

STRUCTURE AT A GLANCE

Part I - Introduction: Dependable Systems (The Ideal-System View)	Goals Models	1. Background and Motivation 2. Dependability Attributes 3. Combinational Modeling 4. State-Space Modeling
Part II — Defects: Physical Imperfections (The Device-Level View)	Methods	5. Defect Avoidance 6. Defect Circumvention 7. Shielding and Hardening 8. Yield Enhancement
Part III — Faults: Logical Deviations (The Circuit-Level View)	Methods	9. Fault Testing 10. Fault Masking 11. Design for Testability 12. Replication and Voting
Part IV - Errors: Informational Distortions (The State-Level View)	Methods	13. Error Detection 14. Error Correction 15. Self-Checking Modules 16. Redundant Disk Arrays
Part V - Malfunctions: Architectural Anomalies (The Structure-Level View)	Methods	17. Malfunction Diagnosis 18. Malfunction Tolerance 19. Standby Redundancy 20. Resilient Algorithms
Part VI - Degradations: Behavioral Lapses (The Service-Level View)	Methods	21. Degradation Allowance 22. Degradation Management 23. Robust Task Scheduling 24. Software Redundancy
Part VII - Failures: Computational Breaches (The Result-Level View)	Methods	25. Failure Confinement 26. Failure Recovery 27. Agreement and Adjudication 28. Fail-Safe System Design

Appendix: Past, Present, and Future

About This Presentation

This presentation is intended to support the use of the textbook Dependable Computing: A Multilevel Approach (traditional print or on-line open publication, TBD). It is updated regularly by the author as part of his teaching of the graduate course ECE 257A, Fault-Tolerant Computing, at Univ. of California, Santa Barbara. Instructors can use these slides freely in classroom teaching or for other educational purposes. Unauthorized uses, including distribution for profit, are strictly prohibited. ©Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	Sep. 2006	Oct. 2007	Oct. 2009	Oct. 2012	Oct. 2013
		Feb. 2015	Oct. 2015	Oct. 2018	Oct. 2019
		Nov. 2020			

Error Detection

"We rarely back up our data. We'd rather not keep a permanent record of everything that goes wrong around here!"

Part IV - Errors: Informational Distortions

[^0]
STRUCTURE AT A GLANCE

$\left.\begin{array}{|r|l|l|}\hline \begin{array}{r}\text { Part I - Introduction: } \\ \text { Dependable Systems } \\ \text { (The Ideal-System View) }\end{array} & \text { Godels }\end{array} \begin{array}{l}\text { 1. Background and Motivation } \\ \text { 2. Dependability Attributes } \\ \text { 3. Combinational Modeling } \\ \text { 4. State-Space Modeling }\end{array}\right]$

Appendix: Past, Present, and Future
Nov. 2020

Part IV - Errors: Informational Distortions

13.1 Basics of Error Detection

High-redundancy codes

Duplication is a form of error coding: x represented as $x x$ (100% redundancy) Detects any error in one version

Two-rail encoding
x represented as $x \bar{x}$ (100% redundancy)
e.g., 0 represented as $01 ; 1$ as 10

Detects any error in one version
Detects all unidirectional errors

Two-rail logic, with each input having a true bit and a complement bit
AND: $\left(t_{1}, c_{1}\right)\left(t_{2}, c_{2}\right)=\left(t_{1} t_{2}, c_{1} \vee c_{2}\right)$
OR: $\quad\left(t_{1}, c_{1}\right) \vee\left(t_{2}, c_{2}\right)=\left(t_{1} \vee t_{2}, c_{1} c_{2}\right)$
NOT: $(t, c)^{\prime}=(c, t)$

XOR: $\left(t_{1}, c_{1}\right) \oplus\left(t_{2}, c_{2}\right)=\left(t_{1} c_{2} \vee t_{2} c_{1}, t_{1} t_{2} \vee c_{1} c_{2}\right)$

Hamming Distance

Definition: Hamming distance between two bit-vectors is the number of positions in which they differ

A distance-2 code:
00011
00101 00110 01001 01010 01100 10001 10010 10100 11000

Min H-dist
2
3
4
5
h

Code capability $d=1$; SED
$c=1$; SEC or ($d=2$; DED)
$c=1$ and $d=2$; SEC/DED
$c=2$ or ($c=1$ and $d=3$; SEC/3ED)
$c E C / d E D$ such that $h=c+d+1$

Part IV - Errors: Informational Distortions

Error Classification and Models

Goal of error tolerance methods:
Allow uninterrupted operation despite presence of certain errors Error model - Relationship between errors and faults (or other causes)

Errors are detected/corrected through:
Encoded (redundant) data, plus code checkers Reasonableness checks, activity monitoring, retry

Errors are classified as:
Single or Multiple (according to the number of bits affected) Inversion or Erasure (symbol or bit changed or lost)* Random or Correlated (correlation in the form of byte or burst error) Symmetric or Asymmetric (regarding $0 \rightarrow 1$ and $1 \rightarrow 0$ inversions)

* Nonbinary codes have substitution rather than inversion errors Also of interest for nonelectronic systems are transposition errors

Errors are permanent by nature; transient faults, not transient errors

Error Detection in Natural Language Texts

Erasure errors

EQROR
Substitution error

Transposition error

Application of Coding to Error Control

Ordinary codes can be used for storage and transmission errors; they are not closed under arithmetic/logic operations

Error-detecting, error-correcting, or combination codes (e.g., Hamming SEC/DED)

Arithmetic codes can help detect (or correct) errors during data manipulations:

1. Product codes (e.g., 15x)
2. Residue codes (x mod 15)

A common way of applying information coding techniques

The Concept of Error-Detecting Codes

The simplest possible error-detecting code:
Attach an even parity bit to each k-bit data word

$$
0010100^{1} 011
$$

Check bit = XOR of all data bits
Data space: All 2^{k} possible k-bit words
Code space: All 2^{k} possible even-parity ($k+1$)-bit codewords
Error space: All 2^{k} possible odd-parity ($k+1$)-bit noncodewords Detects all single-bit errors

