
Nov. 2020 Part VII – Failures: Computational Breaches Slide 1

Nov. 2020 Part VII – Failures: Computational Breaches Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Dependable Computing: A Multilevel Approach (traditional print
or on-line open publication, TBD). It is updated regularly by the
author as part of his teaching of the graduate course ECE 257A,
Fault-Tolerant Computing, at Univ. of California, Santa Barbara.
Instructors can use these slides freely in classroom teaching or
for other educational purposes. Unauthorized uses, including
distribution for profit, are strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised

First Sep. 2006 Oct. 2007 Dec. 2009 Nov. 2012 Nov. 2013

Mar. 2015 Nov. 2015 Nov. 2018 Nov. 2019

Nov. 2020

Nov. 2020 Part VII – Failures: Computational Breaches Slide 3

25 Failure Confinement

Nov. 2020 Part VII – Failures: Computational Breaches Slide 4

Nov. 2020 Part VII – Failures: Computational Breaches Slide 5

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VII – Failures: Computational Breaches Slide 6

25.1 From Failure to Disaster
 Computers are components in larger technical or societal systems
 Failure detection and manual back-up system can prevent disaster

Used routinely in safety-critical systems:
Manual control/override in jetliners
Ground-based control for spacecraft
Manual bypass in nuclear reactors

Failed

BypassedNot just for safety-critical systems:
Amtrak lost ticketing capability on Friday, Nov. 30, 1996,
(Thanksgiving weekend) due to a communication system
failure and had no up-to-date fare information in train
stations to issue tickets manually

Disaster

Manual back-up and bypass systems
provide a buffer between the failed state
and potential disaster

Manual system infeasible for e-commerce sites

Nov. 2020 Part VII – Failures: Computational Breaches Slide 7

Space Shuttle Challenger Disaster

Second shuttle after Columbia, first mission on April 4, 1983
Exploded 73 seconds after launch on its 10th mission (January 28, 1986)
Seven crew members killed
Temperatures dipped below freezing on launch day
Engineers were concerned about the integrity of seals on the booster

Aftermath:
Presidential commission formed to look into the incident
Cultural problems at NASA, including ineffective communication channels
Major changes enacted at NASA as a result

O-ring

Nov. 2020 Part VII – Failures: Computational Breaches Slide 8

25.2 Failure Awareness
 Indicate where effort is most needed
 Help with verification of analytic models

System outage stats (%)* Hardware Software Operations Environment
Bellcore [Ali86] 26 30 44 --
Tandem [Gray87] 22 49 15 14
Northern Telecom 19 19 33 28
Japanese Commercial 36 40 11 13
Mainframe users 47 21 16 16

Overall average 30 32 24 14
*Excluding scheduled maintenance

Tandem unscheduled outages

Power 53%
Communication lines 22%
Application software 10%
File system 10%
Hardware 5%

Tandem outages due to hardware

Disk storage 49%
Communications 24%
Processors 18%
Wiring 9%
Spare units 1%

Importance of collecting
experimental failure data

Nov. 2020 Part VII – Failures: Computational Breaches Slide 9

System Failure Data Repositories

LANL data, collected 1996-2005: SMPs, Clusters, NUMAs
http://institute.lanl.gov/data/fdata/
From the site’s FAQs: “A failure record contains the time when the
failure started (start time), the time when it was resolved (end time),
the system and node affected, the type of workload running on the
node and the root cause.”

Usenix Computer Failure Data Repository
http://usenix.org/cfdr
“The computer failure data repository (CDFR) aims at accelerating
research on system reliability by filling the nearly empty collection of
public data with detailed failure data from a variety of large
production systems. . . .
You first need to register for full access to CFDR data/tools to obtain
a user id/password. You can then go to the data overview page.”

Nov. 2020 Part VII – Failures: Computational Breaches Slide 10

Memory and Storage Failure Data

Storage failure data: “Disk Failures in the Real World: What does an
MTTF of 1,000,000 hours mean to you?” (Schroeder & Gibson, CMU)
http://www.cs.cmu.edu/~bianca/fast07.pdf
From the abstract: “. . . field replacement is a fairly different process
than one might predict based on datasheet MTTF.”

Rochester Memory Hardware Error Research Project
http://www.cs.rochester.edu/research/os/memerror/
“Our research focuses on the characteristics of memory hardware
errors and their implications on software systems.” Both soft errors
and hard errors are considered.

OBSERVATION 1. Variance between datasheet
MTTF and disk replacement rates in the field was
larger than we expected. The weighted average ARR
was 3.4 times larger than 0.88%, corresponding to a
datasheet MTTF of 1,000,000 Hours. [Schr07]

Nov. 2020 Part VII – Failures: Computational Breaches Slide 11

Software Failure Data

Promise Software Engineering Repository
http://promise.site.uottawa.ca/SERepository/
“Here you will find a collection of publicly available datasets and tools
to serve researchers [who build] predictive software models (PSMs)
and software engineering community at large.”

Software Forensics Centre failure data, Middlesex University
http://www.cs.mdx.ac.uk/research/SFC/
From the website: “The repository of failures is the largest of its kind
in the world and has specific details of well over 300 projects (with
links to another 2,000 cases).”

[Note: As of November 27, 2013, the large repository seems to have
disappeared from the site.]

Nov. 2020 Part VII – Failures: Computational Breaches Slide 12

Failure Data Used to Validate or Tune Models

Example: Two disks, each with MTTF = 50K hr (5.7 yr), MTTR = 5 hr
Disk pair failure rate 2l2/m
Disk pair MTTF m/(2l2)

= 2.5 108 hr = 28,500 yr
In 48,000 years of observation (2 years 6000 systems 4 disk pairs),
35 double disk failures were reported MTTF 1400 yr

2 1 0
2l l
m

 Indicate accuracy of model predictions (compare multiple models?)
 Help in fine-tuning of models to better match the observed behavior

Problems with experimental failure data:
 Difficult to collect, while ensuring uniform operating conditions
 Logs may not be complete or accurate (the embarrassment factor)
 Assigning a cause to each failure not an easy task
 Even after collection, vendors may not be willing to share data
 Impossible to do for one-of-a-kind or very limited systems

Nov. 2020 Part VII – Failures: Computational Breaches Slide 13

25.3 Failure and Risk Assessment
 Minimum requirement: accurate estimation of failure probability
 Putting in place procedures for dealing with failures when they occur

Failure probability = Unreliability
Reliability models are by nature pessimistic (provide lower bounds)
However, we do not want them to be too pessimistic

Risk = Frequency Magnitude
Consequence / Unit time Events / Unit time Consequence / Event

Frequency may be equated with unreliability or failure probability
Magnitude is estimated via economic analysis (next slide)

Failure handling is often the most neglected part of the process
An important beginning: clean, unambiguous messages to operator/user
Listing the options and urgency of various actions is a good idea
Two way system-user communication (adding user feedback) helpful
Quality of failure handling affects the “Magnitude” term in risk equation

Nov. 2020 Part VII – Failures: Computational Breaches Slide 14

How Much Is Your Life Worth to You?

Thought experiment:

You are told that you have a 1/10,000 chance of dying today

How much would you be willing to pay to buy out this risk, assuming
that you’re not limited by current assets (can use future earnings too)?

