
Nov. 2020 Part IV – Errors: Informational Distortions Slide 1

Nov. 2020 Part IV – Errors: Informational Distortions Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Dependable Computing: A Multilevel Approach (traditional print
or on-line open publication, TBD). It is updated regularly by the
author as part of his teaching of the graduate course ECE 257A,
Fault-Tolerant Computing, at Univ. of California, Santa Barbara.
Instructors can use these slides freely in classroom teaching or
for other educational purposes. Unauthorized uses, including
distribution for profit, are strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised

First Sep. 2006 Oct. 2007 Oct. 2009 Oct. 2012 Oct. 2013

Feb. 2015 Oct. 2015 Oct. 2018 Oct. 2019

Nov. 2020

Nov. 2020 Part IV – Errors: Informational Distortions Slide 3

Error Detection

Nov. 2020 Part IV – Errors: Informational Distortions Slide 4

Nov. 2020 Part IV – Errors: Informational Distortions Slide 5

Nov. 2020 Part IV – Errors: Informational Distortions Slide 6

13.1 Basics of Error Detection
High-redundancy codes

Duplication is a form of error coding:
x represented as xx (100% redundancy)
Detects any error in one version

Two-rail logic, with each input having a true bit and a complement bit
AND: (t1, c1) (t2, c2) = (t1t2, c1  c2)
OR: (t1, c1)  (t2, c2) = (t1  t2, c1c2)
NOT: (t, c) = (c, t)
XOR: (t1, c1)  (t2, c2) = (t1c2  t2c1, t1t2  c1c2)

Encoding Decoding

XOR

f(x)

f(x)
Error
signal

x

y

Error
checking

Encoding Decoding

XNOR

f(x)

f(x)
Error
signal

x

y

Error
checking

Two-rail encoding
x represented as xx (100% redundancy)

e.g., 0 represented as 01; 1 as 10
Detects any error in one version
Detects all unidirectional errors

X X

Nov. 2020 Part IV – Errors: Informational Distortions Slide 7

Hamming Distance

Definition: Hamming distance between two bit-vectors is
the number of positions in which they differ

Min H-dist Code capability
2 d = 1; SED
3 c = 1; SEC or (d = 2; DED)
4 c = 1 and d = 2; SEC/DED
5 c = 2 or (c = 1 and d = 3; SEC/3ED)
h cEC/dED such that h = c + d + 1

A distance-2 code:
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

4 3 2 1

Codeword

Correctable
error

Detectable
error

Code-
word

Noncode-
word

00111 (01 error)

00100 (10 error)

d  c, so that d – c
represents the add’l
detection capability

Nov. 2020 Part IV – Errors: Informational Distortions Slide 8

Error Classification and Models
Goal of error tolerance methods:

Allow uninterrupted operation despite presence of certain errors
Error model – Relationship between errors and faults (or other causes)

Errors are detected/corrected through:

Encoded (redundant) data, plus code checkers
Reasonableness checks, activity monitoring, retry

Errors are classified as:

Single or Multiple (according to the number of bits affected)
Inversion or Erasure (symbol or bit changed or lost)*
Random or Correlated (correlation in the form of byte or burst error)
Symmetric or Asymmetric (regarding 0  1 and 1  0 inversions)

* Nonbinary codes have substitution rather than inversion errors
Also of interest for nonelectronic systems are transposition errors

Errors are permanent by nature; transient faults, not transient errors

Nov. 2020 Part IV – Errors: Informational Distortions Slide 9

Error Detection in Natural Language Texts

ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
Erasure errors

EQROR
Substitution error

ERORR
Transposition error

Nov. 2020 Part IV – Errors: Informational Distortions Slide 10

Application of Coding to Error Control

INPUT

ENCODE

SEND

STORE

SEND

DECODE

OUTPUT

MANIPULATE
Protected

by Encoding

Unprotected

A common way of applying
information coding techniques

Arithmetic codes can help detect
(or correct) errors during data
manipulations:

1. Product codes (e.g., 15x)
2. Residue codes (x mod 15)

Ordinary codes can be used for
storage and transmission errors;
they are not closed under
arithmetic / logic operations

Error-detecting, error-correcting,
or combination codes (e.g.,
Hamming SEC/DED)

Nov. 2020 Part IV – Errors: Informational Distortions Slide 11

The Concept of Error-Detecting Codes

The simplest possible error-detecting code:
Attach an even parity bit to each k-bit data word
Check bit = XOR of all data bits
Data space: All 2k possible k-bit words
Code space: All 2k possible even-parity (k + 1)-bit codewords
Error space: All 2k possible odd-parity (k + 1)-bit noncodewords
Detects all single-bit errors

Encoding

Decoding

Data words Codewords

Noncodewords

Errors

Data space Code space

Error space

0 0 1 0 1 0 0 0 1 1
1

Nov. 2020 Part IV – Errors: Informational Distortions Slide 12

Evaluation of Error-Detecting Codes

Redundancy: k data bits encoded in n = k + r bits (r redundant bits)

Encoding: Complexity (cost / time) to form codeword from data word

Decoding: Complexity (cost / time) to obtain data word from codeword
Separable codes have computation-free decoding

Capability: Classes of error that can be detected
Greater detection capability generally involves more redundancy
To detect d bit-errors, a minimum code distance of d + 1 is required

Closure: Arithmetic and other operations done directly on codewords
(rather than in 3 stages: decode, operate, and encode)

Examples of code detection capabilities:
Single, double, b-bit burst, byte, unidirectional, . . . errors

Nov. 2020 Part IV – Errors: Informational Distortions Slide 13

13.2 Checksum Codes
Ex.: 12-digit UPC-A universal product code—Computing the check digit:
Add the odd-indexed digits and multiply the sum by 3
Add the sum of even-indexed digits to previous result
Subtract the total from the next higher multiple of 10

Capabilities:
Detects all single-digit errors
Detects most, but not all, transposition errors

Checking:
Verify that weighted mod-10 sum of all 12 digits is 0

Example:
Sum odd indexed digits: 0 + 6 + 0 + 2 + 1 + 5 = 14
Multiply by 3: 14  3 = 42
Add even-indexed digits: 42 + 3 + 0 + 0 + 9 + 4 = 58
Compute check digit: 60 – 58 = 2

Bar code uses 7 bits
per digit, with different
encodings on the right
and left halves and
different parities at
various positions

1 2 3 4 5 6 7 8 9 10 11

Nov. 2020 Part IV – Errors: Informational Distortions Slide 14

Characterization of Checksum Codes
Given a data vector x1, x2, . . . , xn, encode the data by attaching the

checksum xn+1 to the end, such that Sj=1 to n+1 wj xj = 0 mod A

The elements wj of the weight vector w are predetermined constants

Capabilities:
Detects all errors adding an error magnitude that is not a multiple of A

