Cryptography

A Lecture in CE Freshman Seminar Series:
Ten Puzzling Problems in Computer Engineering

Slide 1

About This Presentation

This presentation belongs to the lecture series entitled "Ten Puzzling Problems in Computer Engineering," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	Apr. 2007	Apr. 2008	Apr. 2009	Apr. 2010	Apr. 2011
		Apr. 2012	Apr. 2015	Apr. 2016	Apr. 2020

Puzzles and Cryptograms in Archeology

Secret Codes Are as Old as Forts

... and they serve the same purpose

Providing security!

Some Simple Cryptograms

Cipher: YHPARGOTPYRC OT EMOCLEW Plain: WELCOME TO CRYPTOGRAPHY
 Plain: THE SPY ISW EAR ING ABL UEC OAT

Cipher: ICCRAANCTKBEEDLTIHEIVSECYOODUE Plain: I CANTBELIEVEYOU CRACKEDTHSCOD

Simple Substitution Ciphers

Decipher the following text, which is a quotation from a famous scientist. Clue: Z stands for E

```
"CEBA YUC YXSENM PDZ SERSESYZ, YXZ QESOZDMZ PEJ XQKPE
MYQGSJSYA, PEJ S'K ECY MQDZ PLCQY YXZ RCDKZD."
    PBLZDY ZSEMYZSE
```

"CEBA YUC YXSENM PDZ SERSESYZ, YXZ QESOZDMZ PEJ XQKPE
"ONLY TWO THINGS ARE INFINITE, THE UNIVERSE AND HUMAN
MYQGSJSYA, PEJ S'K ECY MQDZ PLCQY YXZ RCDKZD."
STUPIDITY, AND I'M NOT SURE ABOUT THE FORMER."
X stands for H ?
PBLZDY ZSEMYZSE

Contextual information facilitated the deciphering of this example

Breaking Substitution Ciphers

The previous puzzle, with punctuation and other give-aways removed:
CEBA YUC YXSENM PDZ SERSESYZ YXZ QESOZDMZ PEJ XQKPE MYQGSJSYA PEJ SK ECY MQDZ PLCQY YXZ RCDKZD

Letter frequencies in the cipher:

Letter frequencies in the English language

ABCDEFGHIJKLMNOPQRSTUWWXYZ
Most frequently used 3-letter words: THE AND FOR WAS HIS

Most frequently used letter pairings:
TH HE AN IN ER ON RE ED

The Pigpen Cipher

A	B	C
D	E	F
G	H	I

This is a substitution cipher, with all the weaknesses of such ciphers
Q1: Write the message above in the cipher used for the quote on Slide 6.

The Code of Emojis

Q2：Decode at least four of the following movie titles written in emojis．

1． 0^{8} 迆	6．－O부융	11．W）${ }^{\text {A }}$	
2．${ }^{\text {P }}$－	7． 9	12． 114	17.8
	8.4	13．0\％	18．60 ${ }^{\circ}$
2－		14.8 \％	19．27x
5． O $^{\circ} \bigcirc$	10．	15．3）${ }^{\text {a }}$	20．$\underbrace{\text { 圈荎 }}$

Run in papers of Friday, Oct. 13, 2006

CELEBRITY CIPHER by Luis Campos

Celebrity Cipher cryptograms are created from quotations by famous people, past and present Each letter in the cipher stands for another.

Today's clue: O equals J
"X PZTF YB ATHXTRT YKM Y
MGVYKXGE JMZ ATYYTL YKMG
GBYKXGE. GBJX WGBJ YKMY
ZBUTYXUTZ GBYKXGEXZ ATYYTL."

