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– Residue number system (RNS)
– The brain and numeracy

• Hybrid Numbers and Arithmetic
– Historical perspective
– Some hybrid representations
– Nobel Prize in medicine, 2014

• Continuous-Digits RNS
– CD-RNS models rat’s navigation
– Different from discrete RNS
– Dynamic range and precision
– Other properties and challenges

• Conclusions and Future Work



4

Abstract
The discovery that mammals use a multi-modular method 
akin to residue number system (RNS), but with continuous 
residues or digits, to encode position information led to the 
award of the 2014 Nobel Prize in Medicine. After a brief 
review of the evidence in support of this hypothesis, and how 
it relates to RNS, I discuss the properties of continuous-digit 
RNS, and discuss results on the dynamic range, 
representational accuracy, and factors affecting the choice of 
the moduli, which are themselves real numbers. I then take a 
step back and briefly explore hybrid digital-analog number 
representations and their robustness and noise-immunity 
advantages more generally. I conclude with suggestions for 
further research on important open problems in the domain of 
hybrid digital-analog number representation and processing.
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Parallel processing
Parallelism used extensively in human brain 
and other natural systems

Dependable (fault-tolerant) computing
The self-healing amphibian axolotl
can regenerate a near-perfect replica 
of almost any body part it loses

Computer arithmetic
My subject area today: Use of residue
representation in rat’s navigational system

7

How Looking at Nature Helps my Research
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Analog Computation Is Back!
Digital data has been replacing analog data for years: 
From 1986 to 2007, share of digital stored data went from 
near-zero to 90%; a decade later, digital was fully dominant

We now struggle with complexity and energy limitations: 
The solution seems to be approximate & analog computing

Hybrid digital/analog can give us the best of both worlds: 
Digital’s higher latency and power used only when needed

Hence, multi-resolution representations are desirable: 
Combine fast, efficient low-precision computation with slower, 
energy-intensive high-precision computation



Analog Computers as Simulators
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Tide-Predicting
Machine, 1880s

(Wikipedia)

X-15
Orbiter 

Simulator
(Wikipedia)

Telefunken
RAT 700/2

(Computer 
History Museum)

Pace TR-48:
Programming
via Plugboard



A/D and D/A Conversion
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• Analog-to-Digital 
– Sound from microphone
– IoT instruments/sensors
– Resolution, linearity, speed

• Digital-to-Analog
– Sound output to speakers
– Motor control (motion)
– Resolution, range, speed

3-Bit D/A Converter
with Summing Amp



• Pairwise prime moduli:  mk–1 > . . . > m1 > m0

• Representation of x:  {ri = x mod mi | 0  i  k – 1}
• RNS dynamic range: M = 0 i k–1 mi   

– Unsigned in [0, M – 1]
– Signed in [–M/2, M/2 – 1]

• RNS arithmetic algorithms
– Digitwise add, sub, mult
– Difficult div, sign test, compare

11

Residue Number System (RNS)

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result



Puzzle, due to the Chinese scholar Sun Tzu,1500+ years ago: 

What number has the remainders of 2, 3, and 2 
when divided by 7, 5, and 3, respectively? 

Residues (akin to digits in positional systems) uniquely identify the 
number, hence they constitute a representation: (2 | 3 | 2)RNS(7|5|3)

In a weird way, RNS is a weighted representation

For RNS(7 | 5 | 3), the weights of the 3 positions are:

15 21 70

Example -- Chinese puzzle:  (2 | 3 | 2)RNS(7|5|3) represents the number

15  2  +  21  3  +  70  2105 =  233105 =  23

12

RNS: An Ancient Chinese Puzzle



Puzzle, due to the Chinese scholar Sun Tzu,1500+ years ago: 

What number has the remainders of 2, 3, and 2 
when divided by 7, 5, and 3, respectively? 

