
Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 1

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Dependable Computing: A Multilevel Approach (traditional print
or on-line open publication, TBD). It is updated regularly by the
author as part of his teaching of the graduate course ECE 257A,
Fault-Tolerant Computing, at Univ. of California, Santa Barbara.
Instructors can use these slides freely in classroom teaching or
for other educational purposes. Unauthorized uses, including
distribution for profit, are strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised

First Sep. 2006 Oct. 2007 Nov. 2009 Nov. 2012 Nov. 2013

Feb. 2015 Nov. 2015 Nov. 2018 Nov. 2019

Nov. 2020

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 3

21 Degradation Allowance

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 4

Our computers are down,
so we have to do

everything manually...

“Redundancy is such an ugly word. Let’s talk
about your ‘employment crunch’.”

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 5

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 6

21.1 Graceful Degradation

Degradation allowance
Diagnose malfunctions and provide capability for the system to work
without the modules which are malfunctioning

Degradation management
Adapt: Prioritize tasks and redistribute load
Monitor: Keep track of system operation in degraded mode
Reverse: Return system to the intact (or less degraded) state ASAP
Return: Go back to normal operation

Terminology: n. Graceful degradation
adj. Gracefully degrading/degradable = fail-soft

Strategies for failure prevention
1. Quick malfunction diagnosis
2. Effective isolation of malfunctioning elements
3. On-line repair (preferably via hot-pluggable modules)
4. Avoidance of catastrophic malfunctions

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 7

Degradation Allowance Is Not Automatic

A car possessing extra wheels compared with the minimum number
required does not guarantee that it can operate with fewer wheels

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 8

Area under performance curve
represents work accomplished

Performability of a Fail-Soft System

On-line repair: Done by removal/replacement of affected modules in a
way that does not disrupt the operation of the remaining system parts

Crashed
Off-line repair

On-line
repair

Off-line repair: Involves shutting down the entire system while affected
modules are removed and replacements are plugged in

Intact

Time

Degraded

Partially
failed

Fail-soft
operation

Performance

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 9

21.2 Diagnosis, Isolation, and Repair
Diagnose the malfunction

Remove the malfunctioning unit
Update system (OS) tables
Physical isolation?
Initiate repair, if applicable

Create new working configuration
Exclude processor, channel, controller, I/O device (e.g., sensor)
Avoid bad tracks on disk, garbled files, noisy communication links
Remove parts of the memory via virtual address mapping
Bypass a cache or use only half of it (more restricted mapping?)

Unit

Guard 1

Bus

Guard 2

Recover processes and associated data
Recover state information from removed unit
Initialize any new resource brought on-line
Reactivate processes (via rollback or restart)

Additional steps
needed to return
repaired units to
operating status

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 10

21.3 Stable Storage
Storage that won’t lose its contents (unlike registers and SRAM/DRAM)

Combined stability & reliability can be provided with RAID-like methods

Possible implementation method: Battery backup for a time duration long
enough to save contents of disk cache or other volatile memory

Flash memory

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 11

Malfunction-Stop Modules

Malfunction tolerance would be much easier if modules simply stopped
functioning, rather than engage in arbitrary behavior

Unpredictable (Byzantine) malfunctions are notoriously hard to handle

Assuming the availability of a reliable stable storage along with its
controlling s-process and (approximately) synchronized clocks,
a k-malfunction-stop module can be implemented from k + 1 units

Operation of s-process to decide whether the module has stopped:

R := bag of received requests with appropriate timestamps
if |R| = k+1 all requests identical and from different sources stop
then if request is a write

then perform the write operation in stable storage
else if request is a read, send value to all processes

else set variable stop in stable storage to TRUE

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 12

21.4 Process and Data Recovery
Use of logs with process restart

Impossible when the system operates in real time and performs
actions that cannot be undone

Such actions must be compensated for as part of degradation
management

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 13

21.5 Checkpointing and Rollback

Early computers had a short MTTF
It was impossible to complete any computation that ran for several hours

If MTTF is shorter than the running time, many restarts may be needed

Long-running comp.

Time

Checkpoint #1

MTTF

Checkpoint #2 Checkpoint #3

Checkpointing entails some overhead
Too few checkpoints would lead to a lot of wasted work
Too many checkpoints would lead to a lot of overhead

Checkpoints are placed at convenient points along the computation path
(not necessarily at equal intervals)

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 14

Why Checkpointing Helps

A computation’s running time is T = 2 MTTF = 2/l. What is the
probability that we can finish the computation in time 2T:
a. Assuming no checkpointing
b. Assuming checkpointing at regular intervals of T/2
Ignore all overheads.

