Sorting Networks

A Lecture in CE Freshman Seminar Series:
Ten Puzzling Problems in Computer Engineering

About This Presentation

This presentation belongs to the lecture series entitled "Ten Puzzling Problems in Computer Engineering," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	May 2007	May 2008	May 2009	May 2010	May 2011
		May 2012	May 2015	May 2016	May 2020

Railroad Tracks and Switches

May 2020

Coupling and Decoupling of Train Cars

Train cars and engines can be coupled and decoupled quickly

An engine can push a string of cars, or pull a desired subset by decoupling them from the rest

Sorting Networks

Railroad Yards Have Many Tracks and Switches

May 2020
Sorting Networks

Rearranging Trains

Sorting algorithm: Assemble train in stub, beginning with the last car Repeat: If the next car is X , decouple train after X , push X into stub

Rearrangement with Change of Direction

Delivering Train Cars in a Specific Order

Cars in the train below have been sorted according to their delivery points. However, it is still nontrivial to deposit car A in stub 1, car B in stub 2, and car C in siding 3. Cars can be pulled or pushed by the engine.

Is there a better initial ordering of the cars for the deliveries in this puzzle?

Train Passing Puzzle

The trains below must pass each other using a siding that can hold only one car or one engine. Show how this can be done.

Q2: If the left and right trains have L and R cars, respectively, how many times will the siding be used for the trains to pass?

Fast Combining or Reordering of Train Cars

Sorting Train Cars in Parallel

The net in stick diagram schematic

Is adding this compare-exchange element sufficient for producing a valid sorting network?

Validating a Sorting Network

In the example above, it was fairly easy to show the validity of the sorting network. Generally, it is much more difficult

Stick diagram schematic the validity of this 16 -input sorting network?
More importantly, how does one come up with this design in the first place?

The Zero-One Principle

A sorting net built of comparators is valid if it correctly sorts all $0-1$ sequences

So, we can validate a sorting network using 2^{n} rather than n ! input patterns $n=12: \quad 2^{n}=4096, \quad n!=479,001,600$ (thousands vs. half a billion)

Slide 16

A 16-Input Sorting Network

Use 4-input sorters, follow by (4, 4)-mergers, and end with an (8, 8)-merger

Using the 0-1 principle, we can validate this network via $16+25+81$ tests

4-sorter tests
(4, 4)-merger tests
(8, 8)-merger tests

Sorting Networks

Insertion Sort and Selection Sort

3	3	3	0	0	0	0	0	0	0	
4	4	0	3	3	3	2	2	1	1	
0	0	4	4	4	2	3	1	2	2	
5		5	5	2	4	1	3		3	
2			2	5	1	4			4	
1							1	5		

Fig. 7.8 Sorting network based on insertion sort or selection sort.

The Best Sorting Networks

Cost \times Delay $=31 \times 7=217$

Criterion 1: The number of sticks or compare-exchange blocks (cost)
Criterion 2: The number of compare-exchanges in sequence (delay)
Criterion 3: The product of cost and delay (cost-effectiveness)
The most cost-effective n-input sorting network may be neither the fastest design, nor the lowest-cost design

Electronic Sorting Networks

Electronic sorting networks are built of 2-sorters building blocks

Applications of sorting networks:
Directing information packets to their destinations in a network router
Connecting n processors to n memory modules in a parallel computer
Q4: In the stick diagram of a 4-sorter on the top right, show that removing the top or bottom line and its comparators yields a valid 3 -sorter but that removing one of the two middle lines does not