              0    10           20      30           40    50

2 mod 7:   2    9   16    23    30    37    44    51

3 mod 5:     3  8        13      18    23      28      33       38      43        48

2 mod 3:    2    5     8   11  14  17   20   23   26  29  32  35  38   41  44  47  50

Each residue specifies a set of possible numbers or solutions to the puzzle

Intersection of the sets is the answer

13

RNS Representation
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Forward and Reverse Conversions

Binary
Inputs

One or more 
arithmetic 
Operations

Binary
OutputBinary-to-

RNS 
converter

RNS-to-
binary 

converter

Encoding or 
forward 

conversion

Decoding or 
reverse 

conversion

The more the amount of computation performed between the 
initial forward conversion and final reverse conversion (reconversion), 
the greater the benefits of RNS representation.

Example: 
Digital filter

14
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Three Related Abilities of the Brain
Sense of numbers
    Basics wired-in by evolution
    Advanced numeracy is learned

Sense of time
    Your Brain Is a Time Machine 
    Mechanisms for different time scales

Sense of place
    Location on different scales
    “Maps” of our surroundings
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Sense of Numbers in Humans and Animals



Current time, time duration, finishing on time

Remind me in 15 minutes; I’ll have to leave! (Set timer)

When did Amy arrive here? (Time duration, but in the past)

Circadian clock (day/night)
Periodic events (music)

Following a schedule

17

Sense of Time in Humans and Animals

Clock =
Oscillator +

Counter



The sense of place and the ability to navigate are some of the most 
fundamental brain functions. 

German philosopher Immanuel Kant (1724-1804) argued that 
some mental abilities exist independent of experience. 

He considered perception of place as one of these innate abilities 
through which the external world had to be organized/perceived.

18

Sense of Place in Humans and Animals
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Quasi-Digital Parallel Counter
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• Analog current summing
– 7 inputs, 3-bit output
– (*): Number of 1 inputs 

required to produce a 1

• The scheme is even older
– Riordan and Morton,        

Use of Analog Techniques 
in Binary Arithmetic Units, 
IEEE TC, Feb. 1965 Figure from: Swartzlander

(IEEE TC, Nov. 1973)



Current-Summing Multivalued Logic
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Figures from: Etiemble & Navi (SMVP, May 1993)

• Binary stored-carry addition
– Limited-carry algorithm

• 3-valued to binary conv.: 3BC

CMOS
3BC



From Replacement to Resurgence
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Digital simulation of 
an analog computer

Patch panel of Systron-Donner Model 3400

Analog co-processor 
unit for a digital CPU

Cowan/Melville/Tsividis, 2005
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Hybrid Digital/Analog Representations

Continuous-digit residue number system (CD-RNS): 
Inspired by how positional info encoding in rat’s brain

Continuous-valued number system (CVNS):
A positional number system with analog digits

Race logic represents information as timing delays: 
Results based on relative signal propagation delays 

Space-time logic mimics spike-based neural nets: 
Signal timing and magnitude both carry information



Mixed D/A Positional Representation

24

• Continuous-valued number system (CVNS)
– Contains a form of natural redundancy
– The MSD has all the magnitude info
– Other digits provide successive refinements

• Familiar example: utility meter

Figure from: Saed, Ahmadi, Jullien (IEEE TC, 2002)

3875 KWh



Time-Delay-Based Race Logic
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Not useful for general use (yet)
Quite efficient in some domains

Example: String alignment
(as in DNA/protein matching)
Closeness judged by “edit distance”

2D array of simple hardware cells
O(m2) hardware complexity

Paths represent alignments
Horizontal, vertical, diagonal
   moves have different latencies
Fastest path 

         Best alignment



Brain-Like Space-Time Computing
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Example: Transmitting one 8-bit byte representing n

Binary: Delay = 9 slots; Average energy = 5 spikes 
Start/synch spike, followed by 8 spikes/no-spikes

Space-time: Average delay = 130 slots; Energy = 2 spikes
Start/synch spike, followed by n no-spikes, then end spike

Rate encoding



Nobel Prize in Physiology or Medicine: 2014
One half went to John O'Keefe (University College, London), 
the other half to May-Britt Moser (Center for Neural 
Computation, Norway) and Edvard I. Moser (Kavli Institute 
for Systems Neuroscience, Norway) "for their discoveries of 
cells that constitute a positioning system in the brain."  