Long-running comp.

Time

MTTF

Chkpt #1 Chkpt #2 Chkpt #3

T = 2 MTTF
2T

S C
.135 335

= e–2

S H
.367 879

= e–1

C
.367 879

25% success probability47% success probability

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 15

Recovery via Rollback

Rollback or restart creates no problem for tasks that do I/O at the end
Interactive processes must be handled with more care

e.g., bank ATM transaction to withdraw money or transfer funds
(check balance, reduce balance, dispense cash or increase balance)

Roll back process 2 to the last checkpoint (#2)
Restart process 6

Process 1

Process 3

Process 2

Process 4

Process 6

Process 5

Time

Checkpoint #1 Checkpoint #2 Detected
malfunction

Affected
processes

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 16

Checkpointing for Data
Consider data objects stored on a primary site and k backup sites
(with appropriate design, such a scheme will be k-malfunction-tolerant)

Each access request is sent to the primary site
Read request honored immediately by the primary site
One way to deal with a write request:

Update requests sent to backup sites
Request is honored after all messages ack’ed

If one or more backup sites malfunction, service is not disrupted
If the primary site malfunctions, a new primary site is “elected”

(distributed election algorithms exist that can tolerate malfunctions)

Time in
state:

fn of k
fn of k

k Availability
0 0.922
1 0.987
2 0.996
4 0.997
8 0.997

Analysis by Huang and Jalote:
Normal state (primary OK, data available)
Recovery state (primary site is changing)
Checkpoint state (primary doing back-up)
Idle (no site is OK)

Alternative:
Primary site does
frequent back-ups

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 17

Asynchronous Distributed Checkpointing

For noninteracting processes, asynchronous checkpoints not a problem

Process 1

Process 3

Process 2

Process 4

Process 5

Time

I
Chkpt 1.1

Detected
malfunction

Affected
process

Process 6

I
Chkpt 1.2

I
Chkpt 1.3

I
Chkpt. 2.1

I
Chkpt 3.1

I
Chkpt 3.2

I
Chkpt 5.1

I
Chkpt 5.2

I
Chkpt 4.1

e3.2

e1.1

e5.1

e3.1 e3.3

e5.3

e1.2

e5.2

When one process is rolled back, other processes may have to be
rolled back also, and this has the potential of creating a domino effect

Identifying a consistent set of checkpoints (recovery line) is nontrivial

Recovery line

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 18

21.6 Optimal Checkpoint Insertion

There is a clear tradeoff in the decision regarding checkpoints
Too few checkpoints lead to long rollbacks in the event of a malfunction
Too many checkpoints lead to excessive time overhead
As in many other engineering problems, there is a happy medium

of checkpoints

Checkpointing
overhead

Expected work
for recovering from

a malfunction

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 19

Optimal Checkpointing for Long Computations
T = Total computation time without checkpointing
q = Number of computation segments; there will be q – 1 checkpoints
Tcp = Time needed to capture a checkpoint snapshot
l = Malfunction rate

EndChkpt #1Start

. . .

Chkpt #2

T0 T/q 2T/q

1 – lT/q 1 – lT/q
. . .

Discrete Markov model:
Expected length of stay in
each state1/(1–lT/q),
where time step is T/q

Computation time with checkpointing Ttotal = T/(1 – lT/q) + (q – 1)Tcp

= T + lT2/(q – lT) + (q – 1)Tcp

dTtotal/dq = –lT2/(q – lT)2 + Tcp = 0 qopt = T(l + l/Tcp)

Example: T = 200 hr, l = 0.01 / hr, Tcp = 1/8 hr

qopt = 200(0.01 + (0.01/0.25)1/2) = 42; Ttotal 215 hr
opt

Warning: Model
is accurate only
when T/q << 1/l

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 20

Elaboration on Optimal Computation Checkpoints
T = Total computation time without checkpointing (Example: 200 hr)
q = Number of computation segments; there will be q – 1 checkpoints
Tcp = Time needed to capture a checkpoint snapshot (Range: 1/8-10 hr)
l = Malfunction rate (Example: 0.01 / hr)

Computation time with checkpointing Ttotal = T + lT2/(q – lT) + (q – 1)Tcp

dTtotal/dq = –lT2/(q –lT)2 + Tcp = 0 qopt = T(l + l/Tcp)
d2Ttotal/dq2 = 2lT 2/(q – lT)3 > 0 Bowl-like curve for Ttotal, with a minimum

Example:

4 6 8 10 20 30 40 50
0 400 300 267 250 222 214 211 208

1/8 400 301 267 251 225 218 215 214
1/3 401 302 269 253 229 224 224 224

1 403 305 274 259 241 243 250 257
10 430 350 337 340 412 504 601 698

100 700 800 967 1150 2122 3114 4111 5108
1000 3400 5300 7267 9250 19222 29214 39211 49208

Tcp

q
Ttotal

Rollback Checkpointing

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 21

Optimal Checkpointing in Transaction Processing
Pcp = Checkpointing period
Tcp = Checkpointing time overhead (for capturing a database snapshot)
Trb = Expected rollback time upon malfunction detection

Relative checkpointing overhead
O = (Tcp + Trb) / Pcp

Assume that rollback time, given malfunction at time x, is a + bx
(b is typically small, because only updates need to be reprocessed)

r(x): Expected rollback time due to malfunction in the time interval [0, x]

r(x+dx) = r(x) + (a + bx)ldx dr(x)/dx = (a + bx)l r(x) = lx(a + bx/2)

Trb = r(Pcp) = lPcp(a + bPcp/2)

x
x + dx Pcp0

Checkpoint i – 1 Checkpoint i

O = (Tcp+Trb)/Pcp = Tcp/Pcp + l(a + bPcp/2) is minimized for: Pcp = 2Tcp/(lb)

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 22

Examples for Optimal Database Checkpointing
O = (Tcp+Trb)/Pcp = Tcp/Pcp + l(a + bPcp/2) is minimized for: Pcp = 2Tcp/(lb)

Tcp = Time needed to capture a checkpoint snapshot = 16 min
l = Malfunction rate = 0.0005 / min (MTTF = 2000 min 33.3 hr)
b = 0.1

Pcp = 2Tcp/(lb) = 800 min 13.3 hr
opt

Suppose that by using faster memory for saving the checkpoint snapshots
(e.g., disk, rather than tape) we reduce Tcp to 1 min

Pcp = 2Tcp/(lb) = 200 min 3.3 hr
opt

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 23

22 Degradation Management

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 24

“Budget cuts.”

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 25

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 26

22.1 Data Distribution Methods
Reliable data storage requires that the availability and integrity of data
not be dependent on the health of any one site

Data Replication

Data dispersion

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 27

Data Replication

Resilient objects using the primary site approach

Active replicas: the state-machine approach
Request is sent to all replicas
All replicas are equivalent and any one of them can service the request
Ensure that all replicas are in same state (e.g., via atomic broadcast)

Maintaining replica consistency very difficult under Byzantine faults
Will discuss Byzantine agreement later

Read and write quorums

Example: 9 replicas, arranged in 2D grid
Rows constitute write quorums
Columns constitute read quorums
A read quorum contains the latest update Possible

read quorum

Most
up-to-date
replicas

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 28

Data Dispersion
Instead of replicating data objects completely, one can divide each
one into k pieces, encode the pieces, and distribute the encoded
pieces such that any q of the pieces suffice to reconstruct the data

Recunstruction
algorithm

Original data word
and its k pieces

The k pieces
after encoding
(approx. three
times larger)

Original data word recovered
from k /3 encoded pieces

Up-to-date
pieces

Possible read set
of size 2k/3

Possible update set
of size 2k/3

Reconstruction
algorithm

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 29

22.2 Multiphase Commit Protocols
The two generals problem: Two generals lead divisions of an army
camped on the mountains on the two sides of an enemy-occupied valley

The two divisions can only communicate via messengers

We need a scheme for the generals to agree on a common attack time,
given that attack by only one division would be disastrous

Messengers are totally reliable, but may need
an arbitrary amount of time to cross the valley
(they may even be captured and never arrive)

G2
G1

G1 decides on T, sends a messenger to tell G2

Tomorrow
at noon

Got it!

Got
your
ack!

G2 acknowledges receipt of the attack time T

G2, unsure whether G1 got the ack (without which
he would not attack), will need an ack of the ack!

This can go on forever, without either being sure

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 30

Maintaining System Consistency

Atomic action: Either the entire action is completed or none of it is done

One key tool is the ability to ensure atomicity despite malfunctions

Similar to a computer guaranteeing sequential execution of instructions,
even though it may perform some steps in parallel or out of order

Where atomicity is useful:
Upon a write operation, ensure that all data replicas are updated
Electronic funds transfer (reduce one balance, increase the other one)

In centralized systems atomicity can be ensured via locking mechanisms

Acquire (read or write) lock for desired data object and operation
Perform operation
Release lock

A key challenge of locks is to avoid deadlock (circular waiting for locks)