Evaluation of Error-Detecting Codes

Redundancy: k data bits encoded in $n=k+r$ bits (r redundant bits)
Encoding: Complexity (cost / time) to form codeword from data word
Decoding: Complexity (cost / time) to obtain data word from codeword Separable codes have computation-free decoding

Capability: Classes of error that can be detected
Greater detection capability generally involves more redundancy To detect d bit-errors, a minimum code distance of $d+1$ is required

Examples of code detection capabilities:
Single, double, b-bit burst, byte, unidirectional, . . . errors

Closure: Arithmetic and other operations done directly on codewords (rather than in 3 stages: decode, operate, and encode)

13.2 Checksum Codes

Ex.: 12-digit UPC-A universal product code-Computing the check digit:
Add the odd-indexed digits and multiply the sum by 3
Add the sum of even-indexed digits to previous result Subtract the total from the next higher multiple of 10

Example:

Sum odd indexed digits: $0+6+0+2+1+5=14$
Multiply by 3 : $14 \times 3=42$
Add even-indexed digits: $42+3+0+0+9+4=58$
Compute check digit: $60-58=2$

Checking:

Verify that weighted mod-10 sum of all 12 digits is 0

Capabilities:

Detects all single-digit errors
Detects most, but not all, transposition errors

Characterization of Checksum Codes

Given a data vector $x_{1}, x_{2}, \ldots, x_{n}$, encode the data by attaching the checksum x_{n+1} to the end, such that $\sum_{j=1 \text { to } n+1} w_{j} x_{j}=0 \bmod A$
The elements w_{j} of the weight vector w are predetermined constants

Example:

For the UPC-A checksum scheme, we have
$w=3,1,3,1,3,1,3,1,3,1,3,1$
$A=10$

Checking:

Verify that weighted mod- A sum of all elements is 0

Capabilities:

Detects all errors adding an error magnitude that is not a multiple of A
Variant: Vector elements may be XORed rather than added together

13.3 Weight-Based and Berger Codes

Constant-weight codes

Definition: All codewords have the same number of 1 s

A weight-2 code: 00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

Can detect all unidirectional errors

Maximum number of codewords obtained when weight of n-bit codewords is $n / 2$

Berger Codes

Definition: Separable code that has the count of 0s within the data part attached as a binary number that forms the check part

Alternative - attach the 1 's-complement of the number of 1 s

Part IV - Errors: Informational Distortions

13.4 Cyclic Codes

Definition: Any cyclic shift of a codeword produces another codeword
A k-bit data word corresponds to a polynomial of degree $k-1$
Data $=$ 1101001: $D(x)=1+x+x^{3}+x^{6}($ addition is $\bmod 2)$
The code has a generator polynomial of degree $r=n-k$

$$
G(x)=1+x+x^{3}
$$

To encode data (1101001), multiply its associated polynomial by $G(x)$

$$
1+x+x^{3}+x^{6}
$$

$$
\times \frac{1+x+x^{3}}{1+x^{4}+x^{8}}+x^{6}+x+x^{2}+x^{4}+x^{7}+x^{8}+x^{4}+x^{6}+x^{9}
$$

$$
1+x^{2}+x^{7}+x^{9}
$$

$$
1010000101
$$

Detects all burst errors of width less than $n-k$ Burst error polynomial $x^{j} E(x)$, where $E(x)$ is of degree less than $n-k$

Cyclic Codes: Encoding and Decoding

Encoding: Multiplication by the generator polynomial $G(x)$

Decoding: Division by the generator polynomial $G(x)$

Separable Cyclic Codes

Let $D(x)$ and $G(x)$ be the data and generator polynomials

Encoding:

Multiply $D(x)$ by x^{n-k} and divide the result by $G(x)$ to get the remainder polynomial $R(x)$ of degree less than $n-k$

Form the codeword $V(x)=R(x)+x^{n-k} D(x)$, which is divisible by $G(x)$
Example: 7 -bit code with 4 data bits and 3 check bits, $G(x)=1+x+x^{3}$
Data $=100$ 1, $D(x)=1+x^{3}$
$x^{3} D(x)=x^{3}+x^{6}=\left(x+x^{2}\right) \bmod \left(1+x+x^{3}\right)$
$V(x)=\quad x+x^{2}+x^{3}+x^{6}$
Codeword $=\frac{0 \quad 1 \quad 1}{\text { Check part }} \quad \frac{10 \quad 0 \quad 1}{\text { Data part }}$
aka CRC = cyclic redundancy check

Single parity bit: $G(x)=x+1$

13.5 Arithmetic Error-Detecting Codes

Unsigned addition

Correct sum
Erroneous sum

0010011100100001 + $\underline{0101100011010011}$

0111111111110100
1000000000000100

Stage generating an erroneous carry of 1

How a single carry error can lead to an arbitrary number of bit-errors (inversions)

The arithmetic weight of an error: Min number of signed powers of 2 that must be added to the correct value to turn it into the erroneous result (contrast with Hamming weight of an error)

Correct value Erroneous value Difference (error) Min-weight BSD Arithmetic weight Error type

Example 1	
01111111110100	
1101111111110100	
$16=000000000100$	
0110000000000100	
0000000000010000	$-32752=-2^{15}+2^{4}$
1	2
Single, positive	Double, negative

Codes for Arithmetic Operations

Arithmetic error-detecting codes:
Are characterized by arithmetic weights of detectable errors
Allow direct arithmetic on coded operands
We will discuss two classes of arithmetic error-detecting codes, both of which are based on a check modulus A (usually a small odd number)

Product or AN codes
Represent the value N by the number $A N$
Residue (or inverse residue) codes
Represent the value N by the pair (N, C), where C is $N \bmod A$ or $(N-N \bmod A) \bmod A$