27



The Nobel Laureates’ Contributions
John O’Keefe discovered place cells in the hippocampus that signal 
position and provide the brain with spatial memory capacity. 

May-Britt Moser and Edvard I. Moser discovered in the medial 
entorhinal cortex, a region of the brain next to hippocampus, grid 
cells that provide the brain with a coordinate system for navigation. 

28

Place cells 
firings
(image from
Wikipedia)

Grid cells 
firings
(image from 
Moser/Rowland/
Moser, 2015)



First Attempt at Understanding
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• Rat’s navigation system
– Wavy travel path
– Straight return path
– Even in the dark

• Nervous system has 
place cells & grid cells
– Grid cell firings
– Relative in-cell position

30

Localization with Grid Cells

• In-cell positions within 
several grids pinpoints 
rat’s absolute location



The Questions to Be Addressed
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• A rat can go up to a certain distance and still 
be able to find its way back (range)
– Translating grid-cell firings to spatial information
– How the range is related to grid-cell parameters
– Representation range vs. the observed distance

• Fiete, Burak, and Brookings had connected 
the grid cells to residue representation
– Couldn’t confirm the hypothesis theoretically 
– Relied on extensive simulation for confirmation
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My First Contribution to the Problem

33



RNS with Analog Digits (Remainders)

34

• I formulated the spatial representation 
problem with the grid cells as CD-RNS
– First time RNS is used with analog remainders
– Conventional RNS theory is inapplicable
– I developed a theory for CD-RNS and its range

• Analog and mixed digital-analog technology 
has a long history in computer arithmetic
– Digital so good that these were not pursued
– More use of analog features expected to come



CD-RNS Representation
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Modular arithmetic with continuous residues

Extension of RNS to non-integer moduli and residues
Offers precision-range-robustness trade-offs
More accurate residues widen the range and increase robustness

Of interest to neuroscientists: Rat’s navigation system
Rat uses “space cells” (absolute) and “grid cells” (relative)
Can return to home position in the dark, without any visual cues

Localization with 2 grids in 1D space

Rat’s hex grid
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Integer Moduli and Residues
• Two-modulus RNS {4, 3}
• Dynamic range [0, 11]
• Imagine residues with errors

– Errors < 0.5 correctable
– Errors < 1.0 detectable

• Multiresidue systems
– 3-modulus RNS {5, 4, 3}
– {5,4,3}  {20,3}  {15,4}  {12,5}
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Integer Moduli, Continuous Residues

    1

0

R  (correct value)

R + emax

R (decoded value)

R e1

e0

(Incorrect 
value)

Line with 
slope of 1

R – emax 

• Residue errors e1 and e0
• Decoding error  max(e1, e0)
• Dynamic range?
• Max allowable error < 0.25

[0, 12 – emax]
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Range-Precision Trade-off in CD-RNS
Dynamic range is proportional to the product of moduli, 
divided by maximum error

Left diagram: Range extension beyond mi

Middle diagram: Decoding error
Right diagram: CD-RNS with m1 = 6.5, m0 = 4.4

0 1 2 3

4

1

2

3

0

0

1

0

4

9

11

1

5

6
15

2

8

12

14

10

3

13

715.84

R 18

       39.6
17.6

6

1

5

4

3

2

1

0
0

21 3 40

136.5

1

0

R  (correct value)

R + emax

R (decoded value)

R e1

e0 
(Incorrect 

value)

Line with 
slope of 1

R – emax
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Continuous Moduli and Residues

0.0 1.2 2.4 3.6

4.8

0.0

1.2

2.4

3.6

Case 1: The moduli are integer 
multiples of their difference

With proper scaling, the CD-RNS
can be converted to an RNS

3.6

4.8

7.2

9.6

10.8

14.4

Question: 
Are there CD-RNSs that cannot 
be replaced with ordinary RNSs?