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 31

Two-Phase Commit Protocol

To avoid participants being stranded in the wait state (e.g., when the
coordinator malfunctions), a time-out scheme may be implemented

Ensuring atomicity of actions in a distributed environment

Quiet

Wait

AbortCommit

Coordinator

- / Begin to all

Yes from all /
Commit to all

No from some /
Abort to all

Quiet

Wait

AbortCommit

Participant

Begin / Yes

Abort / -

Commit / -

Begin / No

Where the
transaction
is initiated

Where some
part of the
transaction

is performed

Execute the
termination

protocol

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 32

Three-Phase Commit Protocol
Two-phase commit is a blocking protocol, even with timeout transitions

Quiet

Wait

Abort

Commit

Coordinator

- / Begin to all

Yes from all /
Prepare to all

No from some /
Abort to all

Quiet

Wait

Abort

Participant

Begin / Yes

Abort / -

Prepare / Ack

Begin / No

Prepare

Ack from all /
Commit to all

Commit

Prepare

Commit / -

Safe from blocking, given
the absence of a local state
that is adjacent to both a
commit and an abort state

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 33

22.3 Dependable Communication
Point-to-point message: encoding + acknowledgment + timeout

Reliable broadcast: message guaranteed to be received by all nodes

Forwarding along branches of a broadcast tree, with possible repetition
(duplicate messages recognized from their sequence numbers)

Positive and negative acknowledgments piggybacked on subsequent
broadcast messages (P broadcasts message m1, Q receives it and
tacks a positive ack for m1 to message m2 that it broadcasts, R did not
receive m1 but finds out about it from Q’s ack and requests retransmit)

Atomic broadcast: reliable broadcast, plus the requirement that
multiple broadcasts be received in the same order by all nodes
(much more complicated to ensure common ordering of messages)

Causal broadcast: if m2 is sent after m1, any message triggered by m2

must not cause actions before those of m1 have been completed

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 34

22.4 Dependable Collaboration
Distributed systems, built from COTS nodes (processors plus memory)
and interconnects, have redundancy and allow software-based
malfunction tolerance implementation

Interconnect malfunctions are dealt with by synthesizing reliable
communication primitives (point-to-point, broadcast, multicast)

Node malfunctions are modeled differently, with the more general
models requiring greater redundancy to deal with

ByzantineTimingOmissionCrash

Node stops (does not
undergo incorrect transitions)

Node does not respond
to some inputs

Node responds either
too early or too late

Totally arbitrary behavior

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 35

Malfunction Detectors in Distributed Systems
Malfunction detector: Distributed oracle related to malfunction detection

Creates and maintains a list of suspected processes

Defined by two properties: completeness and accuracy

Advantages:

Allows decoupling of the effort to detect malfunctions, e.g. site crashes,
from that of the actual computation, leading to more modular design

Improves portability, because the same application can be used on a
different platform if suitable malfunction detectors are available for it

Example malfunction detectors:

P (Perfect): strong completeness, strong accuracy (min required for IC)

S: strong completeness, eventual weak accuracy (min for consensus)

Reference: M. Raynal, “A Short Introduction to Failure Detectors for Asynchronous
Distributed Systems,” ACM SIGACT News, Vol. 36, No. 1, pp. 53-70, March 2005.

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 36

Reliable Group Membership Service

A group of processes may be cooperating for solving a problem

The group’s membership may expand and contract owing to changing
processing requirements or because of malfunctions and repairs

Reliable multicast: message guaranteed to be received by all
members within the group

ECE 254C: Advanced Computer Architecture – Distributed Systems
(course devoted to distributed computing and its reliability issues)

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 37

22.5 Remapping and Load Balancing

After remapping, various parts of the computation are performed by
different modules compared with the original mapping

It is quite unlikely that the same incorrect answers are obtained in the
remapped version

When pieces of a computation are performed on different modules,
remapping may expose hidden malfunctions

Load balancing is the act of redistributing the computational load in the
face of lost/recovered resources and dynamically changing
computational requirements

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 38

Cell 6Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Recomputation with Shift in Space

Linear array with an extra cell can redo the same pipelined computation
with each step of the original computation shifted in space

Each cell i + 1 compares the result of step i that it received from the left
in the first computation to the result of step i that it obtains in the second
computation

With two extra cells in the linear array, three computations can be
pipelined and voting used to derive highly reliable results

1 2 3 4 5

1 2 3 4 5

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 39

22.6 Modeling of Degradable Systems
Intact FailedDegraded

Catastrophic malfunction (to be avoided)

