
Mar. 2016 Seven Key Ideas in Computer Architecture Slide 1

Seven Key Ideas in Computer Architecture, 
from Seven Decades of  Innovation

Behrooz Parhami
University of California, Santa Barbara

2010s2000s
1990s

1980s

1970s

1960s

1950s

1940s



Mar. 2016 Seven Key Ideas in Computer Architecture Slide 2
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Some of the material in this talk come from, or will appear in 
updated versions of, my two computer architecture textbooks
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Seven Key Ideas in Computer Architecture, 
from Seven Decades of Innovation

Computer architecture became an established discipline
when the stored-program concept was incorporated into
bare-bones computers of the 1940s. Since then, the field has
seen multiple minor and major innovations in each decade.
I will present my pick of the most important innovation in
each of the seven decades, from the 1940s to the 2000s,
and show how these ideas, when connected to each other
and allowed to interact and cross-fertilize, led to the
phenomenal growth of computer performance, now
approaching exa-op/s (billion billion operations per second)
level, as well as to ultra-low-energy and single-chip systems.
I will also highlight developments in the current decade which
are candidates for the most important idea of the 2010s.
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نوآوری  دھه ھفت حاصلِ  کامپيوتر، معماریِ  در کليدی مفھومِ  ھفت

ی ذخيره شده  ی معماریِ کامپيوتر با پذيرش و کاربردِ مفھومِ برنامه رشته

دھه شاملِ چند  از آن ھنگام تا کنون، ھر. پايه گذاری شد ١٩۴٠ ی در دھه

من نو آوریِ  در اين سخنرانی،. است بوده بزرگ وکوچک نو آوریِ 

مطرح  ٢٠٠٠-١٩۴٠یِ  دھه از ھفت ھر يکبرایِ  رایِ خود  برگزيده

که چگونه روابط و کنش ھا بين اين مفاھيم ما را دھم و نشان می  کنم می  

رسانده و  ميليارد ميليارد عملِ محاسباتی در ثانيهبه مرز کار آيی در حدِ 

. ممکن ساخته استتک تراشه را   وفوقِ کم انرژی سيستم ھایِ ساختِ 

به  انتخابنامزدِ  توانند  یِ جاری را، که می نو آوریِ دھه در پايان، چند

.شمارمباشند، بر می   ٢٠١٠برایِ دھه ی  برگزيدهعنوانِ مفھومِ 
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Background: 
1820s-1930s

Difference 
Engine

Analytical Engine

Punched 
Cards

Program (Instructions)

Data (Variable values)
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Difference Engine: Fixed Program

Babbage’s Difference Engine 2
2nd-degree polynomial evaluation
Babbage used 7th-degree f(x)

D(2) D(1) f(x) x
x2+x+41
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Analytical Engine: 
Programmable

Ada Lovelace, 
world’s first programmer

Sample program >
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Electromechanical and
Plug-Programmable 
Computing Machines

Turing’s
Collosus

ENIAC

Zuse’s 
Z3

Punched-card device
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The Seven Key Ideas

Stored program

2000s
1990s

1980s

1970s

1960s

1950s

1940s

Microprogramming

Parallel processing

Cache memory

GPUs
FPGAs

Pipelining
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1940s: Stored Program
Exactly who came up with the 
stored-program concept is unclear
Legally, John Vincent Atanasoff is 
designated as inventor, but many 
others deserve to share the credit

Atanasoff

von Neumann

Turing

MauchlyEckert

Babbage



Seven Key Ideas in Computer Architecture Slide 12

First Stored-Program Computer
Manchester Small-Scale Experimental Machine 
Ran a stored program on June 21, 1948 
(Its successor, Manchester Mark 1, operational in April 1949)

EDSAC (Cambridge University; Wilkes et al.)
Fully operational on May 6, 1949

EDVAC (IAS, Princeton University; von Neumann et al.)
Conceived in 1945 but not delivered until August 1949

BINAC (Binary Automatic Computer, Eckert & Mauchly)
Delivered on August 22, 1949, but did not function correctly

Source: Wikipedia
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von Neumann vs. Harvard Architecture