Checking:
Verify that weighted mod-A sum of all elements is 0

Example:
For the UPC-A checksum scheme, we have
w = 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1
A = 10

Variant: Vector elements may be XORed rather than added together

1 2 3 4 5 6 7 8 9 10 11

Nov. 2020 Part IV – Errors: Informational Distortions Slide 15

13.3 Weight-Based and Berger Codes
Constant-weight codes

Definition: All codewords have the same number of 1s

Can detect all unidirectional errors

Maximum number of codewords obtained
when weight of n-bit codewords is n/2

A weight-2 code:
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

Nov. 2020 Part IV – Errors: Informational Distortions Slide 16

Check part

Berger Codes

Definition: Separable code that has the count of 0s within the data part
attached as a binary number that forms the check part

Alternative – attach the 1’s-complement of the number of 1s

Can detect all unidirectional errors

log2(k + 1) check bits for k data bits

A Berger code:
000000 110
000001 101
000010 101
000011 100
. . .

100111 010
101000 100
. . .

111110 001
111111 000

Jay M. Berger
(IBM)

Nov. 2020 Part IV – Errors: Informational Distortions Slide 17

13.4 Cyclic Codes
Definition: Any cyclic shift of a codeword produces another codeword

To encode data (1101001), multiply its associated polynomial by G(x)
1 + x + x3 + x6

 1 + x + x3

1 + x + x3 + x6 + x + x2 + x4 + x7 + x3 + x4 + x6 + x9

1 + x2 + x7 + x9

1 0 1 0 0 0 0 1 0 1

A k-bit data word corresponds to a polynomial of degree k – 1
Data = 1101001: D(x) = 1 + x + x3 + x6 (addition is mod 2)

The code has a generator polynomial of degree r = n – k
G(x) = 1 + x + x3

Detects all burst errors of width less than n – k
Burst error polynomial xjE(x), where E(x) is of degree less than n – k

Nov. 2020 Part IV – Errors: Informational Distortions Slide 18

Cyclic Codes: Encoding and Decoding

Encoding: Multiplication by the generator polynomial G(x)

B(x) = (x + x3) D(x) V(x) = D(x) + B(x) = (1 + x + x3) D(x)

Decoding: Division by the generator polynomial G(x)

FF FF FF V(x)

D(x)

x3 x 1G(x):

FF FF FF

V(x)

D(x)

x3 x 1G(x):

B(x)

Nov. 2020 Part IV – Errors: Informational Distortions Slide 19

Separable Cyclic Codes

Let D(x) and G(x) be the data and generator polynomials

Example: 7-bit code with 4 data bits and 3 check bits, G(x) = 1 + x + x3

Data = 1 0 0 1, D(x) = 1 + x3

x3D(x) = x3 + x6 = (x + x2) mod (1 + x + x3)
V(x) = x + x2 + x3 + x6

Codeword = 0 1 1 1 0 0 1

Encoding:

Multiply D(x) by xn–k and divide the result by G(x) to get the remainder
polynomial R(x) of degree less than n – k

Form the codeword V(x) = R(x) + xn–kD(x), which is divisible by G(x)

Check part Data part

aka CRC = cyclic
redundancy check

Single parity bit:
G(x) = x + 1

Nov. 2020 Part IV – Errors: Informational Distortions Slide 20

13.5 Arithmetic Error-Detecting Codes
Unsigned addition 0010 0111 0010 0001

+ 0101 1000 1101 0011
–––––––––––––––––

Correct sum 0111 1111 1111 0100
Erroneous sum 1000 0000 0000 0100


Stage generating an
erroneous carry of 1

How a single carry error
can lead to an arbitrary
number of bit-errors
(inversions)

The arithmetic weight of an error: Min number of signed powers of 2 that
must be added to the correct value to turn it into the erroneous result
(contrast with Hamming weight of an error)

Example 1 Example 2
-- --

Correct value 0111 1111 1111 0100 1101 1111 1111 0100
Erroneous value 1000 0000 0000 0100 0110 0000 0000 0100
Difference (error) 16 = 24 –32752 = –215 + 24

Min-weight BSD 0000 0000 0001 0000 –1000 0000 0001 0000
Arithmetic weight 1 2
Error type Single, positive Double, negative

Nov. 2020 Part IV – Errors: Informational Distortions Slide 21

Codes for Arithmetic Operations

Arithmetic error-detecting codes:

Are characterized by arithmetic weights of detectable errors

Allow direct arithmetic on coded operands

We will discuss two classes of arithmetic error-detecting codes,
both of which are based on a check modulus A (usually a small
odd number)

Product or AN codes
Represent the value N by the number AN

Residue (or inverse residue) codes
Represent the value N by the pair (N, C),
where C is N mod A or (N – N mod A) mod A

Nov. 2020 Part IV – Errors: Informational Distortions Slide 22

Product or AN Codes

For odd A, all weight-1 arithmetic errors are detected

Arithmetic errors of weight  2 may go undetected

e.g., the error 32 736 = 215 – 25 undetectable with A = 3, 11, or 31

Error detection: check divisibility by A

Encoding/decoding: multiply/divide by A

Arithmetic also requires multiplication and division by A

Product codes are nonseparate (nonseparable) codes
Data and redundant check info are intermixed

Nov. 2020 Part IV – Errors: Informational Distortions Slide 23

Low-Cost Product Codes

Use low-cost check moduli of the form A = 2a – 1

Multiplication by A = 2a – 1: done by shift-subtract
(2a – 1)N = 2aN – N

Division by A = 2a – 1: done a bits at a time as follows

Given y = (2a – 1)x, find x by computing 2a x – y
. . . xxxx 0000 – . . . xxxx xxxx = . . . xxxx xxxx
Unknown 2a x Known (2a – 1)x Unknown x

Theorem: Any unidirectional error with arithmetic weight of at most a – 1
is detectable by a low-cost product code based on A = 2a – 1

Nov. 2020 Part IV – Errors: Informational Distortions Slide 24

Arithmetic on AN-Coded Operands

Add/subtract is done directly: Ax  Ay = A(x  y)

Direct multiplication results in: Aa  Ax = A2ax

The result must be corrected through division by A

For division, if z = qd + s, we have: Az = q(Ad) + As

Thus, q is unprotected
Possible cure: premultiply the dividend Az by A
The result will need correction

Square rooting leads to a problem similar to division

A2x  =  Ax  which is not the same as A x 

Nov. 2020 Part IV – Errors: Informational Distortions Slide 25

Residue and Inverse Residue Codes

Represent N by the pair (N, C(N)), where C(N) = N mod A

Residue codes are separate (separable) codes

Separate data and check parts make decoding trivial

Encoding: Given N, compute C(N) = N mod A

Low-cost residue codes use A = 2a – 1

To compute N mod (2a – 1), add a-bit segments of N, modulo 2a – 1
(no division is required)

Example: Compute 0101 1101 1010 1110 mod 15
0101 + 1101 = 0011 (addition with end-around carry)
0011 + 1010 = 1101
1101 + 1110 = 1100 The final residue mod 15

Nov. 2020 Part IV – Errors: Informational Distortions Slide 26

Arithmetic on Residue-Coded Operands
Add/subtract: Data and check parts are handled separately

(x, C(x))  (y, C(y)) = (x  y, (C(x)  C(y)) mod A)

Multiply
(a, C(a))  (x, C(x)) = (a  x, (C(a)C(x)) mod A)

Divide/square-root: difficult

 Main
Arithmetic
Processor

 Check
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error
Indicator

A

Arithmetic processor
with residue checking

Nov. 2020 Part IV – Errors: Informational Distortions Slide 27

13.6 Other Error-Detecting Codes

Codes for erasure errors

Assume n total symbols, k info symbol, n – m erasures allowed
Info can be recovered from any m symbols in an n-symbol codeword
When m = k, the erasure code is optimal

Codes for byte errors

Bytes are common units of data representation, storage, transmission
So, it makes sense to tie our error detection capability to bytes
Example: Single-byte-error-correcting, double-byte-error-detecting code

Codes for burst errors

With serial data or scratched disk surface, adjacent bits can be affected
Example: Single-bit-error-correcting, 6-bit-burst-error-detecting code

Nov. 2020 Part IV – Errors: Informational Distortions Slide 28

Higher-Level Error Coding Methods

We have applied coding to data at the bit-string or word level

It is also possible to apply coding at higher levels

Data structure level – Robust data structures

Application level – Algorithm-based error tolerance

Nov. 2020 Part IV – Errors: Informational Distortions Slide 29

Error Correction

Nov. 2020 Part IV – Errors: Informational Distortions Slide 30

Nov. 2020 Part IV – Errors: Informational Distortions Slide 31

Nov. 2020 Part IV – Errors: Informational Distortions Slide 32

14.1 Basics of Error Correction
High-redundancy codes

Triplication is a form of error coding:
x represented as xxx (200% redundancy)
Corrects any error in one version
Detects two nonsimultaneous errors

With a larger replication factor, more errors can be corrected

Encoding Decoding

f(x)x y

f(x)

f(x)

If we triplicate the voting unit to obtain 3 results,
we are essentially performing the operation f(x)
on coded inputs, getting coded outputs

V

Our challenge here is to come up with strong correction capabilities,
using much lower redundancy (perhaps an order of magnitude less)

To correct all single-bit errors in an n-bit code, we must have 2r > n,
or 2r > k + r, which leads to about log2 k check bits, at least

Nov. 2020 Part IV – Errors: Informational Distortions Slide 33

The Concept of Error-Correcting Codes

A conceptually simple error-correcting code:
Arrange the k data bits into a k1/2  k1/2 square array
Attach an even parity bit to each row and column of the array
Row/Column check bit = XOR of all row/column data bits
Data space: All 2k possible k-bit words
Redundancy: 2k1/2 + 1 check bits for k data bits
Corrects all single-bit errors (lead to distinct noncodewords)
Detects all double-bit errors (some triples go undetected)

Encoding

Decoding

Data words Codewords

Noncodewords

Errors

Data space Code space

Error space

0 1 1 0
0 1 0 1
1 0 1 0
1 0 0 1

0

To be avoided
at all cost

Nov. 2020 Part IV – Errors: Informational Distortions Slide 34

Evaluation of Error-Correcting Codes

Redundancy: k data bits encoded in n = k + r bits (r redundant bits)

Encoding: Complexity (circuit / time) to form codeword from data word

Decoding: Complexity (circuit / time) to obtain data word from codeword

Capability: Classes of error that can be corrected
Greater correction capability generally involves more redundancy
To correct c bit-errors, a minimum code distance of 2c + 1 is required

Combined error correction/detection capability:
To correct c errors and additionally detect d errors (d > c),
a minimum code distance of c + d + 1 is required

Example: Hamming SEC/DED code has a code distance of 4

Examples of code correction capabilities:
Single, double, byte, b-bit burst, unidirectional, . . . errors

Nov. 2020 Part IV – Errors: Informational Distortions Slide 35

Hamming Distance for Error Correction

Red dots represent codewords

Yellow dots, noncodewords
within distance 1 of codewords,
represent correctable errors

Blue dot, within distance 2 of
three different codewords
represents a detectable error

Simultaneous single error
correction and double error
detection requires that there not
be points within distance 2 of
some codewords that are also
within distance 1 of another

The following visualization, though not completely accurate, is still useful

Nov. 2020 Part IV – Errors: Informational Distortions Slide 36

14.2 Hamming Codes

d3 d2 d1 d0 p2 p1 p0

Data bits Parity bitsExample: Uses multiple parity bits, each
applied to a different subset of data bits

Encoding: 3 XOR networks to form parity bits

Checking: 3 XOR networks to verify parities

Decoding: Trivial (separable code)

Redundancy: 3 check bits for 4 data bits
Unimpressive, but gets better with more data bits
(7, 4); (15, 11); (31, 26); (63, 57); (127, 120)

Capability: Corrects any single-bit error

s2 = d3  d2  d1  p2

s1 = d3  d1  d0  p1

s0 = d2  d1  d0  p0

s2 s1 s0 Error

0 0 0 None

0 0 1 p0

0 1 0 p1

0 1 1 d0

1 0 0 p2

1 0 1 d2

1 1 0 d3

1 1 1 d1

s2 s1 s0

Syndrome

Nov. 2020 Part IV – Errors: Informational Distortions Slide 37

Matrix Formulation of Hamming SEC Code

d3 d2 d1 d0 p2 p1 p0

Data bits Parity bits

d3 d2 d1 d0 p2 p1 p0

1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1 s2 s1 s0 Error

0 0 0 None

0 0 1 p0

0 1 0 p1

0 1 1 d0

1 0 0 p2

1 0 1 d2

1 1 0 d3

1 1 1 d1

Parity check matrix

d3

d2

d1

d0

p2

p1

p0

s2

s1

s0

 =

Data bits Parity bits

SyndromeReceived
word

Syndrome matches the p2 column
in the parity check matrix

Matrix-vector multiplication is done
with AND/XOR, instead of /+

Nov. 2020 Part IV – Errors: Informational Distortions Slide 38

Matrix Rearrangement for Simpler Correction

p0 p1 d0 p2 d2 d3 d1

Data and parity bits

p0 p1 d0 p2 d2 d3 d1

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1 s2 s1 s0 Error

0 0 0 None

0 0 1 p0

0 1 0 p1

0 1 1 d0

1 0 0 p2

1 0 1 d2

1 1 0 d3

1 1 1 d1

p0

p1

d0

p2

d2

d3

d1

s2

s1

s0

 =

Data and parity bits

Syndrome indicates
error in position 4

1 2 3 4 5 6 7
Position number

s2
s1
s0

Decoder

0 1-7

Data and parity bits

Corrected
version

1-7

1-7

Matrix columns
are binary rep’s
of column indices

Nov. 2020 Part IV – Errors: Informational Distortions Slide 39

Hamming Generator Matrix

d3 d2 d1 d0 p2 p1 p0

Data bits Parity bits
d3 d2 d1 d0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 0 1 1
0 1 1 1