Product or AN Codes

For odd A, all weight-1 arithmetic errors are detected
Arithmetic errors of weight ≥ 2 may go undetected
e.g., the error $32736=2^{15}-2^{5}$ undetectable with $A=3,11$, or 31

Error detection: check divisibility by A
Encoding/decoding: multiply/divide by A
Arithmetic also requires multiplication and division by A
Product codes are nonseparate (nonseparable) codes
Data and redundant check info are intermixed

Low-Cost Product Codes

Use low-cost check moduli of the form $A=2^{a}-1$
Multiplication by $A=2^{a}-1$: done by shift-subtract

$$
\left(2^{a}-1\right) N=2^{a} N-N
$$

Division by $A=2^{a}-1$: done a bits at a time as follows
Given $y=\left(2^{a}-1\right) x$, find x by computing $2^{a} x-y$

$$
\begin{array}{lll}
\ldots x x x x 0000 & \ldots . x x x x \operatorname{xxxx}= & \ldots x x x x \text { xxxx } \\
\text { Unknown } 2^{a} x & \text { Known }\left(2^{a}-1\right) x & \text { Unknown } x
\end{array}
$$

Theorem: Any unidirectional error with arithmetic weight of at most a-1 is detectable by a low-cost product code based on $A=2^{a}-1$

Arithmetic on $A N$-Coded Operands

Add/subtract is done directly: $A x \pm A y=A(x \pm y)$
Direct multiplication results in: $A a \times A x=A^{2} a x$
The result must be corrected through division by A
For division, if $z=q d+s$, we have: $A z=q(A d)+A s$
Thus, q is unprotected
Possible cure: premultiply the dividend $A z$ by A
The result will need correction
Square rooting leads to a problem similar to division
$\left\lfloor\sqrt{ } A^{2} x\right\rfloor=\lfloor A \sqrt{ } x\rfloor$ which is not the same as $A\lfloor\sqrt{ } x\rfloor$

Residue and Inverse Residue Codes

Represent N by the pair $(N, C(N))$, where $C(N)=N \bmod A$
Residue codes are separate (separable) codes
Separate data and check parts make decoding trivial
Encoding: Given N, compute $C(N)=N \bmod A$
Low-cost residue codes use $A=2^{a}-1$
To compute N mod ($2^{a}-1$), add a-bit segments of N, modulo $2^{a}-1$ (no division is required)

Example: Compute $0101110110101110 \bmod 15$ $0101+1101=0011$ (addition with end-around carry) $0011+1010=1101$
$1101+1110=1100$ The final residue $\bmod 15$

Arithmetic on Residue-Coded Operands

Add/subtract: Data and check parts are handled separately

$$
(x, C(x)) \pm(y, C(y))=(x \pm y,(C(x) \pm C(y)) \bmod A)
$$

Multiply

$$
(a, C(a)) \times(x, C(x))=(a \times x,(C(a) \times C(x)) \bmod A)
$$

Divide/square-root: difficult

13.6 Other Error-Detecting Codes

Codes for erasure errors

Assume n total symbols, k info symbol, $n-m$ erasures allowed Info can be recovered from any m symbols in an n-symbol codeword When $m=k$, the erasure code is optimal

Codes for byte errors

Bytes are common units of data representation, storage, transmission So, it makes sense to tie our error detection capability to bytes
Example: Single-byte-error-correcting, double-byte-error-detecting code

Codes for burst errors

With serial data or scratched disk surface, adjacent bits can be affected Example: Single-bit-error-correcting, 6-bit-burst-error-detecting code

Higher-Level Error Coding Methods

We have applied coding to data at the bit-string or word level

It is also possible to apply coding at higher levels
Data structure level - Robust data structures
Application level - Algorithm-based error tolerance

Error Correction

Nov. 2020
$\underline{U C S B}$
Part IV - Errors: Informational Distortions

off the imaik by Mark Parisi

"Dear, your boss justcalled to tell you there was a slight mistake in your paycheck."

off the mark
by Mark Parisi

"We found the problem. You called your computer a moron and it's waiting for an apology."

Part IV - Errors: Informational Distortions

"THERE'S NOTHING WRONG WITH YOUR IPOD, DAD. IT'S JUST TOO EMBARRASSED TO PLAY THE KIND OF MLSIC YOU LIKE!"

STRUCTURE AT A GLANCE

$\left.\begin{array}{|r|l|l|}\hline \begin{array}{r}\text { Part I - Introduction: } \\ \text { Dependable Systems } \\ \text { (The Ideal-System View) }\end{array} & \text { Godels }\end{array} \begin{array}{l}\text { 1. Background and Motivation } \\ \text { 2. Dependability Attributes } \\ \text { 3. Combinational Modeling } \\ \text { 4. State-Space Modeling }\end{array}\right]$

Appendix: Past, Present, and Future
Nov. 2020

Part IV - Errors: Informational Distortions

14.1 Basics of Error Correction

High-redundancy codes

Triplication is a form of error coding: x represented as xxx (200\% redundancy) Corrects any error in one version Detects two nonsimultaneous errors

If we triplicate the voting unit to obtain 3 results, we are essentially performing the operation $f(x)$ on coded inputs, getting coded outputs

With a larger replication factor, more errors can be corrected
Our challenge here is to come up with strong correction capabilities, using much lower redundancy (perhaps an order of magnitude less)

To correct all single-bit errors in an n-bit code, we must have $2^{r}>n$, or $2^{r}>k+r$, which leads to about $\log _{2} k$ check bits, at least

The Concept of Error-Correcting Codes

A conceptually simple error-correcting code:
Arrange the k data bits into a $k^{1 / 2} \times k^{1 / 2}$ square array
Attach an even parity bit to each row and column of the array
Row/Column check bit = XOR of all row/column data bits
Data space: All 2^{k} possible k-bit words
Redundancy: $2 k^{1 / 2}+1$ check bits for k data bits
Corrects all single-bit errors (lead to distinct noncodewords)

