the weight of (number of 1s in) A and B, respectively 
Implement the two code checker outputs e0 and e1 as follows:  

e0 =  (v  i)(w  m – i)
i = 0

(i even)

m

e1 =  (v  j)(w  m – j)
j = 1

(j odd)

m

Always satisfied

Example: 3-out-of-6 code checker, m = 3, A = {a, b, c}, B = { f, g, h}

e0 = (v  0)(w  3)  (v  2)(w  1) = fgh  (ab  bc  ca)(f  g  h)

e1 = (v  1)(w  2)  (v  3)(w  0) = (a  b  c)(fg  gh  hf)  abc

v 1s w 1s

m bits m bits

v 1s w 1s

Subset A Subset B
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Another TSC m-out-of-2m Code Checker
Cellular realization, due to J. E. Smith:
This design is testable with only 2m inputs, 
all having m consecutive 1s (in cyclic order)

.

.

.

.

.

.

.

.

.

.

.

.

m – 1 stages

...

...
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Using 2-out-of-4 Checkers as Building Blocks

Building m-out-of-2m TSC checkers, 3  m  6, from 2-out-of-4 checkers
(construction due to Lala, Busaba, and Zhao):

Examples: 3-out-of-6 and 4-out-of-8 TSC checkers are depicted below
(only the structure is shown; some design details are missing)

2-out-of-4

2-out-of-4

2-out-of-4

2-out-of-4

2-rail checker

1   2   3   4 3   4   5   65   6 1   2

3-out-of-6

2-out-of-4

2-out-of-4

2-out-of-4

2-out-of-4

2-out-of-4 2-out-of-4

2-rail checker

1   2   3   4 3   4   7   85   6   7   8 1   2   5   6

4-out-of-8

Slightly different 
from an ordinary 

2-out-of-4 checker
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TSC Checker for k-out-of-n Code

One design strategy is to proceed in 3 stages:
Convert the k-out-of-n code to a 1-out-of-( ) code
Convert the latter code to an m-out-of-2m code
Check the m-out-of-2m code using a TSC checker

This approach is impractical for many codes

n
k

5 bits

10 bits

6 bits

2-out-of-5

1-out-of-10

3-out-of-6

10 AND gates

6 OR gates

TSC checker

A procedure due to Marouf and Friedman:
Implement 6 functions of the general form

(these have different subsets of bits as
inputs and constitute a 1-out-of-6 code)

Use a TSC 1-out-of-6 to 2-out-of-4 converter
Use a TSC 2-out-of-4 code checker

The process above works for 2k + 2  n  4k
It can be somewhat simplified for n = 2k + 1

e0 =  (v  j)(w  m – j)
j = 1

(j even)

m

6 bits

4 bits

e0 e1 e2 e3 e4 e5

1-out-of-6

2-out-of-4 OR gates

TSC checker
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TSC Checkers for Separable Codes

Here is a general strategy for designing totally-self-checking checkers 
for separable codes

k data bits

n – k
check bits

Input 
word TSC code checker

Generate 
complement 
of check bits

n – k

n – k

e0
e1

Two-rail 
checker

Checker 
outputs

For many codes, direct synthesis will produce a faster and/or more 
compact totally-self-checking checker

Google search for “totally self checking checker” produces 817 hits
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15.5  Self-Checking State Machines
Design method for Moore-type machines, due to Diaz and Azema:

Inputs and outputs are encoded using two-rail code
States are encoded as n/2-out-of-n codewords

Fact: If the states are encoded using a k-out-of-n code, one can 
express the next-state functions (one for each bit of the next state) 
via monotonic expressions; i.e., without complemented variables

Monotonic functions can be realized with only AND and OR gates, 
hence the unidirectional error detection capability

Input Output
State x = 0 x = 1 z

A C A 1
B D C 1
C B D 0
D C A 0

Input Output
State x = 01 x = 10 z

0011 1010 0011 10
0101 1001 1010 10
1010 0101 1001 01
1001 1010 0011 01
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15.6  Practical Self-Checking Design

Design based on parity codes

Design with residue encoding

FPGA-based design

General synthesis rules

Partially self-checking design
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Design with Parity Codes and Parity Prediction

Operands and results are parity-encoded
Parity is not preserved over arithmetic and logic operations

/ 
k 

/ 
k 

/ 
k 

Parity- 
encoded 
inputs 

ALU 

Error 
signal 

Parity- 
encoded 
output  

Parity 
generator 

Ordinary ALU 

Parity 
predictor 

Parity prediction is an alternative to duplication

Compared to duplication:
Parity prediction often involves less overhead in time and space
The protection offered by parity prediction is not as comprehensive
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TSC Design with Parity Prediction