This example is equivalent to 
RNS {4, 3} with scale factor 1.2
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Equivalence of CD-RNS and RNS
Case 2a: The moduli are integer 
multiples of some number s 
(that divides their difference)

With proper scaling, the CD-RNS
can be converted to an RNS, 
provided max error target is  s/4

For this example, s = 0.4 and  
the system is equivalent to 
RNS {11, 9} with scale factor 0.4
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Representational Power of CD-RNS
Case 2b: The moduli are integer 
multiples of some number s 
(that divides their difference),  
but max error target > s/4

The CD-RNS is not equivalent to
an RNS in terms of representational
capability and dynamic range 

For this example, s = 0.1 but  
the system is different from
RNS {65, 44} with scale factor 0.1



• Distance encoded by mod-a and mod-b residues
– Phases f and y given
– Reverse conversion provides R
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Conceptually Simpler 1D Example

• R is a point whose mod-a and mod-b residues 
match f and y to within the error bound

i – 2  i – 1 i +2 i + 3i +1

j j – 1 j +2j +1
y

x
f

y
R

ai

bj

i
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Forward Conversion to CD-RNS
• Quite similar to ordinary RNS

– What multiple of the modulus should be subtracted?
– Multiple comparators (like those in A/D converters)
– Use binary search to reduce hardware complexity

• Example: mod-4.4, with dynamic range 35.0
– Compare with 17.6; Subtract if greater
– Compare with 8.8; Subtract if greater
– Compare with 4.4; Subtract if greater
– Output the remainder



• CRT and its derivatives are inapplicable
– Conversion amplifies the errors
– Example 15 in my 2015 Computer Journal paper

• View the conversion as nonlinear optimization
– Convergence occurs with circuit’s RC time constant

44

Backward Conversion to Binary

0

1

  Amod m1

modm0

x

R

C

Sun & Yao, IEEE Int’l Conf. 
Neural Networks, 1994

Forward 
conversion



Hex Grid Coordinate System
• Point identified by 3 coordinates, one of which 

is redundant

45

• Redundancy 
allows error 
correction 
beyond the 
system’s 
accuracy range

x

y

z

2 0 0

1 1-1

1-2 2

-2 0 0



Open Problems in Neurobiology
• Dynamic range of rat’s navigation system
• Numerical simulation: Range  (1/emax)Exponent

    Exponent  Number of moduli –  
• Example: 12 moduli      Exponent = 10.7

Our results yield an exponent of 11.0
• How did the rat’s navigational grids evolve? 

(Evolutionary basis for moduli optimization)

46
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Choosing the CD-RNS Moduli
Theorem 2:  m  36.0
Theorem 3: m  39.6

Intuitively, the moduli are optimal 
when the two bounds coincide

To cover the dynamic range m, 
choose the moduli that are 
on the order of (2memax)1/2 
and differ by 2emax
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Summary and Conclusions
• Introduced RNS with continuous residues

– Distinct from ordinary RNS
– Advantages (similar to other hybrid schemes)

• Studied range, accuracy, tradeoffs
– Tight bounds for dynamic range
– Optimal choice of moduli

• Showed link to computational neuroscience
– Rat’s sense of location, navigation
– Moduli in nature: evolutionary implications

49

D-A



Ongoing and Future Work
• Refine and extend the theoretical framework

– Arithmetic and algorithmic implications
– Exact dynamic range, or even tighter bounds

• Study development and application aspects
– Circuit realization & building blocks
– Latency, area, energy implications

• Pursue links with other D/A methods
– Mixed implementations?