Detects all double-bit errors (some triples go undetected)

Part IV - Errors: Informational Distortions

Evaluation of Error-Correcting Codes

Redundancy: k data bits encoded in $n=k+r$ bits (r redundant bits)
Encoding: Complexity (circuit / time) to form codeword from data word
Decoding: Complexity (circuit / time) to obtain data word from codeword
Capability: Classes of error that can be corrected
Greater correction capability generally involves more redundancy
To correct c bit-errors, a minimum code distance of $2 c+1$ is required
Examples of code correction capabilities:
Single, double, byte, b-bit burst, unidirectional, . . . errors
Combined error correction/detection capability:
To correct c errors and additionally detect d errors ($d>c$),
a minimum code distance of $c+d+1$ is required
Example: Hamming SEC/DED code has a code distance of 4

Hamming Distance for Error Correction

The following visualization, though not completely accurate, is still useful
Red dots represent codewords
Yellow dots, noncodewords within distance 1 of codewords, represent correctable errors

Blue dot, within distance 2 of three different codewords represents a detectable error

Simultaneous single error correction and double error detection requires that there not be points within distance 2 of some codewords that are also within distance 1 of another

14.2 Hamming Codes

Example: Uses multiple parity bits, each applied to a different subset of data bits

Encoding: 3 XOR networks to form parity bits

Checking: 3 XOR networks to verify parities
Decoding: Trivial (separable code)
Redundancy: 3 check bits for 4 data bits Unimpressive, but gets better with more data bits (7, 4); (15, 11); (31, 26); (63, 57); (127, 120)

Capability: Corrects any single-bit error

$$
\begin{aligned}
& s_{2}=d_{3} \oplus d_{2} \oplus d_{1} \oplus p_{2} \\
& s_{1}=d_{3} \oplus d_{1} \oplus d_{0} \oplus p_{1} \\
& s_{0}=d_{2} \oplus d_{1} \oplus d_{0} \oplus p_{0}
\end{aligned}
$$

$$
\begin{gathered}
s_{2} s_{1} s_{0} \\
\text { Syndrome }
\end{gathered}
$$

s_{2}	s_{1}	s_{0}	Error
0	0	0	None
0	0	1	
0	1	0	p_{0}
0	1	1	p_{1}
1	0	0	d_{0}
1	0	1	p_{2}
1	1	0	
1	1	1	d_{2}

Matrix Formulation of Hamming SEC Code

Matrix Rearrangement for Simpler Correction

Data and parity bits

Hamming Generator Matrix

Recall that matrix-vector multiplication is done with AND/XOR, instead of $\times /+$

Generalization to Wider Hamming SEC Codes

Data and parity bits

Condition for general Hamming SEC code:
$n=k+r=2^{r}-1$

n	$k=n-r$
7	4
15	11
31	26
63	57
127	120
255	247
511	502
1023	1013

A Hamming SEC/DED Code

Data and parity bits

Add an extra row of all 1 s and a column with only one 1 to the parity check matrix

Easy to verify that the appropriate "correction" is made for all 4 combinations of $\left(s_{r} q\right)$ values

14.3 Linear Codes

Hamming codes are examples of linear codes Linear codes may be defined in many other ways

14.4 Reed-Solomon and BCH Codes

BCH codes: Named in honor of Bose, Chaudhuri, Hocquenghem
Reed-Solomon codes: Special case of BCH code
Example: A popular variant is $\operatorname{RS}(255,223)$ with 8 -bit symbols
223 bytes of data, 32 check bytes, redundancy $\approx 14 \%$
Can correct errors in up to 16 bytes anywhere in the 255 -byte codeword Used in CD players, digital audio tape, digital television

Reed-Solomon Codes

With k data symbols, require $2 t$ check symbols, each s bits wide, to correct up to t symbol errors; hence, $\mathrm{RS}(k+2 t, k)$ has distance $2 t+1$
The number k of data symbols must satisfy $k \leq 2^{s}-1-2 t$ (s grows with k)

k data symbols	$2 t$ check symbols

Example: $\operatorname{RS}(6,2)$ code, with 2 data and $2 t=4$ check symbols (7 -valued) \rightarrow up to $t=2$ symbol errors correctable; hence, $\operatorname{RS}(6,2)$ has distance 5
Generator polynomial: $g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)$;
α is a primitive root $\bmod 7 \Rightarrow$ integers from 1 to 6 are powers of $\alpha \bmod 7$ $3^{1}=3 ; 3^{2}=2 ; 3^{3}=6 ; 3^{4}=4 ; 3^{5}=5 ; 3^{6}=1$
Pick $\alpha=3 \rightarrow g(x)=(x-3)\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)$
$=(x-3)(x-2)(x-6)(x-4)=x^{4}+6 x^{3}+3 x^{2}+2 x+4$
As usual, the codeword is the product of $g(x)$ and the info polynomial; convertible to matrix-by-vector multiply by deriving a generator matrix G

Elements of Galois Field GF(23)

A primitive element α of $\operatorname{GF}\left(2^{3}\right)$ is one that generates all nonzero elements of the field by its powers

Here are three different representation of the elements of GF(23)

Power	Polynomial	Vector
--	0	000
1	1	001
α	α	010
α^{2}	α^{2}	100
α^{3}	$\alpha+1$	011
α^{4}	$\alpha^{2}+\alpha$	110
α^{5}	$\alpha^{2}+\alpha+1$	111
α^{6}	$\alpha^{2}+1$	101

BCH Codes

Correct the deficiency of Reed-Solomon code; have a fixed alphabet We usually choose the alphabet $\{0,1\}$

BCH $(15,7)$ code: Capable of correcting any two errors
Generator polynomial: $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$

