String Matching

A Lecture in CE Freshman Seminar Series:
Ten Puzzling Problems in Computer Engineering

Slide 1

About This Presentation

This presentation belongs to the lecture series entitled "Ten Puzzling Problems in Computer Engineering," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	May 2007	May 2008	May 2009	May 2010	May 2011
		May 2012	May 2015	May 2016	May 2020

Word Search Puzzles

Type 1, With Word List Supplied

S	E	A	L	P	V	C	A	T	P	A
W	A	S	A	B	A	C	G	U	G	L
I	D	S	P	W	L	F	L	I	V	I
T	A	E	A	C	V	L	T	M	O	N
C	S	M	W	T	E	A	L	E	A	T
H	X	B	W	Y	T	J	P	U	T	S
P	T	L	Q	O	H	C	T	U	L	C
X	R	Y	R	R	E	D	I	L	G	R
Z	S	L	O	R	T	N	O	C	T	E
G	N	I	L	P	U	O	C	Y	K	E
C	O	N	N	E	C	T	O	R	S	N

AGITATOR ASSEMBLY
CLUTCH
CONNECTORS
CONTROL
COUPLING

GLIDE
LINT SCREEN
PULLEY
SEAL
SWITCH VALVE

The puzzle below is a little harder than the normal word search: one of the 36 first/last names has been left out (which one?)
$\left.\begin{array}{llllllllllllll}Y & O & U & R & M & O & J & D & Z & E & R & N & A & S \\ O \\ S & U & S & A & N & A & R & A & B & R & A & B & H & T\end{array}\right]$

"Ten Puzzling Problems in Computer Engineering" Word Search

WORD LIST:
BINARY SEARCH BYZANTINE GENERALS CRYPTOGRAPHY
EASY HARD IMPOSSIBLE
MALFUNCTION DIAGNOSIS PLACEMENT AND ROUTING SATISFIABILITY
SORTING NETWORKS STRING MATCHING TASK SCHEDULING

Puzzle generated at:
http://puzzlemaker.school.discovery.com/WordSearchSetupForm.html

Word Search Puzzle

Type 2，With Clues Supplied for the Words to be Found

Seven birds
ㅁロロロロロロ
Five units of length
$\square \square \square \square \square$
Four currencies
$\square \square \square \square$
Two things football players wear $\square \square$

Large gland in the neck
\square

LEAGLE UROKR D P O X W Y A R D R X E O I E O T H Y R O I D T L H N S N T E T P B N E L A J C O Z S L M O I M A W Z O H C J N M I U N R K F J E R S E Y E L N B
V E G R E T X Z J T E D

USA Today’s＂Word Roundup＂for May 16，2007：http：／／puzzles．usatoday．com／

Q1：Solve the＂Word Roundup＂ puzzle shown above

Q2：Build a＂Word Roundup＂puzzle where the clue is＂ 15 country names．＂

Converting a 2D Search to 1D Searches

LEAGLEUROKRDPOXWYARDRXEOIEOTHYROIDTLHNSNTETPBNEL AJCOZSLMOIMAWZOHCJNMIUNRKF JERSEYELNBVEGRETXZJTED

LPIHAWKVEOENJZFEAXOSCOJGGWTNOHERLYHTZCREEAYESJST URRTLNEXRDOPMMYZORIBOIEJKXDNIULTRETEMNNEDOLLARBD

A Challenging Hybrid Word Search Puzzle

ESAHCGTSTHDREHTO
YIEMULEROWGRPENA
VNHAEBDATORLEEFN
AERSLANEAHAAEAGI
RDNIUINGSNTRTRMM
GZNAASESKDGOEHPE
CGLRRNIARTRELRDA
RMDAJCSAYBDAISOS
AONIONCCDORDOASO
PEPOCHHCRREMABSA
SHCAEPMIEODAIRTH
KDIMITOWNNWINOSC
CLUES
'House, M.D.'s Robert
"It makes its own \qquad
Dice game
Basketball position
Google "The"
Unit of time \& space
Fuzzy fruit
Shy

Japanese food - to an end"

Whooping bird Rapper Gold
Water goes down
Wacky witches
-White and
The Fifth Element