If your answer is $1000, then your life is worth $10M to you

Risk = Frequency Magnitude
Consequence / Unit time Events / Unit time Consequence / Event

Can visualize the risk by imagining that 10,000 people in a stadium are
told that one will be killed unless they collectively pay a certain sum

Consciously made tradeoffs in the face of well-understood risks (salary
demanded for certain types of work, willingness to buy smoke detector)
has been used to quantify the worth of a “statistical human life”

Nov. 2020 Part VII – Failures: Computational Breaches Slide 15

Very Small Probabilities: The Human Factor
Interpretation of data, understanding of probabilities, acceptance of risk

Risk of death / person / year
Influenza 1/5K
Struck by auto 1/20K
Tornado (US MW) 1/455K
Earthquake (CA) 1/588K
Nuclear power plant 1/10M
Meteorite 1/100B

Factors that increase risk of death
by 1/106 (deemed acceptable risk)
Smoking 1.4 cigarettes
Drinking 0.5 liter of wine
Biking 10 miles
Driving 300 miles
Flying 1000 miles
Taking a chest X-ray
Eating 100 steaks

US causes of death / 106 persons
Auto accident 210
Work accident 150
Homicide 93
Fall 74
Drowning 37
Fire 30
Poisoning 17
Civil aviation 0.8
Tornado 0.4
Bite / sting 0.2

Risk underestimation factors:
Familiarity, being part of our job,
remoteness in time or space
Risk overestimation factors:
Scale (1000s killed), proximity

Nov. 2020 Part VII – Failures: Computational Breaches Slide 16

25.4 Limiting the Damage

In many cases dealing with mechanical elements, such as wing flaps,
reaction time of 10s/100s of milliseconds is adequate (reason: inertia)

Prompt failure detection is a prerequisite to failure confinement

In some ways, catastrophic failures that are readily identified may be
better than subtle failures that escape detection

Failure detection latency can be made
negative via “failure prediction”
(e.g., in a storage server, increased
error rate signals impending failure)

Example: For redundant disks with
two-way mirroring, detection latency
was found to have a significant effect
on the probability of data loss

See: http://www.hpdc.org/2004/papers/34.pdf

Redundancy
group sizes

Nov. 2020 Part VII – Failures: Computational Breaches Slide 17

25.5 Failure Avoidance Strategies
Advice for dependable system design and development

– Limit novelty [stick with proven methods and technologies]
– Adopt sweeping simplifications
– Get something simple working soon
– Iteratively add capability
– Give incentives for reporting errors
– Descope [reduce goals/specs] early
– Give control to (and keep it in) a small design team

Nov. 2020 Part VII – Failures: Computational Breaches Slide 18

25.6 Ethical Considerations
Risks must be evaluated thoroughly and truthfully

IEEE Code of Ethics: As IEEE members, we agree to

1. Accept responsibility in making decisions consistent with the safety,
health and welfare of the public, and to disclose promptly factors
that might endanger the public or the environment

6. Maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or
experience, or after full disclosure of pertinent limitations;

7. Seek, accept, and offer honest criticism of technical work,
to acknowledge and correct errors, and to credit properly the
contributions of others

ACM Code of Ethics: Computing professionals must

Minimize malfunctions by following generally accepted standards for
system design and testing

Give comprehensive and thorough evaluations of computer systems
and their impacts, including analysis of possible risks

Nov. 2020 Part VII – Failures: Computational Breaches Slide 19

National Society of Professional Engineers
Comprehensive code of engineering ethics

I. Fundamental Canons

Engineers, in the fulfillment of their professional duties, shall:

1. Hold paramount the safety, health, and welfare of the public

2. Perform services only in areas of their competence

3. Issue public statements only in an objective and truthful manner

4. Act for each employer or client as faithful agents or trustees

5. Avoid deceptive acts

6. Conduct themselves honorably, responsibly, ethically, and lawfully so
as to enhance the honor, reputation, and usefulness of the profession

II. Rules of Practice: e.g., assignments to accept, whistle-blowing

III. Professional Obligations: e.g., ack errors, be open to suggestions

Nov. 2020 Part VII – Failures: Computational Breaches Slide 20

26 Failure Recovery

Nov. 2020 Part VII – Failures: Computational Breaches Slide 21

Nov. 2020 Part VII – Failures: Computational Breaches Slide 22

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VII – Failures: Computational Breaches Slide 23

26.1 Planning for Recovery
Be prepared for recovery from both mild failures and disasters

- Have documented plans
- Have trained personnel

Nov. 2020 Part VII – Failures: Computational Breaches Slide 24

Recovery from Failures
The recovery block scheme (originally developed for software)

ensure acceptance test
by primary module
else by first alternate
.
.
.

else by last alternate
else fail

Computer system with manual backup may be viewed as a
one-alternate recovery block scheme, with human judgment
constituting the acceptance test

Before resorting to an alternate (hardware/software) module,
one may reuse the primary module once or a few times

This scheme is known as “retry” or time redundancy and is
particularly effective for dealing with transient or soft failures

e.g., sorted list
e.g., quicksort
e.g., bubblesort
.
.
.

e.g., insertion sort

Nov. 2020 Part VII – Failures: Computational Breaches Slide 25

26.2 Types of Recovery

Nov. 2020 Part VII – Failures: Computational Breaches Slide 26

Fail-Hard and Fail-Fast Systems

Subtle failures that are difficult to detect can be worse than overt ones
that are immediately noticed

Design system so that their failures are difficult to miss (fail-hard system)

Corollary: Unneeded system complexity is to be avoided at all cost

Extended failure detection latency is undesirable because the occurrence
of subsequent unrelated failures may overwhelm the system’s defenses

Design system to support fast failure detection (fail-fast system)

Concurrent fault / error / malfunction detection better than periodic testing

Nov. 2020 Part VII – Failures: Computational Breaches Slide 27

Fail-Stop and Fail-Over Strategies
Fail-stop systems: Systems designed and built in such a way that they
cease to respond or take any action upon internal malfunction detection

Such systems do not confuse the users or other parts of a distributed
system by behaving randomly or, worse, maliciously upon failure

A subclass of fail-safe systems (here, stopping is deemed a safe output)

Fail-over: Upon failure detection, often of the fail-stop kind, requests
and other tasks are redirected to a backup system

Example – Fail-over on long-running connections for streaming media:
all that is needed is to know the file being streamed, and current
location within the file, to successfully switch over to a different server

Fail-over software is available for Web servers as part of firewalls for
most popular operating systems

It monitors resources and directs requests to a functioning server

Fail-over features of Windows XP: http://msdn2.microsoft.com/en-us/library/ms686091.aspx

Nov. 2020 Part VII – Failures: Computational Breaches Slide 28

Fail-Over Features of Windows Servers

If System B fails, the DTC transaction manager on System A takes over.
It reads the DTC log file on the shared disk, performs recovery, and then
serves as the transaction manager for the entire cluster.

http://msdn2.microsoft.com/en-us/library/ms686091.aspx

Distributed
Transaction
Coordinator
Log

Nov. 2020 Part VII – Failures: Computational Breaches Slide 29

26.3 Interfaces and the Human Link

“No warning system will function effectively if its messages,
however logically arrived at, are ignored, disbelieved, or lead to
inappropriate actions.” Foster, H. D., “Disaster Warning Systems,” 1987

Unhelpful failure warnings:
Autos – “Check engine”
Computer systems – “Fatal error”

Unbelievable failure warnings:
Failure event after numerous false alarms
Real failure occurring in the proximity of a scheduled test run
Users or operators inadequately trained (May 1960 Tsunami in Hilo,

Hawaii, killed 61, despite 10-hour advance warning via sirens)

Believability and helpfulness of failure warnings

Nov. 2020 Part VII – Failures: Computational Breaches Slide 30

Human Factors in Automated Systems

The curse of highly successful automation efforts:
Human operators tend to “switch off” mentally,
so they are not prepared when something unexpected happens
(e.g., commuter train operators text-messaging or dozing off)

“A few motorists have even driven off a cliff or into oncoming traffic
after following [GPS] directions explicitly.” [Gree09]

Nov. 2020 Part VII – Failures: Computational Breaches Slide 31

26.4 Backup Systems and Processes
Backup (n): Copy of data made for use after computer system failure or
other data loss events [(v) to back up, backing up]

Question: What method do you use to back up your data files?