	$\left(\begin{array}{l} 10001000 \\ 01000001 \\ 00100011 \\ 0010101 \\ 11001111 \\ 010101000 \end{array}\right.$	BCH $(511,493)$ used as DEC code in a video coding standard for videophones
[011001011000010]×	0011 11010001 1010	= $\mathrm{xxxxxxxx]}$
Received word	1010 01011111	Syndrome
	11101000	
	01110001	$\mathrm{BCH}(40,32)$ used as
Parity check matrix	10110101	SEC/DED code in ATM

14.5 Arithmetic Error-Correcting Codes

Positive error	Syndrome mod 7		mod 15	Negative error	Syndrome mod 7	
1	1	1	-1	6	14	
2	2	2	-2	5	13	
4	4	4	-4	3	11	
8	1	8	-8	6	7	
16	2	1	-16	5	14	
32	4	2	-32	3	13	
64	1	4	-64	6	11	
128	2	8	-128	5	7	
256	4	1	-256	3	14	
512	1	2	-512	6	13	
1024	2	4	-1024	5	11	
2048	4	8	-2048	3	7	
4096	1	1	-4096	6	14	
8192	2	2	-8192	5	13	
16,384	4	4	$-16,384$	3	11	
32,768	1	8	$-32,768$	6	7	

Error syndromes for weight-1 arithmetic errors in the $(7,15)$ biresidue code

Because all the syndromes in this table are different, any weight-1 arithmetic error is correctable by the $(\bmod 7, \bmod 15)$ biresidue code

Properties of Biresidue Codes

Biresidue code with relatively prime low-cost check moduli $A=2^{a}-1$ and $B=2^{b}-1$ supports $a \times b$ bits of data for weight- 1 error correction

Representational redundancy $=(a+b) /(a b)=1 / a+1 / b$

a	b	$n=k+a+b$	$k=a b$
3	4	19	12
5	6	41	30
7	8	71	56
11	12	143	120
15	16	271	240

Compare with Hamming SEC code

n	k
7	4
15	11
31	26
63	57
127	120
255	247
511	502
1023	1013

Arithmetic on Biresidue-Coded Operands

Similar to residue-checked arithmetic for addition and multiplication, except that two residues are involved

Divide/square-root: remains difficult

Part IV - Errors: Informational Distortions

14.6 Other Error-Correcting Codes

Reed-Muller codes: Have a recursive construction, with smaller codes used to build larger ones

Turbo codes: Highly efficient separable codes, with iterative (soft) decoding

Low-density parity check (LDPC) codes: Each parity check is defined on a small set of bits, so error checking is fast; correction is more difficult

Information dispersal: Encoding data into n pieces, such that any k of the pieces are adequate for reconstructing the data

Higher-Level Error Coding Methods

We have applied coding to data at the bit-string or word level

It is also possible to apply coding at higher levels
Data structure level - Robust data structures
Application level - Algorithm-based error tolerance

Preview of Algorithm-Based Error Tolerance

Error coding applied to data structures, rather than at the level of atomic data elements

Example: mod-8 checksums used for matrices

If $Z=X \times Y$ then $Z_{f}=X_{c} \times Y_{r}$

In M_{f}, any single error is correctable and any 3 errors are detectable

Four errors may go undetected

Matrix M

$$
M=\left(\begin{array}{lll}
2 & 1 & 6 \\
5 & 3 & 4 \\
3 & 2 & 7
\end{array}\right)
$$

Column checksum matrix

$$
M_{\mathrm{c}}=\left(\begin{array}{lll}
2 & 1 & 6 \\
5 & 3 & 4 \\
3 & 2 & 7 \\
2 & 6 & 1
\end{array}\right)
$$

Row checksum matrix

$$
M_{\mathrm{r}}=\left(\begin{array}{llll}
2 & 1 & 6 & 1 \\
5 & 3 & 4 & 4 \\
3 & 2 & 7 & 4
\end{array}\right)
$$

Full checksum matrix

$$
M_{\mathrm{f}}=\left(\begin{array}{ccc:c}
2 & 1 & 6 & 1 \\
5 & 3 & 4 & 4 \\
3 & 2 & 7 & 4 \\
2 & 6 & 1 & 1
\end{array}\right)
$$

Self-Checking Modules

Nov. 2020 Part IV - Errors: Informational Distortions

"He's called Sir Lance-A-Lot because he's always checking his blood glucose."

STRUCTURE AT A GLANCE

Part I - Introduction: Dependable Systems (The Ideal-System View)	Goals Models	1. Background and Motivation 2. Dependability Attributes 3. Combinational Modeling 4. State-Space Modeling
Part II — Defects: Physical Imperfections (The Device-Level View)	Methods Examples	5. Defect Avoidance 6. Defect Circumvention 7. Shielding and Hardening 8. Yield Enhancement
Part III — Faults: Logical Deviations (The Circuit-Level View)	Methods	9. Fault Testing 10. Fault Masking 11. Design for Testability 12. Replication and Voting
Part IV - Errors: Informational Distortions (The State-Level View)	Methods	13. Error Detection 14. Error Correction 45. Self-Checking Modules
Part V - Malfunctions: Architectural Anomalies (The Structure-Level View)	Methods	17. Malfunction Diagnosis 18. Malfunction Tolerance 19. Standby Redundancy 20. Resilient Algorithms
Part VI — Degradations: Behavioral Lapses (The Service-Level View)	Methods	21. Degradation Allowance 22. Degradation Management 23. Robust Task Scheduling 24. Software Redundancy
Part VII - Failures: Computational Breaches (The Result-Level View)	Methods	25. Failure Confinement 26. Failure Recovery 27. Agreement and Adjudication 28. Fail-Safe System Design

Appendix: Past, Present, and Future
Nov. 2020

Part IV - Errors: Informational Distortions

15.1 Checking of Function Units

Function unit designed in a way that faults/errors/malfns manifest themselves as invalid (error-space) outputs, which are detectable by an external code checker

Four possibilities:
Both function unit and checker okay
Only function unit okay (false alarm may be raised, but this is safe)
Only checker okay (we have either no output error or a detectable error)
Neither function unit nor checker okay (use 2-output checker; a single check signal stuck-at-okay goes undetected, leading to fault accumulation)

Part IV - Errors: Informational Distortions

Cascading of Self-Checking Modules

Given self-checking modules that have been designed separately, how does one combine them into a self-checking system?