Recall our discussion of parity prediction as an alternative to duplication

/ 
k 

/ 
k 

/ 
k 

Parity- 
encoded 
inputs 

ALU 

Error 
signal 

Parity- 
encoded 
output  

Parity 
generator 

Ordinary ALU 

Parity 
predictor 

If the parity predictor produces the complement of the output parity, and 
the XOR gate is removed, we have a self-checking design

To ensure the TSC property, we must also verify that the parity predictor 
is testable only with input codewords



Nov. 2020 Part IV – Errors: Informational Distortions Slide 71

Parity Prediction for an Adder

Operand A: 1  0  1  1  0  0  0  1 Parity  0
Operand B: 0  0  1  1  1  0  1  1 Parity  1

A  B 1  0  0  0  1  0  1  0

Carries: 0  0  1  1  0  0  1  1  Parity  0
Sum S: 1  1  1  0  1  1  0  0 Parity  1

p(S) = p(A)  p(B)  c0  c1  c2  . . .   ck

Inputs Must compute second 
versions of these carries 
to ensure independence

Parity-checked
adder

A, p(A) B, p(B)

S, p(S)

c0

Parity predictor for our adder consists of a duplicate carry network and 
an XOR tree
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TSC Design with Residue Encoding

Residue checking is applicable directly to addition, subtraction, and 
multiplication, and with some extra effort to other arithmetic operations

Modify the “Find mod A” box 
to produce the complement 
of the residue

Use two-rail checker instead of 
comparator

Add 

x, x mod A 

Add mod A 

Compare 
Find 
mod A 

y, y mod A 

s, s mod A Error 

 Not 
 equal 

Verify the self-testing property 
if the residue channel is not 
completely independent of the 
main computation (not needed 
for add/subtract and multiply)

To make this scheme TSC:
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Self-Checking Design with FPGAs

Synthesis algorithm:
(1) Use scripts in the Berkeley synthesis tool SIS to decompose an SOP 
expression into an optimal collection of parts with 4 or fewer variables
(2) Assign each part to a functional cell that produces a 2-rail output
(3) Connect the outputs of a pair of intermediate functional cells to the 
inputs of a checker cell and find the output equations for that cell
(4) Cascade the checker cells to form a checker tree

LUT-based FPGAs can suffer from the following fault types:
Single s-a faults in RAM cells 
Single s-a faults on signal lines
Functional faults in a multiplexer within a single CLB
Functional faults in a D flip-flop within a single CLB
Single s-a faults in pass transistors connecting CLBs

Ref.: [Lala03]

LUT
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Synthesis of TSC Systems from TSC Modules

Theorem 1: A sufficient condition for a system to be TSC with respect 
to all single-module failures is to add checkers to the system such that 
if a path leads from a module Mi to itself (a loop), then it encounters at 
least one checker

Theorem 2: A sufficient condition for a system to be TSC with respect 
to all multiple module failures in the module set A = {Mi} is to have no 
loop containing two modules in A in its path and at least one checker 
in any path leading from one module in A to any other module in A

System consists of a set of modules, with interconnections modeled 
by a directed graph

Optimal placement of checkers to satisfy these condition

Easily solved, when checker cost is the same at every interface
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Partially Self-Checking Units

The check/do-not-check indicator 
is produced by the control unit 

Some ALU functions, such as logical operations, cannot be checked 
using low-redundancy codes

Such an ALU can be made partially self-checking by circumventing 
the error-checking process in cases where codes are not applicable

Self-checking ALU
with residue code

0  1
1  0

Do not check Check

Residue-check 
error signal ALU error 

indicator

01, 10 = G (top)
01=D,10=C(bottom)
00, 11 = B

In      Out
X  B B
B  C B
B  D G
G C G    
G D G     

Normal 
operation

01
10
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Redundant Disk Arrays
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16.1  Disk Memory Basics

Track 0 
Track 1 

Track c – 1 

Sector 

Recording area 

Spindle 

Direction of 
rotation 

Platter 

Read/write head 

Actuator 

Arm 

Track 2 

Magnetic disk storage concepts

Comprehensive info about disk memory: http://www.storagereview.com/guide/index.html
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Typical Modern Hard-Disk Drives

Seagate BarraCuda
Toshiba X300
WD VelociRaptor
WD Blue Desktop
Seagate Firecuda Desktop
Seagate IronWolf NAS
Seagate FireCuda Mobile
WD My Book
G-Technology G-Drive

Price: Mostly under $100
Capacity: Mostly 1-20 TB
Cache: 64-256 MB
Data rate: ~ 6 Gbps

https://www.techradar.com/news/10-best-internal-desktop-and-laptop-hard-disk-drives-2016
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Access Time for a Disk

The three components of disk access time. Disks that spin faster 
have a shorter average and worst-case access time.