Reducing the probability of catastrophic malfunctions
Reduce the probability of malfunctions going undetected
Increase the accuracy of malfunction diagnosis
Make repair rates much greater than malfunction rates (keep spares)
Provide sufficient “safety factor” in computational capacity

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 40

Importance of Coverage in Fail-Soft Systems
A fail-soft system can fail either indirectly, due to resource exhaustion,
or directly because of imperfect coverage (analogous to leakage)

Providing more resources (“safety factor”) lengthens the indirect path,
thus slowing indirect failures but does nothing to block the direct path

Saturation effect: For a given coverage factor, addition of resources
beyond a certain point would not be cost-effective with regard to the
resulting reliability gain (same effect observed in standby sparing)

Semidirect path

Direct path to failure
(imperfect coverage)

Indirect path to failure
(resource exhaustion)

Intact Failed

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 41

23 Resilient Algorithms

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 42

“Just a darn minute! Yesterday you said X equals two!”

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 43

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 44

23.1 COTS-Based Paradigms

Many of the hardware and software redundancy methods assume that
we are building the entire system (or a significant part of it) from scratch

Question: What can be done to ensure the dependability of
computations using commercial off-the-shelf (COTS) components?

Some companies with fault-tolerant systems and related services:

ARM: Fault-tolerant ARM (launched in late 2006), automotive applications
Nth Generation Computing: High-availability and enterprise storage systems
Resilience Corp.: Emphasis on data security
Stratus Technologies: “The Availability Company”
Sun Microsystems: Fault-tolerant SPARC (ft-SPARC™)
Tandem Computers: An early ft leader, part of HP/Compaq since 1997

A number of algorithm and data-structure design methods are available

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 45

Some History: The SIFT Experience

SIFT (software-implemented fault tolerance), developed at Stanford in
early 1970s using mostly COTS components, was one of two competing
“concept systems” for fly-by-wire aircraft control

The other one, FTMP (fault-tolerant multiprocessor), developed at MIT,
used a hardware-intensive approach

System failure rate goal: 10–9/hr over a 10-hour flight

SIFT allocated tasks for execution on multiple, loosely synchronized
COTS processor-memory pairs (skew of up to 50 ms was acceptable);
only the bus system was custom designed

Some fundamental results on, and methods for, clock synchronization
emerged from this project

To prevent errors from propagating, processors obtained multiple copies
of data from different memories over different buses (local voting)

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 46

Limitations of the COTS-Based Approach

Some modern microprocessors have dependability features built in:
Parity and other codes in memory, TLB, microcode store
Retry at various levels, from bus transmissions to full instructions
Machine check facilities and registers to hold the check results

Manufacturers can incorporate both more advanced and new features,
and at times have experimented with a number of mechanisms, but the
low volume of the application base has hindered commercial viability

According to Avizienis [Aviz97], however:
These are often not documented enough to allow users to build on them
Protection is nonsystematic and uneven
Recovery options are limited to shutdown and restart
Description of error handling is scattered among a lot of other detail
There is no top-down view of the features and their interrelationships

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 47

23.2 Robust Data Structures
Stored and transmitted data can be protected against unwanted changes
through encoding, but coding does not protect the structure of the data

Consider, e.g., an ordered list of numbers
Individual numbers can be protected by encoding
The set of values can be protected by a checksum
The ordering, however, remains unprotected

Can we devise some general methods for protecting commonly used
data structures?

Idea – Use a checksum that weighs each value differently: (Sjxj) mod A

Idea – Add a “difference with next item” field to each list entry
x x – y

y y – z

z . . .

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 48

Recoverable Linear Linked Lists
Simple linked list: 0-detectable, 0-correctable

Circular list, with node count and unique ID: 1-detectable, 0-correctable

ID ID ID ID IDSize

Doubly linked list, with node count and ID: 2-detectable, 1-correctable

ID ID ID ID IDSize

Add skip links to make this 3-detectable, 1-correctable

Cannot recover from even one erroneous link

Skip

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 49

Other Robust Data Structures

Trees, FIFOs, stacks (LIFOs), heaps, queues

In general, a linked data structure is 2-detectable and 1-correctable iff
the link network is 2-connected

Robust data structures provide fairly good protection with little design
effort or run-time overhead

Audits can be performed during idle time
Reuse possibility makes the method even more effective

Robustness features to protect the structure can be combined with
coding methods (such as checksums) to protect the content

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 50

Recoverable Binary Trees

Add “parent links” and/or “threads”
(threads are links that connect leaves
to higher-level nodes)

Threads can be added with little
overhead by taking advantage
of unused leaf links (one bit in
every node can be used to
identify leaves, thus freeing
their link fields for other uses)

