Maps and Graphs

A Lecture in the Freshman Seminar Series:
Puzzling Problems in Science and Technology

About This Presentation

This presentation belongs to the lecture series entitled "Puzzling Problems in Science and Technology," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	Nov. 2016	Nov. 2018			

Ptolemy's Map of the World (150 AD)

Continents and countries appear to scale on a globe but they get distorted when drawn on some flat maps

Nov. 2018

The Globe Can Be Flattened

Segment in a photographic map of Mercury, with gaps inserted to preserve scale

The Map Coloring Problem

We want to color countries, oceans, lakes, and islands on a map so that no two adjacent areas have the same color.

Four
colors

We know that four colors always suffice

Map and Graph Coloring

A map can be converted to a planar graph that can be drawn with no edges crossing

Color These Maps with Four Colors

Color the following natural and artificial maps so that no two adjacent areas have the same color

Maps and Graphs

Mazes Represented as Graphs

Nov. 2018

Maps and Graphs
Slide 11

The Bridges of Konigsberg Puzzle

Can you walk in the city of Konigsberg in such a way that you cross each bridge once and only once (in either direction)?

Maps and Graphs

Shortest Path in a Graph

If the number on an edge represents travel distance, time, or cost, what is the shortest/fastest/cheapest way from point 2 to point 5 ?

What about from point G to point C in the graph on the right?

Maps and Graphs

Solving a Maze

2-minute video: http://www.youtube.com/watch?v=mM10gQJJ7aM

Maze-Solving Robots

4-minute video: http://www.youtube.com/watch?v=MLHeUEPLSAY

Solve These Two Large Mazes

Nov. 2018

UC

Maps and Graphs

BPertinl

More Mazes to Solve

Nov. 2018

Maps and Graphs

Applications of Graph Coloring

9-minute video: http://www.youtube.com/watch?v=y4RAYQjKb5Y

Solving Sudoku Puzzles

- Fill in the blank cells so that each row, column and 2×2 box has the characters 1 to 4 exactly once.

Relief Map of California

\square Mountains

 \square Hills \square Hillsides \square Sea level

Nov. 2018
UCSB
Slide 19

Santa Barbara Area with Exaggerated Mountain Heights

Nov. 2018
Maps and Graphs

Topographic Maps

7-minute video: http://www.youtube.com/watch?v=SymUFSwEm3c

Contours Add a Third Dimension to Maps

Draw a Hiking Trail from A to B

Contour Maps and Road/Bridge Building

Contour map of Hoover Dam's surrounding area

New bridge connecting the two sides of Hoover Dam
(Nevada to Arizona)

Example of a Snaking Road

Where in the World Are You?

To locate a point in two dimensions, we need two distances and a little bit more information

To locate a point in three dimensions, we need three distances and a little bit more information

Global Positioning System (GPS)

Nov. 2018
UCSB
Maps and Graphs

Slide 30

How GPS Works: The Satellites

There are at least 24 satellites at any time; new ones are launched to replace older ones that need to be retired

The satellites are positioned so that from any point on earth, radio communication with at least four of them is possible

Each satellite follows a single orbit, passing over the same places on earth each time

Maps and Graphs

How GPS Works: The Measurements

The GPS Receiver on Your Smartphone

5-minute video: http://www.youtube.com/watch?v=70cDSUI4XKE

Slide 33

GPS-Guided Navigation

You know where you are (GPS) and where you want to go (address)
Roads form a known maze, stored on Google's servers When there are multiple paths, you want the shortest/fastest path To determine which path is faster, dynamic congestion data may be used

Cartograms Combine Geographic and Other Data

Outcome of the 2004 US presidential election (S. Fabrikant, UCSB Geog Dept)

Cartogram, with states distorted to have areas proportional to electoral votes

Cartogram, with relative support level for candidates indicated by shading

The Traveling Salesperson Problem

If the number on an edge represents travel distance, time, or cost, what is the shortest/fastest/cheapest tour of the six locations?

A salesperson may want to visit all the locations
A truck may have deliveries at all the locations

Other Optimization Problems

Assuming numbers shown are travel times for a fire truck in minutes, where is the best location for a single fire station?

Where should fire stations be placed for a response time of 8 minutes?