15.2 Error Signal and Their Combining

Show that this circuit is self-testing

15.3 Totally Self-Checking Design

A module is totally self-checking if it is self-checking and self-testing

If the dashed red arrow option is used too often, faults may go undetected for long periods of time, raising the danger of a second fault invalidating the self-checking design

A self-checking circuit is self-testing if any fault from the class covered is revealed at output by at least one code-space input, so that the fault is guaranteed to be detectable during normal circuit operation

Note that if we don't explicitly ensure this, tests for some of the faults may belong to the input error space

The self-testing property allows us to focus on a small set of faults, thus leading to more economical self-checking circuit implementations (with a large fault set, cost would be prohibitive)

Self-Monitoring Design

A module is self monitoring with respect to the fault class F if it is
(1) Self-checking with respect to F, or
(2) Totally self-checking wrt the fault class $F_{\text {init }} \subseteq F$, chosen such that all faults in F develop in time as a sequence of simpler faults, the first of which is in $F_{\text {init }}$

Example:
A unit that is totally-self-checking wrt single faults may be deemed self-monitoring wrt to multiple faults, provided that multiple faults
 develop one by one and slowly over time

The self-monitoring design approach requires the more stringent totally-self-checking property to be satisfied for a small, manageable set of faults, while also protecting the unit against a broader fault class

15.4 Self-Checking Checkers

Example: 5-input odd-parity checker

Example: 5-input odd-parity checker

Part IV - Errors: Informational Distortions

TSC Checker for m-out-of- $2 m$ Code

Divide the $2 m$ bits into two disjoint subsets A and B of m bits each Let v and w be the weight of (number of 1 s in) A and B, respectively Implement the two code checker outputs e_{0} and e_{1} as follows:

$$
\begin{aligned}
& e_{0}=V_{\substack{i=0 \\
(i \text { even })}}^{m}(v \geq i)(w \geq m-i) \\
& e_{1}={\underset{\substack{j=1 \\
j \text { odd })}}{m}(v \geq j)(w \geq m-j)}^{v_{\text {od }}}
\end{aligned}
$$

Example: 3-out-of-6 code checker, $m=3, A=\{a, b, c\}, B=\{f, g, h\}$
$e_{0}=(v \geq 0)(w \geq 3) \vee(v \geq 2)(w \geq 1)=f g h \vee(a b \vee b c \vee c a)(f \vee g \vee h)$
$e_{1}=(v \geq 1)(w \geq 2) \vee(v \geq 3)(w \geq 0)=(a \vee b \vee c)(f g \vee g h \vee h f) \vee a b c$
Always satisfied

Another TSC m-out-of-2m Code Checker

Cellular realization, due to J. E. Smith: This design is testable with only $2 m$ inputs, all having m consecutive 1 s (in cyclic order)

s

Using 2-out-of-4 Checkers as Building Blocks

Building m-out-of-2m TSC checkers, $3 \leq m \leq 6$, from 2-out-of-4 checkers (construction due to Lala, Busaba, and Zhao):
Examples: 3-out-of-6 and 4-out-of-8 TSC checkers are depicted below (only the structure is shown; some design details are missing)

TSC Checker for k-out-of-n Code

One design strategy is to proceed in 3 stages:
Convert the k-out-of-n code to a 1 -out-of- $\binom{n}{k}$ code Convert the latter code to an m-out-of- $2 m$ code Check the m-out-of- $2 m$ code using a TSC checker
This approach is impractical for many codes

A procedure due to Marouf and Friedman: Implement 6 functions of the general form (these have different subsets of bits as inputs and constitute a 1 -out-of- 6 code) Use a TSC 1-out-of-6 to 2-out-of-4 converter Use a TSC 2-out-of-4 code checker

The process above works for $2 k+2 \leq n \leq 4 k$ It can be somewhat simplified for $n=2 k+1$

TSC Checkers for Separable Codes

Here is a general strategy for designing totally-self-checking checkers for separable codes

For many codes, direct synthesis will produce a faster and/or more compact totally-self-checking checker
Google search for "totally self checking checker" produces 817 hits

Part IV - Errors: Informational Distortions

15.5 Self-Checking State Machines

Design method for Moore-type machines, due to Diaz and Azema:
Inputs and outputs are encoded using two-rail code States are encoded as $n / 2$-out-of- n codewords

Fact: If the states are encoded using a k-out-of- n code, one can express the next-state functions (one for each bit of the next state) via monotonic expressions; i.e., without complemented variables
Monotonic functions can be realized with only AND and OR gates, hence the unidirectional error detection capability

	Input		Output		Input		Output	
State	$x=0$	$x=1$	z		State	$x=01$	$x=10$	z
A	C	A	1		0011	1010	0011	10
B	D	C	1		0101	1001	1010	10
C	B	D	0		1010	0101	1001	01
D	C	A	0		1001	1010	0011	01

15.6 Practical Self-Checking Design

Design based on parity codes
Design with residue encoding
FPGA-based design
General synthesis rules
Partially self-checking design

Design with Parity Codes and Parity Prediction

Operands and results are parity-encoded
Parity is not preserved over arithmetic and logic operations
Parity prediction is an alternative to duplication
Compared to duplication:
Parity prediction often involves less overhead in time and space
The protection offered by parity prediction is not as comprehensive

Part IV - Errors: Informational Distortions

TSC Design with Parity Prediction

Recall our discussion of parity prediction as an alternative to duplication

If the parity predictor produces the complement of the output parity, and the XOR gate is removed, we have a self-checking design