Use removable storage: external hard drive, flash drive, CD/DVD
E-mail file copy to yourself (not usable for very large files)
Run a backup utility periodically (full or incremental backup)
Subscribe to an on-line backup service (plain or encrypted)
Do not overwrite files, create new versions

Businesses also need backups for programs and computer resources

Nov. 2020 Part VII – Failures: Computational Breaches Slide 32

26.5 Blame Assessment and Liability
Computer forensics is used to:

Analyze computers belonging to defendants or litigants in legal cases

Gather evidence against those suspected of wrongdoing

Learn about a system to debug, optimize, or reverse-engineer it

Analyze compromised computer systems to determine intrusion method

Analyze failed computer systems to determine cause of failure

Recover data after computer failures

There are several journals on computer forensics, digital investigations,
and e-discovery

Nov. 2020 Part VII – Failures: Computational Breaches Slide 33

26.6 Learning from Failures

“When a complex system succeeds, that success
masks its proximity to failure. . . . Thus, the failure
of the Titanic contributed much more to the design
of safe ocean liners than would have her success.
That is the paradox of engineering and design.”

Henry Petroski, Success through Failure: The Paradox
of Design, Princeton U. Press, 2006, p. 95

Nov. 2020 Part VII – Failures: Computational Breaches Slide 34

Some Notorious Failed Systems

Automated reservations, ticketing, flight scheduling, fuel delivery,
kitchens, and general administration, United Airlines + Univac,
started 1966, target 1968, scrapped 1970, $50M

Hotel reservations linked with airline and car rental, Hilton + Marriott +
Budget + American Airlines, started 1988, scrapped 1992, $125M

IBM workplace OS for PPC (Mach 3.0 + binary compatibility with AIX +
DOS, Mac OS, OS/400 + new clock mgmt + new RPC + new I/O +
new CPU), started 1991, scrapped 1996, $2B

US FAA’s Advanced Automation System (to replace a 1972 system),
started 1982, scrapped 1994, $6B

London Ambulance Dispatch Service, started 1991, scrapped 1992,
20 lives lost in 2 days, 2.5M

Source: http://web.mit.edu/6.033/lec/s25.pdf

Nov. 2020 Part VII – Failures: Computational Breaches Slide 35

More Systems that Were Doomed to Failure

• Portland, Oregon, Water Bureau, $30M, 2002
• Washington D.C., Payroll system, $34M, 2002
• Southwick air traffic control system $1.6B, 2002
• Sobey’s grocery inventory, Canada, $50M, 2002
• King County financial mgmt system, $38M, 2000
• Australian submarine control system, 100M, 1999
• California lottery system, $52M
• Hamburg police computer system, 70M, 1998
• Kuala Lumpur total airport management system, $200M, 1998
• UK Dept. of Employment tracking, $72M, 1994
• Bank of America Masternet accounting system, $83M, 1988
• FBI virtual case, 2004
• FBI Sentinel case management software, 2006

Source: http://web.mit.edu/6.033/lec/s25.pdf

Nov. 2020 Part VII – Failures: Computational Breaches Slide 36

27 Agreement and Adjudication

Nov. 2020 Part VII – Failures: Computational Breaches Slide 37

Software Specification

“Next case: the Internet economy
versus millions of investors

who should have known better.”

Abe, I just noticed – our marriage
license has an expiration date!

And it’s today! Do you know anything
about this, Abe? . . . Abe? . . . Abe?

Nov. 2020 Part VII – Failures: Computational Breaches Slide 38

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VII – Failures: Computational Breaches Slide 39

27.1 Voting and Data Fusion

Participant

.

.

.

Fuser
OutcomeOpinion(not voter) (not voter)

Weight

(not vote)

(not vote)

Social choice research
Data fusion researchNeed for unambiguous terminology

Opinion or outcome
is a subset of the
set of alternatives

Dependable computing research

Nov. 2020 Part VII – Failures: Computational Breaches Slide 40

Introduction to Voting
Voting schemes and associated terminology in dependable computing
were originally derived from concepts in sociopolitical elections

With inputs drawn from a small set of integers, the similarity between
the two domains is strong

Example: Radar image analysis used to classify approaching aircraft
type as civilian (0), fighter (1), bomber (2).

If three independent units arrive at the conclusions 1, 1, 2, then the
presence of a fighter plane may be assumed

Option or candidate 1 “wins” or garners a majority

With a large or infinite input domain, voting takes on a new meaning

Example: There is no strict majority when distance of an approaching
aircraft, in km, is indicated as 12.5, 12.6, 14.0, even though the good
agreement between 12.5 and 12.6 could lead to a 12.55 km estimate

Nov. 2020 Part VII – Failures: Computational Breaches Slide 41

Role of Voting Units in Dependable Computing

John von Neumann, 1956: “Probabilistic Logic and Synthesis of
Reliable Organisms from Unreliable Components”

Voting schemes in these three contexts share some properties

General schemes have been devised to cover all these instances

Hardware voting for multichannel computation

High performance (pipelined)

Software voting for multiversion programming

Imprecise results (approximate voting)

Consistency of replicated data

Weighted voting and weight assignment

Nov. 2020 Part VII – Failures: Computational Breaches Slide 42

What We Already Know About Voting
Majority voting: Select the value that appears
on at least n/2 + 1 of the n inputs

Number n of inputs is usually odd, but does
not have to be

Example: vote(1, 2, 3, 2, 2) = 2

.

.
.

x1

x2

xn

Majority
fuser

y

Majority fusers can be realized by means of comparators and muxes

This design assumes that in the
case of 3-way disagreement any
one of the inputs can be chosen 2

3

1
x1

x2

x3

y

Compare

0

1

Disagree

Can add logic to this fuser so that
it signals three-way disagreement

Nov. 2020 Part VII – Failures: Computational Breaches Slide 43

27.2 Weighted Voting
Virtually all voting schemes of practical interest can be formulated in
terms of the generalized weighted voting model, as follows:

Given n input data objects x1, x2, . . . , xn and associated nonnegative
real weights v1, v2, ... , vn, with Svi = V, compute output y and its weight w
such that y is “supported by” a set of input objects with weights totaling w,
where w satisfies a condition associated with the voting subscheme

Possible voting subschemes:

Unanimity w = V
Majority w > V/2
Supermajority w 2V/3
Byzantine w > 2V/3
Plurality (w for y) (w for any zy)
Threshold w > a preset lower bound

Gen.
weighted

fuser

.