Sawdust quicts
Infintesimals
Deadly \sin
Deadly sin
Deadly \sin
Deadly \sin

- Runcway

Two-by-four
"Walk the \qquad "
Dolce
Drunks
Ethan Rayne
Japanese toons
Peter Gabriel's 'Curtains'
1 This 2.That 3 .
-The Italian Job's Seth

Word-Search Puzzle with a Twist

ARIAS
BRANDT
BRIAND
DUNANT
HULL
HUME
KING
MANDELA
MARSHALL
MONETA
MOTT
PAULING
PEARSON
PERES
RABIN
RENAULT
SADAT
SAKHAROV
WALESA

U	H	A	L	E	D	N	A	M	H
T	U	S	A	D	A	T	V	U	N
L	L	E	U	P	S	O	M	E	S
U	L	L					S	A	D
A	D	A					I	L	A
N	U	W					B	T	K
E	N	K					E	I	I
R	A	A	E	O	R	N	I	T	N
S	N	T	E	N	O	A	D	N	G
D	T	T	O	M	R	S	M	T	G

This "Missing Peace Puzzle" was used in a qualifying round of World Puzzle Championships.

Supply the 16 missing letters at the center of the grid so that the word-search puzzle contains 18 of the 19 names of Nobel Peace Prize winners listed.

Q3: Solve the word-search puzzle above and supply the missing name.

String Matching: Problem Definition

Given a data string with n symbols and a pattern string with m symbols:

1. Does the pattern string appear in the data string?
2. What are the locations of all occurrences of the pattern in the data?

The brute-force, or sliding window, algorithm
Consider all possible positions where the pattern might begin ($n-m+1$) For each start position, do up to m comparison to see if there is a match

Worst-case complexity $=\mathrm{O}(m n)$; e.g., pattern "aaaaa", data "aaaaaaaaaa"
Pattern string of length $m=5$ symbols: EAGLE
Data string of length $n=96$ symbols
EAGLE $12{ }_{36}$
LEAGLEUROKRDPOXWYARDRXEOIEOTHYROIDTLHNSNTETPBNEL AJCOZSLMOIMAWZOHCJNMIUNRKFJERSEYELNBVEGRETXZJTED

Converting 2D Search Puzzles to 1D Searches

A 2D word search puzzle looks more exotic but it can be readily converted to a 1D string search puzzle

Row-major order

LEAGLEUROEXTRAXWYARDRXEOIEOTHYROIDTLHNSNTETPBNEL
 AJCOZSLMOIMAWZOHCJNMIUNRKFJERSEYELNBVEGRETXZJTED

Insert a special symbol (\#) between rows to ensure that new words or patterns are not created by the expansion

LEAGLEUROEXT\#RAXWYARDRXEO\#IEOTHYROIDTL\#HNSNTETPBNEL\# AJCOZSLMOIMA\#WZOHCJNMIUNR\#KFJERSEYELNB\#VEGRETXZJTED\#

Column-major order $\quad\left|\begin{array}{l}\prime \prime \\ ,\end{array}\right| \quad$ Similarly for (anti)diagonal

Finding a Needle in a Haystack

Search for the 10 -symbol "needle" h-e-l-e-n- -h-u-n-t in the Internet "haystack" with many TBs of data

The brute force algorithm amounts to: "Look in this corner, now in this other corner, then over there, and so on."

The Internet holds some 1^{+}trillion pages, growing by billions a day; each page on average contains in excess of 10 KB , say
$m \cong 10$
$n \cong 10^{12} \times 10^{4}=10^{16} \mathrm{~B}=10 \mathrm{~PB}$ (Petabyte) $=0.01 \mathrm{~EB}$ (Exabyte)
$\mathrm{O}(\mathrm{mn}) \cong 10^{17}$ comparisons $\Rightarrow 10^{8} \mathrm{~s}$ (>3 years), with 10^{9} comparisons $/ \mathrm{s}$

Needle in a Haystack: Internet Search

Needle in a Haystack: Doing Less Work

For a particular pattern and unpredictable data strings, preprocess the pattern so that searching for it in various data strings becomes faster

Analogy: Magnetize the needle
For a particular data string and unpredictable patterns, preprocess the data string so that when a pattern is supplied, we can readily find it with much less work

Analogy: Do a thorough search of the haystack for different types of needles and place markers to guide future searches