ID

ID

ID ID

Size

ID

LL

N

N

N

Adding redundancy to data structures has three types of cost:

 Storage requirements for the additional information

 Slightly more difficult updating procedures

 Time overhead for periodic checking of structural integrity

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 51

23.3 Data Diversity and Fusion

A = xy

a
z

x

y

R

r

A = ½ z2 sin a A = 4r (R2 – r2)1/2

Alternate formulations of the same information (input re-expression)

Example: The shape of a rectangle can be specified:
By its two sides x and y
By the length z of its diameters and the angle a between them
By the radii r and R of its inscribed and circumscribed circles

Area calculations with computation and data diversity

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 52

23.4 Self-Checking Algorithms

2 1 6 1

5 3 4 4

3 2 7 4

M r =

2 1 6 1

5 3 4 4

3 2 7 4

2 6 1 1

M f =

2 1 6

5 3 4

3 2 7

M =

2 1 6

5 3 4

3 2 7

2 6 1

M c =

Matrix M Row checksum matrix

Column checksum matrix Full checksum matrix

Error coding applied to data structures, rather than at the level of atomic
data elements

Example: mod-8
checksums used
for matrices

If Z = X Y then
Zf = Xc Yr

In Mf, any single
error is correctable
and any 3 errors
are detectable

Four errors may
go undetected

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 53

Matrix Multiplication Using ABET

2 1 6

5 3 4

3 2 7

X =
If Z = X Y then
Zf = Xc Yr

46 20 42 36

39 41 53 37

56 30 56 46

21 35 47 31

=

Column checksum
matrix for X

2 1 6

5 3 4

3 2 7

2 6 1

1 5 3

2 4 6

7 1 5

Y =

46 + 20 + 42 = 108 = 4 mod 8

20 + 41 + 30 = 91 = 3 mod 8 35 = 3 mod 8

36 = 4 mod 8

1 5 3 1

2 4 6 4

7 1 5 5

Row checksum matrix for Y

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 54

23.5 Self-Adapting Algorithms
This section to be completed

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 55

23.6 Other Algorithmic Methods
This section to be completed

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 56

24 Software Redundancy

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 57

“We are neither hardware nor
software; we are your parents.”

“I haven’t the slightest idea who he is.
He came bundled with the software.”

“Well, what’s a piece of software
without a bug or two?”

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 58

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 59

24.1 Software Dependability

Imagine the following product disclaimers:

For a steam iron

There is no guarantee, explicit or implied, that this device will remove
wrinkles from clothing or that it will not lead to the user’s electrocution.
The manufacturer is not liable for any bodily harm or property damage
resulting from the operation of this device.

For an electric toaster

The name “toaster” for this product is just a symbolic identifier. There
is no guarantee, explicit or implied, that the device will prepare toast.
Bread slices inserted in the product may be burnt from time to time,
triggering smoke detectors or causing fires. By opening the package,
the user acknowledges that s/he is willing to assume sole responsibility
for any damages resulting from the product’s operation.

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 60

How Is Software Different from Hardware?

Software unreliability is caused predominantly by design slips, not by
operational deviations – we use flaw or bug, rather than fault or error

Not much sense in replicating the same software and doing comparison
or voting, as we did for hardware

At the current levels of hardware complexity, latent design slips also
exist in hardware, thus the two aren’t totally dissimilar

The curse of complexity

The 7-Eleven convenience store chain spent nearly $9M to make its
point-of-sale software Y2K-compliant for its 5200 stores

The modified software was subjected to 10,000 tests (all successful)
The system worked with no problems throughout the year 2000
On January 1, 2001, however, the system began rejecting credit cards,

because it “thought” the year was 1901 (bug was fixed within a day)

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 61

Software Development Life Cycle
Project initiation
Needs
Requirements
Specifications
Prototype design
Prototype test
Revision of specs
Final design
Coding
Unit test
Integration test
System test
Acceptance test
Field deployment
Field maintenance
System redesign
Software discard

Evaluation by both the developer and customer

Implementation or programming
Separate testing of each major unit (module)
Test modules within pretested control structure

Customer or third-party conformance-to-specs test

New contract for changes and additional features
Obsolete software is discarded (perhaps replaced)

Software flaws may arise
at several points within
these life-cycle phases

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 62

What Is Software Dependability?