Generator matrix

d3

d2

d1

d0

 =

CodewordData word

d3

d2

d1

d0

p2

p1

p0

Recall that matrix-vector multiplication
is done with AND/XOR, instead of /+

Data bits

Richard W. Hamming
(Bell Labs,
Naval Postgraduate
School)

Nov. 2020 Part IV – Errors: Informational Distortions Slide 40

Generalization to Wider Hamming SEC Codes

p0 p1 d0 p2 . . .

0 0 0 . . . 1 1 1
: : : . . . : : :
0 1 1 . . . 0 1 1
1 0 1 . . . 1 0 1

p0

p1

d0

p2

.

.

.

sr-1

:
s1

s0

 =

Data and parity bits

1 2 3 2r–1
Position number

sr-1
:

s1
s0

Decoder

2r-1

Data and parity bits

Corrected
version

2r-1

2r-1

n k = n – r

7 4

15 11

31 26

63 57

127 120

255 247

511 502

1023 1013

Condition for general
Hamming SEC code:
n = k + r = 2r – 1

Matrix columns
are binary rep’s
of column indices

Nov. 2020 Part IV – Errors: Informational Distortions Slide 41

1 1 1 . . . 1 1 1 1
0
:
0
0

pr

sr

A Hamming SEC/DED Code

p0 p1 d0 p2 . . .

0 0 0 . . . 1 1 1
: : : . . . : : :
0 1 1 . . . 0 1 1
1 0 1 . . . 1 0 1

p0

p1

d0

p2

.

.

.

sr-1

:
s1

s0

 =

Data and parity bits

1 2 3 2r–1
Position number

Add an extra row of
all 1s and a column
with only one 1 to the
parity check matrix

Parity check matrix Syndrome
Received

word

sr-1
:

s1
s0

Decoder

2r-1

Data and
parity bits

Corrected
version

2r-1

2r-1

sr

q
Not single error

Easy to verify that the appropriate “correction”
is made for all 4 combinations of (sr,q) values

Nov. 2020 Part IV – Errors: Informational Distortions Slide 42

14.3 Linear Codes
Hamming codes are examples of linear codes
Linear codes may be defined in many other ways

u = G  d

n-bit codeword
n  k

generator
matrix

k-bit data word
(Column vector)

Multiplication,
with XOR/AND

s = H  v

(n–k)-bit syndrome

(n–k)  n
parity check

matrix

n-bit suspect word
(Column vector)

Multiplication,
with XOR/AND

Nov. 2020 Part IV – Errors: Informational Distortions Slide 43

14.4 Reed-Solomon and BCH Codes

BCH codes: Named in honor of Bose, Chaudhuri, Hocquenghem

Reed-Solomon codes: Special case of BCH code

Example: A popular variant is RS(255, 223) with 8-bit symbols
223 bytes of data, 32 check bytes, redundancy  14%
Can correct errors in up to 16 bytes anywhere in the 255-byte codeword
Used in CD players, digital audio tape, digital television

Nov. 2020 Part IV – Errors: Informational Distortions Slide 44

Reed-Solomon Codes

With k data symbols, require 2t check symbols, each s bits wide, to correct
up to t symbol errors; hence, RS(k + 2t, k) has distance 2t + 1
The number k of data symbols must satisfy k  2s – 1 – 2t (s grows with k)

Generator polynomial: g(x) = (x – a)(x – a2)(x – a3)(x – a4);
a is a primitive root mod 7  integers from 1 to 6 are powers of a mod 7
31 = 3; 32 = 2; 33 = 6; 34 = 4; 35 = 5; 36 = 1

Pick a = 3  g(x) = (x – 3)(x – 32)(x – 33)(x – 34)
= (x – 3)(x – 2)(x – 6)(x – 4) = x4 + 6x3 + 3x2 + 2x + 4

k data symbols 2t check symbols

Example: RS(6, 2) code, with 2 data and 2t = 4 check symbols (7-valued)
 up to t = 2 symbol errors correctable; hence, RS(6, 2) has distance 5

As usual, the codeword is the product of g(x) and the info polynomial;
convertible to matrix-by-vector multiply by deriving a generator matrix G

Nov. 2020 Part IV – Errors: Informational Distortions Slide 45

Elements of Galois Field GF(23)
A primitive element a of GF(23) is one that generates all nonzero
elements of the field by its powers

Here are three different representation of the elements of GF(23)

Power Polynomial Vector

--

1

a
a2

a3

a4

a5

a6

0

1

a
a2

a + 1

a2 + a
a2 + a + 1

a2 + 1

000

001

010

100

011

110

111

101

Nov. 2020 Part IV – Errors: Informational Distortions Slide 46

BCH Codes

BCH(15, 7) code: Capable of correcting any two errors

Correct the deficiency of Reed-Solomon code; have a fixed alphabet
We usually choose the alphabet {0, 1}

Generator polynomial: g(x) = 1 + x4 + x6 + x7 + x8

[0 1 1 0 0 1 0 1 1 0 0 0 0 1 0] 

1000 1000
0100 0001
0010 0011
0001 0101
1100 1111
0110 1000
0011 0001
1101 0011
1010 0101
0101 1111
1110 1000
0111 0001
1111 0011
1011 0101
1001 1111

= [x x x x x x x x]

Received word

Parity check matrix

Syndrome

BCH(511, 493) used as
DEC code in a video
coding standard for
videophones

BCH(40, 32) used as
SEC/DED code in ATM

Nov. 2020 Part IV – Errors: Informational Distortions Slide 47

14.5 Arithmetic Error-Correcting Codes
––
Positive Syndrome Negative Syndrome

error mod 7 mod 15 error mod 7 mod 15
––

1 1 1 –1 6 14
2 2 2 –2 5 13
4 4 4 –4 3 11
8 1 8 –8 6 7

16 2 1 –16 5 14
32 4 2 –32 3 13
64 1 4 –64 6 11

128 2 8 –128 5 7
256 4 1 –256 3 14
512 1 2 –512 6 13

1024 2 4 –1024 5 11
2048 4 8 –2048 3 7

––
4096 1 1 –4096 6 14
8192 2 2 –8192 5 13

16,384 4 4 –16,384 3 11
32,768 1 8 –32,768 6 7

––

Error syndromes for
weight-1 arithmetic
errors in the (7, 15)
biresidue code

Because all the
syndromes in this
table are different,
any weight-1
arithmetic error is
correctable by the
(mod 7, mod 15)
biresidue code