To ensure the TSC property, we must also verify that the parity predictor is testable only with input codewords

Parity Prediction for an Adder

Parity predictor for our adder consists of a duplicate carry network and an XOR tree

TSC Design with Residue Encoding

Residue checking is applicable directly to addition, subtraction, and multiplication, and with some extra effort to other arithmetic operations

To make this scheme TSC:
Modify the "Find mod A " box to produce the complement of the residue

Use two-rail checker instead of comparator

Verify the self-testing property if the residue channel is not completely independent of the main computation (not needed for add/subtract and multiply)

Part IV - Errors: Informational Distortions

Self-Checking Design with FPGAs

LUT-based FPGAs can suffer from the following fault types:
Single s-a faults in RAM cells
Single s-a faults on signal lines
Functional faults in a multiplexer within a single CLB
Functional faults in a D flip-flop within a single CLB
Single s-a faults in pass transistors connecting CLBs

Synthesis algorithm:

(1) Use scripts in the Berkeley synthesis tool SIS to decompose an SOP expression into an optimal collection of parts with 4 or fewer variables
(2) Assign each part to a functional cell that produces a 2-rail output
(3) Connect the outputs of a pair of intermediate functional cells to the inputs of a checker cell and find the output equations for that cell
(4) Cascade the checker cells to form a checker tree

Ref.: [Lala03]

Synthesis of TSC Systems from TSC Modules

System consists of a set of modules, with interconnections modeled by a directed graph

Theorem 1: A sufficient condition for a system to be TSC with respect to all single-module failures is to add checkers to the system such that if a path leads from a module M_{i} to itself (a loop), then it encounters at least one checker

Theorem 2: A sufficient condition for a system to be TSC with respect to all multiple module failures in the module set $A=\left\{M_{i}\right\}$ is to have no loop containing two modules in A in its path and at least one checker in any path leading from one module in A to any other module in A

Optimal placement of checkers to satisfy these condition
Easily solved, when checker cost is the same at every interface

Partially Self-Checking Units

Some ALU functions, such as logical operations, cannot be checked using low-redundancy codes

Such an ALU can be made partially self-checking by circumventing the error-checking process in cases where codes are not applicable

Redundant Disk Arrays

Nov. 2020 TU
Part IV - Errors: Informational Distortions

off the mark
www.offthemark.com

Off the mark com by Mark Parisi

OUTOF NOWHERE, THE COMPUTER PRESENTS TOM WITH A DISK CONTAINING ALL THE FILES LOSTIN THE LAST SYSTEM CRASH

"I want you to know that even if you pass away, I'll keep your hard drive forever."

Part IV - Errors: Informational Distortions

STRUCTURE AT A GLANCE

$\left.\left.\begin{array}{|r|l|l|}\hline \begin{array}{r}\text { Part I - Introduction: } \\ \text { Dependable Systems } \\ \text { (The Ideal-System View) }\end{array} & \text { Models }\end{array} \right\rvert\, \begin{array}{l}\text { 1. Background and Motivation } \\ \text { 2. Dependability Attributes } \\ \text { 3. Combinational Modeling } \\ \text { 4. State-Space Modeling }\end{array}\right]$

Appendix: Past, Present, and Future
Nov. 2020

Part IV - Errors: Informational Distortions

16.1 Disk Memory Basics

Comprehensive info about disk memory: http://www.storagereview.com/guide/index.html

Part IV - Errors: Informational Distortions

Typical Modern Hard-Disk Drives

Seagate BarraCuda Toshiba X300 WD VelociRaptor WD Blue Desktop Seagate Firecuda Desktop Seagate IronWolf NAS Seagate FireCuda Mobile WD My Book G-Technology G-Drive

Price: Mostly under \$100 Capacity: Mostly 1-20 TB Cache: 64-256 MB Data rate: ~6 Gbps

https://www.techradar.com/news/10-best-internal-desktop-and-laptop-hard-disk-drives-2016

Access Time for a Disk

Data transfer time $=$ Bytes / Data rate
3. Disk rotation until sector has passed under the head: Data transfer time ($<1 \mathrm{~ms}$)

Average rotational latency = $30000 / \mathrm{rpm}$ (in ms)
2. Disk rotation until the desired sector arrives under the head: Rotational latency ($0-10 \mathrm{~s} \mathrm{~ms}$)

$$
\begin{aligned}
& \text { Seek time }= \\
& a+b(c-1) \\
& +\beta(c-1)^{1 / 2}
\end{aligned}
$$

1. Head movement from current position to desired cylinder:
Seek time ($0-10 \mathrm{~s} \mathrm{~ms}$)

The three components of disk access time. Disks that spin faster have a shorter average and worst-case access time.

Part IV - Errors: Informational Distortions

Amdahl's Rules of Thumb for System Balance

The need for high-capacity, high-throughput secondary (disk) memory

Processor speed	RAM size	Disk I/O rate	Number of disks	Disk capacity	Number of disks
1 GIPS	1 GB	$100 \mathrm{MB} / \mathrm{s}$	1	100 GB	1
1 TIPS	1 TB	$100 \mathrm{~GB} / \mathrm{s}$	1000	100 TB	100
1 PIPS	1 PB	$100 \mathrm{~TB} / \mathrm{s}$	1 Million	100 PB	100000
1 EIPS	1 EB	$100 \mathrm{~PB} / \mathrm{s}$	1 Billion	100 EB	100 Million

Head-Per-Track Disks

Dedicated track heads eliminate seek time (replace it with activation time for a head)

Multiple sets of head reduce rotational latency

Fig. 18.7 Head-per-track disk concept.