1. Head movement  
from current position 
to desired cylinder:  
Seek time (0-10s ms) 

Rotation 

2. Disk rotation until the desired 
sector arrives under the head: 
Rotational latency (0-10s ms) 

3. Disk rotation until sector 
has passed under the head: 
Data transfer time (< 1 ms) 

Sector 

1 
2 

3 

Average rotational latency =  
30 000 / rpm  (in ms) Seek time =  

a + b(c – 1) 
+ b(c – 1)1/2

Data transfer time =  
Bytes / Data rate
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Amdahl’s Rules of Thumb for System Balance

The need for high-capacity, high-throughput secondary (disk) memory

Processor 
speed

RAM 
size 

Disk I/O 
rate

Number of 
disks

Disk 
capacity

Number of 
disks

1 GIPS 1 GB 100 MB/s 1 100 GB 1

1 TIPS 1 TB 100 GB/s 1000 100 TB 100

1 PIPS 1 PB 100 TB/s 1 Million 100 PB 100 000

1 EIPS 1 EB 100 PB/s 1 Billion 100 EB 100 Million

G Giga
T Tera
P Peta
E Exa

1 RAM byte
for each IPS

100 disk bytes
for each RAM byte

1 I/O bit per sec
for each IPS
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Head-Per-Track Disks

Fig. 18.7    Head-per-track disk concept.

Track 0 Track 1

Track c–1

Dedicated track heads eliminate seek time 
(replace it with activation time for a head)

Multiple sets of head 
reduce rotational latency
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16.2  Disk Mirroring and Striping

Mirroring means simple duplication

Disadvantage: 
No gain in performance 
or bandwidth

http://www.recoverdata.com/images/raid_mirror.gif

Advantage: 
Parallel system,
highly reliable
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Disk Striping
Striping means dividing a block of data into smaller pieces (perhaps 
down to the bit level) and storing the pieces on different disks

Advantage: 
Faster (parallel) 
access to data

http://www.recoverdata.com/images/raid_striping.gif

Disadvantage: 
Series system,
less reliable
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16.3  Data Encoding Schemes

Simplest possible encoding: data duplication

Error-correcting code: An overkill, because disk errors are of erasure 
type (strong built-in error-detecting code indicates error location)

Parity, applied to bits or blocks:   P = A  B  C  D

Data reconstruction: Suppose B is lost or erased 

B = A  C  D  P
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16.4  The RAID Levels

Alternative data organizations on redundant disk arrays. 

RAID0: Multiple disks for higher 
data rate; no redundancy 

RAID1: Mirrored disks 

RAID2: Error-correcting code 

RAID3: Bit- or byte-level striping 
with parity/checksum disk 

RAID4: Parity/checksum applied 
to sectors,not bits or bytes 

RAID5: Parity/checksum 
distributed across several disks 

Data organization on multiple disks 

Data 
disk 0 

Data 
disk 1 

Mirror 
disk 1 

Data 
disk 2 

Mirror 
disk 2 

Data 
disk 0 

Data 
disk 2 

Data 
disk 1 

Data 
disk 3 

Mirror 
disk 0 

Parity 
disk  

Spare 
disk  

Spare 
disk  

Data 0 

Data 1 

Data 2 

Data 0’ 

Data 1’ 

Data 2’ 

Data 0” 

Data 1” 

Data 2” 

Data 0’” 

Data 1’” 

Data 2’” 

Parity 0 

Parity 1 

Parity 2 

Spare 
disk  

Data 0 

Data 1 

Data 2 

Data 0’ 

Data 1’ 

Data 2’ 

Data 0’” 

Parity 1 

Data 2” 

Parity 0 

Data 1’” 

Data 2’” 

Data 0” 

Data 1” 

Parity 2 

RAID6: Parity and 2nd check 
distributed across several disks 
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RAID Levels 0 and 1

Structure: Striped (data broken into 
blocks & written to separate disks)

Advantages: Spreads I/O load 
across many channels and drives

Drawbacks: No error tolerance
(data lost with single disk failure)

Diagrams: http://ironraid.com/whatisraid.htm

Structure: Each disk 
replaced by a mirrored pair

Advantages: Can double the read 
transaction rate; no rebuild required

Drawbacks: Overhead is 100%

RAID 0

RAID 1
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Combining RAID Levels 0 and 1