- EHTGFM OMSWZBG

PREVIOUS SOLUTION - "Art for the sake of truth, for the sake of what is beautiful and good - that is the creed I seek." - George Sand
(c) 2006 by NEA, Inc. $10-13$

More Sophisticated Substitution Ciphers

The letter A has been replaced by C, D, X, or E in different positions

The letter T has been replaced by M , W , or X in different positions

Message

25 rotating wheels

The German Enigma Encryption Machine

(4) Connection goes through the 3 rotors, is "reflected", returns through the 3 rotors, leads to plugboard
(5) Eventually, the " "" light is illuminated

Q W ERTXUTO
ASDFGHJK P Y X C V B N M L
(1) W pressed on keyboard
(2) Battery now connected to W on plugboard...
(3) . . . which is wired to X plug

Alan Turing and the Enigma Project

The German
Enigma encryption machine

Source: http://www.ellsbury.com/enigmabombe.htm

The Mansion at Bletchley Park (England's wartime codebreaking center)

More on the Enigma and the Turing Biopic

Apr. 2020

Brief demo of Enigma (London Science Museum) https://youtu.be/TYX691q2J2c

How accurate is "The Imitation Game" biopic? http://www.slate.com/blogs/browbeat/2014/12/03/the_imitation_game _fact_vs_fiction_how_true_the_new_movie_is_to_alan_turing.html

Q3: Write a short paragraph about how the allies managed to break the Enigma code.

A Simple Key-Based Cipher

Agreed upon secret key: ourkey

text:	A T T A C K A T D A W 0019190002100019030022
Secret key:	o urkeyourkey 142017100424142017100424
Sum:	143936100634143920102637
Modulo 26 sum:	1413101006081413201000
Cipher text:	O N K K G I O N U K A
Secret key:	1420171004241420
Difference:	$00-7-70002-1600-70300$
Modulo 26 diff.:	001919000210001903002213
Recovered text:	A T T A CKAT D A W

One can break such key-based ciphers by doing letter frequency analysis with different periods to determine the key length

The longer the message, the more successful this method of attack

Decoding a Key-Based Cipher

A	B	C	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Agreed upon secret key: freshman

Cipher text:
Secret key:
Difference:
Modulo 26 diff.: Plain text:

Key-Based Cipher with Binary Messages

Agreed upon secret key (11 bits): $0 \begin{array}{lllllllllll} & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$

Symmetric: Encoding and decoding algorithms are the same

Data Encryption Standard (DES)

Feistel block:
The data path is divided into left (m_{i-1}) and right $\left(m_{i}\right)$ halves. A function f of m_{i} and a key k_{i} is computed and the result is XORed with m_{i-1}.

Right and left halves are then interchanged.

The f function is fairly complicated, but it has an efficient hardware realization

Feistel twisted ladder, Preceded and followed by permutation blocks form DES's encryption, decryption algorithms

Use of Backdoors in Cryptography

Like a hidden latch that releases a magician's handcuffs

Public-Key Cryptography

Alice

Apr. 2020

Encryption and decryption are asymmetric. Knowledge of the public key does not allow one to decrypt a message.

Analogy for Public-Key Cryptography

RSA Public Key Algorithm

```
Choose large primes p and q
Compute n = pq
Compute m = (p - 1) (q-1)
Choose small e coprime to m
Find d such that de = 1 mod m
Publish n and e as public key
Keep n and d as private key
```

```
p=7,q=19
n=7\times19=133
m=6 < 18=108
e = 5
d = 65
Public key: 133, 5
Private key: 133, 65
```

Security of RSA is due to the difficulty of factoring large numbers Therefore, p and q must be very large: 100s of bits

Encryption example: Decryption example:

$$
\begin{aligned}
y & =x^{e} \bmod n \\
& =6^{5} \bmod 133 \\
& =7776 \bmod 133 \\
& =62
\end{aligned}
$$

```
\(\mathbf{x}=y^{d} \bmod n\)
    \(=62^{65} \mathrm{mod} 133\)
    \(=62(3844)^{32} \bmod 133\)
    \(=62(120)^{32} \bmod 133=\ldots=6\)
```