Nov. 2020 Part IV – Errors: Informational Distortions Slide 48

Properties of Biresidue Codes
Biresidue code with relatively prime low-cost check moduli A = 2a – 1
and B = 2b – 1 supports a  b bits of data for weight-1 error correction

Representational redundancy = (a + b)/(ab) = 1/a + 1/b

n k

7 4

15 11

31 26

63 57

127 120

255 247

511 502

1023 1013Compare with Hamming SEC code

a b n=k+a+b k=ab

3 4 19 12

5 6 41 30

7 8 71 56

11 12 143 120

15 16 271 240

Nov. 2020 Part IV – Errors: Informational Distortions Slide 49

Arithmetic on Biresidue-Coded Operands
Similar to residue-checked arithmetic for addition and multiplication,
except that two residues are involved

Divide/square-root: remains difficult

Arithmetic processor
with biresidue checking

 Main
Arithmetic
Processor

 Check
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error
Indicator

A

D(z)

D(x)

D(y)

s

B

s

Nov. 2020 Part IV – Errors: Informational Distortions Slide 50

14.6 Other Error-Correcting Codes

Reed-Muller codes: Have a recursive construction, with smaller codes
used to build larger ones

Turbo codes: Highly efficient separable
codes, with iterative (soft) decoding

Encoder 1

Encoder 2Interleaver

Data

Code

Low-density parity check (LDPC) codes: Each parity check is defined
on a small set of bits, so error checking is fast; correction is more difficult

Information dispersal: Encoding data into n pieces, such that any k of
the pieces are adequate for reconstructing the data

Nov. 2020 Part IV – Errors: Informational Distortions Slide 51

Higher-Level Error Coding Methods

We have applied coding to data at the bit-string or word level

It is also possible to apply coding at higher levels

Data structure level – Robust data structures

Application level – Algorithm-based error tolerance

Nov. 2020 Part IV – Errors: Informational Distortions Slide 52

Preview of Algorithm-Based Error Tolerance

2 1 6 1

5 3 4 4

3 2 7 4

M r =

2 1 6 1

5 3 4 4

3 2 7 4

2 6 1 1

M f =

2 1 6

5 3 4

3 2 7

M =

2 1 6

5 3 4

3 2 7

2 6 1

M c =

Matrix M Row checksum matrix

Column checksum matrix Full checksum matrix

Error coding applied to data structures, rather than at the level of atomic
data elements

Example: mod-8
checksums used
for matrices

If Z = X  Y then
Zf = Xc  Yr

In Mf, any single
error is correctable
and any 3 errors
are detectable

Four errors may
go undetected

Nov. 2020 Part IV – Errors: Informational Distortions Slide 53

Self-Checking Modules

Nov. 2020 Part IV – Errors: Informational Distortions Slide 54

Earl checks his balance at the bank.

Nov. 2020 Part IV – Errors: Informational Distortions Slide 55

Nov. 2020 Part IV – Errors: Informational Distortions Slide 56

15.1 Checking of Function Units
Function

unit

Status

Encoded
input

Encoded
output

Self-checking
code checker

Function unit designed in a
way that faults/errors/malfns
manifest themselves as
invalid (error-space) outputs,
which are detectable by an
external code checker

Input

Code
space

Error
space

Code
space

Error
space

Output

f

Implementation of the
desired functionality
with coded values

ff
Circuit function
with the fault f

OR

Four possibilities:

Both function unit and checker okay

Only function unit okay (false alarm
may be raised, but this is safe)

Only checker okay (we have either no
output error or a detectable error)

Neither function unit nor checker okay
(use 2-output checker; a single check
signal stuck-at-okay goes undetected,
leading to fault accumulation)

Nov. 2020 Part IV – Errors: Informational Distortions Slide 57

Cascading of Self-Checking Modules

Function
unit 1

Encoded
input

Self-checking
checker

Function
unit 2

Encoded
output

Self-checking
checker

Given self-checking modules that
have been designed separately,
how does one combine them into
a self-checking system?

Can remove this checker
if we do not expect both units
to fail and Function unit 2
translates any noncodeword
input into noncode output

Output of multiple checkers may be
combined in self-checking manner

Code
space

Error
space

Code
space

Error
space

Output

f

ff OR

Input

Input
uncheckedf

Input checked
(don’t care)

ff

?

Nov. 2020 Part IV – Errors: Informational Distortions Slide 58

15.2 Error Signal and Their Combining

Function
unit 1

Encoded
input

Self-checking
checker

Function
unit 2

Encoded
output

Self-checking
checker

In Out

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

Simplified truth table
if we denote
01 and 10 as G,
00 and 11 as B

In Out

B B B
B G B
G B B
G G G

Circuit to
combine
error
signals
(two-rail
checker)

01 or 10: G
00 or 11: B

Show that this circuit is self-testing

Nov. 2020 Part IV – Errors: Informational Distortions Slide 59

15.3 Totally Self-Checking Design
A module is totally self-checking
if it is self-checking and self-testing

If the dashed red arrow option is
used too often, faults may go
undetected for long periods of time,
raising the danger of a second fault
invalidating the self-checking design

A self-checking circuit is self-testing if any
fault from the class covered is revealed at
output by at least one code-space input,
so that the fault is guaranteed to be
detectable during normal circuit operation

Code
space

Error
space

Code
space

Error
space

Output

f

ff OR

Input

Input
uncheckedf

Input checked
(don’t care)

Note that if we don’t
explicitly ensure this,
tests for some of the
faults may belong to
the input error space

The self-testing property allows us to focus on a small set of faults,
thus leading to more economical self-checking circuit implementations
(with a large fault set, cost would be prohibitive)

ff

?

Nov. 2020 Part IV – Errors: Informational Distortions Slide 60

Self-Monitoring Design

A module is self monitoring with respect to the fault class F if it is

(1) Self-checking with respect to F, or

(2) Totally self-checking wrt the fault class Finit  F, chosen such that
all faults in F develop in time as a sequence of simpler faults,
the first of which is in Finit

Example:
A unit that is totally-self-checking wrt single
faults may be deemed self-monitoring wrt to
multiple faults, provided that multiple faults
develop one by one and slowly over time

The self-monitoring design approach requires the more stringent
totally-self-checking property to be satisfied for a small, manageable
set of faults, while also protecting the unit against a broader fault class

Finit F – Finit

f1 f2

f3

Fault-free

Nov. 2020 Part IV – Errors: Informational Distortions Slide 61

15.4 Self-Checking Checkers
Conventional code checker

Input
Code
space

Error
space

Outputf

0

1

f

Pleasant
surprise:
The self-
checking
version is
simpler!