.
.

x1, v1
x2, v2

xn, vn

y, w

Nov. 2020 Part VII – Failures: Computational Breaches Slide 44

There is More to Voting than Simple Majority
Plurality voting: Select the value that appears
on the largest number of inputs

Example: vote(1, 3, 2, 3, 4) = 3

What should we take as the result of
vote(1.00, 3.00, 0.99, 3.00, 1.01)?

.

.
.

x1

x2

xn

Plurality
fuser

y

It would be reasonable to take 1.00 as the result, because 3 participants
agree or approximately agree with 1.00, while only 2 agree with 3.00

Will discuss approximate voting and a number of other sophisticated
voting schemes later

Median voting: one way to deal with approximate values
median(1.00, 3.00, 0.99, 3.00, 1.01) = 1.01

Median value is equal to the majority value when we have majority

Nov. 2020 Part VII – Failures: Computational Breaches Slide 45

Implementing Weighted Plurality Voting Units
Inputs: Data-weight pairs
Output: Data with maximal support and its associated tally

Source: B. Parhami, IEEE Trans. Reliability, Vol. 40, No. 3, pp. 380-394, August 1991

Sort
by

data

Com-
bine

weights

Select
max

weight

5, 1

4, 2

5, 3

7, 2

4, 1

5, 4

7, 2

5, 1

5, 3

4, 2

4, 1

7, 2

5, 4

5, 0

4, 3

4, 0

Phase 1 Phase 2 Phase 3

Sorter Combiner Selector

Nov. 2020 Part VII – Failures: Computational Breaches Slide 46

5-Sorter 5-Combiner 5-Selector

Details of a Sorting-Based Plurality Voting Unit

The first two phases (sorting and combining) can be merged, producing
a 2-phase design – fewer, more complex cells (lead to tradeoff)

Source: B. Parhami, IEEE Trans. Reliability, Vol. 40, No. 3, pp. 380-394, August 1991

Stages of delay
1 2 3 4 5 6 7 8 9 10 11 12 13

5, 1

4, 2

5, 3

7, 2

4, 1

5, 3

7, 2 5, 1

7, 2

4, 2

5, 3 5, 4

5, 0

4, 3

4, 0

5, 44, 3

Nov. 2020 Part VII – Failures: Computational Breaches Slide 47

Threshold Voting and Its Generalizations
Simple threshold (m-out-of-n) voting:
Output is 1 if at least m of the n inputs are 1s

Majority voting is a special case of threshold
voting: (n/2 + 1)-out-of-n voting

Agreement or quorum sets
{x1 , x2}, {x2 , x3}, {x3 , x1} – same as 2-out-of-3
{x1 , x2}, {x1 , x3 , x4}, {x2 , x3 , x4}

Weighted threshold (w-out-of-Svi) voting:
Output is 1 if Svixi is w or more

.

.
.

x1

x2

xn

m

Threshold gate

y

.

.
.

x1

x2

xn

w

Threshold gate

y

v1
v2

vn

The 2nd example above is weighted voting with
v1= v2 = 2, v3 = v4 = 1, and threshold w = 4

Agreement sets are more general than weighted voting in the sense of
some agreement sets not being realizable as weighted voting

Nov. 2020 Part VII – Failures: Computational Breaches Slide 48

Usefulness of Weighted Threshold Voting
Unequal weights allow us to take different
levels of input reliabilities into account

Zero weights can be used to disable or purge
some of the inputs (combined switching-voting)

.

.
.

x1

x2

xn

w

Threshold gate

y

v1
v2

vn

Maximum-likelihood voting
prob{x1 correct} = 0.9
prob{x2 correct} = 0.9
prob{x3 correct} = 0.8
prob{x4 correct} = 0.7
prob{x5 correct} = 0.6

Assume x1 = x3 = a, x2 = x4 = x5 = b

prob{a correct} = 0.9 0.1 0.8 0.3 0.4 = 0.00864
prob{b correct} = 0.1 0.9 0.2 0.7 0.6 = 0.00756

Max-likelihood voting can be
implemented in hardware via
table lookup or approximated
by weighted threshold voting
(otherwise, we need software)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 49

Implementing Weighted Threshold Voting Units

Ex.: Implement a 4-input threshold voting unit
with v1= v2 = 2, v3 = v4 = 1, and threshold w = 4

Strategy 1: If weights are small integers,
fan-out each input an appropriate number of
times and use a simple threshold voting unit

x1

x2

x3

x4

4

Threshold gate

y

Strategy 3: Convert the problem to agreement sets (discussed next)

Strategy 2: Use table lookup based on comparison results
x1=x2 x1=x3 x2=x3 x3=x4 Result

1 x x x x1

0 0 0 1 Error
0 1 0 1 x1

0 0 1 1 x2

0 x x 0 Error

Is this table complete?
Why, or why not?

Nov. 2020 Part VII – Failures: Computational Breaches Slide 50

27.3 Voting with Agreement Sets
3-input majority voting has the agreement sets {x1 , x2}, {x2 , x3}, {x3 , x1}

If participants in any set agree, then their opinion is taken as the output
(clearly, the agreement sets cannot include {x1 , x2} and {x3 , x4}, say, if
we are seeking a unique output)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 51

Implementing Agreement-Set Voting Units
Example: Implement a voting unit corresponding to the agreement sets
{x1 , x2}, {x1 , x3 , x4}, {x2 , x3 , x4}

Strategy 1: Implement as weighted threshold voting unit, if possible

Strategy 2: Implement directly

Find a minimal set of comparators that determine the agreement set

Complete this design
by producing the
“no agreement” signal

x1=x2

x1=x3

x3=x4

x2=x3

x2

x1

0

1
y

Nov. 2020 Part VII – Failures: Computational Breaches Slide 52

27.4 Variations in Voting
One can classify generalized weighted
voting schemes into 24 = 16 categories
based on dichotomies associated with
input data (xis), output data (y),
input weights (vis), and output weight (w)

Weight

Exact/
InexactData

OutputInput

Consensus/
Mediation

Oblivious/
Adaptive

Threshold/
Plurality

Gen.
weighted

fuser

.

.
.

x1, v1
x2, v2

xn, vn

y, w

Input objects
inflexible, or
representing
flexible
“neighborhoods”

Input weights set
at design time, or
allowed to change
dynamically
(adjustable/variable)

Total support from
a subset of inputs
(quorum), or
shades of support
from all inputs

Support exceeds
a lower bound, or
is max over all
possible outputs

First entry in each box
is the simpler of the two

A term such as “threshold voting”
stands for 8 different methods

Nov. 2020 Part VII – Failures: Computational Breaches Slide 53

Generalized Median Voting

To find the median of a set of numbers,
repeatedly remove largest and smallest
numbers, until only one or two remain

If we replace “largest and smallest numbers” by “the two inputs that are
furthest apart,” we can use an arbitrary distance metric in our screening

A distance metric is any metric (mapping of
pairs of inputs into real values) that satisfies
the three conditions:

Isolation d(x, y) = 0 iff x = y

Symmetry d(x, y) = d(y, x)

Triangle inequality d(x, y) + d(y, z) d(x, z)

For example, the Hamming distance satisfies these conditions

Nov. 2020 Part VII – Failures: Computational Breaches Slide 54

The Impossibility of Perfect Voting

Properties of an ideal voting scheme:

1. No big brother
(participants free to express preferences)

2. Independence of irrelevant alternatives
(preference for one candidate over
another is independent of all others)

3. Involvement
(every outcome is possible)

4. No dictatorship or antidictatorship
(outcome not always conforming to,
or opposite of, one participant’s view)

Arrow’s Theorem:
No voting scheme
exists that satisfies
all four conditions

True majority voting scheme:
Each participant orders all the candidates; no circular preference allowed
Choose a candidate who beats every other one in pairwise competitions
(both simple majority and plurality rules fail to choose a candidate)

c3 voters

c1

c2 c3

2

0

2

1

1

1

c2 > c1 > c3

c1 > c2 > c3

Nov. 2020 Part VII – Failures: Computational Breaches Slide 55

Approximate Voting
The notion of an input object “supporting” a particular output (akin to
a hypothesis supporting an end result or conclusion) allows us to treat
approximate and exact voting in the same way

Example 1: Input objects are points in the 2D space and the level of
“support” between them is a function of their Euclidean distance

Example 2: Input objects are conclusions of character recognizers as to
the identity of a character, with varying degrees of mutual support

BB

8

R

P
Median selection from
the maximal mutually
supportive set of inputs

Largest
maximal

compatible
class

Proximity
limit

Nov. 2020 Part VII – Failures: Computational Breaches Slide 56

Approval Voting
Approval voting was introduced to prevent the splitting of votes among
several highly qualified candidates from leading to the election of a less
qualified candidate in plurality voting

In approval voting, a participant divides the candidates into two subsets
of “qualified” and “not qualified” and indicates approval of the first subset

In the context of computing, approval voting is useful when a question
has multiple answers or when the solution process is imprecise or fuzzy

Example question: What is a safe setting for a particular parameter in a
process control system?

When the set of approved values constitute a continuous interval of real
values, we have “interval” inputs and “interval” voting

A
B
C
D

9
9
9
4

Nov. 2020 Part VII – Failures: Computational Breaches Slide 57

Interval Voting
Inputs to the voting process are intervals, representing approved values

How should the voting result be derived from the input intervals?

x1

x2

x3

x4

y1 y2y3

a b c d

Approval

x1

x2

x3

x4

y1 y2y3

a b c d

Approval

Various combining rules can be envisaged
If there is overlap among all intervals, then the decision is simple

Depending on context, it may make sense to consider greater levels
of approval near the middle of each interval or to associate negative
approval levels outside the approved intervals

FLIR
uncertainty

region

Radar
uncertainty

region

Intersection

Combining two 3D intervals

Nov. 2020 Part VII – Failures: Computational Breaches Slide 58

27.5 Distributed Agreement

Key challenge: Exchange data among nodes so that all healthy nodes
end up with the same set of values; this guarantees that running the
same decision process on the healthy nodes produces the same result

Errors are possible in both data values
and in their transmission between sites

X

0

1

1

1

Problem: Derive a highly reliable value from multiple computation
results or stored data replicas at multiple sites

0,1,1,1,X

0,1,1,1,X

0,1,1,1,X

0,1,1,1,X

Agreement algorithms generally use
multiple rounds of communication,
with values held at each site compared
and filtered, until the set of values held
at all sites converge to the same set

Nov. 2020 Part VII – Failures: Computational Breaches Slide 59

Input
X

Data capture
(sensor, A/D, . . .)

Processing

Byzantine Failures in Distributed Voting

Three sites are to collect three versions of some parameter and arrive
at consistent voting results

120

122

121
105

158

120, 121, 122

121

105, 120, 122

120

120, 122, 158

122

Assume median voting

Nov. 2020 Part VII – Failures: Computational Breaches Slide 60

The Interactive Consistency Algorithm

ICA(f), f > 0 [f failures]

1. The transmitter sends its value to all other n – 1 nodes

2. Let vi be the value received by node i from the transmitter, or a default
value F if it received no value; node i then becomes the transmitter in
its own version of ICA(f – 1), sending its value to n – 2 nodes

3. For each node i, let vi,j be the value it received from node j, or a
default

value F if it received no value from node j. Node i then uses the value
majority(vi,1, vi,2, . . . , vi,i–1, vi,i+1, . . . , vi,n)

ICA(0) [no failure]

1. The transmitter sends its value to all other n – 1 nodes

2. Each node uses the value received from the transmitter, or a default
value F if it received no value

O(nf+1) messages needed, in f + 1 rounds, to tolerate f Byzantine failures

Nov. 2020 Part VII – Failures: Computational Breaches Slide 61

Building upon Consensus Protocols

If source and destination are healthy,
message is eventually delivered unmodified

Source: M. Correia, N. Ferreira Neves, P. Veríssimo, “From Consensus to Atomic Broadcast:
Time-Free Byzantine-Resistant Protocols without Signatures,” The Computer J., 2005.

Agreeing on one of two values, 0 or 1

All healthy participants arrive at vectors
with a majority of elements correct

All healthy participants arrive at vectors
with correct value for every healthy node

The same messages are delivered in the
same order to all participating nodes

Message from a good node is eventually delivered to all good nodes unmodified

Nov. 2020 Part VII – Failures: Computational Breaches Slide 62

Correctness and Performance of ICA

ICA works correctly, but it needs an exponential number of messages:
(n–1) + (n–1)(n–2) + (n–1)(n–2)(n–3) + . . . + (n–1)(n–2) … (n–m)

More efficient agreement algorithms exist, but they are more difficult to
describe or to prove correct; f + 1 rounds of message exchange is the
least possible, so some algorithms trade off rounds for # of messages

Theorem 1: With ICA(f), all nonfailed nodes will agree on a common
value, provided that n 3f + 1 (proof is by induction on f)

Theorem 2: In a network G with f failed nodes, agreement is possible
only if the connectivity is at least 2f + 1

2f + 1 paths

G1 G2

Effect of
f traitors

Nov. 2020 Part VII – Failures: Computational Breaches Slide 63

The Byzantine Generals Problem

A general and n – 1 lieutenants lead n divisions of the Byzantine army
camped on the outskirts of an enemy city

The n divisions can only communicate via messengers

We need a scheme for the generals to agree on a common plan of
action (attack or retreat), even if some of the generals are traitors who
will do anything to prevent loyal generals from reaching agreement

The problem is nontrivial even if
messengers are totally reliable

With unreliable messengers,
the problem is very complex

G

L2
L1

Nov. 2020 Part VII – Failures: Computational Breaches Slide 64

G

L3L1

a a

Traitor

L2

a

a

aa

?

a
?

Byzantine Generals with Reliable Messengers

“He said retreat”

G

L2
L1

“Attack” “Attack”

Traitor

G

L2
L1

“Attack” “Retreat”

“He said retreat”

Traitor

G

L3L1

a c

Traitor

L2

b

b

ba

c

a
c

With f Byzantine
failures, 3f + 1
nodes needed to
reach agreement

Nov. 2020 Part VII – Failures: Computational Breaches Slide 65

27.6 Byzantine Resiliency
To tolerate f Byzantine failures:

We need 3f + 1 or more FCRs (fault containment regions)

FCRs must be interconnected via at least 2f + 1 disjoint paths

Inputs must be exchanged in at least f + 1 rounds

Corollary 1: Simple 3-way majority voting is not Byzantine resilient

Corollary 2: Because we need 2f + 1 good nodes out of a total of
3f + 1 nodes, a fraction (2f + 1)/(3f + 1) = 2/3 + 1/(9f + 3) of the nodes
must be healthy

This is greater than a supermajority (2/3) requirement

Nov. 2020 Part VII – Failures: Computational Breaches Slide 66

28 Fail-Safe System Design

Nov. 2020 Part VII – Failures: Computational Breaches Slide 67

“Have you seen the use-by date on this porridge?”