Harvard architecture
(separate memories for code & data)
Better protection of programs
Higher aggregate memory bandwidth
Memory optimization for access type

von Neumann architecture
(unified memory for code & data)
Programs can be modified like data
More efficient use of memory space 
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1950s: Microprogramming
Traditional control unit design (multicycle): Specify which control 
signals are to be asserted in each cycle and synthesize

 
State 0 

InstData = 0   
MemRead = 1 

IRWrite = 1  
ALUSrcX = 0 
ALUSrcY = 0  
ALUFunc = ‘+’ 

PCSrc = 3 
PCWrite = 1 

Start 

Cycle 1 Cycle 3 Cycle 2 Cycle 1 Cycle 4 Cycle 5 

ALU- 
type 

lw/ 
sw lw 

sw 

State 1 
 

ALUSrcX = 0 
ALUSrcY = 3 
ALUFunc = ‘+’ 

State 5 
ALUSrcX = 1 
ALUSrcY = 1 
ALUFunc = ‘’ 
JumpAddr = % 

PCSrc = @ 
PCWrite = # 

State 8 
 

RegDst = 0 or 1 
RegInSrc = 1 
RegWrite = 1 

State 7 
 

ALUSrcX = 1 
ALUSrcY = 1 or 2 
ALUFunc = Varies 

State 6 
 

InstData = 1  
MemWrite = 1 

State 4 
 

RegDst = 0 
RegInSrc = 0 
RegWrite = 1 

State 2 
 

ALUSrcX = 1 
ALUSrcY = 2 
ALUFunc = ‘+’ 

State 3 
 

InstData = 1  
MemRead = 1 

 Jump/ 
Branch 

Notes for State 5: 
%   0 for j or jal, 1 for syscall,  
      don’t-care for other instr’s 
@  0 for j, jal, and syscall,  
      1 for jr, 2 for branches 
 #   1 for j, jr, jal, and syscall, 
      ALUZero () for beq (bne), 
      bit 31 of ALUout for bltz 
For jal, RegDst = 2, RegInSrc = 1, 
      RegWrite = 1  

Note for State 7: 
ALUFunc is determined based  
on the op and fn fields 

Gives rise to 
random logic

Error-prone 
and inflexible

Hardware 
bugs hard to 
fix after 
deployment

Design from 
scratch for 
each system
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The Birth of Microprogramming
The control state machine resembles a program (microprogram) 
comprised of instructions (microinstructions) and sequencing

Every 
instruction
contains a 
branch field

 
State 0 

InstData = 0   
MemRead = 1 

IRWrite = 1  
ALUSrcX = 0 
ALUSrcY = 0  
ALUFunc = ‘+’ 

PCSrc = 3 
PCWrite = 1 

Start 

Cycle 1 Cycle 3 Cycle 2 Cycle 1 Cycle 4 Cycle 5 

ALU- 
type 

lw/ 
sw lw 

sw 

State 1 
 

ALUSrcX = 0 
ALUSrcY = 3 
ALUFunc = ‘+’ 

State 5 
ALUSrcX = 1 
ALUSrcY = 1 
ALUFunc = ‘’ 
JumpAddr = % 

PCSrc = @ 
PCWrite = # 

State 8 
 

RegDst = 0 or 1 
RegInSrc = 1 
RegWrite = 1 

State 7 
 

ALUSrcX = 1 
ALUSrcY = 1 or 2 
ALUFunc = Varies 

State 6 
 

InstData = 1  
MemWrite = 1 

State 4 
 

RegDst = 0 
RegInSrc = 0 
RegWrite = 1 

State 2 
 

ALUSrcX = 1 
ALUSrcY = 2 
ALUFunc = ‘+’ 

State 3 
 

InstData = 1  
MemRead = 1 

 Jump/ 
Branch 

Notes for State 5: 
%   0 for j or jal, 1 for syscall,  
      don’t-care for other instr’s 
@  0 for j, jal, and syscall,  
      1 for jr, 2 for branches 
 #   1 for j, jr, jal, and syscall, 
      ALUZero () for beq (bne), 
      bit 31 of ALUout for bltz 
For jal, RegDst = 2, RegInSrc = 1, 
      RegWrite = 1  