Input
Self-checking code checker

Code
space

Error
space

Outputf

01

00

f

10

11

f

ff

ff ?

Example: 5-input odd-parity checker

s-a-0 fault
on output?

e

Example: 5-input odd-parity checker

e0

e1

Nov. 2020 Part IV – Errors: Informational Distortions Slide 62

TSC Checker for m-out-of-2m Code

Divide the 2m bits into two disjoint subsets A and B of m bits each
Let v and w be the weight of (number of 1s in) A and B, respectively
Implement the two code checker outputs e0 and e1 as follows:

e0 =  (v  i)(w  m – i)
i = 0

(i even)

m

e1 =  (v  j)(w  m – j)
j = 1

(j odd)

m

Always satisfied

Example: 3-out-of-6 code checker, m = 3, A = {a, b, c}, B = { f, g, h}

e0 = (v  0)(w  3)  (v  2)(w  1) = fgh  (ab  bc  ca)(f  g  h)

e1 = (v  1)(w  2)  (v  3)(w  0) = (a  b  c)(fg  gh  hf)  abc

v 1s w 1s

m bits m bits

v 1s w 1s

Subset A Subset B

Nov. 2020 Part IV – Errors: Informational Distortions Slide 63

Another TSC m-out-of-2m Code Checker
Cellular realization, due to J. E. Smith:
This design is testable with only 2m inputs,
all having m consecutive 1s (in cyclic order)

.

.

.

.

.

.

.

.

.

.

.

.

m – 1 stages

...

...

Nov. 2020 Part IV – Errors: Informational Distortions Slide 64

Using 2-out-of-4 Checkers as Building Blocks

Building m-out-of-2m TSC checkers, 3  m  6, from 2-out-of-4 checkers
(construction due to Lala, Busaba, and Zhao):

Examples: 3-out-of-6 and 4-out-of-8 TSC checkers are depicted below
(only the structure is shown; some design details are missing)

2-out-of-4

2-out-of-4

2-out-of-4

2-out-of-4

2-rail checker

1 2 3 4 3 4 5 65 6 1 2

3-out-of-6

2-out-of-4

2-out-of-4

2-out-of-4

2-out-of-4

2-out-of-4 2-out-of-4

2-rail checker

1 2 3 4 3 4 7 85 6 7 8 1 2 5 6

4-out-of-8

Slightly different
from an ordinary

2-out-of-4 checker

Nov. 2020 Part IV – Errors: Informational Distortions Slide 65

TSC Checker for k-out-of-n Code

One design strategy is to proceed in 3 stages:
Convert the k-out-of-n code to a 1-out-of-() code
Convert the latter code to an m-out-of-2m code
Check the m-out-of-2m code using a TSC checker

This approach is impractical for many codes

n
k

5 bits

10 bits

6 bits

2-out-of-5

1-out-of-10

3-out-of-6

10 AND gates

6 OR gates

TSC checker

A procedure due to Marouf and Friedman:
Implement 6 functions of the general form

(these have different subsets of bits as
inputs and constitute a 1-out-of-6 code)

Use a TSC 1-out-of-6 to 2-out-of-4 converter
Use a TSC 2-out-of-4 code checker

The process above works for 2k + 2  n  4k
It can be somewhat simplified for n = 2k + 1

e0 =  (v  j)(w  m – j)
j = 1

(j even)

m

6 bits

4 bits

e0 e1 e2 e3 e4 e5

1-out-of-6

2-out-of-4 OR gates

TSC checker

Nov. 2020 Part IV – Errors: Informational Distortions Slide 66

TSC Checkers for Separable Codes

Here is a general strategy for designing totally-self-checking checkers
for separable codes

k data bits

n – k
check bits

Input
word TSC code checker

Generate
complement
of check bits

n – k

n – k

e0
e1

Two-rail
checker

Checker
outputs

For many codes, direct synthesis will produce a faster and/or more
compact totally-self-checking checker

Google search for “totally self checking checker” produces 817 hits

Nov. 2020 Part IV – Errors: Informational Distortions Slide 67

15.5 Self-Checking State Machines
Design method for Moore-type machines, due to Diaz and Azema:

Inputs and outputs are encoded using two-rail code
States are encoded as n/2-out-of-n codewords

Fact: If the states are encoded using a k-out-of-n code, one can
express the next-state functions (one for each bit of the next state)
via monotonic expressions; i.e., without complemented variables

Monotonic functions can be realized with only AND and OR gates,
hence the unidirectional error detection capability

Input Output
State x = 0 x = 1 z

A C A 1
B D C 1
C B D 0
D C A 0

Input Output
State x = 01 x = 10 z

0011 1010 0011 10
0101 1001 1010 10
1010 0101 1001 01
1001 1010 0011 01

Nov. 2020 Part IV – Errors: Informational Distortions Slide 68

15.6 Practical Self-Checking Design

Design based on parity codes

Design with residue encoding

FPGA-based design

General synthesis rules

Partially self-checking design

Nov. 2020 Part IV – Errors: Informational Distortions Slide 69

Design with Parity Codes and Parity Prediction

Operands and results are parity-encoded
Parity is not preserved over arithmetic and logic operations

/
k

/
k

/
k

Parity-
encoded
inputs

ALU

Error
signal

Parity-
encoded
output

Parity
generator

Ordinary ALU

Parity
predictor

Parity prediction is an alternative to duplication

Compared to duplication:
Parity prediction often involves less overhead in time and space
The protection offered by parity prediction is not as comprehensive

Nov. 2020 Part IV – Errors: Informational Distortions Slide 70

TSC Design with Parity Prediction

Recall our discussion of parity prediction as an alternative to duplication

/
k

/
k

/
k

Parity-
encoded
inputs

ALU

Error
signal

Parity-
encoded
output

Parity
generator

Ordinary ALU

Parity
predictor

If the parity predictor produces the complement of the output parity, and
the XOR gate is removed, we have a self-checking design

To ensure the TSC property, we must also verify that the parity predictor
is testable only with input codewords

Nov. 2020 Part IV – Errors: Informational Distortions Slide 71

Parity Prediction for an Adder

Operand A: 1 0 1 1 0 0 0 1 Parity 0
Operand B: 0 0 1 1 1 0 1 1 Parity 1

A  B 1 0 0 0 1 0 1 0

Carries: 0 0 1 1 0 0 1 1 Parity 0
Sum S: 1 1 1 0 1 1 0 0 Parity 1

p(S) = p(A)  p(B)  c0  c1  c2  . . .  ck

Inputs Must compute second
versions of these carries
to ensure independence

Parity-checked
adder

A, p(A) B, p(B)

