Predicting the Future

A Lecture in the Freshman Seminar Series:
Puzzling Problems in Science and Technology

About This Presentation

This presentation belongs to the lecture series entitled "Puzzling Problems in Science and Technology," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	Sep. 2016	Oct. 2018			

Puzzling Problems in Science and Technology

What is a puzzling problem?

-looks deceptively simple, but ...
-appears very difficult, or even impossible, but is readily tamed with the correct insight

Many science and engineering problems are puzzle-like
Because of a long-standing interest in mathematical puzzles, I designed this course that combines my personal and professional passions

Each pair of lectures starts with one or more puzzles We will try to solve the puzzles and discuss possible solution methods I introduce you to sci/tech problems that are related to the puzzles

Course Expectations and Resources

Grading: Pass/Not-Pass, by attendance and class participation
0 absence: Automatic "Pass"
1 absence: "Pass" if you submit a written explanation for the absence; any explanation will do
2 absences: Can earn a "Pass" by taking a final oral exam covering the missed lectures
3 or more absences: Automatic "Not Pass"
Attendance is taken 10 minutes into the class session and reconfirmed just before dismissal

Course website: http://www.ece.ucsb.edu/~parhami/int_94tn.htm (Syllabus, PowerPoint and PDF presentations, links to useful sites) Instructor's office hours for f'16: M 12:00-2:00, W 4:30-5:30, HFH 5155

Find the Next Term in an Integer Sequence

1	2	3	4					
2	4	8	16	-				
1	2	2	3	3	3	4	4	
1	3	5	7	9	-			
3	7	11						
10	15	19	22	24				
1	1	2	3	5	8	13	-	
1	4	9	16					
1	3	6	10	15	21	28		
0	1	2	...	8	0	1	2	
1	2	3	4	9	27	512		[OEIS]

Predicting the Future

Find Missing Term in an Arbitrary Sequence

z	O	T	T	F			
J	F	M		M	J	J	
31		31	30	31	30	31	31
A	E	F	H	1			
3	3	5	4	4	3	5	
3	4	6	9	-	18	24	
1	3/2	-	$7 / 8$	9/16			
1	11	21	1211		221		
$\underbrace{\substack{1 \\ 111}}_{\substack{221 \\ \text { ort } 2018}}$							

Which Name Should Come Next?

Mark Susan Jeff Jenny Brad Marco Jill
Choose from: Donald Fereshteh Robin Bill Christy Elizabeth
John Shawn Suzy Bradley Dan Barney Choose from: David Elvira Tommy Robert Camelia Betty

Candy Frank Irene Lauren Oren Rose Choose from: David Cyrus Angelina Jose Uma Darin

Charles Dion Stuart Kevin Joshua Sergio Choose from: Jeremy Shaun Thomas Duane Rupert Ulysses

Parrot Pigeon Robin Sparrow
Choose from: Cardinal Oriole Lovebird Thrush Wren

A Solution Method for Numerical Series

Polynomial interpolation:

You can pass a line through any two points, a hyperbola through any three points, a third-degree curve through any four points, and so on

$$
\begin{aligned}
& 1234 \text { - } \\
& 14916 \\
& f(n)=a n^{3}+b n^{2}+c n+d \\
& n=1: a+b+c+d=1 \\
& n=2: 8 a+4 b+2 c+d=4 \\
& n=3: 27 a+9 b+3 c+d=9 \\
& n=4: 64 a+16 b+4 c+d=16 \\
& b=1 ; a=c=d=0 ; f(n)=n^{2}
\end{aligned}
$$

24816

When Several Answers Are Possible

$\begin{array}{llll}2 & 4 & 8 & 16\end{array}$
Answer 1:
$\begin{array}{lllll}2 & 4 & 8 & 16 & \underline{32}\end{array}$
Reason: $f(n)=2^{n}$
Answer 2:
$\begin{array}{lllll}2 & 4 & 8 & 16 & \underline{30}\end{array}$
Reason:
$f(n)=(1 / 3) n^{3}-n^{2}+(8 / 3) n$

Which is the correct answer?
Challenge:
Why does $f(n)$ always yield an integer result for an integer n ?

Predicting the Future

Interpolation and Extrapolation

Interpolation: Given the values of the function $f(n)$ at points a and b, find its value at some given point between a and b

Extrapolation: Given the values of the function $f(n)$ at some points between a and b, find its value at a given point before a or after b

Khan-Academy/Pixar video illustrating the use of interpolation for animation:
https://www.khanacademy.org/partner-content/pixar/animate/ball/v/a2-quick

Polynomial Extrapolation Example

This exponential series, when solved via polynomial extrapolation, yields a different answer!

