Binary Search

A Lecture in CE Freshman Seminar Series:
Ten Puzzling Problems in Computer Engineering

Binary Search

About This Presentation

This presentation belongs to the lecture series entitled "Ten Puzzling Problems in Computer Engineering," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	May 2007	May 2008	May 2009	May 2010	Apr. 2011
		May 2012	May 2015	Apr. 2016	Apr. 2020

Game of 20 Questions as Binary Search

With perfect questioning, one of $\mathbf{2 0}^{20}$ possible answers can be found with $\mathbf{2 0}$ questions

Weighing with a Balance

A large container is known to hold 24 oz of nails. The hardware store has a balance, but no weights. Can you measure out 9 oz of nails for a customer?

Divide all nails into two equal piles: 12 oz 12 oz
Divide one pile into two equal piles: 12 oz 6 oz 6 oz
. . . and again: 12 oz (6-6z 3 oz) 3 oz

A chemist has a balance and fixed weights of $1,2,4$, and 8 grams. Show that she can weigh any amount of material from 1 to 15 grams by placing the weights on one side and the material on the other.
$3=2+1 ; 5=4+1 ; 6=4+2 ; 7=4+2+1 ; 9=8+1 ; 10=8+2 ; 11=8+2+1$
What is the best set of 4 fixed weights in the sense of maximizing the range of measurable weights in increments of 1 gram? (e.g., 1, 4, 7, 12)
Weights of $1,3,9$, and 27 grams allow us to measure up to 40 grams

Find the Lighter Counterfeit Coin

We have three coins. Two are normal coins; one is a counterfeit coin that weighs less. Identify the counterfeit coin with one weighing on a balance.

Compare coins 1 \& 2 .

If they weigh the same, coin 3 is counterfeit; otherwise the lighter of the two is counterfeit.

We have nine coins; eight normal coins and a counterfeit coin that weighs less. Identify the counterfeit with 2 weighings.

Generalize: How many weighing with a balance are needed to find a light counterfeit coin among n coins?

We need w weighing with a balance to find a light counterfeit coin among 3^{w} coins. So, the number of required weighings with n coins is $w=\left\lceil\log _{3} n\right\rceil$.

How should we change the procedures above if the counterfeit coin is known to be heavier than normal ones instead of lighter?

12 Coins with 1 Counterfeit: Lighter or Heavier

We have 12 coins. Eleven are normal coins; one is a counterfeit coin that weighs less or more than a normal coin. Identify the counterfeit coin and its relative weight with a minimum number of weighings on a balance.

Hint: First do it for 3 coins, one of which is a counterfeit, using only two weighing,

If $A=B$, then C contains the counterfeit coin.
Weigh 3 coins from C against 3 good coins. If equal, the lone remaining coin in C is counterfeit and one more weighing is enough to tell if it's lighter or heavier than normal.

If the three C coins are lighter, then...

If the three C coins are heavier, then.

If $A<B$ or $A>B .$.

Another Solution to the 12-Coin Puzzle

We have 12 coins. Eleven are normal coins; one is a counterfeit coin

14610 against 57912	LLL	np	BLL
25411 against 68710	LLB	7-	BLB
36512 against 49811	LLR	BLR	RLR
	LBL	BBL	RBL
Each weighing has three	LBB	BBB np	RBB
\quad possible outcomes:	LBR	BBR	RBR
L-- Left heavier	LRL	BRL	RRL
R -- Right heavier	LRB	BRB	RRB 7+
B -- Balance	LRR	BRR	RRB np

Example: LLB -- Counterfeit coin is among 1, 2, 7, $10 \rightarrow 7$ is lighter Q1: Complete the table above to show the counterfeit coin in all 27 cases.

Binary Search

Searching in Unsorted and Sorted Lists

How would you find the person or business having the phone number 765-4321 in a standard phone directory?

Because a standard phone directory is sorted by names, rather than by numbers, we have no choice but to scan the entire directory.
On average, half of the entries are examined before either the number is found or the end of the directory is reached. This is an $O(n)$ algorithm.

How would you find the meaning of "scissile" (pronounced sis-əl) in a standard English dictionary?

We do not have to search the entire dictionary. We examine a page in the area where we think "s" words are listed. Then we know whether to search before or after that page. We repeat this process, each time narrowing the search region. On average, ≈ 10 pages are examined in a 1000-page dictionary before finding the word or discovering that it is not a valid word. This is an $O(\log n)$ algorithm.

By the way, "scissile" means "easily cut or split"

Searching in an Alphabetized List

Is "tomato paste" an ingredient?
Possible range: [0, 20]
Middle of the range $=(0+20) / 2=10$
tomato paste > olive or vegetable oil
Possible range: [11, 20]
Middle of the range $=(11+20) / 2=15$
tomato paste > sliced pitted ripe olives
Possible range: [16, 20]
Middle of the range $=(16+20) / 2=18$
tomato paste > thinly sliced pepperoni
Possible range: [19, 20]
Middle of the range $=(19+20) / 2=19$
Tomato paste is indeed an ingredient!