50

 ⛏



Wrapping Up: The Big Picture

51

Analog computing is making a comeback and hybrid 
digital-analog computing is becoming more attractive

D-A computing can be combined at various levels: 
Representation level, as in CVNS and CD-RNS

 Analog approximation, digital refinement
 Neuromorphic computing paradigm

Multi-level combination methods

Future work and more detailed comparisons
Assessment of relative speeds in application contexts

Quantifying cost and energy requirements
 Effects of radix and moduli selection

Other D/A combination methods

 ⛏

D-A
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parhami@ece.ucsb.edu 
http://www.ece.ucsb.edu/~parhami/



Behrooz Parhami
University of California, 

Santa Barbara

Back-Up Slides

Hybrid Digital-Analog Number Representation 
in Computing and in Nature 
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RNS Dynamic Range
Product M of the k pairwise relatively prime moduli is the dynamic range

M = mk–1  . . .  m1  m0

For RNS(8 | 7 | 5 | 3), M = 8753 = 840

Negative numbers: Complement relative to M
–xmi

= M – xmi
21 = (5 | 0 | 1 | 0)RNS

–21 = (8 – 5 | 0 | 5 – 1 | 0)RNS = (3 | 0 | 4 | 0)RNS

Here are some example numbers in our default RNS(8 | 7 | 5 | 3):
(0 | 0 | 0 | 0)RNS Represents 0 or 840 or . . .
(1 | 1 | 1 | 1)RNS Represents 1 or 841 or . . .
(2 | 2 | 2 | 2)RNS Represents 2 or 842 or . . .
(0 | 1 | 3 | 2)RNS Represents 8 or 848 or . . .
(5 | 0 | 1 | 0)RNS Represents 21 or 861 or . . .
(0 | 1 | 4 | 1)RNS Represents 64 or 904 or . . .
(2 | 0 | 0 | 2)RNS Represents –70 or 770 or . . .
(7 | 6 | 4 | 2)RNS Represents –1 or 839 or . . .

We can take the 
range of RNS(8|7|5|3) 
to be [420, 419] or 
any other set of 840 
consecutive integers

54
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RNS Encoding and Arithmetic Operations

Fig. 4.1     Binary-coded 
format for RNS(8 | 7 | 5 | 3). 

Arithmetic in RNS(8 | 7 | 5 | 3)
    (5 | 5 | 0 | 2)RNS Represents x = +5
    (7 | 6 | 4 | 2)RNS Represents y = –1
    (4 | 4 | 4 | 1)RNS x + y : 5 + 78 = 4, 5 + 67 = 4, etc.
    (6 | 6 | 1 | 0)RNS x – y : 5 – 78 = 6, 5 – 67 = 6, etc.

(alternatively, find –y and add to x)
    (3 | 2 | 0 | 1)RNS x y : 5 78 = 3, 5 67 = 2, etc.

mod 8    mod 7    mod 5   mod 3

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result

Fig. 4.2     The structure of an adder, 
subtractor, or multiplier for RNS(8|7|5|3). 

55
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Difficult RNS Arithmetic Operations
Sign test and magnitude comparison are difficult

Example: Of the following RNS(8 | 7 | 5 | 3) numbers:

      Which, if any, are negative?
      Which is the largest?
      Which is the smallest?

Assume a range of [–420, 419]

      a =  (0 | 1 | 3 | 2)RNS

      b =  (0 | 1 | 4 | 1)RNS

      c =  (0 | 6 | 2 | 1)RNS

      d =  (2 | 0 | 0 | 2)RNS

      e =  (5 | 0 | 1 | 0)RNS

      f =  (7 | 6 | 4 | 2)RNS

Answers:
d <  c <  f <  a <  e <  b

–70  < –8   <   –1  <    8    <   21   <   64

56
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Intuitive Justification for CRT
Puzzle: What number has the remainders of 2, 3, and 2 

when divided by the numbers 7, 5, and 3, respectively? 

x =  (2 | 3 | 2)RNS(7|5|3) =  (?)ten

(1 | 0 | 0)RNS(7|5|3) =  multiple of 15 that is 1 mod 7  =  15
(0 | 1 | 0)RNS(7|5|3) =  multiple of 21 that is 1 mod 5  =  21
(0 | 0 | 1)RNS(7|5|3) =  multiple of 35 that is 1 mod 3  =  70

(2 | 3 | 2)RNS(7|5|3) =  (2 | 0 | 0) +  (0 | 3 | 0) + (0 | 0 | 2)
=  2  (1 | 0 | 0) + 3  (0 | 1 | 0) + 2  (0 | 0 | 1)