S, p(S)

c0

Parity predictor for our adder consists of a duplicate carry network and
an XOR tree

Nov. 2020 Part IV – Errors: Informational Distortions Slide 72

TSC Design with Residue Encoding

Residue checking is applicable directly to addition, subtraction, and
multiplication, and with some extra effort to other arithmetic operations

Modify the “Find mod A” box
to produce the complement
of the residue

Use two-rail checker instead of
comparator

Add

x, x mod A

Add mod A

Compare
Find
mod A

y, y mod A

s, s mod A Error

 Not
 equal

Verify the self-testing property
if the residue channel is not
completely independent of the
main computation (not needed
for add/subtract and multiply)

To make this scheme TSC:

Nov. 2020 Part IV – Errors: Informational Distortions Slide 73

Self-Checking Design with FPGAs

Synthesis algorithm:
(1) Use scripts in the Berkeley synthesis tool SIS to decompose an SOP
expression into an optimal collection of parts with 4 or fewer variables
(2) Assign each part to a functional cell that produces a 2-rail output
(3) Connect the outputs of a pair of intermediate functional cells to the
inputs of a checker cell and find the output equations for that cell
(4) Cascade the checker cells to form a checker tree

LUT-based FPGAs can suffer from the following fault types:
Single s-a faults in RAM cells
Single s-a faults on signal lines
Functional faults in a multiplexer within a single CLB
Functional faults in a D flip-flop within a single CLB
Single s-a faults in pass transistors connecting CLBs

Ref.: [Lala03]

LUT

Nov. 2020 Part IV – Errors: Informational Distortions Slide 74

Synthesis of TSC Systems from TSC Modules

Theorem 1: A sufficient condition for a system to be TSC with respect
to all single-module failures is to add checkers to the system such that
if a path leads from a module Mi to itself (a loop), then it encounters at
least one checker

Theorem 2: A sufficient condition for a system to be TSC with respect
to all multiple module failures in the module set A = {Mi} is to have no
loop containing two modules in A in its path and at least one checker
in any path leading from one module in A to any other module in A

System consists of a set of modules, with interconnections modeled
by a directed graph

Optimal placement of checkers to satisfy these condition

Easily solved, when checker cost is the same at every interface

Nov. 2020 Part IV – Errors: Informational Distortions Slide 75

Partially Self-Checking Units

The check/do-not-check indicator
is produced by the control unit

Some ALU functions, such as logical operations, cannot be checked
using low-redundancy codes

Such an ALU can be made partially self-checking by circumventing
the error-checking process in cases where codes are not applicable

Self-checking ALU
with residue code

0 1
1 0

Do not check Check

Residue-check
error signal ALU error

indicator

01, 10 = G (top)
01=D,10=C(bottom)
00, 11 = B

In Out
X B B
B C B
B D G
G C G
G D G

Normal
operation

01
10

Nov. 2020 Part IV – Errors: Informational Distortions Slide 76

Redundant Disk Arrays

Nov. 2020 Part IV – Errors: Informational Distortions Slide 77

Nov. 2020 Part IV – Errors: Informational Distortions Slide 78

Nov. 2020 Part IV – Errors: Informational Distortions Slide 79

16.1 Disk Memory Basics

Track 0
Track 1

Track c – 1

Sector

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

Magnetic disk storage concepts

Comprehensive info about disk memory: http://www.storagereview.com/guide/index.html

Nov. 2020 Part IV – Errors: Informational Distortions Slide 80

Typical Modern Hard-Disk Drives

Seagate BarraCuda
Toshiba X300
WD VelociRaptor
WD Blue Desktop
Seagate Firecuda Desktop
Seagate IronWolf NAS
Seagate FireCuda Mobile
WD My Book
G-Technology G-Drive

Price: Mostly under $100
Capacity: Mostly 1-20 TB
Cache: 64-256 MB
Data rate: ~ 6 Gbps

https://www.techradar.com/news/10-best-internal-desktop-and-laptop-hard-disk-drives-2016

Nov. 2020 Part IV – Errors: Informational Distortions Slide 81

Access Time for a Disk

The three components of disk access time. Disks that spin faster
have a shorter average and worst-case access time.

1. Head movement
from current position
to desired cylinder:
Seek time (0-10s ms)

Rotation

2. Disk rotation until the desired
sector arrives under the head:
Rotational latency (0-10s ms)

3. Disk rotation until sector
has passed under the head:
Data transfer time (< 1 ms)

Sector

1
2

3

Average rotational latency =
30 000 / rpm (in ms) Seek time =

a + b(c – 1)
+ b(c – 1)1/2

Data transfer time =
Bytes / Data rate

Nov. 2020 Part IV – Errors: Informational Distortions Slide 82

Amdahl’s Rules of Thumb for System Balance

The need for high-capacity, high-throughput secondary (disk) memory

Processor
speed

RAM
size

Disk I/O
rate

Number of
disks

Disk
capacity

Number of
disks

1 GIPS 1 GB 100 MB/s 1 100 GB 1

1 TIPS 1 TB 100 GB/s 1000 100 TB 100

1 PIPS 1 PB 100 TB/s 1 Million 100 PB 100 000

1 EIPS 1 EB 100 PB/s 1 Billion 100 EB 100 Million

G Giga
T Tera
P Peta
E Exa

1 RAM byte
for each IPS

100 disk bytes
for each RAM byte

1 I/O bit per sec
for each IPS

Nov. 2020 Part IV – Errors: Informational Distortions Slide 83

Head-Per-Track Disks

Fig. 18.7 Head-per-track disk concept.

Track 0 Track 1

Track c–1

Dedicated track heads eliminate seek time
(replace it with activation time for a head)

Multiple sets of head
reduce rotational latency

Nov. 2020 Part IV – Errors: Informational Distortions Slide 84

16.2 Disk Mirroring and Striping

Mirroring means simple duplication

Disadvantage:
No gain in performance
or bandwidth

http://www.recoverdata.com/images/raid_mirror.gif

Advantage:
Parallel system,
highly reliable

Nov. 2020 Part IV – Errors: Informational Distortions Slide 85

Disk Striping
Striping means dividing a block of data into smaller pieces (perhaps
down to the bit level) and storing the pieces on different disks

Advantage:
Faster (parallel)
access to data

http://www.recoverdata.com/images/raid_striping.gif

Disadvantage:
Series system,
less reliable

Nov. 2020 Part IV – Errors: Informational Distortions Slide 86

16.3 Data Encoding Schemes

Simplest possible encoding: data duplication

Error-correcting code: An overkill, because disk errors are of erasure
type (strong built-in error-detecting code indicates error location)

Parity, applied to bits or blocks: P = A  B  C  D

Data reconstruction: Suppose B is lost or erased

B = A  C  D  P

Nov. 2020 Part IV – Errors: Informational Distortions Slide 87

16.4 The RAID Levels

Alternative data organizations on redundant disk arrays.