Note for State 7: 
ALUFunc is determined based  
on the op and fn f ields 

PC  
control 

Cache 
control 

Regis ter 
control 

ALU 
inputs 

Jum pAddr 
PCSrc 

PCWrite 

Ins tData 
Mem Read 

Mem Write 
IRWrite  

FnType  
LogicFn 

Add Sub  
ALUSrcY 

ALUSrcX 
RegInSrc 

RegDs t 
RegWrite 

Sequence 
control 

ALU 
function 

Maurice V. Wilkes
(1913-2010)
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Microprogramming Implementation
Each microinstruction controls the data path for one clock cycle

Program

Microprogram 
memory or PLA 

op (from 
instruction  
register) Control signals to data path 

Address 
 1 

Incr 

MicroPC 

Data 

 0 

Sequence 
control

 0 
 1 
 2 
 3 

Dispatch 
table 1 

Dispatch 
table 2 

Microinstruction register 

fetch: -----
-----
-----

andi: -----
-----

Multiway 
branch

 
State 0 

InstData = 0   
MemRead = 1 

IRWrite = 1  
ALUSrcX = 0 
ALUSrcY = 0  
ALUFunc = ‘+’ 

PCSrc = 3 
PCWrite = 1 

Start 

Cycle 1 Cycle 3 Cycle 2 Cycle 1 Cycle 4 Cycle 5 

ALU- 
type 

lw/ 
sw lw 

sw 

State 1 
 

ALUSrcX = 0 
ALUSrcY = 3 
ALUFunc = ‘+’ 

State 5 
ALUSrcX = 1 
ALUSrcY = 1 
ALUFunc = ‘’ 
JumpAddr = % 

PCSrc = @ 
PCWrite = # 

State 8 
 

RegDst = 0 or 1 
RegInSrc = 1 
RegWrite = 1 

State 7 
 

ALUSrcX = 1 
ALUSrcY = 1 or 2 
ALUFunc = Varies 

State 6 
 

InstData = 1  
MemWrite = 1 

State 4 
 

RegDst = 0 
RegInSrc = 0 
RegWrite = 1 

State 2 
 

ALUSrcX = 1 
ALUSrcY = 2 
ALUFunc = ‘+’ 

State 3 
 

InstData = 1  
MemRead = 1 

 Jump/ 
Branch 

Notes for State 5: 
%   0 for j or jal, 1 for syscall,  
      don’t-care for other instr’s 
@  0 for j, jal, and syscall,  
      1 for jr, 2 for branches 
 #   1 for j, jr, jal, and syscall, 
      ALUZero () for beq (bne), 
      bit 31 of ALUout for bltz 
For jal, RegDst = 2, RegInSrc = 1, 
      RegWrite = 1  

Note for State 7: 
ALUFunc is determined based  
on the op and fn f ields 

Instr
Instr

Instr
InstrInstr

Instr
Instr

Instr
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1960s: Parallel Processing
Associative (content-addressed) memories and other forms 
of parallelism (compute-I/O overlap, functional parallelism) 
had been in existence since the 1940s

Highly parallel machine, proposed by Daniel Slotnick in 1964, 
later morphed into ILLIAC IV in 1968 (operational in 1975)

Michael J. Flynn devised his now-famous 4-way taxonomy 
(SISD, SIMD, MISD, MIMD) in 1966 and Amdahl formulated 
his speed-up law and rules for system balance in 1967

SRAM Binary CAM Ternary CAM
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The ILLIAC IV Concept: SIMD Parallelism

The interprocessor
routing network is 
only partially shown

0
1
2
3

299
298

0
1
2
3

299
298

0
1
2
3

299
298

0
1
2
3

299
298

Mem. 
   0

Mem. 
  1

Mem. 
  63

Mem. 
   2

Control Unit Host
(B6700)

. . .

Mode
Data Control

Fetch data or 
instructions

Proc. 
   0

Proc. 
   1

Proc. 
  63

Proc. 
   2

. . . To Proc. 0To Proc. 63

. . .
Synchronized      
Disks 
(Main Memory)

Band 0 Band 1 Band 2 Band 51

Common control unit 
fetches and decodes 
instructions, 
broadcasting the
control signals 
to all PEs

Each PE executes or 
ignores the instruction 
based on local, data-
dependent conditions
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Various Forms of MIMD Parallelism
Global shared memory
- Memory latency
- Memory bandwidth
- Cache coherence

0 0 

1 1 

 

Processor-
to-memory 

network 

p-1 m-1 

Processor-
to-processor 

network 

Processors Caches Memory 
modules 

Parallel I/O 

. . . 