Part IV - Errors: Informational Distortions

16.2 Disk Mirroring and Striping

Mirroring means simple duplication
Disadvantage:
No gain in performance or bandwidth

Advantage:
Parallel system, highly reliable

Part IV - Errors: Informational Distortions

Disk Striping

Striping means dividing a block of data into smaller pieces (perhaps down to the bit level) and storing the pieces on different disks

Advantage: Faster (parallel) access to data

Disadvantage:
Series system,
Disadvantage:
Series system, less reliable

http://www.recoverdata.com/images/raid_striping.gif

16.3 Data Encoding Schemes

Simplest possible encoding: data duplication
Error-correcting code: An overkill, because disk errors are of erasure type (strong built-in error-detecting code indicates error location)

Parity, applied to bits or blocks: $P=A \oplus B \oplus C \oplus D$

Data reconstruction: Suppose B is lost or erased $B=A \oplus C \oplus D \oplus P$

Part IV - Errors: Informational Distortions

16.4 The RAID Levels

Alternative data organizations on redundant disk arrays.

RAID Levels 0 and 1

Structure: Striped (data broken into blocks \& written to separate disks)

Advantages: Spreads I/O load across many channels and drives

Drawbacks: No error tolerance (data lost with single disk failure)

Logical Disk

Structure: Each disk replaced by a mirrored pair

Advantages: Can double the read transaction rate; no rebuild required

Drawbacks: Overhead is 100%
Diagrams: http://ironraid.com/whatisraid.htm

Combining RAID Levels 0 and 1

Diagrams: http://ironraid.com/whatisraid.htm
Part IV - Errors: Informational Distortions

RAID Level 2

RAID LEVEL 2 : Hamming Code ECC

http://www.acnc.com/

$A 0$ to $A 3=$ Word $A \quad B 0$ to $B 3=$ Word B C0 to $C 3=$ Word $C \quad$ D0 to D3 $=$ Word D

$E C C / A x$ to $A z=$ Word $A E C C \quad E C C / B x$ to $B z=$ Word $B E C C$ ECC/Cx to $\mathrm{Cz}=$ Word C ECC ECC/D x to $B z=$ Word DECC

Structure:

Data bits are written to separate disks and ECC bits to others

Advantages:

On-the-fly correction High transfer rates possible (w/ sync)

Drawbacks:

Potentially high redundancy
High entry-level cost

Part IV - Errors: Informational Distortions

RAID Level 3

RAID LEVEL 3 : Parallel Transfer with Parity

http://www.acnc.com/

Copynight © 1996-2004 Advanced Computer \& Network Corporation. All Rights Reserved.

Structure:

Data striped across several disks, parity provided on another

Advantages:

Maintains good throughput even when a disk fails

Drawbacks:

Parity disk forms a bottleneck
Complex controller

Part IV - Errors: Informational Distortions

RAID Level 4

RAID LEVEL 4 : Independent Data Disks with Shared Parity Disk http://www.acnc.com/

Copyright © 1996-2004 Advanced Computer \& Network Corporation. All Rights Reserved.

Structure:

Independent blocks on multiple disks share a parity disk

Advantages:

Very high read rate
Low redundancy

Drawbacks:

Low write rate Inefficient data rebuild

Part IV - Errors: Informational Distortions

RAID Level 5

Structure:

Parity and data blocks distributed on multiple disks

Advantages:

Very high read rate Medium write rate Low redundancy

Drawbacks:
Complex controller Difficult rebuild

Logical Disk

Variant: The spare is also active and the spare capacity is distributed on all drives; particularly attractive with small arrays

Diagrams: http://ironraid.com/whatisraid.htm

RAID Level 6

Structure:

RAID Level 5, extended with second parity check scheme

Advantages:
Tolerates 2 failures
Protected even during recovery

Drawbacks:

More complex controller Greater overhead

Part IV - Errors: Informational Distortions

16.5 Disk Array Performance

Disk array performance has two components:

1. Speed during normal read and write operations
2. Speed of reconstruction (also affects reliability)

Data reconstruction
$P=A \oplus B \oplus C \oplus D \quad \Rightarrow \quad B=A \oplus C \oplus D \oplus P$
To reconstruct B , we must read all other data blocks and the parity block

The reconstruction time penalty and the "small write" penalty have led some to reject all parity-based RAID schemes
BAARF = Battle Against Any RAID-F (Free, Four, Five): www.baarf.com

The Write Problem in Disk Arrays

Parity updates may become a bottleneck, because the parity changes with every write, no matter how small

Computing sector parity for a write operation:

New parity = New data \oplus Old data \oplus Old parity

RAID5: Parity/checksum distributed across several disks

RAID6: Parity and 2nd check distributed across several disks

Part IV - Errors: Informational Distortions

Small Reads
RAID Tradeoffs

RAID5 and RAID 6 impose little penalty on read operations In choosing the group size, balance must be struck between the increasing penalty for small writes vs. decreasing penalty for large writes

Figures from: [Chen94]

Large Reads

Part IV - Errors: Informational Distortions

Small Writes

16.6 Disk Array Reliability Modeling

From: http://www.vinastar.com/docs/tls/Dell_RAID_Reliability_WP.pdf

Part IV - Errors: Informational Distortions

MTTF Calculation for Disk Arrays

RAID1: $\frac{\text { MTTF }^{2}}{2 \text { MTTR }^{2}}$

RAID5: $\frac{\text { MTTF }^{2}}{N(G-1) \mathrm{MTTR}^{\prime}}$

RAID6: $\frac{\text { MTTF }^{3}}{N(G-1)(G-2) \mathrm{MTTR}^{2}}$

Notation:

MTTF is for one disk MTTR is different for each level $N=$ Total number of disks
$G=$ Disks in a parity group

Caveat: RAID controllers (electronics) are also subject to failures and their reported MTTF is surprisingly small (on the order of 0.2 to 2 M hr). Also, must account for errors that go undetected by the disk's error code.

Actual Redundant Disk Arrays

Part IV - Errors: Informational Distortions

[^0]: Slide 4