RAID 1E

RAID 10

Diagrams: http://ironraid.com/whatisraid.htm
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RAID Level 2

Structure:

Data bits are written 
to separate disks and 
ECC bits to others

Advantages:

On-the-fly correction
High transfer rates 

possible (w/ sync)

Drawbacks:

Potentially high 
redundancy

High entry-level cost

http://www.acnc.com/ 
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RAID Level 3

Structure:

Data striped across 
several disks, parity 
provided on another

Advantages:

Maintains good 
throughput even 
when a disk fails

Drawbacks:

Parity disk forms a 
bottleneck

Complex controller

http://www.acnc.com/ 
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RAID Level 4

Structure:

Independent blocks 
on multiple disks 
share a parity disk

Advantages:

Very high read rate
Low redundancy

Drawbacks:

Low write rate
Inefficient data rebuild

http://www.acnc.com/ 
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RAID Level 5

Structure:

Parity and data 
blocks distributed on 
multiple disks

Advantages:

Very high read rate
Medium write rate
Low redundancy

Drawbacks:

Complex controller
Difficult rebuild

Diagrams: http://ironraid.com/whatisraid.htm

Variant: The spare is also active and the 
spare capacity is distributed on all drives; 
particularly attractive with small arrays
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RAID Level 6

Structure:

RAID Level 5, 
extended with second 
parity check scheme

Advantages:

Tolerates 2 failures
Protected even during 

recovery

Drawbacks:

More complex 
controller

Greater overhead

http://www.acnc.com/ 
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16.5  Disk Array Performance

Data reconstruction 

P = A  B  C  D      B = A  C  D  P

To reconstruct B, we must read all other data blocks and the parity block

Disk array performance has two components:
1. Speed during normal read and write operations
2. Speed of reconstruction (also affects reliability)

The reconstruction time penalty and the “small write” penalty have led 
some to reject all parity-based RAID schemes

BAARF = Battle Against Any RAID-F (Free, Four, Five): www.baarf.com
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The Write Problem in Disk Arrays
Parity updates may become a bottleneck, because the parity changes 
with every write, no matter how small

Computing sector parity for a write operation:

New parity = New data  Old data  Old parity

RAID0: Multiple disks for higher 
data rate; no redundancy 

RAID1: Mirrored disks 

RAID2: Error-correcting code 

RAID3: Bit- or byte-level striping 
with parity/checksum disk 

RAID4: Parity/checksum applied 
to sectors,not bits or bytes 

RAID5: Parity/checksum 
distributed across several disks 

Data organization on multiple disks 

Data 
disk 0 

Data 
disk 1 

Mirror 
disk 1 

Data 
disk 2 

Mirror 
disk 2 

Data 
disk 0 

Data 
disk 2 

Data 
disk 1 

Data 
disk 3 

Mirror 
disk 0 

Parity 
disk  

Spare 
disk  

Spare 
disk  

Data 0 

Data 1 

Data 2 

Data 0’ 

Data 1’ 

Data 2’ 

Data 0” 

Data 1” 

Data 2” 

Data 0’” 

Data 1’” 

Data 2’” 

Parity 0 

Parity 1 

Parity 2 

Spare 
disk  

Data 0 

Data 1 

Data 2 

Data 0’ 

Data 1’ 

Data 2’ 

Data 0’” 

Parity 1 

Data 2” 

Parity 0 

Data 1’” 

Data 2’” 

Data 0” 

Data 1” 

Parity 2 

RAID6: Parity and 2nd check 
distributed across several disks 
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RAID Tradeoffs

Figures from: [Chen94]

RAID5 and RAID 6 
impose little penalty 
on read operations

In choosing the 
group size, 
balance must be 
struck between the 
increasing penalty 
for small writes vs. 
decreasing penalty 
for large writes
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16.6  Disk Array Reliability Modeling

From: http://www.vinastar.com/docs/tls/Dell_RAID_Reliability_WP.pdf
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MTTF Calculation for Disk Arrays

RAID1:

RAID5:
MTTF2

N(G – 1) MTTR

RAID6:
MTTF3

N(G – 1)(G – 2) MTTR2

Notation:

MTTF is for one disk
MTTR is different for each level
N = Total number of disks
G = Disks in a parity group

Caveat: RAID controllers (electronics) are also subject to failures and 
their reported MTTF is surprisingly small (on the order of 0.2 to 2 M hr). 
Also, must account for errors that go undetected by the disk’s error code.

MTTF2

2 MTTR
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Actual Redundant Disk Arrays