“Damn those Health & Safety guys.”

Nov. 2020 Part VII – Failures: Computational Breaches Slide 68

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VII – Failures: Computational Breaches Slide 69

28.1 Fail-Safe System Concepts
Fail-safe: Produces one of a predetermined set of safe outputs when
it fails as a result of “undesirable events” that it cannot tolerate

Fail-safe traffic light: Will remain stuck on red

Fail-safe gas range/furnace pilot flame: Cooling off of the pilot
assembly due to the flame going out will shut off the gas intake valve

A fail-safe digital system must have at least two binary output lines,
together representing the normal outputs and the safe failure condition

Reason: If we have a single output line, then even if one value (say, 0)
is inherently safe, the output stuck at the other value would be unsafe

Two-rail encoding is a possible choice: 0: 01, 1: 10, F: 00, 11, or both

Totally fail-safe: Only safe erroneous outputs are produced, provided
another failure does not occur before detection of the current one

Ultimate fail-safe: Only safe erroneous output is produced, forever

Nov. 2020 Part VII – Failures: Computational Breaches Slide 70

28.2 Principles of Safety Engineering
Principles for designing a safe system (J. Goldberg, 1987)

1. Use barriers and interlocks to constrain access to critical system
resources or states

2. Perform critical actions incrementally, rather than in a single step

3. Dynamically modify system goals to avoid or mitigate damages

4. Manage the resources needed to deal with a safety crisis, so that
enough will be available in an emergency

5. Exercise all critical functions and safety features regularly
to assess and maintain their viability

6. Design the operator interface to provide the information and power
needed to deal with exceptions

7. Defend the system against malicious attacks

Nov. 2020 Part VII – Failures: Computational Breaches Slide 71

28.3 Fail-Safe Specifications

Is the specification above consistent and complete?

Correct
output

Safe outputs

Unsafe
outputs

Input

Input space

Output spaceAmusement park train safety system

Signal sB when asserted indicates that
the train is at beginning of its track
(can move forward, but should not be
allowed to go back)

Signal sE when asserted indicates that
the train is at end of its track (can go
back, but should not move forward)

No, because it does not say what happens if sB = sE = 1; this would not
occur under normal conditions, but because such sensors are often
designed to fail in the safe mode, the combination is not impossible

Why is this a problem, though? (Train simply cannot be moved at all)

Completeness will prevent potential implementation or safety problems

Nov. 2020 Part VII – Failures: Computational Breaches Slide 72

Simple Traffic Light Controller

Six signals: red, amber, and green light control for each direction
(no left turn signals)

Safety flip-flop, when set, forces flashing
red lights in both directions

S = (A1 G1) (A2 G2)

R1 R2

A1 A2

G1 G2

Let g1 be the computed green light signal
for direction 1, and so on for other signals,
and G1 be the signal that controls the light

G1 = S g1 (A2 G2)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 73

28.4 Fail-Safe Combinational Logic
Similar to the design of self-checking circuits:
Design units so that for each fault type of interest, the output is either
correct or safe

Totally fail-safe: Fail-safe and self-testing [Nico98]

Strongly fail-safe: Intermediate between fail-safe and totally fail-safe
For each fault x it is either totally fail-safe or it is fail-safe with respect to
x and strongly fail-safe with respect to x y, where y is another fault

Nov. 2020 Part VII – Failures: Computational Breaches Slide 74

Fail-Safe 2-out-of-4 Code Checker

Input: 4 bits abcd, exactly 2 of which must be 1s

Output: fg = 01 or 10, if the input is valid
00 safe erroneous output
11 unsafe erroneous output

Output will become permanently 00 upon the first unsafe condition

Preset

b

a

d

c

b

a

d

c

f

g

S

R

Q

Q

Codewords

a b c d
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0

Nov. 2020 Part VII – Failures: Computational Breaches Slide 75

28.5 Fail-Safe State Machines

Possible design methodology:

Use Berger code for states, avoiding the all 0s state with all-1s check,
and vice versa

Implement next-state logic equations in sum-of-products form for the
main state bits and in product-of-sums form for the check state bits

The resulting state machine will be fail-safe under unidirectional errors

Use an error code to encode states

Implement the next-state logic so that the machine is forced to an error
state when something goes wrong

Input
State x=0 x=1
A E B
B C D
C A D
D E D
E A D

State Encoding
A 001 10
B 010 10
C 011 01
D 100 10
E 101 01

Hardware overhead for
n-state machine consists
of O(log log n) additional
state bits and associated
next-state logic, and a
Berger code checker
connected to state FFs

Nov. 2020 Part VII – Failures: Computational Breaches Slide 76

28.6 System- and User-Level Safety
Principle: False alarms are tolerable, but missed failures are not

A binary test is characterized by its sensitivity and specificity

Sensitivity is the fraction of positive cases (e.g., people having a
particular disease) that the test identifies correctly

Specificity is the fraction of negative cases (e.g., healthy people) that
are correctly identified

There exists a fundamental tradeoffs between sensitivity and specificity

We want to err on the side of too much sensitivity

Healthy SickHealthy Sick

Test 1 Test 2

+– +–

Nov. 2020 Part VII – Failures: Computational Breaches Slide 77

Interlocks and Other Safety Mechanisms

Dead-man’s switch (kill switch): Used in safety-critical systems that
should not be operable without the presence of an operator

Usually, takes the form of a handle or pedal that the operator must touch
or press continuously

First used in trains to stop them in the event of operator incapacitation

Nov. 2020 Part VII – Failures: Computational Breaches Slide 78

A Past, Present, and Future

Nov. 2020 Part VII – Failures: Computational Breaches Slide 79

Nov. 2020 Part VII – Failures: Computational Breaches Slide 80

Robust Parallel Processing

Resilient Algorithms

Nov. 2020 Part VII – Failures: Computational Breaches Slide 81

A.1 Historical Perspective
Antonin Svoboda (1907-80), built SAPO,
the first fault-tolerant computer—it used
triplication with voting for error correction;
necessitated by poor component quality

Motivated by NASA’s planned Solar System
exploration taking 10 years (the Grand Tour),
Algirdas Avizienis built Jet Propulsion Lab’s
self-testing-and-repairing (STAR) computer JPL STAR, 1971

SAPO, Prague, 1951

Nov. 2020 Part VII – Failures: Computational Breaches Slide 82

Dependable Computing in the 1950s

SAPO, built in Czechoslovakia in 1951 by Antonin Svoboda
Used magnetic drums and relays

SAPO fault tolerance features were motivated by [Renn84]:
Low quality of components available to designers
Severe (political) pressure to get things right

With the advent of transistors, which were much more reliable than
relays and vacuum tubes, redundancy methods took a back seat
(used only for exotic or highly critical systems)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 83

Dependable Computing in the 1960s

NASA began extensive development in long-life, no-maintenance
computer systems for (manned) space flight

Orbiting Astronomical Observatory (OAO), transistor-level fault masking

The Apollo Guidance System, triplication and voting

Mars Voyager Program (late 1960s, cancelled)

Deep space missions (e.g., the cancelled Solar System Grand Tour)
JPL self-testing-and-repairing computer (STAR)

Also:
AT&T Electronic Switching System (ESS), down time of minutes/decade
Serviceability features in mainframes, such as IBM System/360

Nov. 2020 Part VII – Failures: Computational Breaches Slide 84

Dependable Computing in the 1970s

Two influential avionics systems:
Software-implemented fault tolerance (SIFT), SRI, Stanford Univ.