. 

. 

. 

. 

. 

. 
0 

1 

 

Interconnection 
network 

p-1 

Processors 

Parallel I/O 

. 

. 

. 

. 

. 

. 

 

 

 

Memories 

Distributed shared memory or 
message-passing architecture
- Scalable network performance
- Flexible and more robust
- Memory consistency model

Wall
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Warehouse-Sized Data Centers

Image from 
IEEE Spectrum, 
June 2009
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Top 500 Supercomputers in the World

Sum

#500

#1
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The Shrinking Supercomputer
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1970s: Cache Memory
First paper on “buffer” memory: Maurice Wilkes, 1965

First implementation of a general cache memory: 
IBM 360 Model 85 (J. S. Liptay; IBM Systems J., 1968)

Broad understanding, varied implementations, and studies 
of optimization and performance issues in the 1970s

CPU 
chip

Modern cache implementations

- Harvard arch for L1 cashes

- von Neumann arch higher up

- Many other caches in system 
besides processor cashes
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Memory Hierarchy
Hierarchical memory provides the illusion that

high speed and large size are achieved simultaneously

Tertiary 
Secondary 

Main 

Cache 2 

Cache 1 

Reg’s $Millions
$100s Ks

$10s Ks 

$1000s  

$10s  

$1s  

Cost per GB Access latency  Capacity 

TBs 
10s GB 

100s MB 

 MBs  

 10s KB  

 100s B  

min+ 
10s ms 

100s ns 

10s ns  

 a few ns  

  ns  

Speed 
gap  
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Hit/Miss Rate, and Effective Cycle Time 

One level of cache with hit rate h
Ceff =  hCfast + (1 – h)(Cslow + Cfast) = Cfast + (1 – h)Cslow

CPU Cache
(fast)

memory

Main
(slow)

memory

Reg 
file

Word
Line

Data is in the cache 
fraction h of the time
(say, hit rate of 98%)

Go to main 1 – h of the time
(say, cache miss rate of 2%)

Cache is transparent to user;
transfers occur automatically
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The Locality Principle
Addresses

Time

From Peter Denning’s CACM paper, 
July 2005 (Vol. 48, No. 7, pp. 19-24)

Temporal:
Accesses to the 
same address 
are typically 
clustered in time

Spatial:
When a location 
is accessed, 
nearby locations 
tend to be 
accessed also

Working set

Illustration of temporal and spatial localities
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Summary of Memory Hierarchy

 Pages 
 Lines 

 Words 

 Registers 

 Main memory 

 Cache 

 Virtual  
memory 

 (transferred 
explicitly 

via load/store) 
 (transferred 
automatically  

upon cache miss) 
 (transferred 
automatically  

upon page fault) 

Cache memory: 
provides illusion 
of very high speed

Virtual memory: 
provides illusion of 
very large size

Main memory: 
reasonable cost, 
but slow & small

Locality 
makes 
the 
illusions 
work
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Translation Lookaside Buffer

Virtual-to-physical address translation by a TLB and how the 
resulting physical address is used to access the cache memory.

Virtual 
page number 

 Byte 
 offset 

Byte offset  
in word 

Physical 
address tag 

Cache index 

Valid 
bits 

TLB  tags 

Tags match 
and entry 
is valid 

Physical 
page number Physical 

address 

Virtual 
address 

Tr
an

sl
at

io
n 

Other 
flags 

...
lw $t0,0($s1)
addi $t1,$zero,0

L: add $t1,$t1,1
beq $t1,$s2,D
add $t2,$t1,$t1
add $t2,$t2,$t2
add $t2,$t2,$s1
lw $t3,0($t2)
slt $t4,$t0,$t3
beq $t4,$zero,L
addi $t0,$t3,0
j L

D: ...

Program page in virtual memory

All instructions on this 
page have the same 
virtual page address 
and thus entail 
the same translation
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Disk Caching and Other Applications

Web caching
- Client-side caching
- Caching within the cloud
- Server-side caching

1. Head movement  
from current position 
to desired cylinder:  
Seek time (0-10s ms)

Rotation 

2. Disk rotation until the desired 
sector arrives under the head: 
Rotational latency (0-10s ms) 3. Disk rotation until sector 

has passed under the head: 
Data transfer time (< 1 ms) 

Sector 

1 
2 

3 
Disk 

Cache 
(DRAM)

Entire track 
copied into 
fast cache
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1980s: Pipelining
An important form of parallelism that is given its own name
Used from early days of digital circuits in various forms

 

+ 

 

 

 

/  

 
/ 

 
 

+ 

Pipelining period 
Latency 

t = 0 

Latch positions in a four-stage pipeline 

a 
b 

c 
d 

e 
f 

z 

Output  
available 

Time 

(a + b) c d 
e  f 
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Vector Processor Implementation

  

Function unit 1 pipeline 

To
 a

nd
 fr

om
 m

em
or

y 
un

it 

From scalar registers 

Vector 
register 

file 

Function unit 2 pipeline 

Function unit 3 pipeline 

Forwarding muxes 

Load 
unit A 

Load 
unit B 

Store 
unit 
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Overlapped Load/Store and Computation

Vector processing via segmented load/store of vectors 
in registers in a double-buffering scheme. Solid (dashed) 
lines show data flow in the current (next) segment.

Vector reg 0 

Vector reg 1 

Vector reg 5 

Vector reg 2 

Vector reg 3 

Vector reg 4 

Load X  

Load Y  

Store Z 

To
 a

nd
 fr

om
 m

em
or

y 
un

it 
 

Pipelined adder 
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Simple Instruction-Execution Pipeline
  Cycle 7   Cycle 6   Cycle 5    Cycle 4   Cycle 3   Cycle 2   Cycle 1   Cycle 8 

  Reg 
file 

   Reg 
file  ALU 

 
 

  Reg 
f ile 

   Reg 
f ile  ALU 

 
 

  Reg 
file 

   Reg 
f ile  ALU 

 
 

  Reg 
file 

   Reg 
f ile  ALU 

 
 

  Reg 
f ile 

   Reg 
f ile  ALU 

 
 

  Cycle 9 

Instr 
cache 

Instr 
cache 

Instr 
cache 

Instr 
cache 

Instr 
cache 

Data 
cache 

Data 
cache 

Data 
cache 

Data 
cache 

Data 
cache 

Time dimension 

Task 
dimension 

  I
ns

tr 
1 

  I
ns

tr 
2 

  I
ns

tr 
3 

  I
ns

tr 
4 

  I
ns

tr 
5 
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Pipeline Stalls or Bubbles

  Cycle 7   Cycle 6   Cycle 5   Cycle 4   Cycle 3   Cycle 2   Cycle 1   Cycle 8 

  Reg 
file 

   Reg 
f ile  ALU 

 
 

  Reg 
file 

   Reg 
f ile  ALU 

 
 

  Reg 
file 

   Reg 
file  ALU 

 
 

  Reg 
f ile 

   Reg 
file  ALU 

 

$5 = $6 + $7 

$8 = $8 + $6 

$9 = $8 + $2 

sw $9, 0($3) 

Data 
forwarding 

Instr 
cache 

 

Instr 
cache 

 

Instr 
cache 

 

Instr 
cache 

 

Data 
cache 

 

Data 
cache 

 

Data 
cache 

 

Data 
cache 

 

Data dependency and its possible resolution via forwarding
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Problems Arising from Deeper Pipelines

Data   
cache 

Instr   
cache 

 
 

 
 

   

Data   
cache 

Instr   
cache 

 
 

 
 

   

Data   
cache 

Instr   
cache 

 
 

 
 

   

Reg 
f ile 

Reg 
f ile ALU 

 
 

Reg 
f ile 

Reg 
f ile ALU 

 
 

Reg 
file 

Reg 
file ALU 

 
 

Instruction 
fetch 

 

Register 
readout 

 

ALU 
operation 

 

Data 
read/store 

 

Register 
writeback 

 
PC 

 

Forwarding more complex and not always workable
Interlocking/stalling mechanisms needed to prevent errors
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Branching and Other Complex Pipelines

 
 

Stage 1 

Instr cache 

Instruction fetch 

Function unit 1 

Function unit 2 

Function unit 3 

Stage 2 Stage 3 Stage 4 Variable # of stages Stage q2 Stage q1  Stage q 

Ope- 
rand 
prep 

 

Instr 
decode 

 

Retirement & commit stages 

Instr 
issue 

 

Stage 5 

Front end: In-order or out-of-order
Instr. issue: In-order or out-of-order
Write-back: In-order or out-of-order
Commit: In-order or out-of-order

The more OoO stages,
the higher the complexity
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1990s: FPGAs
Programmable logic arrays were developed in the 1970s

PLAs provided cost-effective and flexible replacements for 
random logic or ROM/PROM

The related programmable array logic devices came later

PALs were less flexible than PLAs, but more cost-effective

PLA PAL
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Why FPGA Represents a Paradigm Shift
Modern FPGAs
can implement
any functionality

Initially used only 
for prototyping

Even a complete 
CPU needs a 
small fraction of an 
FPGA’s resources

FPGAs come with 
multipliers and IP 
cores (CPUs/SPs)

LB or 
cluster

Vertical wiring channels

LB or 
cluster

LB or 
cluster

LB or 
cluster

LB or 
cluster

LB or 
cluster

LB or 
cluster

LB or 
cluster

LB or 
cluster

Switch 
box

Switch 
box

Switch 
box

Horizontal 
wiring 

channels

Switch 
box
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FPGAs Are Everywhere
Applications are found in virtually all industry segments:

Aerospace and defense 
Medical electronics 
Automotive control 
Software-defined radio 
Encoding and decoding 
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Example: Bit-Serial 2nd-Order Digital Filter

f

x

x

x

(i)

(i–1)

(i–2)

j

j

j

y (i–1)
j

y (i–2)
j

LSB-first y (i)

±

Input

32-Entry 
  Table 
 (ROM)

 Output 
  Shift 
Register

(m+3)-Bit 
 Register

Data Out

Address In

s

Right-Shift

LSB-first
Output

Shift
Reg.

Shift
Reg.

Shift
Reg.

Shift
Reg.

Registeri th 
input

(i – 1) th 
input

(i – 2) th 
input

(i – 1) th 
output

i th output 
being formed

(i – 2) th 
output

Copy at 
the end 
of cycle

32-entry 
lookup
table

LUTs, registers, and an adder are all we need for 
linear expression evaluation: y(i) = ax(i) + bx(i–1) + cx(i–2) + dy(i–1) + ey(i–2)
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2000s: GPUs
Simple graphics and signal processing units were used 
since the 1970s

In the early 2000s, the two major players, ATI and Nvidia, 
produced powerful chips to improve the speed of shading

In the late 2000s, GPGPUs (extended stream processors) 
emerged and were used in lieu of, or in conjunction with, 
CPUs in high-performance supercomputers

GPUs are faster and more power-efficient than CPUs.

GPUs use a mixture of parallel processing and functional 
specialization to achieve super-high performance
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CPU vs. GPU Organization
Small number of powerful cores

versus
Very large number of simple stream processors

Demo (analogy for MPP): https://www.youtube.com/watch?v=fKK933KK6Gg
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CPU vs. GPU Performance
Peak performance (GFLOPS) and peak data rate (GB/s)
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General-Purpose Computing on GPUs
Suitable for numerically intensive matrix computations
First application to run faster on a GPU was LU factorization
Users can ignore GPU features and focus on problem solving
- Nvidia CUDA Programming System
- Matlab Parallel Computing Toolbox
- C++ Accelerated Massive Parallelism 

Many vendors now give users direct access to GPU features

Example system (Titan):
Cray XK7 at DOE’s Oak 
Ridge Nat’l Lab used more 
than ¼ M Nvidia K20x cores 
to accelerate computations
(energy-efficient: 2+ gigaflops/W)



Mar. 2016 Seven Key Ideas in Computer Architecture Slide 45

The Seven Key Ideas

Stored program

2000s
1990s

1980s

1970s

1960s

1950s

1940s

Microprogramming

Parallel processing

Cache memory

GPUs
FPGAs

Pipelining

Design advances
Performance improvements
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Innovations for Improved Performance
(Parhami: Computer Architecture, 2005)

Architectural method Improvement factor

1. Pipelining (and superpipelining) 3-8 √
2. Cache memory, 2-3 levels 2-5 √
3. RISC and related ideas 2-3 √
4. Multiple instruction issue (superscalar) 2-3 √
5. ISA extensions (e.g., for multimedia) 1-3 √
6. Multithreading (super-, hyper-) 2-5 ?
7. Speculation and value prediction 2-3 ?
8. Hardware acceleration [e.g., GPU] 2-10 ?
9. Vector and array processing 2-10 ?

10. Parallel/distributed computing 2-1000s ?
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Available computing power ca. 2000:
GFLOPS on desktop 
TFLOPS in supercomputer center
PFLOPS on drawing board

Computer performance grew by a factor
of about 10000 between 1980 and 2000

100 due to faster technology 
100 due to better architecture
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Source: “CPU DB: Recording Microprocessor History,” CACM, April 2012.

Feature Size (m)

Overall Performance Improvement
(SPECINT, relative to 386)

Gate Speed Improvement
(FO4, relative to 386)

~1985 ~2010--------- 1995-2000 ---------
Much of arch. improvements already achieved

Shares of Technology and Architecture 
in Processor Performance Improvement

~2005
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2010s and Beyond: Looking Ahead
Design improvements
- Adaptation and self-optimization (learning) 
- Security (hardware-implemented) 
- Reliability via redundancy and self-repair
- Logic-in-memory designs (memory wall)
- Mixed analog/digital design style

Performance improvements
- Revolutionary new technologies
- New computational paradigms
- Brain-inspired and biological computing
- Speculation and value prediction  
- Better performance per watt (power wall)
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We Need More than Sheer Performance
Environmentally responsible design
Reusable designs, parts, and material

Power efficiency
Starting publication in 2016: IEEE Transactions on Sustainable Computing



Questions or Comments?
parhami@ece.ucsb.edu 

http://www.ece.ucsb.edu/~parhami/
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Back-Up Slides

Behrooz Parhami
University of California, Santa Barbara

2010s2000s
1990s

1980s

1970s

1960s

1950s

1940s
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NRC Report (2011): The Future of Computing Performance: Game Over or Next Level?

Trends in Processor Chip Density, Performance, 
Clock Speed, Power, and Number of Cores

Density

Perf’ce

Power

Cores

Clock
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Peak Performance of Supercomputers
PFLOPS

TFLOPS

GFLOPS
1980 20001990 2010

Earth Simulator

ASCI White Pacific

ASCI Red

Cray T3DTMC CM-5

TMC CM-2Cray X-MP

Cray 2

 10 / 5 years

Dongarra, J., “Trends in High Performance Computing,”
Computer J., Vol. 47, No. 4, pp. 399-403, 2004. [Dong04]
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The Quest for Higher Performance

1. Cray Titan 2. IBM Sequoia 3. Fujitsu K Computer
ORNL, Tennessee LLNL, California RIKEN AICS, Japan

XK7 architecture Blue Gene/Q arch RIKEN architecture

560,640 cores,          
710 TB,  Cray Linux

1,572,864 cores,    
1573 TB,  Linux

705,024 cores,       
1410 TB, Linux

Cray Gemini interconn’t Custom interconnect Tofu interconnect

17.6/27.1 PFLOPS* 16.3/20.1 PFLOPS* 10.5/11.3 PFLOPS*

AMD Opteron, 16-core, 
2.2 GHz, NVIDIA K20x

Power BQC, 16-core, 
1.6 GHz

SPARC64 VIIIfx,          
2.0 GHz

8.2 MW power 7.9 MW power 12.7 MW power

Top Three Supercomputers in November 2012 (http://www.top500.org)

* max/peak performance
In the top 10, IBM also holds ranks 4-7 and 9-10. Dell and NUDT (China) hold ranks 7-8.
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The Flynn/Johnson Classification
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Shared-Control Systems

From completely shared control 
to totally separate controls.