Example of Preprocessing the Pattern String

Devise an efficient method for finding the pattern "abcbab" in various data strings formed from the symbols a, b and c

Data string:

String Matching
D

Example of Preprocessing the Data String

Devise an efficient method for finding various patterns in the data string:

a b	14
a b b	10
ab c	0, 6, 15, 19, 23
b a b	5, 9, 18, 22
b b a	4
b b b	3
b b c	11
b c a	12
b c b	1, 7, 16, 20, 24
c a a	13
$c \mathrm{~b}$ a	8, 17, 21
c b b	2, 25

Find all occurrences of the pattern "abcbab"

a b c c	$0,6,15,19,23$
b c b	$1,7,16,20,24$
c b a	$8,17,21$
b a b	$5,9,18,22$

a	b	c	0,	$6,15,19,23$
b	c	b	1,	$7,16,20,24$
c	b	a		$8,17,21$
b	a	b	5,	$9,18,22$

Q4: Use the index above to find the locations of $\mathrm{b} a \mathrm{~b} \mathrm{c}$ in the string.

Another Preprocessing Example: Suffix Tree

A suffix tree is a tree in which root-to-leaf paths correspond to all the suffixes of a string

Allows searching for a substring of length m in $O(m)$ time instead of $O(n)$ time.

Example: Does the string "mississippi\$" contain the substring "siss"? What about "pie"?

Image source:
http://docs.seqan.de/seqan/1.2/streeSentinel.png

Search Engine Indexes

Approximate String Matching

Notion of string distance

Each of the following transformations in a string creates a distance of 1

1. Insertion of an extra symbol
2. Deletion of a symbol
3. Transposition of two adjacent symbols

Example distance-1 strings	Example distance-2 strings for helen hunt:
for helen hunt:	

Wildcard symbols can help in formulating approximate string searches h * hunt means any string that begins with an " h ", ends with "hunt", and has an arbitrary set of symbols between the two
Melvyl (UC library catalog) allows such searches, e.g., author: hunt h*

The (DNA) Sequence Alignment Problem

Given sequences S1 and S2 composed of the letters A, C, G, T Determine their degree of similarity

S1: A G G G C T

S2: A G G C A
Application: Matching a given DNA sequence to a set of sequences in a database to find the best match

Dissimilarity arises from missing letters or mismatched letters
Alignment 1:
S1: A G G G C T
S2: A G G C A -

$$
\begin{aligned}
\text { Penalty } & =\mathrm{GC} \text { mismatch } \\
& +\mathrm{CA} \text { mismatch } \\
& +1 \mathrm{gap}
\end{aligned}
$$

Alignment 2:

S1: A G G G C T
S2: A G G - C A

Penalty = 1 gap

+ TA mismatch
Optimal alignment found via dynamic programming

A Couple of Bonus Word Search Puzzles

$$
\begin{aligned}
& \text { zrgrdrfgmisfzbksowwixkxfrres i: } \\
& \text { ailawrnsyxrshqetpdhtsiddavoca! }
\end{aligned}
$$

$$
\begin{aligned}
& q \mathbf{q} x q m f j v x c a w i q u v u s m s d s w s z n l u t:
\end{aligned}
$$

$$
\begin{aligned}
& j v j i g n p k e m w q n d j q m w i c f o z f f v i f \text { f }
\end{aligned}
$$

$$
\begin{aligned}
& \text { stutewmpuzzlersnalwaysctiold h }
\end{aligned}
$$

$$
\begin{aligned}
& a h r s p z v s d f r t h v i e t y e a z i c w a h j b f \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { vftrabuuchqpeuppmplautyfqrifz } \\
& \text { lywfozyoaxetheqctduvhpjomskg gi: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { butqoididuivynaksegpnfwndsfeix } \\
& \text { creaseimkcrossmhclouderbpclue: }
\end{aligned}
$$

ASTUTE	ALWAYS	BEND	BARON
BOLD	BOOK	CREASE	CROSS
CLOUD	CLUE	DOUBLE	EAR
EVE	FIT	FUR	GAG
GIG	GNU	GUN	HAIL
IRIS	JOCKEY		

May 2020

National US Monuments Wordsearch Puzzle

 dugonaty n at eg'f aroctiors