Major structural and logical problems are removed very early in the
process of software testing

What remains after extensive verification and validation is a collection of
tiny flaws which surface under rare conditions or particular combinations
of circumstances, thus giving software failure a statistical nature

Software usually contains one or more flaws per thousand lines of code,
with < 1 flaw considered good (linux has been estimated to have 0.1)

If there are f flaws in a software component, the hazard rate, that is,
rate of failure occurrence per hour, is kf, with k being the constant of
proportionality which is determined experimentally (e.g., k = 0.0001)

Software reliability: R(t) = e–kft

The only way to improve software reliability is to reduce the number of
residual flaws through more rigorous verification and/or testing

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 63

Residual Software Flaws

Input space

Not expected
to occur

Flaw

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 64

24.2 Software Malfunction Models
Software flaw/bug Operational error Software-induced failure

“Software failure” used informally to denote any software-related problem

Removing flaws, without
generating new ones

Initial
flaws

Removed flaws

Residual flaws

Start of
testing

Software
release

flaws

Time

Initial
flaws

Removed flaws

Start of
testing

Software
release

Added flaws
Residual
flaws

flaws

Time

New flaws introduced are
proportional to removal rate

Rate of flaw removal
decreases with time

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 65

Software Reliability Models and Parameters
For simplicity, we focus on the
case of no new flaw generation

Initial
flaws

Removed flaws

Residual flaws

Start of
testing

Software
release

flaws

Testing
time

Assume linearly decreasing flaw
removal rate (F = residual flaws,
t = testing time, in months)

dF(t)/dt = –(a – bt)
F(t) = F0 – at (1 – bt/(2a))

Example: F(t) = 130 – 30t(1 – t/16)

Hazard function

z(t) = k(F0 – at (1 – bt/(2a)))

In our example, let k = 0.000132
R(t) = exp(–0.000132(130 – 30t(1 – t/16))t)

Assume testing for t = 8 months:

R(t) = e–0.00132t

t MTTF (hr)

0 58
2 98
4 189
6 433
8 758

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 66

The Phenomenon of Software Aging

Reasons for and types of software aging:

 Accumulation of junk in the state part (reversible via restoration)

 Long-term cumulative effects of updates (patches and the like)

Software does not wear out or age in the same sense as hardware

Yet, we do observe deterioration in software that has been running for
a long time

As the software’s structure deviates from its original clean form,
unexpected failures begin to occur

Eventually software becomes so mangled that it must be discarded
and redeveloped from scratch

So, the bathtub curve is also applicable to software
Bathtub
curve

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 67

More on Software Reliability Models

Exponentially decreasing flaw removal rate is more realistic than
linearly decreasing, since flaw removal rate never really becomes 0

How does one go about estimating the model constants?

 Use handbook: public ones, or compiled from in-house data

 Match moments (mean, 2nd moment, . . .) to flaw removal data

 Least-squares estimation, particularly with multiple data sets

 Maximum-likelihood estimation (a statistical method)

Linearly decreasing flaw removal rate isn’t the only option in modeling

Constant flaw removal rate has also been considered, but it does not
lead to a very realistic model

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 68

24.3 Software Verification and Validation
Verification: “Are we building the system right?” (meets specifications)

Validation: “Are we building the right system?” (meets requirements)

Both verification and validation use testing as well as formal methods

Software testing
Exhaustive testing impossible
Test with many typical inputs
Identify and test fringe cases

Formal methods
Program correctness proof
Formal specification
Model checking

Example: overlap of rectangles

Smart cards
[Requet 2000]

Examples: safety/security-critical

Cryptography device
[Kirby 1999]

Railway
interlocking

system
[Hlavaty 2001]

Automated
lab analysis

test equipment
[Bicarregui 1997]

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 69

Formal Proofs for Software Verification

input m and n
x := m
y := n
while x y

if x < y
then y := y – x
else x := x – y
endif

endwhile
output x

x and y are positive integers, x = m, y = n

Program to find the greatest common divisor of integers m > 0 and n > 0

x = gcd(m , n)

m and n are positive integers

Loop invariant: x > 0, y > 0, gcd(x, y) = gcd(m, n)

4. Loop executes a finite number of times (termination condition)
3. Loop invariant and exit condition imply the assertion after the loop
2. If satisfied before an iteration begins, then also satisfied at the end
1. Loop invariant implied by the assertion before the loop (precondition)
The four steps of a correctness proof relating to a program loop:

Steps 1-3: “partial correctness”
Step 4: ensures “total correctness”

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 70

Software Flaw Tolerance

Given that a complex piece of software will contain bugs, can we use
redundancy to reduce the probability of software-induced failures?