=  2  15 + 3  21 + 2  70 
=  30 + 63 + 140
=  233 = 23 mod 105

Therefore, x = (23)ten

57
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Reverse converter: Multioperand adder, with shifted xis as inputs

Example RNS with Special Moduli
For RNS(17 | 16 | 15), the weights of the 3 positions are:

  2160    3825    2176

Example:  (x2, x1, x0) = (2 | 3 | 4)RNS represents the number

21602 + 38253 + 217644080  =  24,4994080 =  19

2160 = 24  (24 – 1)  (23 + 1) = 211 + 27 – 24  

3825 = (28 – 1)  (24 – 1) = 212 – 28 – 24 + 1

2176 = 27  (24 + 1) = 211 + 27

4080 = 212 – 24 ; thus, to subtract 4080, ignore bit 12 and add 24

58
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Limits of Fast Arithmetic in RNS
Known results from number theory

Implications to speed of arithmetic in RNS

Theorem 4.5: It is possible to represent all k-bit binary numbers
in RNS with O(k / log k) moduli such that the largest modulus
has O(log k) bits

That is, with fast log-time adders, addition needs O(log log k) time

Theorem 4.2: The ith prime pi is asymptotically i ln i

Theorem 4.3: The number of primes in [1, n] is asymptotically n / ln n

Theorem 4.4: The product of all primes in [1, n] is asymptotically en

59



CVNS and CD-RNS Similarities

60

Two-level scheme: Analog representation at the low (digit) 
level and digital interpretation at the high (inter-digit) level

CVNS likely has performance edge in general applications

Mixed-radix format: CVNS is based on fixed integer radix, 
but extension to mixed and non-integer radices is possible

Approximate computing: Both CVNS and CD-RNS suited to 
low-precision, adaptive-precision, and lazy arithmetic

Example mixed-radix CVNS: 
Representation of 
9.0 = 2.5  3.6 = 2  3.6 + 1.8



CVNS and CD-RNS Differences

61

Word-level parallelism: CD-RNS has greater affinity with 
parallel processing of digits in add/subtract/multiply

Input/output overheads: CVNS has simple/direct forward and 
reverse conversion processes (low-cost and low-energy)
CD-RNS conversions are even more complex than RNS

Noise immunity: Consider 2-digit CVNS and CD-RNS
     CVNS range decreases quadratically with increased noise immunity
     CD-RNS range decreases linearly with increased noise immunity
     (cutting the radix r in half, versus using the equation me  m0m)

Fault tolerance: CVNS can be protected through coding
CD-RNS has precision-robustness trade-off built in



CD-RNS Dynamic Range Lower Bound

• CD-RNS with the moduli m1 and m0

• s–1 = m1; s0 = m0; si+1 = min(|si–1|si, si – |si–1|si)
• Theorem 2: Dynamic range is at least
m0(1 + m1/m0m0/s1)s1/s2 s2/s3 . . . sj–1/sj
where j is the largest index for which sj  2emax

• Intuition: Remove floors to get m0m1/(2emax)
• Example 6: CD-RNS with m1 = 4.4, m0 = 3.6, emax = 0.2  
 s1 = 0.8, s2 = 0.4   Dynamic range  36.0
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CD-RNS Dynamic Range Upper Bound
• CD-RNS with the moduli m1 and m0  
•  = Largest number that divides m1 and m0 if it exists, 

0 otherwise
• Theorem 3: Dynamic range is at most

max(m0 m1/, m1 m0/)
    where  = max(2emax, )
• Intuition: Remove floors to get m0m1/
• Example 6: CD-RNS with m1 = 4.4, m0 = 3.6, emax = 0.2  
   = 0.4,  = 0.4    Dynamic range  39.6
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CD-RNS Lower/Upper Bounds Example
• Example 10 in paper
• Fix m1 at 4.4
• Vary m0 in steps of 0.1
• Range varies (dashed)
• Tightness varies
• Matching of upper 

bound = Optimality?
• Achieving wider range
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