(a) Shared-control array 
processor, SIMD 

(b) Multiple shared controls,  
MSIMD 

(c) Separate controls, 
MIMD 

Processing Control 
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MIMD Architectures
Control parallelism: executing several instruction streams in parallel

GMSV: Shared global memory – symmetric multiprocessors
DMSV: Shared distributed memory – asymmetric multiprocessors
DMMP: Message passing – multicomputers

Centralized shared memory Distributed memory
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Past and Current Performance Trends

0.06 MIPS (4-bit processor)

Intel 4004: The first p (1971) Intel Pentium 4, circa 2005

10,000 MIPS (32-bit processor)

8008

8080

8084
8-bit

8086

80186

80286
16-bit

8088

80188

80386

Pentium, MMX

Pentium Pro, II32-bit

80486

Pentium III, M

Celeron
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Energy Consumption is Getting out of Hand

1990 1980 2000 2010
kIPS 

MIPS 

GIPS 

TIPS 
P

er
fo
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an
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Calendar year 

Absolute 
processor 

performance 

GP processor 
performance 

per watt 

DSP performance 
per watt 
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Amdahl’s Law
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Amdahl’s System Balance Rules of Thumb
The need for high-capacity, high-throughput secondary (disk) memory

Processor 
speed

RAM 
size 

Disk I/O 
rate

Number of 
disks

Disk 
capacity

Number of 
disks

1 GIPS 1 GB 100 MB/s 1 100 GB 1

1 TIPS 1 TB 100 GB/s 1000 100 TB 100

1 PIPS 1 PB 100 TB/s 1 Million 100 PB 100 000

1 EIPS 1 EB 100 PB/s 1 Billion 100 EB 100 Million

G Giga
T Tera
P Peta
E Exa

1 RAM byte
for each IPS

100 disk bytes
for each RAM byte

1 I/O bit per sec
for each IPS
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Design Space for Superscalar Pipelines
Front end: In-order or out-of-order
Instr. issue: In-order or out-of-order
Writeback: In-order or out-of-order
Commit: In-order or out-of-order

The more OoO stages,
the higher the complexity

Example of complexity due to
out-of-order processing: 
MIPS R10000

Source: Ahi, A. et al., “MIPS R10000
Superscalar Microprocessor,”
Proc. Hot Chips Conf., 1995.
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Instruction-Level Parallelism

Available instruction-level parallelism and the speedup due to 
multiple instruction issue in superscalar processors [John91].
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Speculative Loads

Examples of software speculation in IA-64.

 
---- 
---- 
---- 
---- 
load 
---- 
---- 
 

spec load 
---- 
---- 
---- 
---- 
check load 
---- 
---- 
 

(a) Control speculation 

 
---- 
---- 
store 
---- 
load 
---- 
---- 
 

spec load 
---- 
---- 
store 
---- 
check load 
---- 
---- 
 

(b) Data speculation 



Mar. 2016 Seven Key Ideas in Computer Architecture Slide 65

Value Prediction

Value prediction for multiplication or division via a memo table.

  Mult/ 
Div 

 

Memo table 

Control 

Mux 

Inputs 

Inputs ready 

Output  

Output ready 

0 

1 

Miss 

Done 
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Implementing Symmetric Multiprocessors

Structure of a generic bus-based symmetric multiprocessor.

 

Computing nodes 
(typically, 1-4 CPUs 

and caches per node) 

 

Interleaved memory 

       

Bus adapter 

 
 

I/O modules 
 

Standard interfaces 

Bus adapter 

Very wide, high-bandwidth bus 
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Interconnection Networks

Examples of direct and indirect interconnection networks.

(a) Direct network (b) Indirect network 

Routers Nodes Nodes
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Direct 
Interconnection 

Networks

A sampling of common direct interconnection networks. 
Only routers are shown; a computing node is implicit for each router.

(a) 2D torus (b) 4D hypercube 

(c) Chordal ring (d) Ring of rings 
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Graphic Processors, Network Processors, …

Simplified block diagram of Toaster2, 
Cisco Systems’ network processor.
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Computing in the Cloud

Image from Wikipedia

Computational resources,
both hardware and software,
are provided by, and 
managed within, the cloud

Users pay a fee for access

Managing / upgrading is 
much more efficient in large, 
centralized facilities 
(warehouse-sized data 
centers or server farms)

This is a natural continuation of the outsourcing trend for special services, 
so that companies can focus their energies on their main business