Sources: Software Fault Tolerance, ed. by Michael R. Lyu, Wiley, 2005
(on-line book at http://www.cse.cuhk.edu.hk/~lyu/book/sft/index.html)

Also, “Software Fault Tolerance: A Tutorial,” 2000 (NASA report, available on-line)

The ideas of masking redundancy, standby redundancy, and
self-checking design have been shown to be applicable to software,
leading to various types of fault-tolerant software

“Flaw tolerance” is a better term; “fault tolerance” has been overused

Flaw avoidance strategies include (structured) design methodologies,
software reuse, and formal methods

Masking redundancy: N-version programming

Standby redundancy: the recovery-block scheme

Self-checking design: N-self-checking programming

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 71

24.4 N-Version Programming
Independently develop N different programs (known as “versions”)
from the same initial specification

The greater the diversity in the N versions, the less likely
that they will have flaws that produce correlated errors

Diversity in:
Programming teams (personnel and structure)
Software architecture
Algorithms used
Programming languages
Verification tools and methods
Data (input re-expression and output adjustment)

Version 1

Version 2

Version 3

Voter OutputInput

Adjudicator;
Decider;
Data fuser

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 72

Some Objections to N-Version Programming

Developing programs is already a very
expensive and slow process;
why multiply the difficulties by N?

This is a criticism of
reliability modeling
with independence
assumption, not of
the method itself

Multiple diverse
specifications?

Cannot produce
flawless software,
regardless of cost

Will discuss the
adjudication problem
in a future lecture

Diversity does not ensure independent flaws
(It has been amply documented that multiple
programming teams tend to overlook the
same details and to fall into identical traps,
thereby committing very similar errors)

Imperfect specification can be the source of
common flaws

With truly diverse implementations, the
output selection mechanism (adjudicator) is
complicated and may contain its own flaws

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 73

Reliability Modeling for N-Version Programs

Fault-tree model: the version shown
here is fairly simple, but the power of
the method comes in handy when
combined hardware/software
modeling is attempted

Probabilities of coincident flaws
are estimated from experimental
failure data

Source: Dugan & Lyu, 1994 and 1995

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 74

Applications of N-Version Programming
Back-to-back testing: multiple versions can help in the testing process

Source: P. Bishop, 1995

Some experiments in N-version programming

B777 flight computer: 3 diverse processors running diverse software

Airbus A320/330/340 flight control: 4 dissimilar hardware/software
modules drive two independent sets of actuators

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 75

24.5 The Recovery Block Method
The software counterpart to standby sparing for hardware

Suppose we can verify the result of a software module by subjecting
it to an acceptance test

ensure acceptance test
by primary module
else by first alternate
.
.
.

else by last alternate
else fail

e.g., sorted list
e.g., quicksort
e.g., bubblesort
.
.
.

e.g., insertion sort

The acceptance test can range from a simple reasonableness check
to a sophisticated and thorough test

Design diversity helps ensure that an alternate can succeed when the
primary module fails

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 76

The Acceptance Test Problem

Design of acceptance tests (ATs) that are both simple and thorough is
very difficult; for example, to check the result of sorting, it is not enough
to verify that the output sequence is monotonic

Simplicity is desirable because acceptance test is executed after the
primary computation, thus lengthening the critical path

Thoroughness ensures that an incorrect result does not pass the test
(of course, a correct result always passes a properly designed test)

Some computations do have simple tests (inverse computation)
Examples: square-rooting can be checked through squaring, and
roots of a polynomial can be verified via polynomial evaluation

At worst, the acceptance test might be as complex as the primary
computation itself

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 77

24.6 Hybrid Software Redundancy
Recoverable N-version
block scheme =
N-self-checking program

Voter acts only on module
outputs that have passed
an acceptance test

Consensus recovery
block scheme

Only when there is no
majority agreement,
acceptance test applied
(in a prespecified order)
to module outputs until
one passes its test

Source: Parhami, B., “An Approach to Component-Based Synthesis of
Fault-Tolerant Software,” Informatica, Vol. 25, pp. 533-543, Nov. 2001.

 1

3

(a) RNVB / NSCP

2

F P

 1 2 3

1 2 3

(b) CRB

 1 2 3

1

2

3

F

F

F F F

 P P

 P

 P

 P v/2 >v/2

Modules

Tests

Tests

Voter

Voter

ErrorError

Nov. 2020 Part VI – Degradations: Behavioral Lapses Slide 78

More General Hybrid NVP-AT Schemes

1, 2 3

Module

Test

Voter

In

Out

Error

(a) Legend (b) 5VP

1 3

(c) ALT1

2

F P

1 2 3 4 5 1 2 3

4

Source: Parhami, B., “An Approach to Component-Based Synthesis of
Fault-Tolerant Software,” Informatica, Vol. 25, pp. 533-543, Nov. 2001.