RAID0: Multiple disks for higher
data rate; no redundancy

RAID1: Mirrored disks

RAID2: Error-correcting code

RAID3: Bit- or byte-level striping
with parity/checksum disk

RAID4: Parity/checksum applied
to sectors,not bits or bytes

RAID5: Parity/checksum
distributed across several disks

Data organization on multiple disks

Data
disk 0

Data
disk 1

Mirror
disk 1

Data
disk 2

Mirror
disk 2

Data
disk 0

Data
disk 2

Data
disk 1

Data
disk 3

Mirror
disk 0

Parity
disk

Spare
disk

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0”

Data 1”

Data 2”

Data 0’”

Data 1’”

Data 2’”

Parity 0

Parity 1

Parity 2

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0’”

Parity 1

Data 2”

Parity 0

Data 1’”

Data 2’”

Data 0”

Data 1”

Parity 2

RAID6: Parity and 2nd check
distributed across several disks

Nov. 2020 Part IV – Errors: Informational Distortions Slide 88

RAID Levels 0 and 1

Structure: Striped (data broken into
blocks & written to separate disks)

Advantages: Spreads I/O load
across many channels and drives

Drawbacks: No error tolerance
(data lost with single disk failure)

Diagrams: http://ironraid.com/whatisraid.htm

Structure: Each disk
replaced by a mirrored pair

Advantages: Can double the read
transaction rate; no rebuild required

Drawbacks: Overhead is 100%

RAID 0

RAID 1

Nov. 2020 Part IV – Errors: Informational Distortions Slide 89

Combining RAID Levels 0 and 1

RAID 1E

RAID 10

Diagrams: http://ironraid.com/whatisraid.htm

Nov. 2020 Part IV – Errors: Informational Distortions Slide 90

RAID Level 2

Structure:

Data bits are written
to separate disks and
ECC bits to others

Advantages:

On-the-fly correction
High transfer rates

possible (w/ sync)

Drawbacks:

Potentially high
redundancy

High entry-level cost

http://www.acnc.com/

Nov. 2020 Part IV – Errors: Informational Distortions Slide 91

RAID Level 3

Structure:

Data striped across
several disks, parity
provided on another

Advantages:

Maintains good
throughput even
when a disk fails

Drawbacks:

Parity disk forms a
bottleneck

Complex controller

http://www.acnc.com/

Nov. 2020 Part IV – Errors: Informational Distortions Slide 92

RAID Level 4

Structure:

Independent blocks
on multiple disks
share a parity disk

Advantages:

Very high read rate
Low redundancy

Drawbacks:

Low write rate
Inefficient data rebuild

http://www.acnc.com/

Nov. 2020 Part IV – Errors: Informational Distortions Slide 93

RAID Level 5

Structure:

Parity and data
blocks distributed on
multiple disks

Advantages:

Very high read rate
Medium write rate
Low redundancy

Drawbacks:

Complex controller
Difficult rebuild

Diagrams: http://ironraid.com/whatisraid.htm

Variant: The spare is also active and the
spare capacity is distributed on all drives;
particularly attractive with small arrays

Nov. 2020 Part IV – Errors: Informational Distortions Slide 94

RAID Level 6

Structure:

RAID Level 5,
extended with second
parity check scheme

Advantages:

Tolerates 2 failures
Protected even during

recovery

Drawbacks:

More complex
controller

Greater overhead

http://www.acnc.com/

Nov. 2020 Part IV – Errors: Informational Distortions Slide 95

16.5 Disk Array Performance

Data reconstruction

P = A  B  C  D  B = A  C  D  P

To reconstruct B, we must read all other data blocks and the parity block

Disk array performance has two components:
1. Speed during normal read and write operations
2. Speed of reconstruction (also affects reliability)

The reconstruction time penalty and the “small write” penalty have led
some to reject all parity-based RAID schemes

BAARF = Battle Against Any RAID-F (Free, Four, Five): www.baarf.com

Nov. 2020 Part IV – Errors: Informational Distortions Slide 96

The Write Problem in Disk Arrays
Parity updates may become a bottleneck, because the parity changes
with every write, no matter how small

Computing sector parity for a write operation:

New parity = New data  Old data  Old parity

RAID0: Multiple disks for higher
data rate; no redundancy

RAID1: Mirrored disks

RAID2: Error-correcting code

RAID3: Bit- or byte-level striping
with parity/checksum disk

RAID4: Parity/checksum applied
to sectors,not bits or bytes

RAID5: Parity/checksum
distributed across several disks

Data organization on multiple disks

Data
disk 0

Data
disk 1

Mirror
disk 1

Data
disk 2

Mirror
disk 2

Data
disk 0

Data
disk 2

Data
disk 1

Data
disk 3

Mirror
disk 0

Parity
disk

Spare
disk

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0”

Data 1”

Data 2”

Data 0’”

Data 1’”

Data 2’”

Parity 0

Parity 1

Parity 2

Spare
disk

Data 0

Data 1

Data 2

Data 0’

Data 1’

Data 2’

Data 0’”

Parity 1

Data 2”

Parity 0

Data 1’”

Data 2’”

Data 0”

Data 1”

Parity 2

RAID6: Parity and 2nd check
distributed across several disks

Nov. 2020 Part IV – Errors: Informational Distortions Slide 97

RAID Tradeoffs

Figures from: [Chen94]

RAID5 and RAID 6
impose little penalty
on read operations

In choosing the
group size,
balance must be
struck between the
increasing penalty
for small writes vs.
decreasing penalty
for large writes

Nov. 2020 Part IV – Errors: Informational Distortions Slide 98

16.6 Disk Array Reliability Modeling

From: http://www.vinastar.com/docs/tls/Dell_RAID_Reliability_WP.pdf

Nov. 2020 Part IV – Errors: Informational Distortions Slide 99

MTTF Calculation for Disk Arrays

RAID1:

RAID5:
MTTF2

N(G – 1) MTTR

RAID6:
MTTF3

N(G – 1)(G – 2) MTTR2

Notation:

MTTF is for one disk
MTTR is different for each level
N = Total number of disks
G = Disks in a parity group

Caveat: RAID controllers (electronics) are also subject to failures and
their reported MTTF is surprisingly small (on the order of 0.2 to 2 M hr).
Also, must account for errors that go undetected by the disk’s error code.

MTTF2

2 MTTR

Nov. 2020 Part IV – Errors: Informational Distortions Slide 100

Actual Redundant Disk Arrays