Thompson Family

Prep Date 9/15/2003	Serve Date 9/15/2003	Meal Dinner	All-American Pizza Planned
Scaled Amourt		Ingredient	
2 cups	0	altpurpose flour	
4 cups		apple cider	
8 slices	2	bacon	
1 cup		Big Chief brown sugar	
1 cup	4	catsup	
$1 / 2$ teaspoo		cinnamon	
4 cups	6	cranberry juice cocktail	
1 teaspoon		crushed red pepper (optional)	
2 teaspoon	8	dry mustard	
1 package		Fleischmann's® Rapid Rise Yeast	
10 olve or vegetable oil			
41-pound c		pork and beans	
$11 / 2$ teaspo	s 12	salt	
2 cups		shredded Mozzarella cheese	
2 2-ounce ja	14	sliced pimientos	
1/		sliced pitted ripe olives	
1 teaspoon	:16	6 spaghetti sauce seasoning	
1/4 cup		Sue Bee Honey	
	+18	thinly sliced pepperoni or salami	
$16-1$		tomato paste	
1 cup	:20	water	

Binary Search

A Guessing Game

Interactive search game via Khan Academy
The computer chooses a number
You try to find that number by a sequence of guesses, the fewer, the better
After each guess, the computer provides one of three possible responses:
"Correct!", "Too high!", or "Too low!"
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/a-guessing-game

Q2: Play the guessing game above for a number in $[1,300]$ three times. Record and report the number of questions you asked in the 3 rounds and attach a screenshot of the "winning" screen in one of the rounds.

The Binary Search Algorithm

Is the number 85 in the 63 -entry list to the right?

First	Last	Middle	Entry	Outcome
1	63	32	71	$>$
33	63	48	102	$<$
33	47	40	87	$<$
33	39	36	80	$>$
37	39	38	83	$>$
37	37	37	85	$=$

Six probes are needed with a 63-entry list, in the worst case

More generally, a $\left(2^{n}-1\right)$-entry list requires
 n probes in the worst case

Interpolation Search

Is the number 85 in the 63 -entry list to the right?
When looking for an entry x in a list, probe it at size $(x-\min) /(\max -\min)$

First probe is at $63(85-1) /(133-1) \approx 40$
Second probe is at $40(85-1) /(87-1) \approx 39$

First	Last	Probe	Entry	Outcome
1	63	40	87	$<$
1	40	39	85	$=$

Dictionary lookup:
When looking up a word in the dictionary,
 we instinctively use interpolation search

Searching in Dynamic Lists

A dynamic list has entries inserted or deleted If we use a binary search algorithm on a dynamic list, its sorted order must be maintained

Example: Delete 81 from the list

1. Search to find the entry 81
2. Move all entries beyond 81 one notch up

Example: Insert 95 into the list

1. Search for 95 , to see where it should go
2. Move all entries beyond there a notch down
3. Put 95 in the vacated location

Addition/deletion takes $O(n)$ steps on average. So, if the number of additions/deletions is comparable to the number of searches,
 sorting the list does not buy us anything

Examples of Dynamic Lists

Students currently enrolled at UCSB:
This list is dynamic, but does not change often
Customers of a wireless phone company currently having active connections:
This list may change 1000s of times per minute
Even "static" lists may change on occasion ...
UCSB graduates, class of 2000:
This list is nearly static, but may change to include missing persons or to make corrections

Spell check dictionary for a word processor: Changes as you add new words

Question: How do we store a rapidly changing dynamic list so that it is easy to search and to update with insertions and deletions?

Stud \#s, customer IDs, etc.

Binary Search Trees

Binary Search

Insertions and Deletions in Binary Search Trees

Example Unbalanced (Random) Binary Tree

Random Binary Trees as Works of Art

Source: http://cg.scs.carleton.ca/~luc/BRUCE/brucepics.html

Practical Multiway Search Trees

Find A

Find B

Insert D

Insert J

Delete L

Delete T

Other Applications of Binary Search

Solve the equation $x^{4}+5 x-2=0$
$f(x)=x^{4}+5 x-2=0$
$f(0)=-2$
$f(1)=4$

So, there must be a root in $[0,1]$

Q3: Continue the root-finding process above until the error is <0.001.

Creating Binary-Tree Mazes

Start with grid and outer walls
Subdivide the area in two parts, with an opening between them

Repeat subdividing process for each of two parts, then for four parts, etc., until no further subdivision is possible

You know you are done when every rectangular area has one side of length 1

Q4: Complete the design of this maze, proceeding until no further subdivision is possible.

Slide 21