Spun off a commercial venture, August Systems (process control)
Fault-tolerant multiprocessor (FTMP), Draper Lab., MIT

The Space Shuttle (4 identical computers, and a 5th one running
different software developed by a second contractor)

Redundancy in control computers for transportation (trains)

Also:
First Fault-Tolerant Computing Symposium, FTCS (1971)
Systems for nuclear reactor safety
Tandem NonStop (1976), transaction processing

Nov. 2020 Part VII – Failures: Computational Breaches Slide 85

Dependable Computing in the 1980s

1980: IFIP WG 10.4 on Dependable Computing and Fault Tolerance

Continued growth in commercial multiprocessors (Tandem)

Advanced avionics systems (Airbus)

Automotive electronics

Reliable distributed systems (banking, transaction processing)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 86

Dependable Computing in the 1990s

DCCA conferences, started in 1989, continued until 1999 (DCCA-7);
subsequently merged with FTCS to become DSN Conf.

SEU tolerance

BIST

IBM G4 fault-tolerant mainframe

Robust communication and collaboration protocols
(routing, broadcast, f-t CORBA)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 87

Dependable Computing in the 2000s

2000: First DSN Conf. (DSN-2000, 30th in series going back to FTCS)
Now composed of two symposia
DCCS: Dependable Computing and Communications Symp.
PDS: Performance and Dependability Symp.

2004: IEEE Trans. Dependable and Secure Computing

Deep submicron effects

F-T ARM, Sparc

Intrusion detection and defense

Widespread use of server farms for directory sites and e-commerce
(Google, e-Bay, Amazon)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 88

Dependable Computing in the 2010s

2010: DSN Conf. held its 40th in series, going back to FTCS

Cloud computing reliability focus of an IEEE TDSC 2013 special issue

Greater integration of reliability and security concerns

End of decade: Half-century mark of the field and of the DSN Conf.

Nov. 2020 Part VII – Failures: Computational Breaches Slide 89

A.2 Long-Life Systems
Genesis: Computer systems for spacecraft on multiyear missions,
with no possibility of repair

Today: More of the same, plus remotely located, hard-to-access
systems for intelligence gathering or environmental monitoring

Typical systems for case studies:
NASA OAO, Galileo, JPL STAR, . . . , Space Station
Communication satellites
Remote sensor networks

Nov. 2020 Part VII – Failures: Computational Breaches Slide 90

The JPL STAR Computer

Became operational in 1969, following studies that began in 1961
Standby redundancy for most units, 3 + 2 hybrid redundancy for TARP
mod-15 inverse residue code to check arithmetic ops and bus transfers
Also used other codes, plus various hardware/software sanity checks

Bus checker

Test
and
repair
processor

Nov. 2020 Part VII – Failures: Computational Breaches Slide 91

A.3 Safety-Critical Systems
Genesis: Flight control, nuclear reactor safety, factory automation

Today: More of the same, plus high-speed transportation, health
monitoring, surgical robots

Typical systems for case studies:
CMU C.vmp
Stanford SIFT
MIT FTMP
August Systems
High-speed train controls
Automotive computers

Nov. 2020 Part VII – Failures: Computational Breaches Slide 92

Avionic Fly-by-Wire Systems

Source: [Trav04]

Airbus A320 entered operation in 1988
Other models include A340 and A380
Primary (P) and secondary (S) computers

(different designs and suppliers)
Multiple redundant software modules

Architecture of one computer,
with its command and
monitoring sections

Three
hydraulic
systems

Nov. 2020 Part VII – Failures: Computational Breaches Slide 93

Automotive Drive-by-Wire Systems

Source: [Seid09]

Input ActuationProcessing

Fully
electronic,
with
redundant
buses,
and power
supplies

Interim
braking
solution
with mixed
electronics
and
hydraulics

Nov. 2020 Part VII – Failures: Computational Breaches Slide 94

A.4 High-Availability Systems
Genesis: Electronic switching systems for telephone companies

Today: More of the same, plus banking, e-commerce, social networking,
and other systems that can ill-afford even very short down times

Typical systems for case studies:
AT&T ESS 1-5, telephone switching, 1965-1982
Tandem NonStop I/II- . . . -Cyclone-CLX800, 1976-1991
Stratus FT200-XA2000, 1981-1990
Banking systems
Portals and e-commerce (Google, Amazon)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 95

Tandem NonStop Cyclone
Announced in 1989 for database and transaction-processing applications
(descendant of the first NonStop system announced in 1976)

Mirrored disks, with
multiple access paths

Unidirectional
optical links

Redundant
channels,
I/O buses,
controllers

Nov. 2020 Part VII – Failures: Computational Breaches Slide 96

Google Data Center Architecture
Uses commodity (COTS) processing and communication resources
Data replication and software used to handle reliability issues
Massive hardware replication, needed for capacity and high performance,

also leads to fault tolerance
Consistency problems are simplified by forcing read-only operation most of

the time and shutting down sections of the system for infrequent updates

Google’s
query-serving
architecture:
from [Barr03]

From
[Arno05]

Nov. 2020 Part VII – Failures: Computational Breaches Slide 97

A.5 Commercial and Personal Systems
Genesis: Due to highly unreliable components, early computers had
extensive provisions for fault-masking and error detection/correction

Today: Components are ultrareliable, but there are so many of them that
faults/errors/malfunctions are inevitable

Typical systems for case studies:
SAPO
IBM System 360
IBM POWER6 microprocessor

Nov. 2020 Part VII – Failures: Computational Breaches Slide 98

The IBM Power6 Microprocessor

Source: [Reic08]

Bold font represents
new features relative
to Power 5

Nov. 2020 Part VII – Failures: Computational Breaches Slide 99

A.6 Trends, Outlook, and Resources
• Nobel Laureate Physicist Niels Bohr said:

“Prediction is very difficult, especially if it’s about the future.”
[Paraphrased by Yogi Berra in his famous version]

• Anonymous quotes on the perils of forecasting:
“Forecasting is the art of saying what will happen, and then
explaining why it didn’t.”
“There are two kinds of forecasts: lucky and wrong.”
“A good forecaster is not smarter than everyone else; he merely
has his ignorance better organized.”

• Henri Poincare was more positive on prediction:
“It is far better to foresee even without certainty than not to
foresee at all.”

2020s | 2030s | 2040s | 2050s

Nov. 2020 Part VII – Failures: Computational Breaches Slide 100

Current Challenges in Dependable Computing
Dependable computer systems and design methods continue to evolve

Current trend: Building dependable systems from mass-produced,
commercial off-the-shelf (COTS) subsystems, not custom-made units
(that is, dependability is viewed as a layer put around otherwise
untrustworthy computing elements)

This is similar to the RAID approach to dependable mass storage

Challenge 1: The curse of shrinking electronic devices (nanotechnology)

Challenge 2: Reliability in cloud computing (opportunities & problems)

Challenge 3: Smarter and lower-power redundancy schemes (brainlike)

Challenge 4: Ensuring data longevity over centuries, even millennia

Challenge 5: Dependability verification (reasoning about uncertainty)

Challenge 6: Counteracting combined effects of failures and intrusions

Challenge 7: Reliability as roadblock for exascale systems (reliability wall)

Nov. 2020 Part VII – Failures: Computational Breaches Slide 101

The Curse of Shrinking Electronic Devices

Size shrinkage leads to
Unreliable operation due to “crummy” devices and interconnects
Need for modeling parameter fluctuations due to process variations
Difficulties in testing, particularly with regard to delay faults

Reliability issues
Some of the area/power gains must be reinvested in reliability features

Circuit modeling
Can no longer model by considering only worst-case latencies

Testing challenges
Need for more tests to cover combinations of parameter values
http://webhost.laas.fr/TSF/WDSN10/WDSN10_files/Slides/WDSN10_Wunderlich-Becker-Polian-Hellebrand.pdf

Nov. 2020 Part VII – Failures: Computational Breaches Slide 102

Computing with Majority Elements

Several new technologies offer simple and power-efficient majority gates

In quantum-dot cellular automata (QCA), each cell contains 2 electrons
that can tunnel between corner spots (dots), but can’t leave the cell

Wire

Inverter
Majority

Input
1

Output
0

Nov. 2020 Part VII – Failures: Computational Breaches Slide 103

Cloud Computing Overview

On-demand, shared-resource computing
(formerly referred to as “the grid”)

“The fifth utility”

Sources
https://en.wikipedia.org/wiki/Cloud_computing
http://www.moonther.com/cis492/abovetheclouds.pdf

Nov. 2020 Part VII – Failures: Computational Breaches Slide 104

Reliability in Cloud Computing

Theoretically, the cloud can be highly reliable (no single point of failure)
Challenge of integrating diverse resources from multiple providers
Identifying weakest links; assigning blame in the event of outages
Risk assessment in e-commerce and safety-critical processing

Planning for and modeling outages
Accidental or deliberate

Balance and accountability
Recall Amdahl’s law of reliability

Risk assessment

Nov. 2020 Part VII – Failures: Computational Breaches Slide 105

Smarter and Lower-Power Redundancy Schemes

Brain-inspired computing

Reptilian
brain

Limbic
system

• Ad-hoc additions over eons

• Functional redundancy

• Layered improvement

• Electrochemical signals

• Slow signaling

• Yet, functionally effective!

• Human brain has a very inelegant design, but it operates
on 20 W (a supercomputer doing a small fraction of the
brain’s tasks needs MWs)

Engineering the Future: System Attributes
Toward Self-Organizing, Self-Improving, Self-Healing, and Self-Sustaining Systems

Survival

Agility

Agency

Self-Healing

Self-Sustaining

Self-Organizing

Self-Improving

Managed

Autonomous

Nov. 2020 Part VII – Failures: Computational Breaches Slide 106

Nov. 2020 Part VII – Failures: Computational Breaches Slide 107

Example: Learning Voter

Suppose the voter/fuser keeps track of disagreements by units 1-3 so
that it learns which units are more trustworthy

If unit 1, say, disagrees often, then the first disagreement between units
2 and 3 may be cause for the system to shut itself down

Nov. 2020 Part VII – Failures: Computational Breaches Slide 108

Ensuring Data Longevity

Typical media used for storing data have lifespans of 3-20 years

We can lose data to both media decay and format obsolescence

We’re not yet aware of, or sensitive to,
decay and obsolescence,
because we move data
to newer devices every few years
as part of routine upgrades

Reference:
Springer Encyclopedia of
Big Data Technologies,
Article on “Data Longevity
and Compatibility,” 2019

Nov. 2020 Part VII – Failures: Computational Breaches Slide 109

Reasoning About Uncertainty

Uncertainty can exist in data (facts)
Data not available
Data unreliable (measurement / representation errors, estimation

Uncertainty can exist in rules (knowledge)
Rules may be empirical
Rules may be based on typical or average cases

Reasoning about uncertainty requires
Representing uncertain data or rules
Combining two or more items uncertain data items
Drawing inferences based on uncertain data and rules

Categories of approaches
Probabilistic analysis (Bayesian logic)
Certainty/Confidence factors
Evidence/Belief theory (Dempster-Shafer theory)
Continuous truth values (Fuzzy logic)

Reference:
Int’l J. Approx. Reasoning,
Special Issue 40 Years of
Research Dempster-Shafer
Theory, December 2016

Nov. 2020 Part VII – Failures: Computational Breaches Slide 110

Interaction Between Failures and Intrusions

Intruders can cause failures as a way of disrupting systems
Self-driving cars
Fly by wire
Electronic terrorism

Failures may facilitate security breaches

Nov. 2020 Part VII – Failures: Computational Breaches Slide 111

Overcoming the Reliability Wall

We have known about memory wall limiting performance for some time

Reliability wall limits the scalability of parallel applications

Yang et al’s two case studies [Yang12]
Intrepid supercomputer
ASCI White supercomputer

The notion of reliability wall is introduced in Problem 3.17
Amdahl’s constant-task speed-up formula: s = p/[1 + f(p – 1)]

Speed-up is upper-bounded by 1/f
Gustafson’s constant-running-time speed-up formula: s = f + p(1 – f)

Speed-up is unbounded for any f < 1

If the reliability overhead is a superlinear function of p, then a reliability
wall exists under Amdahl’s interpretation but not under Gustafson’s

Nov. 2020 Part VII – Failures: Computational Breaches Slide 112

Dependable Computing Through the Decades

First FTCS held in Pasadena, CA

50s

1950

1960

1980

1990

2000

2010

60s

SAPO, the first fault-tolerant computer, built in Czechoslovakia

70s

80s

1970

90s

00s

10s

Tandem NonStop multiprocessor announced

25th FTCS held in Pasadena, CA

40th DSN held in Chicago

50th DSN held in Valencia, Spain

IEEE Trans. Dependable and Secure Systems started publication

IFIP WG 10.4 on Dependable Computing and Fault Tolerance formed

JPL STAR Computer designed and built for deep space missions

2020

This timeline to be completed

Nov. 2020 Part VII – Failures: Computational Breaches Slide 113

Resources for Dependable Computing
IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance
IFIP WG 10.4 — http://www.dependability.org/wg10.4/

IEEE Trans. Dependable and Secure Computing (since 2004)
IEEE TDSC — https://www.computer.org/csdl/journal/tq

IEEE/IFIP Int’l Conf. Dependable Syst’s and Networks (2021, Taipei)
DSN — http://www.dsn.org/

European Dependable Computing Conf. (2020, Munich)
EDCC — http://edcc.dependability.org/

IEEE Pacific Rim Int’l Symp. Dependable Computing (2021, Perth)
PRDC — http://prdc.dependability.org/

Int’l Conf. Computer Safety, Reliability and Security (2021, York, UK)
SAFECOMP — http://www.safecomp.org/

Nov. 2020 Part VII – Failures: Computational Breaches Slide 114

… You should now be ready
to pursue some of the details

We Have Built a Framework

... and skimmed over a number
of applicable techniques