$2 \quad 4 \quad 16 \quad$
$f(n)=a n^{3}+b n^{2}+c n+d$
$n=1: a+b+c+d=2$
$n=2: 8 a+4 b+2 c+d=4$
$n=3: 27 a+9 b+3 c+d=8$
$n=4: 64 a+16 b+4 c+d=16$
$a=1 / 3 ; b=-1 ; c=8 / 3 ; d=0 ;$
$f(n)=(1 / 3) n^{3}-n^{2}+(8 / 3) n$
$f(5)=(1 / 3) 125-25+(8 / 3) 5=30$
$f(6)=(1 / 3) 216-36+(8 / 3) 6=52$
$f(30)=$
$2^{30}=1,073,741,824$

Polynomial Curve-Fitting Example

$$
\begin{aligned}
& 2 \quad 4 \quad 8 \quad 16 \\
& f(x)=a x+b \\
& x=1: a+b \text { vs. } 2 \\
& x=2: 2 a+b \text { vs. } 4 \\
& x=3: 3 a+b \text { vs. } 8 \\
& x=4: 4 a+b \text { vs. } 16 \\
& \begin{aligned}
D(a, b)= & (a+b-2)^{2} \\
& +(2 a+b-4)^{2} \\
& +(3 a+b-8)^{2} \\
& +(4 a+b-16)^{2} \\
& =30 a^{2}+4 b^{2}+20 a b \\
& \quad-196 a-60 b+340
\end{aligned} \\
& \begin{array}{l}
d D / d a=0 \text { and } d D / d b=0 \text { yield } \\
a=23 / 5 \text { and } b=-4 \\
f(x)=4.6 x-4
\end{array}
\end{aligned}
$$

Log-Scale Linearizes Exponential Trends

24816

In log-scale, one unit of distance represents not a fixed increase but multiplication by a factor

It also allows us to focus on relative, rather than absolute, variations.

Question 1: Where is the place of zero on the vertical axis?

Question 2: Is 50\% decrease represented by the same vertical distance as 50% increase?

The Perils of Forecasting

Nobel Laureate Physicist Niels Bohr said:
"Prediction is very difficult, especially if it's about the future."
[Paraphrased by Yogi Berra in his famous version]
Anonymous quotes about the perils of forecasting:
"Forecasting is the art of saying what will happen, and then explaining why it didn't."
"There are two kinds of forecasts: lucky and wrong."
"A good forecaster is not smarter than everyone else; he merely has his ignorance better organized."

Henri Poincare was more positive on prediction:
"It is far better to foresee even without certainty than not to foresee at all."

Value

The Notion of Random Walk

Technology Forecasting: Introduction

Reasons for technology forecasting:
Prioritize R\&D programs
Plan new product development
Make strategic decisions on tech licensing, joint ventures, etc.

Technology Forecasting: Moore’s Law

In 1965, Gordon Moore, an Intel co-founder predicted that the number of components per integrated circuits will double every year.

In 1975, he revised his forecast to doubling every 2 years (the original forecast had a small set of data points).

Exponential growth is a hallmark of computing and communications.

The Evolution of Microprocessors

Chip sizes have grown, but the bulk of increased complexity comes from higher density

Number of transistors in a processor chip:

Intel 4004 (1971): 2.3K
Intel 8088 (1979): 29K
ARM 3 (1989): 300K
Pentium (1993): 3.1M
AMD K7 (1999): 22M
Itanium 2 (2002): 220M
Six-core Xeon (2008): 1.9B
Sparc M7 (2015): 10B

Technology Forecasting for New Products

iGadget n being planned for 3 years hence:

Processor technology forecasting: speed, energy use
Memory technology forecasting: data capacity, cost per gigabyte
Display technology forecasting: resolution, thickness, contrast
Camera technology forecasting: pixels, aperture, cost, size
Battery technology forecasting: energy capacity, size, weight

Oct. 2018

Inventory Forecasting

Inventory has seasonal variations, as well as long-term trends
Million Barrels US Crude Oil Stocks

Predicting the Future

Slide 20

Stock-Market Prediction

Many factors affect market performance (as measured by indices)
Some believe that prediction in order to "time" the market is infeasible
Electronic trading has made prediction more difficult
Types of analysis: Fundamental (status of underlying company), technical (time-series), data mining (using artificial neural networks)

AMERICAN STOCK MARKET INDICES
Performance as on $28^{\text {th }}$ October 2014
INDICES CLOSE CHANGE CHANGE \% Nasdaq Composite 4564.29 78.36 1.75 S\&P 500 1985.05 23.42 1.19 DJIA 17005.75 187.81 1.12
www.linkedin.com/company/jhunjhunwalas

Market Prediction: One Particular Stock

Oct. 2018
THEN
Predicting the Future

Slide 22

Stock-Market Prediction: Short-Term

Short-term variations: Uses linear scale on the value axis

Dow Stock Market Trend Forecast to Jan 2015

By Nadeem Walayat

Oct. 2018
Predicting the Future

Stock-Market Prediction: Long-Term

Long-term variations: Uses logarithmic scale on the value axis

Stock-Market Prediction: Modeling

Models try to predict behavior or range of behaviors:
The so-called "black swan" effect may render most models useless

Stock-Market Prediction: Modeling (Continued)

http://2.bp.blogspot.com/-cDWOhZSCx1U/UI7bs0VX73I/AAAAAAAAGy0/zlweFXs0u4U/s1600/djia1900s.png

Stock-Market Prediction: Politics

http://www.buysellshort.net/wp-content/uploads/2012/09/DJIA-1900-to-20123.png

Program Branch Prediction

Analogies for Speculative Execution

Suppose you have a lot of free time early in the quarter:

You may look ahead in the textbook and try to guess which problems will be assigned as homework, and start thinking about or solving them If those problems are not assigned by the instructor, then your time and effort go to waste, but since you had free time, you may not mind this

Before computers, table-makers would pre-compute functions:
Some table entries may never be used by anyone, but for those who use some of the entries, the tables save much time
Use of tables is a modern method of speeding up computer arithmetic
Make your own analogy:

