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Preface to the Instructor’s Manual

This instructor’s manual consists of two volumes. Volume 1 presents solutions to
selected problems and includes additional problems (many with solutions) that did not
make the cut for inclusion in the text Introduction to Parallel Processing: Algorithms
and Architectures (Plenum Press, 1999) or that were designed after the book went to
print. It also contains corrections and additions to the text, as well as other teaching
aids. The spring 2000 edition of Volume 1 consists of the following parts (the next
edition is planned for spring 2001):

Vol. 1: Problem Solutions

Part I Selected Solutions and Additional Problems
Part II Question Bank, Assignments, and Projects
Part III Additions, Corrections, and Other Updates
Part IV Sample Course Outline, Calendar, and Forms

Volume 2 contains enlarged versions of the figures and tables in the text, in a format
suitable for use as transparency masters. It is accessible, as a large postscript file, via
the author’s Web address:   http://www.ece.ucsb.edu/faculty/parhami

Vol. 2: Presentation Material

Parts I-VI Lecture slides for Parts I-VI of the text

The author would appreciate the reporting of any error in the textbook or in this
manual, suggestions for additional problems, alternate solutions to solved problems,
solutions to other problems, and sharing of teaching experiences. Please e-mail your
comments to

parhami@ece.ucsb.edu

or send them by regular mail to the author’s postal address:

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Contributions will be acknowledged to the extent possible.

Behrooz Parhami
Santa Barbara, California, USA
April 2000
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Part I Fundamental Concepts

Part Goals
● Motivate us to study parallel processing
● Paint the big picture
● Provide background in the three Ts:

Terminology/Taxonomy
Tools –– for evaluation or comparison
Theory –– easy and hard problems

Part Contents
● Chapter 1: Introduction to Parallelism
● Chapter 2: A Taste of Parallel Algorithms
● Chapter 3: Parallel Algorithm Complexity
● Chapter 4: Models of Parallel Processing
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1 Introduction to Parallelism

Chapter Goals
● Set the context in which the course material

will be presented
● Review challenges that face the designers

and users of parallel computers
● Introduce metrics for evaluating the

effectiveness of parallel systems

Chapter Contents
● 1.1. Why Parallel Processing?
● 1.2. A Motivating Example
● 1.3. Parallel Processing Ups and Downs
● 1.4. Types of Parallelism: A Taxonomy
● 1.5. Roadblocks to Parallel Processing
● 1.6. Effectiveness of Parallel Processing
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1.1 Why Parallel Processing?

KIPS
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Pentium

P6 R10000

68040

Fig. 1.1. The exponential growth of microprocessor
performance, known as Moore’s Law,
shown over the past two decades.

Factors contributing to the validity of Moore’s law

Denser circuits
Architectural improvements

Measures of processor performance

Instructions per second (MIPS, GIPS, TIPS, PIPS)
Floating-point operations per second

(MFLOPS, GFLOPS, TFLOPS, PFLOPS)
Running time on benchmark suites
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There is a limit to the speed of a single processor (the
speed-of-light argument)

Light travels 30 cm/ns;
signals on wires travel at a fraction of this speed

If signals must travel 1 cm in an instruction cycle,
30 GIPS is the best we can hope for

MFLOPS

GFLOPS
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PFLOPS
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Fig. 1.2. The exponential growth in supercomputer
per-formance over the past two decades
[Bell92].
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The need for TFLOPS

Modeling of heat transport to the South Pole in the southern
oceans [Ocean model: 4096 E-W regions × 1024 N-S
regions × 12 layers in depth]

30 000 000 000 FLOP per 10-min iteration ×
300 000 iterations per six-year period  =
1016 FLOP

Fluid dynamics

1000 × 1000 × 1000 lattice ×
1000 FLOP per lattice point × 10 000 time steps  =
1016 FLOP

Monte Carlo simulation of nuclear reactor

100 000 000 000 particles to track (for ≈1000 escapes) ×
10 000 FLOP per particle tracked  =
1015 FLOP

Reasonable running time =
Fraction of hour to several hours (103-104 s)

Computational power =
1016 FLOP / 104 s  or 1015 FLOP / 103 s  =  1012 FLOPS

Why the current quest for PFLOPS?

Same problems, perhaps with finer grids or longer
simulated times
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ASCI: Advanced Strategic Computing Initiative,

US Department of Energy
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Fig. 24.1. Performance goals of the ASCI program.



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 7

B. Parhami, UC Santa Barbara  Plenum Press, 1999

Status of Computing Power (circa 2000)

GFLOPS on desktop

Apple Macintosh, with G4 processor

TFLOPS in supercomputer center

1152-processor IBM RS/6000 SP

uses a switch-based interconnection network

see IEEE Concurrency, Jan.-Mar. 2000, p. 9

Cray T3E, torus-connected

PFLOPS on drawing board

1M-processor IBM Blue Gene (2005?)

see IEEE Concurrency, Jan.-Mar. 2000, pp. 5-9

32 proc’s/chip, 64 chips/board, 8 boards/tower, 64 towers

Processor: 8 threads, on-chip memory, no data cache

Chip: defect-tolerant, row/column rings in a 6 × 6 array

Board: 8 × 8 chip grid organized as 4 × 4 × 4 cube

Tower: Each board linked to 4 neighbors in adjacent towers

System: 32 × 32 × 32 cube of chips, 1.5 MW (water-cooled)
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1.2 A Motivating Example

Sieve of Eratosthenes ('er-a-'taas-tha-neez)

for finding all primes in [1, n]

     2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
    m=2

     2  3     5     7     9    11    13    15    17    19    21    23    25    27    29
       m=3

     2  3     5     7          11    13          17    19          23    25          29
             m=5

     2  3     5     7          11    13          17    19          23                29
                   m=7

Fig. 1.3. The sieve of Eratosthenes yielding a list of
10 primes for n = 30. Marked elements have
been distinguished by erasure from the list.

1 2 n

Current Prime Index
P

Fig. 1.4. Schematic representation of single-
processor solution for the sieve of
Eratosthenes.
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1 2 n

Current Prime

Index
P1

Index
P2

Index
Pp...

Shared
Memory I/O Device

(b)

Fig. 1.5. Schematic representation of a control-
parallel solution for the sieve of
Eratosthenes.

0    100   200   300   400   500   600   700   800   900  1000  1100  1200  1300  1400  1500

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 

|             2               |         3         |     5     |   7   | 11 |13|17    

                                                                                     

|             2               |   7   |17   

|         3         |     5     | 11 |13|                                       

|             2               |

|         3         | 11 |   19 29 31                                           

|     5     |   7   |13|17  23

Time

19 29 
23  31p = 1, t = 1411

p = 2, t =  706

p = 3, t =  499

19 

23 29 31 

Fig. 1.6. Control-parallel realization of the sieve of
Eratosthenes with n = 1000 and 1 ≤ p ≤ 3.
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P 1 finds each prime and broadcasts it to all other
processors (assume n/p ≤ √n)

1 2

Current PrimeP1 Index

n/p

n/p+1

Current PrimeP2 Index

2n/p

Current PrimePp Index

Communi-
  cation

n–n/p+1 n

Fig. 1.7. Data-parallel realization of the sieve of
Eratosthenes.
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Some reasons for sublinear speed-up

Communication overhead

4 8 12 16
Processors

0

Com-
munication 
time

Computation 
time

4 8 12 16
Processors

0

2

4

6

8

Computation 
speedup

Ideal

Actual
Solution time

Fig. 1.8. Trade-off between communication time and
computation time in the data-parallel
realization of the sieve of Eratosthenes.

Input/output overhead

4 8 12 16
Processors

0

I/O time

Computation 
time

4 8 12 16
Processors

0

2

4

6

8
Computation 
speedup

Ideal

Real

Solution time

Fig. 1.9. Effect of a constant I/O time on the data-
parallel realization of the sieve of
Eratosthenes.
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1.3 Parallel Processing Ups and Downs

Early 1900s: 1000s of “computers” (humans + calculators)
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c c
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Fig. 1.10. Richardson’s circular theater for weather
forecasting calculations.

Parallel processing is used in virtually all computers

Compute-I/O overlap, pipelining, multiple function units

But ... in this course we use “parallel processing” in a
stricter sense implying the availability of multiple CPUs.

1960s: ILLIAC IV (U Illinois) – 4 quadrants, each 8 × 8 mesh

1980s: Commercial interest resurfaced; technology was
driven by governement contracts. Once funding dried up,
many companies went bankrupt.

2000s: The Internet revolution – info providers, multimedia,
data mining, etc. need extensive computational power
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1.4 Types of Parallelism: A Taxonomy

MIMD

SISD
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"Distrib.-memory
multicomputers"

"Distrib. Shared
memory"

"Shared-memory
multiprocessors"

SIMD

Fig. 1.11. The Flynn-Johnson classification of
computer systems.

Why are computer architects so fascinated by four-letter
acronyms and abbreviations?

RISC, CISC, PRAM, NUMA, VLIW

JPDC, TPDS

ICPP, IPPS, SPDP, SPAA

My contribution:

SINC: Scant/Simple Interaction Network Cell

FINC: Full Interaction Network Cell
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1.5 Roadblocks to Parallel Processing

a. Grosch’s law (economy of scale applies, or

computing power is proportional to the square of cost)

b. Minsky’s conjecture (speedup is proportional to

the logarithm of the number p of processors)

c. Tyranny of IC technology (since hardware becomes

about 10 times faster every 5 years, by the time

a parallel machine with 10-fold performance is built,

uniprocessors will be just as fast)

d. Tyranny of vector supercomputers

(vector supercomputers are rapidly improving

in performance and offer a familiar programming model

and excellent vectorizing compilers;

why bother with parallel processors?)

e. The software inertia (Billions of dollars worth of existing

software makes it hard to switch to parallel systems)
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f. Amdahl’s law

a small fraction f of inherently sequential

or unparallelizable computation

severely limits the speed-up)

speedup  ≤  
1

f�+�(1�–�f)/p  =  
p

1�+�f(p�–�1)

S
p

e
e

d
u

p

Number of Processors

Ideal

f = 0

10

20

f = 0.1

f = 0.05

10 20

30

300
0

Fig. 1.12. The limit on speed-up according to
Amdahl’s law.
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1.6 Effectiveness of Parallel Processing

1

2

3

4

5

67

8

9
10

11

12

13

Fig. 1.13. Task graph exhibiting limited inherent
parallelism.
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Measures used in this course to compare parallel
architectures and algorithms [Lee80]:

p Number of processors
W(p) Total number of unit operations performed by

the p processors; computational work or energy
T(p) Execution time with p processors;

T(1) = W(1)   and   T(p) ≤ W(p)

S(p) Speedup =
T(1)
T(p)

E(p) Efficiency =
T(1)

pT(p)

R(p) Redundancy  =
W(p)
W(1)

U(p) Utilization =
W(p)
pT(p)

Q(p) Quality =
T3(1)

pT2(p)W(p)

Relationships among the preceding measures:

1  ≤  S(p)  ≤  p U(p) =  R(p)E(p)

E(p) =
S(p)

p Q(p)  = E(p) 
S(p)
R(p)

1
p  ≤  E(p)  ≤  U(p)  ≤  1 1  ≤  R(p)  ≤   

1
E(p)  ≤  p

Q(p)  ≤  S(p)  ≤  p
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Example: Adding 16 numbers, assuming unit-time additions
and ignoring all else, with p = 8

 -----------  16 numbers to be added  -----------

Sum

+ + ++++ ++

++

+

++

+

+

Fig. 1.14. Computation graph for finding the sum of
16 numbers.

Zero-time communication: W(8) = 15 T(8) = 4           

E(8) = 15 / (8 × 4) = 47%
S(8) = 15 / 4 = 3.75 R(8) = 15/15 = 1 Q(8) = 1.76

Unit-time communication: W(8) = 22 T(8) = 7

E(8) = 15 / (8 × 7) = 27%
S(8) = 15 / 7 = 2.14 R(8) = 22 / 15 = 1.47 Q(8) = 0.39
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2 A Taste of Parallel Algorithms

Chapter Goals
● Consider five basic building-block parallel

operations
● Implement them on four simple parallel

architectures
● Learn about the nature of parallel

computations, complexity analysis, and the
interplay between algorithm and architecture

Chapter Contents
● 2.1. Some Simple Computations
● 2.2. Some Simple Architectures
● 2.3. Algorithms for a Linear Array
● 2.4. Algorithms for a Binary Tree
● 2.5. Algorithms for a 2D Mesh
● 2.6. Algorithms with Shared Variables
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2.1 Some Simple Computations

x0

identity
element

x1

⊗

⊗

x2

⊗

xn–2

⊗

x

⊗

s

.
     .
          .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

Fig. 2.1. Semigroup computation on a uniprocessor.

x0 x1

⊗

x2

⊗

s

x3

⊗ ⊗ ⊗

⊗

⊗

⊗

⊗

⊗

x4 x5 x6 x7 x8 x9 x10

Semigroup computation viewed as a tree or
fan-in computation.
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x0

identity
element

x1

⊗

⊗

x2

⊗

xn–2

⊗

x

⊗

.
     .
          .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s0

s1

s2

sn–2

sn–1

Prefix computation on a uniprocessor.

3. Packet routing

one processor sending a packet of data to another

4. Broadcasting

one processor sending a packet of data to all others

5. Sorting

processors cooperating in rearranging their data

into desired order
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2.2 Some Simple Architectures

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

Fig. 2.2. A linear array of nine processors and its
ring variant.

Diameter of linear array: D = p – 1

(Max) Node degree: d = 2

P1

P0

P3

P4

P2
P5

P7 P8

P6

Fig. 2.3. A balanced (but incomplete) binary tree of
nine processors.

Diameter of balanced binary tree: D = 2log2p;  or one less

(Max) Node degree: d = 3

We almost always deal with complete binary trees:

p one less than a power of 2 D = 2 log2(p + 1) – 2
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P0 P1 P2

P3 P4 P5

P6 P7 P8

P1 P2

P3 P4 P5

P6 P7 P8

P0 P1 P2

P3 P4 P5

P6 P7 P8

Fig. 2.4. A 2D mesh of nine processors and its torus
variant.

Diameter of r × (p/r) mesh: D = r + p/r – 2

(Max) Node degree: d = 4

Square meshes preferred; they minimize D  (= 2√p – 2)

P0

P1

P2

P3

P4P5

P6

P7

P8

Fig. 2.5. A shared-variable architecture modeled as
a complete graph.

Diameter of complete graph: D = 1

(Max) Node degree: d = p – 1
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2.3 Algorithms for a Linear Array

P2P0 P1 P3 P4 P5 P6 P7 P8

5     2     8     6     3     7     9     1     4
5     8     8     8     7     9     9     9     4
8     8     8     8     9     9     9     9     9
8     8     8     9     9     9     9     9     9
8     8     9     9     9     9     9     9     9
8     9     9     9     9     9     9     9     9
9     9     9     9     9     9     9     9     9

Initial
values

Maximum
identified

Fig. 2.6. Maximum-finding on a linear array of nine
processors.

P2P0 P1 P3 P4 P5 P6 P7 P8

5     2     8     6     3     7     9     1     4
5     7     8     6     3     7     9     1     4
5     7    15     6     3     7     9     1     4
5     7    15    21     3     7     9     1     4
5     7    15    21    24     7     9     1     4
5     7    15    21    24    31     9     1     4
5     7    15    21    24    31    40     1     4
5     7    15    21    24    31    40    41     4
5     7    15    21    24    31    40    41    45

Initial
values

Final
results

Fig. 2.7. Computing prefix sums on a linear array of
nine processors.

Diminished prefix computation: the ith result excludes the
ith element (e.g., sum of the first i – 1 elements)
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P2P0 P1 P3 P4 P5 P6 P7 P8

5     2     8     6     3     7     9     1     4
  1     6     3     2     5     3     6     7     5

5     2     8     6     3     7     9     1     4
  6     8    11     8     8    10    15     8     9

  0     6    14    25    33    41    51    66    74

5     8    22    31    36    48    60    67    78
  6    14    25    33    41    51    66    74    83

Initial
values

Final
results

Local
prefixes

Linear-array
diminished
prefix sums

+

=

Fig. 2.8. Computing prefix sums on a linear array
with two items per processor.

Packet routing or broadcasting:

right- and left-moving packets have no conflict
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4
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Fig. 2.9. Sorting on a linear array with the keys input
sequentially from the left.
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5     2     8     6     3     7     9     1     4
5     2     8     3     6     7     9     1     4
2     5     3     8     6     7     1     9     4
2     3     5     6     8     1     7     4     9
2     3     5     6     1     8     4     7     9
2     3     5     1     6     4     8     7     9
2     3     1     5     4     6     7     8     9
2     1     3     4     5     6     7     8     9
1     2     3     4     5     6     7     8     9

P0 P1 P2 P3 P4 P5 P6 P7 P8

In odd steps,
1, 3, 5, etc.,
odd-numbered
processors
exchange
values with
their right
neighbors

Fig. 2.10. Odd-even transposition sort on a linear
array.

For odd-even transposition sort:

Speed-up =  O(p log p) / p = O(log p)

Efficinecy =  O((log p) / p)        

Redundancy =  O(p / (log p))

Utilization =  1/2
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2.4 Algorithms for a Binary Tree

x x x

x x 

x     x 
Upward
Propagation

1 2

3 4

0

10⊗

x     x 43⊗

x     x 32⊗ x   4⊗

x     x 10⊗ ⊗x     x 32⊗ x   4⊗

x x x

x x 

x     x 

Downward
Propagation

1 2

3 4

0

10⊗

x     x 10⊗ x   2⊗

x     x 10⊗ ⊗x     x 32⊗

x0 x     x 10⊗

x     x 10⊗ x   2⊗

x0 x     x 0⊗
x     x 10⊗ x   ⊗

x     x 10⊗ ⊗x     x 32⊗

x     x 10⊗ ⊗x     x 32⊗ x   4⊗

Results

1
2

Identity

Identity

Identity

Fig. 2.11. Parallel prefix computation on a binary tree
of processors.
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Some applications of the parallel prefix computation

Finding the rank of each 1 in a list of 0s and 1s:
Data : 0     0     1     0     1     0     0     1     1     1     0

          Prefix sums : 0     0     1     1     2     2     2     3     4     5     5

           Ranks of 1s :                1            2                    3     4     5

Priority circuit:

 Data : 0     0     1     0     1     0     0     1     1     1     0

Diminished prefix ORs : 0     0     0     1     1     1     1     1     1     1     1

Complement : 1     1     1     0     0     0     0     0     0     0     0

AND with data : 0     0     1     0     0     0     0     0     0     0     0

Carry computation in fast adders

Let “g”, “p”, and “a” denote the event that a particular digit
position in the adder generates, propagates, or annihilates
a carry. The input data for the carry circuit consists of a
vector of three-valued elements such as:

p     g     a     g     g     p     p     p     g     a     cin

 ←   g or a
        direction of indexing

Parallel prefix computation using the carry operator “¢”
p ¢ x = x x propagates over p, for all x ∈ {g, p, a}

a ¢ x = a x is annihilated or absorbed by a

g ¢ x = g x is immaterial; a carry is generated
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Packet routing on a tree

P1

P0

P3

P4

P2
P5

P7 P8

P6

A balanced binary tree with preorder node
indices.

maxl (maxr) = largest node number in the left (right) subtree

if dest = self
then remove the packet {done}
else if  dest < self   or  dest > maxr

then route upward
else if dest ≤ maxl

then route leftward
else route rightward
endif

endif
endif
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Other indexing schemes might lead to simpler routing
algorithms

XXX

LXX RXX

LLX
RLXLRX

RRX

RRRRRL

Broadcasting is done via the root node
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Sorting: let the root “see” all data in nondescending order

5 2 3

1 4

5 2 3

1 4

5

2

3 1

4

5

2

3

1

4

(a) (b)

(c) (d)

∞∞

∞ ∞∞

∞ ∞ ∞

∞

∞

∞ ∞

∞ ∞∞

∞ ∞

Fig. 2.12. The first few steps of the sorting algorithm
on a binary tree.

Bisection Width = 1

Fig. 2.13. The bisection width of a binary tree
architecture.
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2.5 Algorithms for a 2D Mesh

5 2 8

6 3 7

9 1 4

8 8 8

7 7 7

9 9 9

9 9 9

9 9 9

9 9 9

Row maximums Column maximums

Finding the max value on a 2D mesh

5 7

6 9

9

Diminished prefix 
sums in last column

Broadcast in rows 
and combine

15

16

10 14

Row prefix sums

5 7

6 9

9

15

16

10 14

15

31

5 7 150

21 24 31

40 41 45

Computing prefix sums on a 2D mesh

Row-major order required if the operator is not commutative

Routing and broadcasting done via row/column operations

5   2   8    2   5   8    1   4   3    1   3   4    1   3   2    1   2   3  

6   3   7    7   6   3    2   5   8    8   5   2    6   5   4    4   5   6  

9   1   4    1   4   9    7   6   9    6   7   9    8   7   9    7   8   9  

    
Initial values Snake-like

 row sort
Top-to-bottom
  column sort

Snake-like
 row sort

Top-to-bottom
  column sort

Left-to-right
   row sort

Phase 1 Phase 2 Phase 3

Fig. 2.14. The shearsort algorithm on a 3 × 3 mesh.
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2.6 Algorithms with Shared Variables

P0

P1

P2

P3

P4P5

P6

P7

P8

Fig. 2.5. A shared-variable architecture modeled as
a complete graph.

Semigroup computation: each processor read all values in
turn and combine

Parallel prefix: processor i read/combine values 0 to i – 1

Both of the above are quite inefficient, given the high cost

Packet routing and broadcasting: one step, assuming all-
port communication

Sorting: rank each element by comparing it to all others,
then permute according to ranks

Figure for Problem 2.13.
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3 Parallel Algorithm Complexity

Chapter Goals
● Review algorithm complexity and various

complexity classes
● Introduce the notions of time and time-cost

optimality
● Derive tools for analyzing, comparing, and

fine-tuning parallel algorithms

Chapter Contents
● 3.1. Asymptotic Complexity
● 3.2. Algorithm Optimality and Efficiency
● 3.3. Complexity Classes
● 3.4. Parallelizable Tasks and the NC Class
● 3.5. Parallel Programming Paradigms
● 3.6. Solving Recurrences
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3.1 Asymptotic Complexity

f(n) = O(g(n)) if ∃c, n0 such that ∀n > n0, f(n) < c g(n)

f(n) = Ω(g(n)) if ∃c, n0 such that ∀n > n0, f(n) > c g(n)

f(n) = Θ(g(n)) if ∃c, c', n0 such that

∀n > n0, cg(n) < f(n) < c'g(n)

n

c g(n)

g(n)

f(n)

n n

c g(n)

c' g(n)

f(n)

nn

g(n)

c g(n)

f(n)

n 0 00

f(n) = O(g(n)) f(n) =    (g(n)) f(n) =    (g(n))Ω Θ

Fig. 3.1. Graphical representation of the notions of
asymptotic complexity.

f(n) = o(g(n)) <    Growth rate strictly less than

f(n) = O(g(n)) ≤    Growth rate no greater than

f(n) = Θ(g(n)) =    Growth rate the same as

f(n) = Ω(g(n)) ≥    Growth rate no less than

f(n) = ω(g(n)) >    Growth rate strictly greater than



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 37

B. Parhami, UC Santa Barbara  Plenum Press, 1999

Table 3.1. Comparing the Growth Rates of Sublinear
and Superlinear Functions (K = 1000,
M = 1 000 000)

Sublinear Linear Superlinear
log2n √n n n log2n n3/2

------- ------- ------- ------- -------
9 3 10 90 30

36 10 100 3.6K 1K
81 31 1K 81K 31K

169 100 10K 1.7M 1M
256 316 100K 26M 32M
361 1K 1M 361M 1000M

Table 3.2. Effect of Constants on the Growth Rates of
Selected Functions Involving Constant
Factors (K = 1000, M = 1 000 000)

n n
4

 log2 n n log2n 100√n n3/2

------- ------- ------- ------- -------
10 22 90 300 30

100 900 3.6K 1K 1K
1K 20K 81K 3.1K 31K

10K 423K 1.7M 10K 1M
100K 6M 26M 32K 32M

1M 90M 361M 100K 1000M

Table 3.3. Effect of Constants on the Growth Rates of
Selected Functions Using Larger Time
Units and Round Figures

n n
4

 log2n n log2n 100√n n3/2

------- ------- ------- ------- -------
10 20 s 2 min 5 min 30 s

100 15 min 1 hr 15 min 15 min
1K 6 hr 1 day 1 hr 9 hr

10K 5 days 20 days 3 hr 10 days
100K 2 mo 1 yr 1 yr 1 yr

1M 3 yr 11 yr 3 yr 32 yr
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3.2 Algorithm Optimality and Efficiency

f(n) Running time of fastest (possibly unknown)
algorithm for solving a problem

g(n) Running time of some algorithm A ⇒ f(n) = O(g(n))
h(n) Min time for solving the problem  ⇒ f(n) = Ω(h(n))
g(n) = h(n)    ⇒    Algorithm A is time-optimal
Redundancy = Utilization = 1    ⇒    A is cost-time optimal
Redundancy = Utilization = Θ(1)  ⇒  A is cost-time efficient

Typical Complexity Classes
log  n2

e

n n log log n n log n n2

   (log n) 2Ω    (log  n)Ω
  Optimal
Algorithm?

n/log n

Shifting Upper Bounds  Lower Bounds
1982
Anne's
Algor.

1988
Bert's
Algor.

1991
Chin's
Algor.

1996
Dana's
Algor.

1988 1994

Ål b
log n

Fig. 3.2. Upper & lower bounds may tighten over
time.

Solution
Machine or
Algorithm A

Machine or
Algorithm B
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Fig. 3.3. Five times fewer steps does not necessarily
mean five times faster.

3.3 Complexity Classes

P = NP
?

Nondeterministic
     Polynomial

NP

NP-complete
(e.g. the subset sum problem)
     

(Intractable?)
NP-hard

(Tractable)
 Polynomial

P

Conceptual view of complexity classes
P, NP, NP-complete, and NP-hard.

Example NP(-complete) problem: the subset sum problem

Given a set of n integers and a target sum s,
determine if a subset of the integers in the set
add up to s.
This problem looks deceptively simple,
yet no one knows how to solve it other than by trying
practically all of the 2n subsets of the given set.
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Even if each of these trials takes only one picosecond,
the problem is virtually unsolvable for n = 100.
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3.4 Parallelizable Tasks and the NC Class

P-complete

"efficiently"
parallelizable

P = NP
?

NC = P
?

Nondeterministic
     Polynomial

Nick's Class

NP

(Tractable)
 Polynomial

NP-complete
(e.g. the subset sum problem)
     

(Intractable?)

P

NP-hard

NC

Fig. 3.4. A conceptual view of complexity classes
and their relationships.

NC (Nick’s class, Niclaus Pippenger)
Problems solvable in polylogrithmic time (T = O(logkn))
using a polynomially bounded number of processors

Example P-complete problem: the circuit-value problem

Given a logic circuit with known inputs,
determine its output.
The circuit-value problem is obvioudly in P,
but no general algorithm exists for
efficient parallel evaluation of a circuit’s output.
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3.5 Parallel Programming Paradigms

Divide and conquer

Decompose problem of size n into smaller problems
Solve the subproblems independently
Combine subproblem results into final answer
T(n) = Td(n) +  Ts    +     Tc(n)

         Decompose  Solve in parallel     Combine

Randomization

Often it is impossible or difficult to decompose a large
problem into subproblems with equal solution times.

In these cases, one might use random decisions that lead
to good results with very high probability.

Example: sorting with random sampling

Other forms of randomization:
Random search
Control randomization
Symmetry breaking

Approximation

Iterative numerical methods often use approximation to
arrive at the solution(s).

Example: Solving linear systems using Jacobi relaxation.

Under proper conditions, the iterations converge to the
correct solutions; more iterations ⇒ more accurate  results
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3.6 Solving Recurrences

Solution via unrolling

1. f(n) = f(n – 1) + n  {Rewrite f(n – 1) as f((n – 1) – 1) + n – 1}

= f(n – 2) + n – 1 + n

= f(n – 3) + n – 2 + n – 1 + n

...

= f(1) + 2 + 3 + . . . + n – 1 + n

= n(n + 1)/2 – 1

= Θ(n2)

2. f(n) = f(n/2) + 1 {Rewrite f(n/2) as f((n/2)/2 + 1}

= f(n/4) + 1 + 1

= f(n/8) + 1 + 1 + 1

. . .

= f(n/n) + 1 + 1 + 1 + . . . + 1
 ------ log2 n  times ------

= log2n

= Θ(log n)

3. f(n) = 2f(n/2) + 1

= 4f(n/4) + 2 + 1

= 8f(n/8) + 4 + 2 + 1

. . .

= n f(n/n) + n/2 + . . . + 4 + 2 + 1

= n – 1

= Θ(n)
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4. f(n) = f(n/2) + n

= f(n/4) + n/2 + n

= f(n/8) + n/4 + n/2 + n

. . .

= f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n

= 2n – 2 = Θ(n)

5. f(n) = 2f(n/2) + n

= 4f(n/4) + n + n

= 8f(n/8) + n + n + n

. . .

= n f(n/n) + n + n + n + . . . + n
      ------ log2n  times ------

= n log2n = Θ(n log n)

Alternate solution for the recurrence f(n) = 2f(n/2) + n:

Rewrite the recurrence as f(n)
n  = f(n/2)

n/2  + 1

and denote f(n)/n by h(n) to convert the problem to Example 2

6. f(n) = f(n/2) + log2n

= f(n/4) + log2(n/2) + log2n

= f(n/8) + log2(n/4) + log2(n/2) + log2n

. . .

= f(n/n) + log22 + log24 + . . . + log2(n/2) + log2n

= 1 + 2 + 3 + . . . + log2n

= log2n (log2n + 1)/2 = Θ(log2n)
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Solution via guessing

Guess the solution and verify it by substitution

Substitution also useful to find the constant multiplicative
factors and lower-order terms

Example: f(n) = f(n – 1) + n ; guess f(n ) = Θ(n2)

Write f(n) = an2 + g(n), where g(n) = o(n2)

Substituting in the recurrence equation, we get:

an2 + g(n) = a(n – 1)2 + g(n – 1) + n

This equation simplifies to:

g(n) = g(n – 1) + (1 – 2a)n + a

Choose a = 1/2 to make g(n) = o(n2) possible

g(n) = g(n – 1) + 1/2 = n/2 – 1  {g(1) = 0}

The solution to the original recurrence then becomes

f(n) = n2/2 + n/2 – 1

Solution via a basic theorem

Theorem 3.1 (basic theorem for recurrences): Given

f(n) = a f(n/b) + h(n); a, b constant, h an arbitrary function

the asymptotic solution to the recurrence is

f(n) = Θ(nlogba) if h(n) = O(nlogba – ε) for some ε > 0

f(n) = Θ(nlogba log n) if h(n) = Θ(nlogba)

f(n) = Θ(h(n)) if h(n) = Ω(nlogba + ε) for some ε > 0
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4 Models of Parallel Processing

Chapter Goals
● Elaborate on the taxonomy of parallel

processing from Chapter 1
● Introduce abstract models of shared and

distributed memory
● Understand the differences between

abstract models and real hardware

Chapter Contents
● 4.1. Development of Early Models
● 4.2. SIMD versus MIMD Architectures
● 4.3. Global versus Distributed Memory
● 4.4. The PRAM Shared-Memory Model
● 4.5. Distributed-Memory or Graph Models
● 4.6. Circuit Model & Physical Realizations
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4.1 Development of Early Models

Thousands of processors were found in some computers
as early as the 1960s

These architectures were variously referred to as

associative memories

associative processors

logic-in-memory machines

More recent names are

processor-in-memory and

intelligent RAM

Table 4.1. Entering the Second Half-Century of
Associative Processing

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Decade Events and Advances Technology Performance

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1940s Formulation of need & concept Relays

1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS

1960s Introduction of basic architectures Transistors

1970s Commercialization & applications ICs Giga-bit-OPS

1980s Focus on system/software issues VLSI Tera-bit-OPS

1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS?

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Revisiting the Flynn-Johnson classification

MIMD

SISD SIMD

MISD

GMSV GMMP

DMSV DMMP

Data Stream(s)
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Message Passing

"Uniprocessors" "Array Processors"
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lo

ba
l  

   
   

   

"Distrib.-memory
multicomputers"

"Distrib. Shared
memory"

"Shared-memory
multiprocessors"

SIMD
versus
MIMD

Global
versus
distributed
memory

Fig. 4.1. The Flynn-Johnson classification of
computer systems.

MISD can be viewed as a flexible (programmable) pipeline

Data
In

Data
Out

I

I

I 

I

I

1

2

3 4

5

Fig. 4.2. Multiple instruction streams operating on a
single data stream (MISD).
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4.2 SIMD versus MIMD Architectures

Most early parallel machines were of SIMD type

Synchronous SIMD

To perform data-dependent conditionals (if-then-else),
first processors satisfying the condition are enabled,
next the remainder are enabled for the “else” part

Critics of SIMD view the above as being wasteful

But: are buses less efficient than private cars, or is your
PC hardware wasted when you answer the phone?

Asynchronous SIMD = SPMD

Custom- versus commodity-chip SIMD

Most recent parallel machines are MIMD-type

MPP: massively or moderately parallel processor?

Tight versus loose coupling of processors

Tightly coupled: multiprocessors

Loosely coupled: multicomputers

Network or cluster of workstations (NOW, COW)

Hybrid: loosely coupled clusters, each tightly coupled

Message passing versus virtual shared memory

Shared memory is easier to program

Message passing is more efficient
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4.3 Global versus Distributed Memory

Processor-
to-Memory
Network

Proc.-
to-
Proc.
Net-
work

Processors
Memory
Modules

. . .

Parallel I/O

0

1

p–1

0

1

m–1

Fig. 4.3. A parallel processor with global memory.

Example processor-to-memory/processor networks:

1. Crossbar; p × m array of switches or crosspoints;

cost too high for massively parallel systems

2. Single/multiple bus (complete or partial connectivity)

3. Multistage interconnection network (MIN);

cheaper than crossbar, more bandwidth than bus
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Fig. 4.4. A parallel processor with global memory
and processor caches.

Solving the cache coherence problem

1. Do not cache any shared data

2. Do not cache “writeable” shared data

or allow only one cache copy

3. Use a cache coherence protocol (Chapter 18)
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Intercon-
nection
Network
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Parallel
Input/
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0
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Fig. 4.5. A parallel processor with distributed
memory.

Examples networks for distributed memory machines

1. Crossbar; cost too high for massively parallel systems

2. Single/multiple bus (complete or partial connectivity)

3. Multistage interconnection network (MIN)

4. Various direct networks (Section 4.5)

Terminology

UMA Uniform memory access

NUMA Nonuniform memory access

COMA Cache-only memory architecture (aka all-cache)
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4.4 The PRAM Shared-Memory Model

Processors
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.
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m–1

...

...

...

Fig. 4.6. Conceptual view of a parallel random-
access machine (PRAM).

PRAM cycle
1.  Processors access memory (usually different locations)
2.  Processors perform a computation step
3.  Processors store their results in memory

Processors

Memory Access
    Network & 
    Controller

Proces-
sor
Control .

.

.

Shared Memory

0

1

p–1

.

.

.

0
1

2
3

m–1

Fig. 4.7. PRAM with some hardware details shown.

In practice, memory is divided into modules and
simultaneous accesses to the same module are disallowed
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4.5 Distributed-Memory or Graph Models

Parameters of interest for direct interconnection networks
Diameter
Bisection (band)width
Node degree

Symmetry properties simplify algorithm development:
Node or vertex symmetry
Link or edge symmetry

Table 4.2. Topological Parameters of Selected
Interconnection Networks

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Network name(s) Number Network Bisection Node Local

of nodes diameter width degree links?
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1D mesh (linear array) k k – 1 1 2 Yes
1D torus (ring, loop) k k/2 2 2 Yes
2D Mesh k2 2k – 2 k 4 Yes
2D torus (k-ary 2-cube) k2 k 2k 4 Yes1

3D mesh k3 3k – 3 k2 6 Yes
3D torus (k-ary 3-cube) k3 3k/2 2k2 6 Yes1

Pyramid (4k2 – 1)/3 2 log2k 2k 9 No
Binary tree 2l – 1 2l – 2 1 3 No
4-ary hypertree 2l (2l+1 – 1) 2l 2l+1 6 No
Butterfly 2l (l + 1) 2l 2l 4 No
Hypercube 2l l 2l–1 l No
Cube-connected cycles 2ll 2l 2l–1 3 No
Shuffle-exchange 2l 2l – 1 ≥ 2l–1/l 4 unidir. No
De Bruijn 2l l 2l /l 4 unidir. No
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 With folded layout.
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!*#?

Sea Sick

CCC Mesh/Torus

Hypercube

Pyramid

Butterfly

Fig. 4.8. The sea of interconnection networks.

Bus-based architectures are dominant in small-scale
parallel systems.

Low-level
cluster

Bus switch
(Gateway)

Fig. 4.9. Example of a hierarchical interconnection
architecture.
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Because each interconnection network requires its own
algorithms, various abstract (architecture-independent)
models have been suggested for such networks

The LogP model

Characterizes an architecture with just four parameters:

L Latency upper bound when a small message is sent
from an arbitrary source to an arbitrary destination

o overhead, defined as the length of time a processor is
dedicated to transmission or reception of a message,
thus being unable to do any other computation

g gap, defined as the minimum time that must elapse
between consecutive message transmissions
or receptions by a single processor (1/g is the available
per-processor communication bandwidth)

P Processor multiplicity (p in our notation)

If LogP is in fact an accurate model for capturing the effects
of communication in parallel processors, then the details of
interconnection network do not matter
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The BSP model (bulk-synchronous parallel)

Hides the communication latency altogether through a
specific parallel programming style, thus making the
network topology irrelevant

Synchronization of processors occurs once every L time
steps, where L is a periodicity parameter

Computation consists of a sequence of supersteps

In a given superstep, each processor performs a task
consisting of local computation steps, message
transmissions, and message receptions

Data received in messages will not be used in the current
superstep but rather beginning with the next superstep

After each period of L time units, a global check is made to
see if the current superstep has been completed

If so, then the processors move on to executing
the next superstep

Else, the next period of length L is allocated
to the unfinished super-step
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4.6 Circuit Model and Physical Realizations
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Fig. 4.10. Intrachip wire delay as a function of wire
length.

O(10  )4

Scaled up ant on the rampage!
What is wrong with this picture? 

Scaled up ant collapses under own weight. 

Fig. 4.11. Pitfalls of scaling up.
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Part II Extreme Models

Part Goals
● Study two extreme parallel machine models

● Abstract PRAM shared-memory model
ignores implementation issues altogether

● Concrete circuit model accommodates
details like circuit depth and layout area

● Prepare for everthing else that falls in
between the two extremes

Part Contents
● Chapter 5: PRAM and Basic Algorithms
● Chapter 6: More Shared-Memory Algorithms
● Chapter 7: Sorting and Selection Networks
● Chapter 8: Other Circuit-Level Examples
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5 PRAM and Basic Algorithms

Chapter Goals
● Define PRAM and its various submodels
● Show PRAM to be a natural extension of the

sequential computer (RAM)
● Develop five important parallel algorithms

that can serve as building blocks
(more algorithms in the next chapter)

Chapter Contents
● 5.1. PRAM Submodels and Assumptions
● 5.2. Data Broadcasting
● 5.3. Semigroup or Fan-in Computation
● 5.4. Parallel Prefix Computation
● 5.5. Ranking the Elements of a Linked List
● 5.6. Matrix Multiplication
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5.1 PRAM Submodels and Assumptions

Processors
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Fig. 4.6. Conceptual view of a parallel random-
access machine (PRAM).

Processor i can do the following in 3 phases of one cycle:
1. Fetch an operand from address si in shared memory
2. Perform computations on data held in local registers
3. Store a value into address di in shared memory

EREW CREW

Reads from Same Location
Exclusive Concurrent
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Fig. 5.1 Submodels of the PRAM model.
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CRCW PRAM is classified according to how concurrent
writes are handled. These submodels are all different from
each other and from EREW and CREW.

Undefined: In case of multiple writes, the value written is
undefined (CRCW-U)

Detecting: A code representing “detected collision” is
written (CRCW-D)

Common: Multiple writes allowed only if all store the
same value (CRCW-C); this is sometimes
called the consistent-write submodel

Random: The value written is randomly chosen from
those offered (CRCW-R)

Priority: The processor with the lowest index succeeds
in writing (CRCW-P)

Max/Min: The largest/smallest of the multiple values is
written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S), logical AND
(CRCW-A), logical XOR (CRCW-X), or another
combination of the multiple values is written.

One way to order these submodels is by their
computational power:

EREW  <  CREW  <  CRCW-D

       <  CRCW-C  <  CRCW-R  <  CRCW-P

Theorem 5.1: A p-processor CRCW-P (priority) PRAM
can be simulated (emulated) by a p-processor EREW
PRAM with a slowdown factor of Θ(log p).
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5.2 Data Broadcasting

Broadcasting is built-in for the CREW and CRCW models

EREW broadcasting: make p copies of the data in a
broadcast vector B

Making p copies of B[0] by recursive doubling

for k = 0 to log2p – 1 Processor j, 0 ≤ j < p, do

Copy B[j] into B[j + 2k]

endfor

  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11

B

Fig. 5.2. Data broadcasting in EREW PRAM via
recursive doubling.
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Fig. 5.3. EREW PRAM data broadcasting without
redundant copying.

EREW PRAM algorithm for broadcasting by Processor i
Processor i write the data value into B[0]
s := 1
while s < p Processor j, 0 ≤ j < min(s, p – s), do

Copy B[j] into B[j + s]
s := 2s

endwhile
Processor j, 0 ≤ j < p, read the data value in B[j]

EREW PRAM algorithm for all-to-all broadcasting
Processor j, 0 ≤ j < p, write own data value into B[j]
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

Read the data value in B[(j + k) mod p]
endfor

Both of the preceding algorithms are time-optimal (shared
memory is the only communication mechanism and each
processor can read but one value per cycle)



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 65

B. Parhami, UC Santa Barbara  Plenum Press, 1999

In the following naive sorting algorithm, processor j
determines the rank R [j] of its data element S[j] by
examining all the other data elements; it then writes S[j] in
element R[j] of the output (sorted) vector

Naive EREW PRAM sorting algorithm
(using all-to-all broadcasting)
Processor j, 0 ≤ j < p, write 0 into R[j]
for k = 1 to p – 1 Processor j, 0 ≤ j < p, do

l := (j + k) mod p
if S[l] < S[j] or S[l] = S[j] and l < j
then R[j] := R[j] + 1
endif

endfor
Processor j, 0 ≤ j < p, write S[j] into S[R[j]]

This O(p)-time algorithms is far from being optimal
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5.3 Semigroup or Fan-in Computation

This computation is trivial for a CRCW PRAM of the
reduction variety if the reduction operator happens to be ⊗

  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
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  0:0
  1:1
  2:2
  3:3
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  7:7
  8:8
  9:9

  0:0
  0:1
  1:2
  2:3
  3:4
  4:5
  5:6
  6:7
  7:8
  8:9

  0:0
  0:1
  0:2
  0:3
  1:4
  2:5
  3:6
  4:7
  5:8
  6:9

  0:0
  0:1
  0:2
  0:3
  0:4
  0:5
  0:6
  0:7
  1:8
  2:9

  0:0
  0:1
  0:2
  0:3
  0:4
  0:5
  0:6
  0:7
  0:8
  0:9

Fig. 5.4. Semigroup computation in EREW PRAM.

EREW PRAM semigroup computation algorithm
Processor j, 0 ≤ j < p, copy X[j] into S[j]
s := 1
while s < p Processor j, 0 ≤ j < p – s, do

S[j + s] := S[j] ⊗ S[j + s]
s := 2s

endwhile
Broadcast S[p – 1] to all processors

The preceding algorithm is time-optimal (CRCW can do
better: problem 5.16)

Speed-up  =  p/log2p

Efficiency  =  Speed-up/p  =  1/log2p

Utilization = 
�W(p)
pT(p) ≈ 

(p–1)+(p–2)+(p–4)+�...�+(p–p/2)
p�log2p

 ≈ 1 – 1/log2p 
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Semigroup computation with each processor holding n/p
data elements:

Each processor combine its sublist    n/p steps

Do semigroup computation on results log2p steps

Speedup(n, p)  =   
n

n/p�+�2�log2p  =  
p

1�+�(2p�log2p)/n

Efficiency(n, p)  =  Speedup/p  =  
1

1�+�(2p�log2p)/n

For p = Θ(n), a sublinear speedup of Θ(n/log n) is obtained

The efficiency in this case is Θ(n/log n)/Θ(n) = Θ(1/log n)

Limiting the number of processors to p = O(n/log n), yields:

Speedup(n, p)  =  n/O(log n)  =  Ω(n/log n)  =  Ω(p)

Efficiency(n, p) = Θ(1)

Using fewer processors than tasks  =  parallel slack

Higher degree 
of parallelism
near the leaves

Lower degree 
of parallelism
near the root

Fig. 5.5. Intuitive justification of why parallel slack
helps improve the efficiency.
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5.4 Parallel Prefix Computation
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Fig. 5.6. Parallel prefix computation in EREW PRAM
via recursive doubling.
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Two other solutions, based on divide and conquer

0:0  1:1  2:2  3:3  4:4  5:5  6:6  7:7  . . . p–3:p–3  p–2:p–2  p–1:p–1

    0:1      2:3      4:5      6:7        p–4:p–3          p–2:p–1
     

    0:1      0:3      0:5      0:7       0:p–3             0:p–1

0:0       0:2       0:4       0:6                        0:p–2           

The p inputs

Parallel prefix computation of size p/2

Fig. 5.7 Parallel prefix computation using a divide-
and-conquer scheme.

T(p) = T(p/2) + 2 = 2 log2p

p/2 even-indexed inputs

Parallel prefix computation of size p/2

p/2 odd-indexed inputs

Parallel prefix computation of size p/2

0        2         4          6        . . .          p–2  
 

0         02       024       0246                   024...(p–2)
        

      1         3         5         7   . . . p–3              p–1
     

     1        13       135      1357      13...(p–3)        13...(p–1)

 0:0  0:1  0:2 0:3  0:4 0:5  0:6  0:7         0:(p–3)  0:(p–2)  0:(p–1)    

Fig. 5.8. Another divide-and-conquer scheme for
parallel prefix computation.

T(p) = T(p/2) + 1  =  log2p     Requires commutativity
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5.5 Ranking the Elements of a Linked List

C F A E B D
Rank:   5           4           3          2           1           0

info  next
head

Terminal element

(or distance from terminal)

Distance from head:
1           2           3          4           5           6

Fig. 5.9. Example linked list and the ranks of its
elements.

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

Fig. 5.10. PRAM data structures representing a linked
list and the ranking results.

List-ranking appears to be hopelessly sequential

However, we can in fact use a recursive doubling scheme
to determine the rank of each element in optimal time

There exist other problems that appear to be unparallizable

This is why intuition can be misleading when it comes to
determining which computations are or are not efficiently
parallelizable (i.e., whether a computation is or is not in NC)
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1 1 1 1 1 0

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

Fig. 5.11. Element ranks initially and after each of the
three iterations.

PRAM list ranking algorithm (via pointer jumping)
Processor j, 0 ≤ j < p, do {initialize the partial ranks}

if next[j] = j
then rank[j] := 0
else  rank[j] := 1
endif

while rank[next[head]] ≠ 0 Processor j, 0 ≤ j < p, do
rank[j] := rank[j] + rank[next[j]]
next[j] := next[next[j]]

endwhile

Which PRAM submodel is implicit in the preceding
algorithm?
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5.6 Matrix Multiplication

For m × m matrices, C = A × B means:      cij   =   ∑
k=0

m–1

�a ik�bk j

Sequential matrix multiplication algorithm
for i = 0 to m – 1 do

for j = 0 to m – 1 do
t := 0
 for k = 0 to m – 1 do

  t := t + aikbkj

 endfor
 cij := t

endfor
endfor               

=×
i

j

ij

Fig. 5.12. PRAM matrix multiplication by using p = m2

processors.

PRAM matrix multiplication algorithm using m2 processors
Processor (i, j), 0 ≤ i, j < m, do
begin

t := 0
for k = 0 to m – 1 do

t := t + aikbkj

endfor
cij := t

end
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=×
i

j

ij

PRAM matrix multiplication algorithm using m processors
for j = 0 to m – 1 Processor i, 0 ≤ i < m, do

t := 0
for k = 0 to m – 1 do

t := t + aikbkj

endfor
cij := t

endfor

Both of the preceding algorithms are efficient and provide
linear speedup

Using fewer than m processors: each processor computes
m/p rows of C

=×
i

j

ij m / p
rows

The preceding solution is not efficient for NUMA parallel
architectures

Each element of B is fetched m/p times

For each such data access, only two arithmetic operations
are performed
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Block matrix multiplication

1 2 √p

1

2

√p

One processor 
computes these 
elements of C 
that it holds in 
local memory

q

q=m/√p

Fig. 5.13. Partitioning the matrices for block matrix
multiplication.

=×

i

j

ij
BlockBlock-

band

Block-band

Each multiply-add computation on q × q blocks needs

2q2 = 2m2/p memory accesses to read the blocks

2q3 arithmetic operations

So, q arithmetic operations are done per memory access

We assume that processor (i, j) has local memory to hold

Block (i, j) of the result matrix C (q2 elements)

One block-row of B; say Row kq + c of Block (k, j) of B

(Elements of A can be brought in one at a time)
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For example, as element in row iq + a of column kq + c in
block (i, k) of A is brought in, it is multiplied in turn by the
locally stored q elements of B, and the results added to the
appropriate q elements of C

iq

iq+1

iq+2

iq+q–1

iq+a

.

.

.

. 
 .

  
.

kq+c

jq
jq+1

jq+2 jq+b jq+q–1.  .  . .  .  . Elements of
Block (k, j) 
in Matrix B

Element of
Block (i, k) 
in Matrix A

jq
jq+1

jq+2 jq+b

iq

iq+1

iq+2

iq+q–1

jq+q–1

iq+a

.

.

.

.  .  . .  .  .

. 
 .

  
.

Elements of
Block (i, j) 
in Matrix C

kq+c Multip
ly

Add

Fig. 5.14. How Processor (i, j) operates on an element
of A and one block-row of B to update one
block-row of C.

On the Cm* NUMA-type shared-memory multiprocessor,
this block algorithm exhibited good, but sublinear, speedup

p = 16, speed-up = 5 in multiplying 24 × 24 matrices;

improved to 9 (11) for larger 36 × 36 (48 × 48) matrices

The improved locality of block matrix multiplication can also
improve the running time on a uniprocessor, or distributed
shared-memory multiprocessor with caches

Reason: higher cache hit rates.
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6 More Shared-Memory Algorithms

Chapter Goals
● Develop PRAM algorithms for more complex

problems
(background on corresponding sequential
algorithms also presented)

● Discuss some practical implementation
issues such as data distribution

Chapter Contents
● 6.1. Sequential Rank-Based Selection
● 6.2. A Parallel Selection Algorithm
● 6.3. A Selection-Based Sorting Algorithm
● 6.4. Alternative Sorting Algorithms
● 6.5. Convex Hull of a 2D Point Set
● 6.6. Some Implementation Aspects
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6.1 Sequential Rank-Based Selection

Selection: Find a (the) kth smallest among n elements

Naive solution through sorting, O(n log n) time

Linear-time sequential algorithm can be developed

Median

m = the median 
of the medians:
≥ n/4 elements
≤ n/4 elements

L

E

G

< m

= m

> m

k < |L|

k > |L| + |E|

q

n/qmn
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Sequential rank-based selection algorithm select(S, k)
1. if |S| < q           {q is a small constant}

then sort S and return the kth smallest element of S
else divide S into |S|/q subsequences of size q

Sort each subsequence and find its median
Let the |S|/q medians form the sequence T

endif
2. m = select(T, |T|/2)

{find the median m of the |S|/q medians}
3. Create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4. if |L| ≥ k
then return select(L, k)
else if |L| + |E| ≥ k

then return m
else return select(G, k – |L| – |E|)

endif

Analysis:

T(n) = T(n/q) + T(3n/4) + cn

Let q = 5; we guess the solution to be T(n) = dn

dn = dn / 5 + 3dn / 4 + cn       ⇒     d = 20c
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Examples for sequential selection

from an input list of size n = 25 using q = 5

 ←−−−−−−−−−−− n/q sublists of q elements −−−−−−−−−−−→
S   6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5
    ---------  ---------  ---------  ---------  ---------
T         6        3          3        2          5
m                             3
    1 2 1 0 2 1 1   3 3   6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
    -------------   ---   -------------------------------
          L          E                   G

    | L | = 7         | E | = 2   | G | = 16

To find the 5th smallest element in S, select the 5th smallest
element in L

S   1 2 1 0 2  1 1
    ---------  ---
T       1        1
m                1
    0   1 1 1 1   2 2
    -   -------   ---
    L      E       G                      Answer: 1

The 9th smallest element of S is 3

The 13th smallest element of S is found by selecting the 4th
smallest element in G

S   6 4 5 6 7  5 8 4 5 6  7 4 5 4 9  5
    ---------  ---------  ---------  -
T         6          5        5      5
m                    5
    4 4 4 4   5 5 5 5 5   6 6 7 8 6 7 9
    -------   ---------   -------------
       L          E             G           Answer: 4
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6.2 A Parallel Selection Algorithm

Parallel rank-based selection algorithm  PRAMselect(S, k, p)
1. if |S| < 4          

then sort S and return the kth smallest element of S
else broadcast |S| to all p processors

divide S into p subsequences S(j) of size |S|/p
Processor j, 0 ≤ j < p, compute Tj := select(S(j), |S(j)|/2)

endif
2. m = PRAMselect(T, |T|/2, p) {median of the medians}
3. Broadcast m to all processors and create 3 subsequences

L: Elements of S that are < m
E: Elements of S that are = m
G: Elements of S that are > m

4. if |L| ≥ k
then return PRAMselect(L, k, p)
else if |L| + |E| ≥ k

then return m
else return PRAMselect(G, k – |L| – |E|, p)

endif

Analysis: Let p = n1–x, with x > 0 a known constant

e.g., x = 1/2  ⇒  p = √n

T(n, p)  =  T(n1–x, p) + T(3n/4, p) + cnx   =  O(nx )

Speed-up(n, p)  =  Θ(n)/O(nx)  =  Ω(n1–x)  =  Ω(p)

Efficiency = Ω(1)

What if x = 0, i.e., we use p = n processors for an n-input
selection problem?
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6.3 A Selection-Based Sorting Algorithm

.  .  .m m m m

n/k elements n/k n/k n/k

–∞ +∞1 2 3 k–1

Fig. 6.1. Partitioning of the sorted list for selection-
based sorting.

Parallel selection-based sort PRAMselectionsort(S, p)
1. if |S| < k then return quicksort(S)          
2. for i = 1 to k – 1 do

mj := PRAMselect(S, i|S|/k, p)
{for notational convenience, let m0 := –∞ ;  mk := +∞}

endfor
3. for i = 0 to k  – 1 do

make the sublist T(i) from elements of S in (mi, mi+1)
endfor

4. for i = 1 to k /2 do in parallel
PRAMselectionsort(T(i), 2p/k)
{p/(k/2) processors used for each

of the k/2 subproblems}
endfor

5. for i = k/2 + 1 to k  do in parallel
PRAMselectionsort(T(i), 2p/k)

endfor

Analysis: Let p = n1–x, with x > 0 a known constant, k = 21/x

T(n, p)  =  2T(n/k, 2p/k) + cnx  =  O(nx log n)

Why can’t all k subproblems be handled in Step 4 at once?
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Speedup(n, p) = Ω(n log n)/O(nx log n) = Ω(n1–x) = Ω(p)

Efficiency  =  Speedup / p  =  Ω(1)

Work(n, p) = pT(n, p) = Θ(n1–x) O(nx log n) = O(n log n)

Our asymptotic analysis is valid for x > 0 but not for x = 0;

i.e., PRAMselectionsort does not allow us to sort p keys

in optimal O(log p) time

Example:

S:  6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5

Threshold values:

                 m0 = –∞
 n/k = 25/4 ≈  6      m1 = PRAMselect(S,  6, 5) = 2
2n/k = 50/4 ≈ 13      m2 = PRAMselect(S, 13, 5) = 4
3n/k = 75/4 ≈ 19      m3 = PRAMselect(S, 19, 5) = 6

                  m4 = +∞

               |             |           |
T:  - - - - - 2|- - - - - - 4|- - - - - 6|- - - - - -
               |             |           |

               |             |           |
T:  0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9
               |             |           |
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6.4 Alternative Sorting Algorithms

Sorting via random sampling

Given a large list S of inputs, a random sample of the
elements can be used to establish k comparison thresholds

In fact, it would be easier if we pick k = p, so that each of the
resulting subproblems is handled by a single processor.

Assume p << √n :

Parallel randomized sort PRAMrandomsort(S, p)

1. Processor j, 0 ≤ j < p, pick |S|/p2 random samples

of its |S|/p elements and store them in its

corresponding section of a list T of length |S|/p

2. Processor 0 sort the list T

{the comparison threshold mi is

the (i |S| / p2)th element of T}

3. Processor j, 0 ≤ j < p, store its elements falling

in (mi , mi+1) into T(i)

4. Processor j, 0 ≤ j < p, sort the sublist T(i)
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Parallel radixsort

In binary version of radixsort, we examine every bit of the
k-bit keys in turn, starting from the least-significant bit (LSB)

In Step i, bit i is examined, 0 ≤ i < k

The records are stably sorted by the value of the ith key bit

Example (keys are followed by their binary representations
in parentheses):

Input Sort by Sort by Sort by
list LSB middle bit MSB
–––––– –––––– –––––– ––––––
5 (101) 4 (100) 4 (100) 1 (001)
7 (111) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010) 1 (001) 2 (010)
1 (001) 5 (101) 2 (010) 3 (011)
4 (100) 7 (111) 2 (010) 4 (100)
2 (010) 3 (011) 7 (111) 5 (101)
7 (111) 1 (001) 3 (011) 7 (111)
2 (010) 7 (111) 7 (111) 7 (111)

Performing the required data movements

Input Compl. Diminished Prefix sums Shifted
list of Bit 0  prefix sums   Bit 0  plus 2 list
–––––– –––––– –––––– –––––– –––––– ––––––
5 (101) 0  – 1 1   + 2 = 3 4 (100)
7 (111) 0  – 1 2   + 2 = 4 2 (010)
3 (011) 0  – 1 3   + 2 = 5 2 (010)
1 (001) 0  – 1 4   + 2 = 6 5 (101)
4 (100) 1 0 0   – 7 (111)
2 (010) 1 1 0   – 3 (011)
7 (111) 0  – 1 5   + 2 = 7 1 (001)
2 (010) 1 2 0   – 7 (111)

The running time consists mainly of the time to perform 2k
parallel prefix computations: O(log p) for k constant
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6.5 Convex Hull of a 2D Point Set
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Fig. 6.2. Defining the convex hull problem.

Best sequential algorithm for p points: Ω(p log p) steps

0

1

7

11

15

y'

x'
Angle

All points fall on 
this side of line

Fig. 6.3. Illustrating the properties of the convex
hull.

Parallel convex hull algorithm PRAMconvexhull(S, p)
1. Sort the point set by the x coordinates         
2. Divide the sorted list into √p subsets Q(i) of size √p, 0 ≤ i < √p
3. Find the convex hull of each subset Q(i) using √p processors
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4. Merge the √p convex hulls CH(Q(i)) into the overall hull CH(Q)

x

y

x

y

CH(Q   )(0)Q(0) Q(1) Q(2) Q(3)

Fig. 6.4. Multiway divide and conquer for the convex
hull problem.

CH(Q   )

a b

No point of CH(Q   )

is on CH(Q)

Points of CH(Q   ) between

a and b are on CH(Q)

(j)

CH(Q   )(i)

CH(Q   )(k)

CH(Q   )(j)

CH(Q   )(i)

CH(Q   )(k)(i)

(i)

Tangent Lines

Fig. 6.5. Finding points in a partial hull that belong to
the combined hull.

Analysis:

T(p, p) = T(p1/2, p1/2) + c log p  ≈ 2c log p
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The intiail sorting time is also O(log p)
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6.6 Some Implementation Aspects

0,0  0,1  0,2  0,3  0,4  0,5

1,0  1,1  1,2  1,3  1,4  1,5

2,0  2,1  2,2  2,3  2,4  2,5 

3,0  3,1  3,2  3,3  3,4  3,5  

4,0  4,1  4,2  4,3  4,4  4,5  

5,0  5,1  5,2  5,3  5,4  5,5  

Module    0    1    2    3    4    5

Row 1

Column 2

Fig. 6.6. Matrix storage in column-major order to
allow concurrent accesses to rows.

0,0  0,1  0,2  0,3  0,4  0,5

1,5  1,0  1,1  1,2  1,3  1,4

2,4  2,5  2,0  2,1  2,2  2,3

3,3  3,4  3,5  3,0  3,1  3,2

4,2  4,3  4,4  4,5  4,0  4,1

5,1  5,2  5,3  5,4  5,5  5,0

Module    0    1    2    3    4    5

Row 1

Column 2

Fig. 6.7. Skewed matrix storage for conflict-free
accesses to rows and columns.
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Vector
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as vector 
element
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ij

Fig. 6.8. A 6 × 6 matrix viewed, in column-major
order, as a 36-element vector.
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The vector in Fig. 6.8 may be accessed in some or all of the
following ways

Column: k, k+1, k+2, k+3, k+4, k+5 Stride = 1

Row:  k, k+m, k+2m, k+3m, k+4m, k+5m Stride = m

Diagonal: k, k+m+1, k+2(m+1), k+3(m+1),

k+4(m+1), k+5(m+1) Stride = m + 1

Antidiagonal: k, k+m–1, k+2(m–1), k+3(m–1),

k+4(m–1), k+5(m–1) Stride = m – 1

Linear skewing scheme:

stores the kth vector element in the bank a + kb mod B

The address within the bank is irrelevant to conflict-free
parallel access

In fact, the constant a above is also irrelevant and can be
safely ignored

So we can limit our attention to linear skewing schemes that
assign Vk to memory module Mkb mod B

With a linear skewing scheme, the vector elements k, k+s,
k+2s, ... , k+(B–1)s will be assigned to different memory
modules iff sb is relatively prime with respect to the number
B of memory banks.
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To allow access from each processor to every memory
bank, we need a permutation network

Even with a full permutation network (complex, expensive),
full PRAM functionality is not realized

Practical processor-to-memory network cannot realize all
permutations (they are blocking)

0        1        2        3
log  p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15

2

Fig. 6.9. Example of a multistage memory access
network.
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7 Sorting and Selection Networks

Chapter Goals
● Become familiar with the circuit-level models

of parallel processing
● Introduce useful design tools and trade-off

issues via a familiar problem
(three more application-specific examples to
come in Chapter 8)

Chapter Contents
● 7.1. What Is a Sorting Network?
● 7.2. Figures of Merit for Sorting Networks
● 7.3. Design of Sorting Networks
● 7.4. Batcher Sorting Networks
● 7.5. Other Classes of Sorting Networks
● 7.6. Selection Networks
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7.1 What Is a Sorting Network?
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n-sorter
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y
y

y

0

1

2

n–1

The outputs are a
permutation of the
inputs satisfying
y ≤ y ≤ ... ≤ y
(non-descending) 

0 1 n–1

Fig. 7.1. An n-input sorting network or an n-sorter.

2-sorter

input min0

input1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

Fig. 7.2. Block diagram and four different schematic
representations for a 2-sorter.
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Fig. 7.3. Parallel and bit-serial hardware realizations
of a 2-sorter.
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Fig. 7.4. B l o c k  d i a g r a m  a n d  s c h e m a t i c
representation of a 4-sorter.

How to verify that the circuit of Fig. 7.4 is a valid 4-sorter?

The answer is easy in this case

After the first two circuit levels, the top line carries the
smallest and the bottom line the largest of the four values

The final 2-sorter orders the middle two values

More generally, we need to verify the correctness of an n-
sorter through formal proofs or by time-consuming
exhaustive testing. Neither approach is attractive.

The zero-one principle: A comparison-based sorter is valid
iff it correctly sorts all 0/1 sequences.

6-sorter

1
3
6*
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8
9

3
6
9
1
8
5

Invalid

0
1
1
0
1
0

0
0
1
0
1
1
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7.2 Figures of Merit for Sorting Networks

a. Cost: number of 2-sorter blocks used in the design

b. Delay: number of 2-sorters on the critical path

n = 9, 25 modules, 9 levels                      n = 10, 29 modules, 9 levels

n = 12, 39 modules, 9 levels     n = 16, 60 modules, 10 levels

Fig. 7.5. Some low-cost sorting networks.
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n = 6, 12 modules, 5 levels  n = 9, 25 modules, 8 levels   n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels     n = 16, 61 modules, 9 levels

Fig. 7.6. Some fast sorting networks.
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7.3 Design of Sorting Networks

         

Rotate
by 90
degrees

Fig. 7.7. Brick-wall 6-sorter based on odd–even
transposition.

C(n) = C(n – 1) + n – 1  =  (n – 1) + (n – 2) + . . . + 2 + 1  =  n(n – 1)/2

D(n ) = D(n – 1) + 2 = 2 + 2 + . . . + 2 + 1  =  2(n – 2) + 1  =  2n – 3

Cost × Delay = n(n – 1)(2n – 3)/2 = Θ(n3)
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Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

Fig. 7.8. Sorting network based on insertion sort or
selection sort.
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7.4 Batcher Sorting Networks
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sorted
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Second
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Fig. 7.9.  Batcher’s even–odd merging network for 4 + 7
inputs.

x0 ≤ x1 ≤ ... ≤ xm–1 (k  0s) y0 ≤ y1 ≤ ... ≤ ym'–1 (k'  0s)

Merge x0, x2, ...  and y0, y2, ...  to get v0, v1, ... keven = k/2+k'/2 0s

Merge x1, x3, ...  and y1, y3, ... to get w0, w1, ... kodd = k/2+k'/2  0s

Compare-exchange the pairs of elements     w0:v1, w1:v2, w2:v3, . . .

Case a: keven = kodd  The sequence v0 w0 v1 w1 v2 w2 ...  is already sorted

Case b: keven = kodd+1 The sequence v0 w0 v1 w1 v2 w2 ...  is already sorted
Case c: keven = kodd+2

v  0  0  0  0  0  0  0  0  1  1  1      1
w  0  0  0  0  0  0  1  1  1  1  1

     Out  of order
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Batcher’s (m, m) even-odd merger, when m is a power of 2,
is characterized by the following recurrences:

C(m) =  2C(m/2) + m – 1 = (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + ...  = m log2m + 1

D(m) = D(m/2) + 1 =  log2 m + 1

Cost × Delay = Θ(m log2 m)

n/2-sorter

n/2-sorter

(n/2, n/2)-
merger

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 7.10. The recursive structure of Batcher’s even–
odd merge sorting network.

4-sorters Even 
(2,2)-merger

Odd 
(2,2)-merger

Fig. 7.11. Batcher’s even-odd merge sorting network
for eight inputs.
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Batcher sorting networks based on the even-odd merge
technique are characterized by the following recurrences:

C(n)  =  2C(n/2) + (n/2)(log2(n/2)) + 1  ≈  n(log2n )2/ 2

D(n)  =  D(n/2) + log2(n/2) + 1 = D(n/2) + log2n  =  log2n (log2n + 1)/2

Cost × Delay = Θ(n log4n)

Bitonic sorters

Bitonic sequence: “rises then falls”, “falls then rises”, or is obtained from the
first two categories through cyclic shifts or rotations. Examples include:

1  3  3  4  6  6  6  2  2  1  0  0      Rises, then falls

8  7  7  6  6  6  5  4  6  8  8  9      Falls, then rises

8  9  8  7  7  6  6  6  5  4  6  8     The previous sequence, right-rotated by 2

n/2-sorter

n/2-sorter

n-input bitonic-
sequence sorter
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Fig. 7.12. The recursive structure of Batcher’s bitonic
sorting network.
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0 1 2      .  .  .       n–1

Shift right half of 
data to left half

Keep smaller value of
each pair and ship the
larger value to right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2      .  .  .       n–1

Bitonic sequenceShifted right half

Fig. 14.2. Sorting a bitonic sequence on a linear
array.

8-input bitonic-
sequence sorter

4-input bitonic-
sequence sorters

2-input
sorters
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Fig. 7.13. Batcher’s bitonic sorting network for eight
inputs.
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7.5 Other Classes of Sorting Networks

Periodic balanced sorting networks

 
Fig. 7.14. Periodic balanced sorting network for eight

inputs.

Desirable properties:

a. Regular and modular (easier VLSI layout).

b. Slower, but more economical, implementations are
possible by reusing the blocks

c. Using an extra block provides tolerance to some faults
(missed exchanges)

d. Using 2 extra blocks provides tolerance to any single
fault (a missed or incorrect exchange)

e. Multiple passes through a faulty network can lead to
correct sorting (graceful degradation)

f. Single-block design can be made fault-tolerant by
adding an extra stage to the block
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Shearsort-based sorting networks

Offer some of the same advantages enumerated for
periodic balanced sorting networks

0 1 2 3

4567

Snake-like
row sorts

Column
sorts

0
1
2
3
4
5
6
7

Snake-like
row sorts

Corresponding
2-D mesh

Fig. 7.15.  Design of an 8-sorter based on shearsort on
2×4 mesh.

0
1
2
3
4
5
6
7

0 1

3 2
54

7 6

Corresponding
2-D mesh

Left
column
sort

Right
column
sort

Snake-like row sort

Left
column
sort

Right
column
sort

Snake-like row sort

Fig. 7.16.  Design of an 8-sorter based on shearsort on
4×2 mesh.
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7.6 Selection Networks

Any sorting network can be used as a selection network,
but a selection network (yielding the kth smallest or largest
input value) is in general simpler and faster

One can define three selection problems:

I. Select the k smallest values; present in sorted order

II. Select kth smallest value

III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,6]

[1,7]

[0,6]
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[1,7]

[1,7]

[1,7]

[1,6]

[1,6]

[1,6]
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[0,4]

[0,4]

[0,4]

[0,4] [0,3]

[3,7]

[4,7][3,7][3,7]

[3,7]

[4,7]

[1,3]

[1,5]

[1,5] [1,3]

[4,6][2,6]

[2,6]

[4,6]

O
ut

pu
ts

Fig. 7.17. A type III (8, 4)-selector.

Classifier: a selection network that can divide a set of n
values into n/2 largest and n/2 smallest values

The selection network of Fig. 7.17 is in fact an 8-input
classifier
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Generalizing the construction of Fig. 7.17, an n-input
classifier can be built from two (n/2)-sorters followed by n/2
comparators

I
N

O
U
T

Left half Right half

Figure for Problem 7.7.

x
y(0)

y(n–1)

y(1)

x
y(0)
y(1)

y(n/2–1)
y(n/2)

y(n/2+1)

y(n–1)
y(n/2+2)

Figure for Problem 7.9.

 

I
N

O
U
T

Figure for Problem 7.11.
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8 Other Circuit-Level Examples

Chapter Goals
● Study three application areas: dictionary

operations, parallel prefix, DFT
● Develop circuit-level parallel architectures

for solving these problems:
Tree machine
Parallel prefix networks
FFT circuits

Chapter Contents
● 8.1. Searching and Dictionary Operations
● 8.2. A Tree-Structured Dictionary Machine
● 8.3. Parallel Prefix Computation
● 8.4. Parallel Prefix Networks
● 8.5. The Discrete Fourier Transform
● 8.6. Parallel Architectures for FFT
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8.1 Searching and Dictionary Operations

Parallel (p + 1)-ary search:

logp+1(n + 1) = log2(n + 1)/log2(p + 1) steps

P0

P1

0
1
2

25

8

17

P0

P1P0P1

Example:

n = 26

p = 2

Step  
2

Step 
1

Step 
0

This algorithm is optimal: no comparison-based search
algorithm can be faster

Speed-up  ≈ log2(p + 1)

A single search in a sorted list cannot be significantly
speeded up by parallel processing, but all hope is not lost

Dynamic data sets

Batch searching
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Basic dictionary operations: record keys x0, x1, . . . , xn–1

search(y) Find record with key y and return its data

insert(y, z) Augment list with a record: key = y, data = z

delete(y) Remove record with key y, return data

Some or all of the following ops might also be of interest:

findmin Find record with smallest key; return data

findmax Find record with largest key; return data

findmed Find record with median key; return data

findbest(y) Find record with key “nearest” to y

findnext(y) Find record whose key would appear
immediately after y if ordered

findprev(y) Find record whose key would appear
immediately before y if ordered

extractmin Remove record(s) with smallest key; return
data?

extractmax Remove record(s) with largest key; return
data?

extractmed Remove the record(s) with median key value;
return data?

The operations “findmin” and “extractmin” (or “findmax” and
“extractmax”) are referred to as priority queue operations
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8.2 A Tree-Structured Dictionary Machine

x

Input Root

Output Root

"Circle"
  Tree

"Triangle"
    Tree

0 x1 x2 x4x3 x5 x6 x7

Fig. 8.1. A tree-structured dictionary machine.

The combining function of the triangular nodes is as follows:

search(y) Pass OR of “yes” signals, with data from “yes”
side, or from either side if both indicate “yes”

findmin Pass the smaller of two key values, with data
(findmax is similar; findmed not supported)

findbest(y) Pass the larger of two match-degree
indicators, with the corresponding record

findnext(y) Leaf nodes generate a “larger” flag bit;
findmin is performed among all larger values
(findprev is similar)
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*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

Fig. 8.2. Tree machine storing five records and
containing three free slots.
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Fig. 8.3. Systolic data structure for minimum,
maximum, and median finding.

[5, 87] [87, 176]
Insert  2
Insert  20
Insert  127
Insert  195

Extractmin
Extractmed
Extractmax19 or 20 

items 20 items

1765
87
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8.3 Parallel Prefix Computation

xi xi

s i s i

Latches Latches

⊗

Fig. 8.4. Prefix computation using a latched or
pipelined function unit.

Example: Prefix sums

x0 x1 x2 . . . xi

x0 x0 + x1 x0 + x1 + x2 . . . x0 + x1 + . . . + xi

s0 s1 s2 . . . si

a[i]

x[i – 12]
Delay

Delays
a[i–1]

a[i–6] ◊ a[i–7]

a[i–4] ◊ a[i–5]

a[i–8] ◊ a[i–9] ◊ a[i–10] ◊ a[i–11]

s i–12

xi

Delay

Delays

xi–1

⊗xi–4 xi–5

xi–6 xi–7⊗

xi–8 xi–9 xi–10 xi–11⊗⊗⊗
Function unit 

⊗computing

Fig. 8.5. High-throughput prefix computation using a
pipelined function unit.
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8.4 Parallel Prefix Networks

. . .

Prefix Sum n/2

xn–1 xn–2 x3 x2 x1 x0. . .

s n–1 s n–2 s 3 s 2 s 1 s 0

++

+

+

+

Fig. 8.6. Prefix sum network built of one n/2-input
networks and n – 1 adders.

T(n) = T(n/2) + 2 = 2 log2n – 1

C(n) = C(n/2) + n – 1 = 2n – 2 – log2n

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

s n–1 s n/2

s n/2–1 s 0+ +

Fig. 8.7. Prefix sum network built of two n/2-input
networks and n/2 adders.

T(n) = T(n/2) + 1 = log2n

C(n) = 2C(n/2) + n/2 = (n/2) log2n
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x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

Fig. 8.8. Brent–Kung parallel prefix graph for n = 16.

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15
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Fig. 8.9. Kogge–Stone parallel prefix graph for n =
16.

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

Brent-
Kung

Brent-
Kung

Kogge-
Stone

Fig. 8.10. A hybrid Brent–Kung/Kogge–Stone parallel
prefix graph for 16 inputs.

Type-x parallel prefix network

Produces the leftmost output in log2(# of inputs) time

Yields all other outputs with at most x additional delay

Building the fastest possible parallel prefix network (type-0)
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. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

s n–1 s n/2

s n/2–1 s 0+ +

Type-0 Type-1

Type-0
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8.5 The Discrete Fourier Transform

yi  = ∑n–1
j=0 ωn

ijxj

The DFT is expressed in matrix form as y = Fnx

 




 


y0

y1
:
:

yn–1

  =  

 




 


1 1 1 ... 1

1 ωn ωn2 ... ωnn–1

: : : ... :
1 ωnn–1 ωn2(n–1) ... ωn(n–1)2

  

 




 


x0

x1
:
:

xn–1

ωn:nth primitive root of unity; ωn
n = 1 & ωn

j ≠ 1 for 1 ≤ j < n

Examples:  ω4 = i  = √–1, ω3 = –1/2 + i √3/2

Inverse DFT, for recovering x, given y, is essentially the
same computation as DFT:

xi  = 
1
n  ∑n–1

j=0 ωn
–ijyj

Any matrix-vector multiplication algorithm can be used to
compute DFTs

However, the special structure of Fn can be exploited to
devise a much faster divide-and-conquer algorithm

The resulting algorithm is known as the fast Fourier
transform (FFT)
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DFT Applications

Spectral analysis

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209
  Hz

1477 
  Hz

1336 
  Hz

1633 
  Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments
     for touch-tone dialing

Frequency spectrum of received tone

Signal smoothing or filtering

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal
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Fast Fourier Transform (FFT)

Partition the DFT sum into odd- and even-indexed terms

yi  =  ∑n–1
j=0 ωn

ijxj   =  ∑��
j�even�(2r)ωn

ijxj  + ∑��
j�odd�(2r+1)ωn

ijxj

      =  ∑n/2–1
r=0 ωn/2

irx2r  + ωn ∑n/2–1
r=0 ωn/2

irx2r+1

The identity ωn/2 = ωn
2 has been used in the derivation

The two terms in the last expression are n/2-point DFTs

u = Fn/2 

 




 


x0

x2
:
:

xn–2

      v = Fn/2 

 




 


x1

x3
:
:

xn–1

Then:

ui + ωn
ivi                 0 ≤ i < n/2

yi  =
ui–n/2 + ωn

ivi–n/2   n/2≤i<n  (or yi+n/2 = ui + ωn
i+n/2vi)

Hence:n-point FFT =  two n/2-point FFTs + n multiply-adds

Sequential complexity of FFT:T(n) = 2T(n/2) + n = n log2n

Unit of time = latency of one multiply-add operation

If the two n/2-point subproblems are solved in parallel and
the n multiply-add operations are also concurrent, with their
inputs supplied instantly, the parallel time complexity is:

T(n) = T(n/2) + 1 =  log2n
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8.6 Parallel Architectures for FFT

x0

x4

x2

x6
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y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1
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v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Fig. 8.11. Butterfly network for an 8-point FFT.
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Fig. 8.12. FFT network variant and its shared-
hardware realization.
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x0 u0
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Project

Project
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1
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0
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x y
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i
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a–b

Fig. 8.13. Linear array of log2n cells for n-point FFT
computation.
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Part III Mesh-Based Architectures

Part Goals
● Study 2D mesh and torus networks in depth

●   of great practical significance
●   used in recent parallel machines
●   regular with short wires (scalable)

● Discuss 3D and higher-dimensional
meshes/tori as well as variants and
derivative architectures

Part Contents
● Chapter 9: Sorting on a 2D Mesh or Torus
● Chapter 10: Routing on a 2D Mesh or Torus
● Chapter 11: Numerical 2D Mesh Algorithms
● Chapter 12: Mesh-Related Architectures
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9 Sorting on a 2D Mesh or Torus

Chapter Goals
● Introduce the mesh model (processors,

links, communication)
● Develop 2D mesh sorting algorithms
● Learn about mesh capabilities/weaknesses

in communication-intensive problems

Chapter Contents
● 9.1. Mesh-Connected Computers
● 9.2. The Shearsort Algorithm
● 9.3. Variants of Simple Shearsort
● 9.4. Recursive Sorting Algorithms
● 9.5. A Nontrivial Lower Bound
● 9.6. Achieving the Lower Bound
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9.1 Mesh-Connected Computers

Row wrap-around link for torus

In
pu
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Fig. 9.1. T w o - d i m e n s i o n a l  m e s h - c o n n e c t e d
computer.

We focus on 2D mesh (>2D discussed in Chapter 12)

NEWS or four-neighbor mesh (others in Chapter 12)

Square (√p × √p) or rectangular (r × p/r) mesh

MIMD, SPMD, or SIMD mesh

All-port versus single-port communication

Weak SIMD model: all communications in same direction

Diameter-based and bisection-based lower bounds
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Fig. 9.2. A 5 × 5 torus folded along its columns.
Folding this diagram along the rows will
produce a layout with only short links.

Row-Major          Snake-like Row-Major

0   1   2   3         0   1   2   3

4   5   6   7         7   6   5   4

8   9  10  11         8  9  10 11

12  13 14 15        15  14  13 12

Shuffled Row-Major    Proximity Order

0   1   4   5         1   2   5   6

2  3   6   7         0  3   4  7

8   9 12 13        15  12  11   8

10 11  14 15        14  13 10   9

Fig. 9.3. Some linear indexing schemes for the
processors in a 2D mesh.
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Interprocessor communication

R1
R2

R3
R4

R5

R5

R5

R5

R5
R2

R3
R4

R1

R5

R5

R6
R6

R7

R7

R8

R8

Fig. 9.4. Reading data from NEWS neighbors via
virtual local registers.
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9.2 The Shearsort Algorithm

then
sort the 
columns
(top-to-
bottom)

Sort the
rows
(snake-
like)

repeat   log  r   times

endrepeat
Sort the rows

Snakelike Row-Major

 . . ..
.
.

.

.

.

.

.

.

(depending on the desired final sorted order)
or

 2

Shearsort algorihm for a 2D mesh with r rows

Fig. 9.5. Description of the shearsort algorithm on
an r-row 2D mesh.

Tshearsort = log2r(p/r + r) + p/r

On a square √p × √p mesh, Tshearsort = √p (log2p + 1)
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Proof of correctness of shearsort via the 0-1 principle

Assume that in doing the column sorts, we first sort pairs of
elements in the column and then sort the entire column

0 0 0         1 1
1 1 1         0 0

0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1
1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1

0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

Row 2i 
Row 2i + 1

Case (a):  
More 0s

Case (b):  
More 1s

Case (c):  
Equal #
0s & 1s

⇒

⇒

⇒

Bubbles up in the
next column sort

Sinks down in the
next column sort

Fig. 9.6. A pair of dirty rows create at least one clean
row in each shearsort iteration.

Dirty Dirty
x dirty 
rows

At most  x/2 
dirty rows

0

1

0

1

⇒
 

Fig. 9.7. The number of dirty rows halves with each
shearsort iteration.
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 1  12  21   4

15  20  13   2

 5   9  18   7

22   3  14  17

 1   4  12  21

20  15  13   2 

 5   7   9  18

22  17  14   3

Keys

Row
sort

 1   4   9   2

 5   7  12   3 

20  15  13  18

22  17  14  21

 1   2   4   9

12   7   5   3 

13  15  18  20

22  21  17  14

 1   2   4   3

12   7   5   9 

13  15  17  14

22  21  18  20

 1   2   3   4

12   9   7   5 

13  14  15  17

22  21  20  18

 1   2   3   4

 5   7   9  12 

13  14  15  17

18  20  21  22

Row
sort

Column
sort

Column
sort

Final
row
sort

Snake-
like

Row-
major

Fig. 9.8. Example of shearsort on a 4 × 4 mesh.
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9.3 Variants of Simple Shearsort

Sorting 0s and 1s on a linear array: odd-even transposition
steps can be limited to the number of dirty elements

Example: sorting 000001011111 requires at most two steps

Thus, we can replace complete column sorts of shearsort
with successively fewer odd-even transposition steps

      Topt shearsort = (p/r)(log2r + 1) + r + r/2 + . . . + 2

= (p/r)(log2r + 1) + 2r – 2  [r = √p: √p(12 log2p + 3) – 2]

 1  12  21   4

15  20  13   2

 5   9  18   7

22   3  14  17

 1   6  12  25

31  20  15   2 

 5   8  11  19

28  23  17   3

Keys

Row
sort

 1   6  11   2

 5   9  15  13 

28  20  17  19

31  24  21  26

The final row sort (snake-like or row-major) is not shown.

 6  26  25  10

31  32  16  30

11  19  27   8

28  23  29  24

 4  10  21  26

32  30  16  13

 7   9  18  27

29  24  22  14

 4   8  12   3

 7  10  16  14

29  23  18  25

32  30  22  27

 1   3   6  11

15  13   9   5 

17  19  23  28

31  27  24  21

 2   4   8  12

16  14  10   7

18  20  25  29

32  30  26  22

 1   3   6   5

15  13   9  11 

17  19  23  21

31  27  25  28

 2   4   8   7

16  14  10  12

18  20  24  22

32  30  26  29

Row
sort

Column
sort

Column
sort

x     
   y

Two keys held
by one processor

Fig. 9.9. Example of shearsort on a 4 × 4 mesh with
two keys stored per processor.
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9.4 Recursive Sorting Algorithms

 . . .

.

.

.

1.  Sort quadrants 2.  Sort rows

3.  Sort columns 4.  Apply 4√p steps of odd-even  
  transposition along the snake

.

.

.

Fig. 9.10. Graphical depiction of the first recursive
algorithm for sorting on a 2D mesh based
on four-way divide and conquer.

T(√p)  =  T(√p/2) + 5.5√p   ≈  11√p
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0

1

Dirty

x rows

x' rows

0
0

00

1
1

11

a

a'

b

b'

c

c'

d

d'

Numbers of clean rows in
each of the four quadrants

 p – x – x'
rows

State of the array
after Phase 3

Fig. 9.11. The proof of the first recursive sorting
algorithm for 2D meshes.

x ≥ b + c + (a – b)/2 + (d – c)/2

A similar inequality for x' leads to:

     x + x' ≥  b + c + (a – b)/2 + (d – c)/2

+ a' + d' + (b' – a')/2 + (c' – d')/2

≥  b + c + a' + d' + (a – b)/2 + (d – c)/2

+ (b' – a')/2 + (c' – d')/2 – 4 × 1/2

=  (a + a')/2 + (b + b')/2 + (c + c')/2 + (d + d')/2 – 2

≥  √p – 4

The number of dirty rows after Phase 3: √p – x – x'  ≤ 4

Thus, at most 4√p  of the p elements are out of order along
the overall snake
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Another recursive sorting algorithm

1.  Sort quadrants 2.  Shuffle row elements

3.  Sort double columns
 in snake-like order

4.  Apply 2√p steps of
 odd-even transposition
 along the overall snake

.

.

.

. . .

0  1  2  3 

Distribute
these √p/2 
columns 
evenly

Fig. 9.12. Graphical depiction of the second recursive
algorithm for sorting on a 2D mesh based
on four-way divide and conquer.

T(√p)  =  T(√p/2) + 4.5√p   ≈  9√p
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0

0
0

00

1
1

11

a
b

c
d

Numbers of clean 0 rows
   in the four quadrants

.  .  .

.  .  .

Numbers of 0s in two different
 double-columns differ by ≤ 2

a
b

c d

.  .  .

.  .  .

≤ 2√p elements

0
0

0
0

0
0

0
0

0 0 0

0 0 0

1 1 1

Fig. 9.13. The proof of the second recursive sorting
algorithm for 2D meshes.
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9.5 A Nontrivial Lower Bound

We now have a 9√p-time mesh sorting algorithm

Two questions of interest:

1. Can we raise the 2√p – 2 diameter-based lower bound?

Yes, for snakelike sort, the bound 3√p – o(√p)

can be derived

2. Can we design an algorithm with better time than 9√p?

Yes, the Schnorr-Shamir sorting algorithm

requires 3√p + o(√p) steps

2√p

2√p

x[t]: the value
held in this corner
after t steps

Shortest path from
the upper left triangle
to opposite corner is
2√p – 2√p – 2 hops

 2√p
items4

4

4

Fig. 9.14. The proof of the 3√p – o(√p) lower bound
for sorting in snakelike row-major order.
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64  64  64  64  64   1   2   3   4

64  64  64  64   5   6   7   8   9

64  64  64  10  11  12  13  14  15

64  64  64  16  17  18  19  20  21

64  64  22  23  24  25  26  27  28

64  29  30  31  32  33  34  35  36

37  38  39  40  41  42  43  44  45

46  47  48  49  50  51  52  53  54

55  56  57  58  59  60  61  62  63

 0   0   0   0   0   1   2   3   4

 0   0   0   0   5   6   7   8   9

 0   0   0  10  11  12  13  14  15

 0   0   0  16  17  18  19  20  21

 0   0  22  23  24  25  26  27  28

 0  29  30  31  32  33  34  35  36

37  38  39  40  41  42  43  44  45

46  47  48  49  50  51  52  53  54

55  56  57  58  59  60  61  62  63

 1   2   3   4   5   6   7   8   9

18  17  16  15  14  13  12  11  10

19  20  21  22  23  24  25  26  27

36  35  34  33  32  31  30  29  28

37  38  39  40  41  42  43  44  45

54  53  52  51  50  49  48  47  46

55  56  57  58  59  60  61  62  63

64  64  64  64  64  64  64  64  64

64  64  64  64  64  64  64  64  64

 0   0   0   0   0   0   0   0   0

 0   0   0   0   0   0   0   0   0

 1   2   3   4   5   6   7   8   9

18  17  16  15  14  13  12  11  10

19  20  21  22  23  24  25  26  27

36  35  34  33  32  31  30  29  28

37  38  39  40  41  42  43  44  45

54  53  52  51  50  49  48  47  46

55  56  57  58  59  60  61  62  63

Fig. 9.15. Illustrating the effect of fewer or more 0s in
the shaded area.
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9.6 Achieving the Lower Bound

   .
.  .  .
   .

p 3/8

p 3/8

Vertical slice

Horizontal
slice

Block

p     Blocks1/8

.  .  .

.

.

.

.

.

.

.  .  .

p 1/2

Proc's

Fig. 9.16. Notation for the asymptotically optimal
sorting algorithm.

Schnorr-Shamir algorithm for snakelike sorting on a 2D mesh
1. Sort all blocks in snakelike order, independently & in parallel
2. Permute the columns such that the columns of each vertical

slice are evenly distributed among all vertical slices
3. Sort each block in snakelike order
4. Sort the columns independently from top to bottom
5. Sort Blocks 0&1, 2&3, . . . of all vertical slices together in

snakelike order; i.e., sort within 2p3/8 × p3/8 submeshes
6. Sort Blocks 1&2, 3&4, . . . of all vertical slices together in

snake-like order; again done within 2p3/8×p3/8 submeshes
7. Sort the rows independently in snakelike order
8. Apply 2p3/8 steps of odd-even transposition to the snake
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10 Routing on a 2-D Mesh or Torus

Chapter Goals
● Learn how to route multiple data items to

their respective destinations
(in PRAM routing is nonexistent and in the
circuit model it is hardwired)

● Become familiar with issues in packet
routing and wormhole routing

Chapter Contents
● 10.1. Types of Data Routing Operations
● 10.2. Useful Elementary Operations
● 10.3. Data Routing on a 2D Array
● 10.4. Greedy Routing Algorithms
● 10.5. Other Classes of Routing Algorithms
● 10.6. Wormhole Routing
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10.1 Types of Data Routing Operations

One-to-one communication (point-to-point messages)

a b
c

d e f
g h

a

b

cd

e

f

g

h

Packet sources Packet destinations Routing paths

0 2
3

4

01

2

3

3210

01

2

2

10

1

2

3
4

0

1

2

0

10
1

Collective communication (per the MPI standard)

a. One to many: broadcast, multicast, scatter

b. Many to one: combine, fan-in, gather

c. Many to many: many-to-many m-cast, all-to-all b-cast,
scatter-gather (gossiping), total exchange

Some special data routing operations

a. Data compaction or packing

a b
c

d e f
g h

a b c

d e f
g h

Fig. 10.1. Example of data compaction or packing.

b. Random-access write (RAW): Emulating one memory
write step of a PRAM with p processors

c. Random-access read (RAR): Emulating one memory
read step of a PRAM with p processors
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10.2 Useful Elementary Operations

Row or column rotation

Sorting records by a key field

Semigroup computation

Horizontal combining
        √p/2 steps

Vertical combining
        √p/2 steps≈ ≈

Fig. 10.2. Recursive semigroup computation in a 2D
mesh.

Parallel prefix computation

Quadrant Prefixes Horizontal Combining
   (includes reversal)    

Vertical Combining
      

Fig. 10.3. Recursive parallel prefix computation in a
2D mesh.
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Routing within a row or column

Processor number

(data, destination)

Left-moving
Right-moving

(d,2) (b,5) (a,0)

0 1 2 3 4 5

(e,4) (c,1)

                  (a,–2)                     (c,–4)
(d,+2)   (b,+4)            (e,+1)            

                  (a,–2)                     (c,–4)
         (d,+1)   (b,+3)            (e,0)                 Right

         (a,–1)                     (c,–3)                Left
         (d,+1)   (b,+3)                           

         (a,–1)                     (c,–3)              
                  (d,0)    (b,+2)                         Right

(a,0)                      (c,–2)                         Left  
                           (b,+2)                       

                           (c,–2)                         
                                    (b,+1)                Right

                  (c,–1)                                  Left  
                                    (b,+1)
   
                                              (b,0)       Right

          (c,0)                                           Left    

Fig. 10.4. Example of routing multiple packets on a
linear array.
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10.3 Data Routing on a 2D Array

Exclusive random-access write on a 2D mesh: MeshRAW

1. Sort packets in column-major order by destination
column number; break ties by destination row number

2. Shift packets to the right, so that each item is in the
correct column. There will be no conflict since at most
one element in each row is headed for a given column

3. Route the packets within each column

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column

Fig. 10.5. Example of random-access write on a 2D
mesh.

Not a shortest-path routing algorithm

e.g., packet headed to (3, 1) first goes to (0, 1)

But fairly efficient

  T =  3p1/2 + o(p1/2)  {snakelike sorting}
+  p1/2  {column reversal}
+  2p1/2 – 2  {row & column routing}
=  6p1/2 + o(p1/2)

Or  11p1/2 + o(p1/2)  with unidirectional communication
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10.4 Greedy Routing Algorithms

Greedy: pick a move that causes the most progress toward
the destination in each step

Example greedy algorithm: dimension-order (e-cube)

0

1

2

3

0 1 2 3

2,1 2,0 1,1

2,2 1,0

0,0 0,1

0

1

2

3

0 1 2 3

1,00,0

2,0

2,2

0,1

2,1
1,1 0

1

2

3

0 1 2 3

1,0
0,1

0,0

2,1
2,0

1,1

2,2

Initial state     After 1 step After 2 steps

0

1

2

3

1,0

0,10,0

2,12,0

1,1

2,2

After 3 steps

0 1 2 3

Fig. 10.6. Example of greedy row-first routing on a 2D
mesh.

T  =  2p1/2 – 2 {but requires large buffers}

Row i

Column j

Node (i,j)

Fig. 10.7. Demonstrating the worst-case buffer
requirement with row-first routing.
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Routing algorithms thus far

Slow 6p1/2, but with no conflict (no additional buffer)

Fast 2p1/2, but with large node buffers

An algorithm that allows trading off time for buffer space

p   /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p   /q1/2

q–10 1 2

Fig. 10.8. Illustrating the structure of the intermediate
routing algorithm.

  T  = 4p1/2/q + o(p1/2/q) {column-major block sort}

+ 2p1/2 – 2 {route}

=  (2 + 4/q)p1/2 + o(p1/2/q)

Buffer space per node

rk = number of packets in Bk headed for column j

∑q–1
k=0  

rk
p1/2/q < ∑q–1

k=0(1 +  
rk

p1/2/q) ≤ q + (q/p1/2)∑q–1
k=0rk ≤ 2q
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10.5 Other Classes of Routing Algorithms

Row-first greedy routing has very good average-case
performance, even if the node buffer size is restricted

Idea: Convert any routing problem to two random instances
by picking a random intermediate node for each message

Using combining for concurrent writes:

Destination 
processor for 5
write requests

W

W

W

W W1 2

3

4

5

W1,2

W3,4,5

Fig. 10.9. Combining of write requests headed for the
same destination.

Terminology for routing problems or algorithms

Static: packets to be routed all available at t = 0

Dynamic: packets “born” in course of computation

Off-line: routes precomputed, stored in tables

On-line: routing decisions made on the fly

Oblivious: path depends only on source & destination

Adaptive: path may vary by link and node conditions

Deflection: any received packet leaves immediately,
even if this means misrouting (via detour
path); also known as hot-potato routing
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10.6 Wormhole Routing

A

B

C

D

Packet 1

Packet 2
Deadlock!

Fig. 10.10. The notions of worms and deadlock in
wormhole routing.

Any routing algorithm can be used to choose the path taken
by the worm, but practical choices limited by the need for a
quick decision

Example: row-first routing, with 2-byte header for row &
column displacements

Buffer Block

Drop Deflect

Fig. 10.11. Various ways of dealing with conflicts in
wormhole routing.
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The deadlock problem in wormhole routing

Deadlock!

Two strategies for dealing with deadlocks:

(1)  Avoidance (2)  Detection and recovery

Checking for deadlock potential via link dependence graph;
existence of cycles may lead to deadlock

1 3

45

6 8
9

10

2 7

11 13

12 14
15

16
17

18
19

2021

22

23

24

1

2

3

4

5 6 7 8 9 1
0

11

12

13

14

   Unrestricted routing
(following shortest path)

1

2

3

4

5 6 7 8 9 1
0

11

12

13

14

   E-cube routing
      (row-first)

3-by-3 mesh with its links numbered

21

22

23

24

1
5

1
6

1
8

1
9

1
7

2
0

21

22

23

24

1
5

1
6

1
8

1
9

1
7

2
0

Fig. 10.12. Use of dependence graph to check for the
possibility of deadlock.
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Using virtual channels

Several virtual channels time-share one physical channel

Virtual channels serviced in round-robin fashion

Eastbound
messages

Westbound
messages

Fig. 10.13. Use of virtual channels for avoiding
deadlocks.

1 4

5 632

[1, 3]

[0, 0]

[2, 2]

[0, 1]
[3, 3]

[0, 1]

[3, 6] [2, 2] [4, 6] [0, 3]

[4, 6] [2, 3]

[4, 6]

[0, 1]

[6, 6]

[0, 2]
[5, 5]

[4, 4]

 [6, 6] [3, 5]

0

Figure for Problem 10.14.
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11 Numerical 2D Mesh Algorithms

Chapter Goals
● Deal with a sample of numerical and

seminumerical algorithms for meshes
● Introduce additional techniques for the

design of mesh algorithms

Chapter Contents
● 11.1. Matrix Multiplication
● 11.2. Triangular System of Equations
● 11.3. Tridiagonal System of Equations
● 11.4. Arbitrary System of Linear Equations
● 11.5. Graph Algorithms
● 11.6. Image-Processing Algorithms
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11.1 Matrix Multiplication

Matrix-vector multiplication yi  =  ∑m–1
j=0 aijxj

               a  
          a    a  
     a    a    a  
a    a    a    a  
a    a    a     -
a    a     -    -
a     -    -    -

x  x  x  x 

-    -    -    y 
-    -    y    -
-    y    -    -
y    -    -    -

Row 0 of
Matrix A

Col 0 of
Matrix A

                33
           23   32
      13   22   31
 03   12   21   30
 02   11   20   
 01   10  
 00  

                3
           2   
      1   
 0   

 3  2  1  0 P2 P3P1P0

Fig. 11.1. Matrix–vector multiplication on a linear
array.

a    a    a    a  

a    a    a    a  

a    a    a    a  

a    a    a    a  

 00   01   02   03
 
 10   11   12   13
 
 20   21   22   23
 
 30   31   32   33  

x

x

x

x

0

1

2

3

y

y

y

y

0

1

2

3

× =

Delay

With p = m processors, T = 2m – 1 = 2p – 1
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Matrix-matrix multiplication Cij  =  ∑m–1
k=0 aik bkj

               a  
          a    a  
     a    a    a  
a    a    a    a  
a    a    a     -
a    a     -    -
a     -    -    -

Row 0 of
Matrix A

Col 0 of
Matrix A

            b   b   b   b  

        b   b   b   b    -

    b   b   b   b    -   -

b   b   b   b    -   -   -

c

                33
           23   32
      13   22   31
 03   12   21   30
 02   11   20   
 01   10 
 00  

             30  20  10  00

         31  21  11  01  

     32  22  12  02  

 33  23  13  03  

02 c12 c22 c32

c00 c10 c20 c30

c03 c13 c23 c33

c01 c11 c21 c31

Col 0 of
Matrix B

Fig. 11.2. Matrix–matrix multiplication on a 2D mesh.

With p = m processors, T = 3m – 2 = 3√p – 2

          
     
 
 02   11   20   33
 01   10   23   32
 00   13   22   31

y    y    y    y 

Row 0 of
Matrix A

Col 0 of
Matrix A

a    a    a    a  
x    x    x    x 

          
     
 
a    a    a    a  
a    a    a    a  
a    a    a    a  

03   12   21   30 
3    2    1    0

0    1    2    3

Fig. 11.3. Matrix-vector multiplication on a ring.

With p = m processors, T = m  = p
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a    a    a    a  03   12   21   30 
b    b    b    b  30   20   10   00 

a    a    a    a  02   11   20   33 
b    b    b    b  21   11   01   31 

a    a    a    a  01   10   23   32 
b    b    b    b  12   02   32   22 

a    a    a    a  00   13   22   31 
b    b    b    b  03   33   23   13 

Fig. 11.4. Matrix-matrix multiplication on a torus.

With p = m 2 processors, T = m = √p

For m > √p , use block matrix multiplication

communication can be overlapped with computation
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11.2 Triangular System of Equations

 a 
i ≥ j

0

(if a    = 0, then it is
strictly lower triangular)

 a 
i ≤ j

0

(if a    = 0, then it is
strictly upper triangular)

ii

ij

ii

ij

Lower triangular Upper triangular

Fig. 11.5. Lower/upper triangular square matrix.

a00x0                         = b0
a10x0   + a11x1                  = b1
a20x0   + a21x1   + a22x2           = b2

  .  .  .

am–1,0x0 + am–1,1x1 +  ...  + am–1,m–1xm–1 = bm–1

Forward substitution (lower triangular)

Back substitution (upper triangular)
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- b  - b 
 3    2    1    0

 33
      32  
 22        31
      21        30
 11        20  
      10    
 00    

a  
 -   a    
a     -   a  
 -   a     -   a  
a     -   a     -
 -   a     -    -
a     -    -    -

x  - x  - x  - x  

x
-
x
-
x
-
x

Column 0 of 
Matrix A

b b

/ *- *– *–

3

2
 
1
 
0

Place-holders for the 
values to be computed

10
2    3

Outputs

x–1

Fig. 11.6. Solving a triangular system of linear
equations on a linear array.

 a 
i ≥ j

0

0
=×

A IA–1

1

1

1

1

1

1

0

 a 
i ≥ j

0

0

=×

A

1

0
0

Column i  
of X = A

Column i  
    of I

Solve m such triangular
systems to invert A

...

...
...

ij

ij

–1

X

Fig. 11.7. Inverting a triangular matrix by solving
triangular systems of linear equations.
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         x   - x   - x   - x  

      x   - x   - x   - x   -

   x   - x   - x   - x   -  -

x   - x   - x   - x   -  -  -

 - t   - t           

t   - t   - t  

 - t   - t   - t  

t   - t   - t   - t  

    20    30          

 11    21    31

    12    22    32

 03    13    23    33

         30    20    10    00

      31    21    11    01  

   32    22    12    02  

33    23    13    03  

 33
       32  
 22          31
       21          30
 11          20     
       10     
 00          

a  
 -    a    
a      -    a  
 -    a      -    a  
a      -    a      -
 -    a      -     -
a      -     -     -

Column 0 of
Matrix A

t t 
/* *- *– *–

*- *– *–

t

t

*- *– *–

*- *– *–

00 10

01

02

*

*

*

1/aii

Place-holders for the
elements of the inverse
matrix to be computed

Identity Matrix

Fig. 11.8. Inverting a lower triangular matrix on a 2D
mesh.
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11.3 Tridiagonal System of Linear Equations

d    u 

l    d    u 

     l    d    u 
                   .
          l     .    .     
             .    .    .
               .    .                               
                 .      u 
                   
                   l    d 

 0    0

 1    1    1

      2    2    2
                    
           3               
                        
                                                    
                         m–2
                   
                    m–1  m–1

l

u

0

m–1

0

0

× =

x 

x 

x 

 .
 .
 .

x 

0

1

2

m–1

b 

b 

b 

 .
 .
 .

b 

0

1

2

m–1

Fig. 11.9. A tridiagonal system of linear equations.

l0 x–1      +     d0 x0       +    u0 x1 =     b0
l1 x0  +     d1 x1       +    u1 x2     =     b1
l2 x1        +     d2 x2       +    u2 x3   =     b2
   .
   .
   .
lm–1xm–2 + dm–1 xm–1  +  um–1 xm  =   bm–1

Tridiagonal, pentadiagonal, matrices arise in the solution of
differential equations using finite difference methods

Odd-even reduction: the ith equation can be rewritten as:

xi   =  (1/di) (bi – li xi–1 – ui xii+1)

Take the xi equations for odd i and plug into even-indexed
equations (the ones with even subscripts for l, d, u, b)
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We get for each even i (0 ≤ i < m) an equation of the form:

– 
li–1li
di–1

 xi–2  +  (di – 
liui–1
di–1

 – 
uili+1
di+1

) xi  –  
uiui+1
di+1

 xi+2 = bi  –  
libi–1
di–1

  –  
uibi+1
di+1

Each equation formed needs 6 multiplies, 6 divides, 4 adds

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

x14 x12 x10 x8 x6 x4 x2 x0

x12 x8 x4 x0

x8 x0

x0

*

* Find x  in terms of x  and x  from Eqn. 1;   
  substitute in Eqns. 0 and 2.

1 0 2

Fig. 11.10. The structure of odd-even reduction for
solving a tridiagonal system of equations.

Assuming unit-time arithmetic operations and p = m

T(m) = T(m/2) + 8 ≈ 8 log2m

The 6 divides can be replaced with 1 reciprocation per
equation, to find 1/dj for each odd j, plus 6 multiplies

We have ignored interprocessor communication time. The
analysis is thus valid only for PRAM or for an architecture
whose topology matches the structure of Fig. 11.10.
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x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

x14 x12 x10 x8 x6 x4 x2 x0

x12 x8 x4 x0

x8 x0

x0

Fig. 11.11. Binary X-tree (with dotted links) and
multigrid architectures.

Odd-even reduction on a linear array of p = m processors

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Communication time = 2(1 + 2 + 4 + . . . + m/2) = 2m – 2

Sequential complexity of odd-even reduction is also O(m)

On an m-processor 2D mesh, odd-even reduction can be
easily organized to require Θ(√m) time
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11.4 Arbitrary System of Linear Equations

Gaussian elimination

2x0 + 4x1 –  7x2 = 3 2x0 + 4x1 –  7x2 =  7
3x0 + 6x1 – 10x2 = 4 3x0 + 6x1 – 10x2 =  8
–x0 + 3x1 –  4x2 = 6 –x0 + 3x1 –  4x2 = –1

The extended A' matrix for these k = 2 sets of equations in
m = 3 unknowns has m + k = 5 columns:

A'  =   
 




 


2 4 –7 3 7

3 6 –10 4 8
–1 3 –4 6 –1

Divide row 0 by 2; add –3 times row 0 to row 1 and add 1
times row 0 to row 2:

A'(0)  =   
 




 


1 2 –7/2 3/2 7/2

0 0 1/2 –1/2 –5/2
0 5 –15/2 15/2 5/2

A"(0)  =   
 




 


1 2 –7/2 3/2 7/2

0 5 –15/2 15/2 5/2
0 0 1/2 –1/2 –5/2

A'(1)  =   
 




 


1 0 –1/2 –3/2 5/2

0 1 –3/2 3/2 1/2
0 0 1/2 –1/2 –5/2

A'(2)  =   
 




 


1 0 0 –2 0

0 1 0 0 –7
0 0 1 –1 –5

Solutions are read out from the last column of A'(2)
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Gaussian elimination on a 2D array

Termination
    symbol

                *
          *     b  
     *    a     b  
*    a    a     b 
a    a    a     -
a    a     -    -
a     -    -    -

Row 0 of
Extended
Matrix A'

y

x xz

y – xz

1/

                
                2  
          22    1  
     21   12    0 
20   11   02     
10   01     
00     

Fig. 11.12. A linear array performing the first phase of
Gaussian elimination.

                *
           *    b  
      *   a     b  
 *   a    a     b 
a    a    a     -
a    a     -    -
a     -    -    -

Row 0 of
Extended
Matrix A'

x
x
x

Outputs

                 
                2 
          22    1 
     21   12    0
20   11   02    
10   01   
00    

2
1
0

1/

1/

1/

Fig. 11.13. Implementation of Gaussian elimination on
a 2D array.
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                          *
                     *    1              
                *    0    0
           *    0    1    0
      *   a     0    0    -
 *   a    a     1    -    -
a    a    a     -    -    -
a    a     -    -    -    -
a     -    -    -    -    -

Row 0 of
Extended
Matrix A'

 -     -   x  
 -    x    x  
x     x    x  
x     x     
x          

Output
           22
      21   12
20    11   02
10    01   
00        

                           
                                        
                      
                 
          22    
     21   12    
20   11   02    
10   01   
00   

Fig. 11.14. Matrix inversion by Gaussian elimination.
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Jacobi relaxation

Assuming aii ≠ 0, solve the ith equation for xi, yielding m
equations from which new (better) approximations to the
answers can be obtained.

xi
(t+1) = (1/aii)[bi – ∑j≠i aii xj

(t)];  xi
(0) = initial approx for xi

On an m-processor linear array, each iteration takes O(m)
steps. The number of iterations needed is O(log m) in most
cases, leading to O(m log m) average time.

A variant: Jacobi overrelaxation

xi
(t+1) = (1 – γ)xi

(t) + (γ/aii)[bi – ∑j≠i aii xj
(t)]           0 < γ ≤ 1

For γ = 1, the method is the same as Jacobi relaxation

For smaller γ, overrelaxation may offer better performance
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11.5 Graph Algorithms

0 1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

A  =

        

0

1
2

34

0 2 2 ∞ 2
1 0 2 ∞ ∞
∞ ∞ 0 3 ∞
∞ ∞ ∞ 0 0
1 ∞ ∞ ∞ 0

W  

2
1

2

2
–3

0
1

2

= -

Fig. 11.15. Matrix representation of directed graphs.

The transitive closure of a graph

Graph with same node set but with an edge between two
nodes if there is any path between them in original graph

A0 = I Paths of length 0 (the identity matrix)

A1 = A Paths of length 1

Compute higher “powers” of A using matrix multiplication,
except that AND/OR replace multiplication/addition

A2 = A × A Paths of length 2 

A3 = A2 × A Paths of length 3 etc.

The transitive closure has the adjacency matrix A*

A* = A0 + A1 + A2 + ...   (A*
ij = 1 iff j is reachable from i)
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To compute A*, we need only proceed up to the term An–1; if
there is a path from i to j, there must be one of length < n

Rather than base the derivation of A* on computing the
various powers of the Boolean matrix A, we can use the
following simpler algorithm:

Phase 0 Insert the edge (i, j) into the graph if (i, 0) and
(0, j) are in the graph

Phase 1 Insert the edge (i, j) into the graph if (i, 1) and
(1, j) are in the graph

      .
      .
      .

Phase k Insert the edge (i, j) into the graph if (i, k) and
(k, j) are in the graph

Graph A(k) then has an edge (i, j) iff there is a
path from i to j  that goes only through nodes
{1, 2, . . . , k} as intermediate hops

      .
      .
      .

Phase n – 1 The graph A(n–1) is the required answer A*

A key question is how to proceed so that each phase takes
O(1) time for an overall O(n) time on an n × n mesh

The O(n) running time would be optimal in view of the O(n3)
sequential complexity of the transitive closure problem
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 Row 2
 Row 1
 Row 0

 
 Row 2
Row 0/1

 
Row 0/2
 Row 1

Row 2
Row 1
Row 0

 Row 0
Row 1/2
 

Row 1/0
 Row 2

 
 Row 1
Row 2/0

 
Row 2/1
 Row 0

 Row 2
 Row 1
 Row 0

 Row 2
 Row 1
 Row 0

Initially

Fig. 11.16. Transitive closure algorithm on a 2D mesh.

Systolic retiming

Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

Example of retiming by delaying the inputs
to CL and advancing the outputs from CL by
d units [Fig. 12.8 in Computer Arithmetic:
Algorithms and Hardware Designs, by
Parhami, Oxford, 2000]
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Input Host

Output Host

1 1 1 1

0 000

0 0 0

0 0 0

0 0 0

0 0 0

1 1 1 1

1 1 1 1

1111

Input Host

Output Host

1 2 3 4

1 432

1 1 1

5 1 1

1 3 1

1 1 1

7 1 1 1

1 5 1 1

1311

0,0     0,1     0,2     0,3

1,0     1,1     1,2     1,3

2,0     2,1     2,2     2,3

3,0     3,1     3,2     3,3

Broad-
casting
nodes

Cut 1

0,0     0,1     0,2     0,3

1,0     1,1     1,2     1,3

2,0     2,1     2,2     2,3

3,0     3,1     3,2     3,3

Fig. 11.17. Systolic retiming to eliminate broadcasting.

The diagram on the left represents the preceding algorithm

Zero-time horizontal arrows represent brodcasting by
diagonal elements

The goal of systolization is to eliminate all zero-time
transitions

To systolize the preceding example:

Add 2n – 2 = 6 units of delay to edges crossing cut 1

Move 6 units of delay from inputs to outputs of node (0, 0)
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11.6 Image-Processing Algorithms

Labeling the connected components of a binary image

1   1   0   1   1   0   1   1

0   1   0   1   0   1   0   1

1   0   0   0   1   0   0   0

1   0   1   1   0   1   1   1

0   0   0   0   1   0   0   0

0   0   0   0   1   0   0   1

0   1   0   0   1   0   1   1
 
1   1   0   0   0   0   0   1

C C

C

C

0 3

47

49

Fig. 11.18. Connected components in an 8 × 8 binary
image.

Recursive algorithm, p = n: T(n) = T(n/4) + O(√n) = O(√n)

36

1   1   0   1   1   0   1   1

0   1   0   1   0   1   0   1

1   0   0   0   1   0   0   0

1   0   1   1   0   1   1   1

0   0   0   0   1   0   0   0

0   0   0   0   1   0   0   1

0   1   0   0   1   0   1   1
 
1   1   0   0   0   0   0   1

4

36 47

49

0 0

0

0

0

3 4

44

4

4

44

49

49

36

47

47

3

2626

4

47

Fig. 11.19. Finding the connected components via
divide and conquer.
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Lavialdi’s algorithm

0 1    1 1    0 is changed to 1
1 0    1 0    if N = W = 1
                                  
       0 0    1 is changed to 0
       0 1    if N = W = NW = 0

Fig. 11.20. Transformation or rewriting rules for
Lavialdi’s algorithm in the shrinkage phase
(no other pixel  changes).

0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0   0 0 0 0 1 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 1   0 0 0 1 1 0 0 0   0 0 0 0 1 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1   0 0 1 1 1 0 0 1   0 0 0 1 1 0 0 0   0 0 0 0 1 0 0 0   0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1   0 1 1 1 1 0 1 1   0 0 1 1 1 0 0 1   0 0 0 1 1 0 0 0   0 0 0 0 1 0 0 0

0 0 0 1 0 0 1 1   0 0 0 1 0 0 1 1   0 0 0 1 1 0 1 1   0 0 0 1 1 0 0 1   0 0 0 1 1 0 0 *

0 1 0 1 0 0 1 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1   0 1 1 1 0 0 1 1   0 0 1 1 0 0 0 1   0 0 0 1 0 0 0 0   0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1   0 1 0 0 1 0 1 1   0 1 1 0 1 0 1 1   0 0 1 1 1 0 0 1   0 0 0 1 1 0 0 0

0 1 1 1 0 0 1 0   0 1 1 1 1 0 1 1   0 1 1 1 1 0 1 1   0 1 1 1 1 0 1 1   0 0 1 1 1 0 0 1

0 1 0 0 0 1 0 1   0 1 1 0 0 0 1 1   0 1 1 1 0 0 1 1   0 1 1 1 1 0 1 1   0 1 1 1 1 0 1 1

1 1 0 0 1 0 0 0   0 1 0 0 0 1 0 0   0 1 1 0 0 0 1 0   0 1 1 1 0 0 1 1   0 1 1 1 1 0 1 1

0 1 1 0 0 1 0 1   0 1 1 0 0 1 0 0   0 1 1 0 0 1 0 0   0 1 1 0 0 0 1 0   0 1 1 0 0 0 1 1

0 0 0 1 0 0 1 0   0 0 0 1 0 0 1 1   0 0 0 1 0 0 1 1   0 0 0 1 0 0 1 1   0 0 0 1 0 0 1 1
Initial image

Fig. 11.21. Example of the shrinkage phase of
Lavialdi’s algorithm.

T(n) = 2√n – 1 {shrinkage} + 2√n – 1 {expansion}

Component do not merge in the shrinkage phase

Consider a 0 that is about to become a 1

x 1 y If any y is 1, then already connected
1 0 y If z is 1 then it will change to 0 unless
y y z at least one neighboring y is 1
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12 Mesh-Related Architectures

Chapter Goals
● Study vairants of simple mesh architectures

that offer higher performance or greater
cost-effectiveness

● Learn about related architectures such as
pyramids and mesh of trees

Chapter Contents
● 12.1. Three or More Dimensions
● 12.2. Stronger and Weaker Connectivities
● 12.3. Meshes Augmented with Nonlocal Links
● 12.4. Meshes with Dynamic Links
● 12.5. Pyramid and Multigrid Systems
● 12.6. Meshes of Trees



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 171

B. Parhami, UC Santa Barbara  Plenum Press, 1999

12.1 Three or More Dimensions

3D mesh: D = 3p1/3 – 3 instead of 2p1/2 – 2

B = p2/3 rather than p1/2

Example: 8 × 8 × 8 mesh D = 21, B = 64

22 × 23  mesh D = 43, B = 23

Circuit
Board

Backplane

Fig. 12.1. 3D and 2.5D physical realizations of a 3D
mesh.

4D, 5D, . . .  meshes: optical links?

qD mesh with m processors along each dimension: p = mq

Node degree d = 2q

Diameter D = q(m – 1) = q (p1/q – 1)

Bisection width: B = p1–1/q when m = p1/q is even

qD torus with m processors along each dimension

= m-ary q-cube
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Sorting on a 3D mesh

A generalized form of shearsort is available

However, the following algorithm (due to Kunde) is both
faster and simpler. Let Processor (i, j, k) in an m × m × m
mesh be in Row i, Column j, and Layer k

x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering
of processors

0 1 2
3 4 5

6 7 8
9 10

Sorting on 3D mesh (zyx order; reverse of node index)

Phase 1: Sort elements on each zx plane into zx order

Phase 2: Sort elements on each yz plane into zy order

Phase 3: Sort elements on each xy layer into yx order

(odd layers in reverse order).

Phase 4: Apply two steps of odd-even transposition

along the z direction

Phase 5: Sort elements on each xy layer into yx order

Time = 4 × 2D-sort time + 2 steps
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Data routing on a 3D mesh

Greedy zyx (layer-first, row last) routing algorithm

Phase 1: Sort into zyx order by destination addresses

Phase 2: Route along z dimension to correct xy layer

Phase 3: Route along y dimension to correct column

Phase 4: Route along x dimension to destination node

Matrix multiplication on a 3D mesh

Divide matrices into m1/4 × m1/4 arrays of m3/4 × m3/4 blocks

m

m

m
3/4

m
3/4

m
3/4

m
3/4

m
3/4

Matrices
Processor
   array

m      processors   9/4

A total of (m1/4)3 = m3/4 block multiplications are needed

Assume the use of an m3/4 × m3/4 × m3/4 mesh with p = m9/4

Each m3/4 × m3/4 layer of the mesh is assigned to one of the
m3/4 × m3/4 matrix multiplications (m3/4 multiply-add steps)

The rest of the process takes time that is of lower order

The algorithm matches both the sequential work and the
diameter-based lower bound
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Modeling of physical systems

Natural mapping of a 3D physical model to a 3D mesh

Low- vs. high-dimensional meshes

A low-dimensional mesh can simulate a high-dimensional
mesh quite efficiently

It is thus natural to ask the following question:

Is it more cost effective, e.g., to have 4-port processors in a
2D mesh architecture or 6-port processors in a 3D mesh,
given that for the 4-port processors, fewer ports and ease of
layout allows us to make each channel wider?
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12.2  Stronger and Weaker Connectivities

Fortified meshes

0 1 2

3 4 5

6 7 8 9

10 11 12 13

14 15 16

17 18

Node i connected to i ± 1,
i ± 7, and i ± 8 (mod 19).

Fig. 12.2. Eight-neighbor and hexagonal (hex)
meshes.

Oriented meshes (can be viewed as a type of pruning)

Fig. 12.3. A 4 × 4 Manhattan street network.
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Pruned meshes

Same diameter as ordinary mesh, but much lower cost.

X

Y
Z

Fig. 12.4. A pruned 4 × 4 × 4 torus with nodes of degree
four [Kwai97].

Pruning and orientation can be combined
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Another form of pruning

Honeycomb mesh or torus.

NE
NW

SE
SW

NE

SE

Fig. 12.5. Eight-neighbor mesh with shared links and
example data paths.
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12.3 Meshes Augmented with Nonlocal Links

Motivation: to reduce the diameter; a weakness of meshes

Bypass links or express channels along rows/columns

Fig. 12.6. Three examples of bypass links along the
rows of a 2D mesh.
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Using a single global bus

   .
.  .  .
   .

p

p1/3

p1/3

1/2

Fig. 12.7. Mesh with a global bus and semigroup
computation on it.

A √p × √p mesh with a single global bus can perform a
semigroup computation O(p1/3) rather than O(p1/2) steps

Assume that the semigroup operation ⊗ is commutative

Semigroup computation on 2D mesh with a global bus

Phase 1: Find the partial results in p1/3 × p1/3

submeshes in O(p1/3) steps; results stored
in the upper left corner of each submesh

Phase 2: Combine the partial results in O(p1/3) steps,
using a sequential algorithm in one node
and the global bus for data transfers

Phase 3: Broadcast the result to all nodes in one step
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Row and column buses

   .
.  .  .
   .

p

p1/6

p1/6

1/2

{
{

Row
slice

Column
slice

Fig. 12.8. Mesh with row/column buses and
semigroup computation on it.

2D-mesh semigroup computation, row/column buses

Phase 1: Find the partial results in p1/6 × p1/6

submeshes in O(p1/6) steps
Phase 2: Distribute the p1/3 values left on some of the

rows among the p1/6 rows in the same slice
Phase 3: Combine row values in p1/6 steps (row bus)
Phase 4: Distribute column-0 values to p1/3 columns
Phase 5: Combine column values in p1/6 steps
Phase 6: Use column buses to distribute the p1/3

values on row 0 among the p1/6 rows of
row slice 0 in constant time

Phase 7: Combine row values in p1/6 steps
Phase 8: Broadcast the result to all nodes (2 steps)
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12.4 Meshes with Dynamic Links

Linear array with a separable bus

Fig. 12.9. Linear array with a separable bus using
reconfiguration switches.

Semigroup computation: O(log p) steps

2D mesh with separable row/column buses

Reconfigurable mesh architecture

{N}{E}{W}{S} {NS}{EW} {NEWS}

{NES}{W}{NE}{WS} {NE}{W}{S}

Fig. 12.10. Some processor states in a reconfigurable
mesh.



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 182

B. Parhami, UC Santa Barbara  Plenum Press, 1999

12.5 Pyramid and Multigrid Systems

Apex

Base

Fig. 12.11. Pyramid with 3 levels and 4 × 4 base along
with its 2D layout.

Originally developed for image processing applications

Roughly 3/4 of the processors belong to the base

For an l-level pyramid: D = 2l – 2 d = 9 B = 2l

Semigroup computation faster than on mesh, but not
sorting or arbitrary routing

Fig. 12.12. The relationship between pyramid and 2D
multigrid architectures.
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12.6 Meshes of Trees

m-by-m Base

Row Tree
(one per row)

Column Tree
(one per 
column)

Fig. 12.13. Mesh of trees architecture with 3 levels and
a 4 × 4 base.

2-D layout for mesh of trees network 
with a 4-by-4 base (root nodes are in 
the middle row and column)

P

P

P

P

M

M

M

M

1

0

2

3

0

1

2

3

Fig. 12.14. Alternate views of the mesh of trees
architecture with a 4 × 4 base.
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Semigroup computation: done via row/column combining

Parallel prefix computation: similar

Routing m2 packets, one per processor on the m × m base:
row-first routing yields an Ω(m) = Ω(√p) scheme

In the view of Fig. 12.14, with only m packets to be routed
from one side of the network to the other, 2 log2m steps are
required, provided that the destination nodes are all distinct

Sorting m2 keys, one per processor on the m × m base:
emulate shearshort

In the view of Fig. 12.14, with only m keys to be sorted, the
following algorithm can be used (assume that row/column
root nodes have been merged and each holds one key)

Sorting m keys on a mesh of trees with an m×m  base

Phase 1:  Broadcast keys to leaves within both trees

  (leaf i,j gets xi and xj )

Phase 2:  At a base node:

  if xj>xi or xj=xi and j>i then flag := 1 else flag := 0

Phase 3:  Add the “flag” values in column trees

  (root i obtains the rank of xi )

Phase 4:  Route xi from root i to root rank[i]
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Matrix-vector multiplication Ax = y: matrix A is stored on the
base and vector x in the column roots, say; the result vector
y is obtained in the row roots

Multiplying m × m matrix by m-vector on mesh of trees

Phase 1:  Broadcast xj in the ith column tree

  (leaf i,j has aij and xi )

Phase 2:  At each base processor compute aij xj

Phase 3:  Sum over row trees

  (row root i obtains ∑m–1
i=0  aij xj = yi )

With pipelining, r matrix-vector pairs multiplied in 2l – 2 + r
steps
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Convolution of two vectors

Assume the mesh of trees with an m × (2m – 1) base
contains m diagonal trees in addition to the row and column
trees, as shown in Fig. 12.15

Convolution of two m-vectors on a mesh of trees
with an m×(2m – 1) base

Phase 1:  Broadcast xj from the ith row root
  to all row nodes on the base

Phase 2:  Broadcast ym–1–j from the diagonal root
  to the base diagonal

Phase 3:  Leaf i,j, which has xi and y2m–2–i–j,
  multiplies them to get xi y2m–2–i–j

Phase 4:  Sum columns to get z2m–2–j = ∑m–1
i=0 xi y2m–2–i–j

  in column root j

Phases 1 and 2 can be overlapped

Diagonal TreeColumn Tree

Fig. 12.15. Mesh of trees variant with row, column, and
diagonal trees.
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Minimal-weight spanning tree for an undirected graph

A spanning tree of a connected graph is a subset of its
edges that preserves the connectivity of all nodes in the
graph but does not contain any cycle

A minimal-weight spanning tree (MWST) is a subset of
edges that has the minimum total weight among all
spanning trees

This is an important problem: if the graph represents a
communication (transportation) network, MWSP tree might
correspond to the best way to broadcast a message to all
nodes (deliver products to the branches of a chain store
from a central warehouse)
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Greedy sequential MWST algorithm

Assume all edge weights are unique so that there is always
a single minimum-weight edge among any subset

At each step, we have a set of connected components or
“supernodes” (initially n single-node components)

We connect each component to its “nearest” neighbor; i.e.,
we find the minimum-weight edge that connects the
component to another one
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27

37
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Super-
node 3

3

Super-
node 6

Super-
node 0

End
Result
MWST

Fig. 12.16. Example for the minimal-weight spanning
tree algorithm.
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If the graph’s weight matrix W is stored in the leaves of a
mesh of trees architecture, each phase requires O(log2n)
steps with a simple algorithm (to be shown) and O(log n)
steps with a more sophisticated algorithm.

The total running time is thus O(log3n) or O(log2n).

Sequential algorihms and their time complexities:

Kruskal’s: O(e log e) ⇒ O(n2 log n) for dense graphs

Prim’s (binary heap):  O((e + n )log n) ⇒ O(n2 log n)

Prim’s (Fibonacci heap):  O(e + n log n) ⇒  O(n2)

Thus, our best parallel solution offers a speedup of
O(n2/log2n); sublinear in the number p  = O(n2) of
processors

The key part of the simple parallel version of the greedy
algorithm is showing that each phase can be done in
O(log2n) steps.

The algorithm for each phase consists of two subphases:

a. Find the min-weight edge incident to each supernode

b. Merge the supernodes for the next phase

Supernode A 
is merging with
Supernode B,
and B with C

Leader of the
new supernode

A B

2

Example pointer 
after one jump

C

Remove and make
Node 2 point to itself

7

Fig. 12.17. Finding the new supernode ID when several
supernodes merge.
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Part IV Low-Diameter Architectures

Part Goals
● Study the hypercube as an example of

architectures with
●   low (logarithmic) diameter
●   wide bisection
●   rich theoretical properties

● Present hypercube derivatives/alternatives
that mitigate its realizability and scalability
problems

● Complete our view of the “sea of
interconnection networks”

Part Contents
● Chapter 13: Hypercubes and Their Algorithms
● Chapter 14: Sorting and Routing on Hypercubes
● Chapter 15: Other Hypercubic Architectures
● Chapter 16: A Sampler of Other Networks
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13 Hypercubes and Their Algorithms

Chapter Goals
● Introduce the hypercube and its topological

and algorithmic properties
● Design simple hypercube algorithms (sorting

and routing to follow in Chapter 14)
● Learn about embeddings and their role in

algorithm design and evaluation

Chapter Contents
● 13.1. Definition and Main Properties
● 13.2. Embeddings and Their Usefulness
● 13.3. Embedding of Arrays and Trees
● 13.4. A Few Simple Algorithms
● 13.5. Matrix Multiplication
● 13.6. Inverting a Lower Triangular Matrix
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13.1 Definition and Main Properties

Brief history of the hypercube (binary q-cube) architecture

Concept developed: early 1960s [Squi63]

Direct (single-stage) & indirect or multistage versions

proposed for parallel processing: mid 1970s

(early proposals [Peas77], [Sull77], no hardware)

Caltech’s 64-node Cosmic Cube: early 1980s [Seit85]

elegant solution to routing (wormhole routing)

Several commercial machines: mid to late 1980s

Intel PSC, CM-2, nCUBE (Section 22.3)

Terminology

Hypercube

generic term

3-cube, 4-cube, . . . , q-cube

when the number of dimensions is of interest
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A qD binary hypercube (q-cube) is defined recursively:

1-cube: 2 connected nodes, labeled 0 and 1

q-cube consists of two (q – 1)-cubes; 0 & 1 subcubes

q-cube nodes labeled by preceding subcube node labels
with 0 and 1 and connecting node 0x to node 1x

Binary 1-cube
built of two
binary 0-cubes
labeled 0 and 1

0 1 0

1

Binary 2-cube
built of two
binary 1-cubes
labeled 0 and 1

00

1110

01

Three representations of a binary 3-cube

0 1

000 001

010 011

100 101

110 111

000 001

010 011

100

110

101

111

000

010

001

011

100

110

101

111

Two representations of a binary 4-cube

0000

0010

0001

0011

0100

0110

0101

0111

0

1000

1010

1001

1011

1100

1110

1101

1111

1

Fig. 13.1. The recursive structure of binary
hypercubes.
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Number of nodes in a q-cube: p = 2q

Bisection width: B = p / 2 = 2q–1

Diameter: D = q = log2p

Node degree: d = q = log2p

The q neighbors of node x with binary ID xq–1xq–2 ... x2x1x0:

xq–1xq–2 . . . x2x1x0 dimension-0 neighbor; N0(x)
xq–1xq–2 . . . x2x1x0 dimension-1 neighbor; N1(x)

. . .
xq–1xq–2 . . . x2x1x0 dimension-(q – 1) neighbor; Nq–1(x)

Dim 0

Dim 1

Dim 2 Dim 3

0100 0101

0110

0000
1100

1101

1111

0111

0011

x

1011

0010

1010

Two nodes whose labels differ in k bits (have a Hamming
distance of k) are connected by a shortest path of length k

Logarithmic diameter and linear bisection width are key
reasons for the hypercube’s high performance

Hypercube is both node- and edge-symmetric

Logarithmic node degree hinders hypercube’s scalability
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13.2 Embeddings and Their Usefulness

0

1 2

3 4 5 6

01 2

3

4

5

6

a b

c d e f

a b

c

d

e

f

0,1 2,5

63,4

b

c,d f

1 0 2

3 4 5

6a b

c d e

f

Fig. 13.2. Embedding a seven-node binary tree into
2D meshes of various sizes.

Examples of Fig. 13.2    → 3×3 2×4 2×2

Dilation Longest path onto which any edge is mapped     1 2 1

(indicator of communication slowdown)

Congestion Max number of edges mapped onto one edge 1 2 2

(indicator of contention during emulation)

Load factor Max number of nodes mapped onto one node 1 1 2

(indicator of processing slowdown)

Expansion Ratio of number of nodes in the two graphs 9/7 8/7 4/7

(indicator of emulation cost)
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13.3 Embedding of Arrays and Trees

(q – 1)-cube  0

x

(q – 1)-cube  1

N (x)k

N    (x)q–1

N    (N (x)) q–1 k

Fig. 13.3. Hamiltonian cycle in the q-cube.

Proof of Hamiltonicity using Gray code:

Assumed Gray code Assumed Gray code in reverse
←−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−→

(q–1)-bit codes 0q–1 0q–21   . . . 10q–2 10q–2  . . . 0q–21  0q–1

q-bit Gray code 0q 0q–11   . . . 010q–2 110q–2  . . . 10q–21  10q–1

←−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−→
 Prefix with 0 Prefix with 1

The 2m0×2m1×...×2mh–1 mesh/torus is a subgraph of q-cube

where q = m0 + m1 + ... + mh–1

This is akin to the mesh/torus being embedded in q-cube
with dilation 1, congestion 1, load factor 1, and expansion 1

The proof is based on the notion of cross-product graphs,
which we first define
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Given k graphs Gi = (Vi, Ei), 1 ≤ i ≤ k, their (cross-)product
graph G = G1 × G2 × . . . × Gk = (V, E) has:

node set  V = {(v1, v2, . . . , vk) | vi ∈ Vi, 1 ≤ i ≤ k}

edge set  E = {[(u1, u2, . . . , uk), (v1, v2, . . . , vk)] |
for some j, (uj, vj) ∈ Ej and for i ≠ j, ui  = vi}

× =
3-by-2
torus

× × =

× =

0

1

2

a

b

0a

1a

2a
0b

1b

2b

Fig. 13.4. Examples of product graphs.

a. The 2m0×2m1×...×2mh–1 torus is the product of h rings
of sizes 2m0, 2m1, . . . , 2mh–1

b. The (m0 + m1 + . . . + mh–1)-cube is the product of
an m0-cube, an m1-cube, . . . , an mh–1-cube

c. The 2mi-node ring is a subgraph of the mi-cube

d. If component graphs are subgraphs of
other component graphs, then the product graph
will be a subgraph of the other product graph
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Column 0

Row 0

Column 3

Column 2

Column 1

Dim 0

Dim 1

Dim 2 Dim 3

Fig. 13.5. The 4 × 4 mesh/torus is a subgraph of the
4-cube.

Embedding (2q – 1)-node complete binary tree in q-cube

Achieving dilation 1 is impossible

even weight

odd weights
even weights

odd weights

even weights
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Embedding the 2q-node double-rooted complete binary tree
in q-cube

New Roots

x N (N (x))
N (N (x))

2  -node double-rooted
complete binary tree

q Double-rooted tree
in the (q–1)-cube 0

Double-rooted tree
in the (q–1)-cube 1

N (x)c

N (x)b

N (x)a
b c

bc

N (N (x))
N (N (x))

c a

ca

Fig. 13.6. The 2q -node double-rooted complete
binary tree is a subgraph of the q-cube.
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Dimension-2
      Link

Dimension-1
     Links

Dimension-0
     Links

Fig. 13.7. Embedding a 15-node complete binary tree
into the 3-cube.
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13.4 A Few Simple Algorithms

Semigroup computation on the q-cube
Processor x, 0 ≤ x < p do t[x] := v[x] {initialize “total” to own value}
for k = 0 to q – 1 Processor x, 0 ≤ x < p, do

get y :=t[Nk(x)]
set t[x] := t[x] ⊗ y

endfor
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0-3
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4-7

4-7

4-7
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0-7
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0-7
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0-7
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0-7

Fig. 13.8. Semigroup computation on a 3-cube.
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Parallel prefix computation on the q-cube
Processor x, 0 ≤ x < p, dot[x] := u[x] := v[x]

{initialize subcube “total” and partial prefix to own value}
for k = 0 to q – 1 Processor x, 0 ≤ x < p, do

get y :=t[Nk(x)]
set t[x] := t[x] ⊗ y
if x > Nk(x) then u[x] := u[x] ⊗ y

endfor
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u: Subcube prefix

4
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4-6
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4-7

0-4

0 0-1
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0-6 0-7
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Legend t

u

Fig. 13.9. Parallel prefix computation on a 3-cube.
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0
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10+2

0+2+4

0+2+4+6

Identity

1+3

1+3+5

Parallel prefixes in even and odd
subcubes; own value excluded in 
the odd subcube computation Exchange values and combine

0-4 0-4

0 0

0-2 0-2

0-6 0-6

Odd processors combine 
their own values

0-4 0-5

0 0-1

0-2 0-3

0-6 0-7

Fig. 13.10. A second algorithm for parallel prefix
computation on a 3-cube.
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Reversing a sequence on the q-cube
for k = 0 to q – 1 Processor x, 0 ≤ x < p, do

get y :=v[Nk(x)]
set v[x] := y

endfor

0

2

1

3

4

6

5

7

1

3

0

2

5

7

4

6

3

1

2

0

7

5

6

4

7

5

6

4

3

1

2

0

Fig. 13.11. Sequence reversal on a 3-cube.
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13.5 Matrix Multiplication

Multiplying m × m matrices (C = A × B) on a q-cube,
where m = 2q/3 and p = m3

Processor (0, j, k) begins with Ajk & Bjk in registers RA & RB
and ends with element Cjk in register RC

Multiplying m × m matrices on a q-cube, with q = 3 log2m
for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do

if bit l of i is 1
then get y := RA[Nl+2q/3(x)] and z := RB[Nl+2q/3(x)]

set RA[x] : = y;  RB[x] := z
endif

endfor
for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do

if bit l of i and k are different
then get y := RA[Nl(x)]

set RA[x] : = y
endif

endfor
for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do

if bit l of i and j are different
then get y := RB[Nl+q/3(x)]

set RB[x] : = y
endif

endfor
Processor x, 0 ≤ x < p, do RC := RA × RB

{p = m3 = 2q parallel multiplications in one step}
for l = 0 to q/3 – 1 Processor x = ijk, 0 ≤ i, j, k < m, do

if bit l of i is 0
then get y :=RC[Nl+2q/3(x)]

set RC[x] : = RC[x] + y
endif

endfor
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Fig. 13.12. Multiplying two 2 × 2 matrices on a 3-cube.

Running time of the preceding algorithm: O(q) = O(log p)

Analysis in the case of block matrix multiplication:

The m × m matrices are partitioned into p1/3 × p1/3 blocks

of size (m/p1/3) × (m/p1/3)

Each communication step involves m2 / p2/3 block elements

Each multiplication involves 2m3/p arithmetic operations

Tmul(m, p)  = m2/p2/3 × O(log p) + 2m3/p

 Communication     Computation
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13.6 Inverting a Lower Triangular Matrix

For  A = 
 



 

B 0

C D    we have  A–1 =  
 



 

B–1 0

–D–1CB–1 D–1

If B and D are inverted in parallel by independent subcubes,
the algorithm’s running time is characterized by:

Tinv(m) =  Tinv(m/2) + 2Tmul(m/2)

=  Tinv(m/2) + O(log m) = O(log2m)
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14 Sorting and Routing on Hypercubes

Chapter Goals
● Present hypercube sorting algorithms,

showing perfect fit to bitonic sorting
● Derive hypercube routing algorithms,

utilizing elegant recursive methods
● Learn about inherent limitations of oblivious

routing schemes

Chapter Contents
● 14.1. Defining the Sorting Problem
● 14.2. Bitonic Sorting on a Hypercube
● 14.3. Routing Problems on a Hypercube
● 14.4. Dimension-Order Routing
● 14.5. Broadcasting on a Hypercube
● 14.6. Adaptive and Fault-Tolerant Routing
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14.1. Defining the Sorting Problem

Arrange data in order of processor ID numbers (labels)

0

2

1

3

4

6

5

7

The ideal parallel sorting algorithm

T(p) = Θ((n log n)/p)

We cannot achieve this optimal running time for all n and p

1-1 sorting (n = p)

Batcher’s bitonic sort: O(log2n) = O(log2p) time

Same for Batcher’s odd-even merge sort

O(log n)-time deterministic algorithm not known

k-k sorting (n = pk)

Optimal algorithms known for n >> p  or when

average running time is considered (randomized)
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(a)

(b)

Cyclic shift of (a)

Cyclic shift of (b)

Fig. 14.1. Examples of bitonic sequences.

0 1 2      .  .  .       n–1

Shift right half of 
data to left half

Keep smaller value of
each pair and ship the
larger value to right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2      .  .  .       n–1

Bitonic sequenceShifted right half

Fig. 14.2. Sorting a bitonic sequence on a linear
array.
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 5   9  10  15   3   7  14  12   8   1   4  13  16  11   6   2

 ---->   <----   ---->   <----   ---->   <----   ---->   <----

 5   9  15  10   3   7  14  12   1   8  13   4  11  16   6   2

         ------------>   <------------   ------------>   <------------

 5   9  10  15  14  12   7   3   1   4   8  13  16  11   6   2

         ---------------------------->   <----------------------------

 3   5   7   9  10  12  14  15  16  13  11   8   6   4   2   1

         ------------------------------------------------------------>

 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16

Fig. 14.3. Sorting an arbitrary sequence on a linear
array through recursive application of
bitonic sorting.

T(p) = T(p/2) + B(p)

= T(p/2) + 2p – 2  =  4p – 4 – 2 log2p

Alternate derivation for the running time of bitonic sorting on
a linear array:

T(p) = B(2) + B(4) + . . . + B(p)

= 2 + 6 + 14 + . . . + (2p – 2)  =   4p – 4 – 2 log2p

For a linear array of processors, the bitonic sorting
algorithm is clearly inferior to the simpler odd-even
transposition sort which requires only p compare-exchange
steps or 2p unidirectional communication steps

However, the situation is quite different for a hypercube
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14.2 Bitonic Sorting on a Hypercube

Sort lower (xq–1 = 0) and upper (xq–1 = 1) subcubes

in opposite directions; yields a bitonic sequence

Shifting the halves takes one compare-exchange step

B(q) = B(q – 1) + 1 = q

Sorting a bitonic sequence of size n on q-cube, q = log2n
for l = q – 1 downto 0 Processor x, 0 ≤ x < p, do

if xl = 0
then get y := v[Nl(x)]; keep min(v(x), y);

 send max(v(x), y) to Nl(x)
endif

endfor

Bitonic sorting algorithm

T(q) = T(q – 1) + B(q) = T(q – 1) + q

= q(q + 1)/2  =  log2p (log2p + 1)/2
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Fig. 14.4. Sorting a bitonic sequence of size 8 on the
3-cube.
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14.3 Routing Problems on a Hypercube

Types of routing algorithms

Oblivious: path uniquely determined by node addresses

Nonoblivious or adaptive: the path taken by a message may
also depend on other messages in the network

On-line: make the routing decisions on the fly as you route

Off-line: route selections are precomputed for each problem
of interest and stored within nodes (routing tables)

Positive result for off-line routing on a p-node hypercube

Any 1-1 routing problem with p or fewer packets can be
solved in O(log p) steps, using an off-line algorithm

The off-line algorithm chooses routes in such a way that the
route taken by one message does not significantly overlap
or conflict with those of other messages

Negative result for oblivious routing on any network

Theorem 14.1: Let G = (V, E) be a p-node, degree-d
network. Any oblivious routing algorithm for routing p
packets in G needs Ω(√p  / d) worst-case time

For a hypercube: oblivious routing requires Ω(√p  / log p)
time in the worst case (only slightly better than mesh)

In most instances, actual routing performance is much
closer to the log-time best case than to the worst case.
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Proof Sketch for Theorem 14.1

Let Pu,v  be the unique path used for routing from u to v

There are p(p – 1) paths for routing among all node pairs

These paths are predetermined and independent of other
traffic within the network

Our strategy is to find k node pairs ui, vi (1 ≤ i ≤ k) such that

ui ≠ uj and vi ≠ vj for i ≠ j, and

Pui,vi all pass through the same edge e

Since at most 2 packets can go through a link in each step,
Ω(k) steps will be needed for some 1-1 routing problem

The main part of the proof consists of showing that k can be
as large as √p /d

v
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14.4 Dimension-Order Routing

Route from node 01011011
to node 11010110

^   ^^ ^ Dimensions that differ
Path: 01011011, 11011011, 11010011,

11010111, 11010110

Unfolded hypercube (indirect cube, butterfly network)
facilitates the discussion of routing algorithms

Dimension-order routing between nodes i and j in a
hypercube can be viewed as routing from node i in column
0 (q) to node j in column q (0) of the butterfly

dim 0 dim 1 dim 2

0        1        2        3

q + 1 Columns

0

1

2

3

4
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6

7

0
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2  Rowsq

0
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6

7

Hypercube

Unfold

Fold

Fig. 14.5. Unfolded 3-cube or the 32-node butterfly
network.
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Self-routing in a butterfly

Fom node 3 to node 6: routing tag = 011 ⊕ 110 = 101
(this indicates the “cross-straight-cross” path)

From node 6 to node 1: routing tag 110 ⊕ 001 = 111
(this represents a “cross-cross-cross” path)

dim 0 dim 1 dim 2

0        1        2        3
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5
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7

Ascend Descend

Fig. 14.6. Example dimension-order routing paths.

The butterfly network cannot route all permutations without
node or edge conflicts; e.g., any permutation involving the
routes (1, 7) and (0, 3) leads to a conflict

The extent of conflicts depends on the routing problem

There exist “good” routing problems for which conflicts are
non-existent or rare

There are also “bad” routing problems that lead to
maximum conflicts and thus the worst-case running time
predicted by Theorem 14.1
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Fig. 14.7. Packing is a “good” routing problem for
dimension-order routing on the hypercube.
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Fig. 14.8. Bit-reversal permutation is a “bad” routing
problem for dimension-order routing on the
hypercube.
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Message buffer needs of dimension-order routing

One may think that if we limit each node to a small, constant
number of message buffers, then the above bound still
holds, except that messages will be queued at several
levels before reaching node 0

However, queuing the messages at multiple intermediate
nodes may introduce additional delays that we have not
accounted for, so that even the Θ(√p) running time can no
longer be guaranteed

Bad news: if each node of the hypercube is limited to O(1)
buffers, there exist permutation routing problems that
require O(p) time; i.e., as bad as on a linear array!

Good news: the performance is usually much better; i.e.,
log2p + o(log p) for most permutations. Hence, the average
running time of the dimension-order routing algorithm is
very close to its best case and its message buffer
requirements are quite modest.

Besides, if we anticipate any (near) worst-case routing
pattern to occur in a given application, two options are
available to us:

Compute the routing paths off-line and store in tables

Use randomized routing to convert the worst-case
to average-case performance

The probabilistic analyses required to show the good
average-case performance of dimension-order routing are
quite complicated
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Wormhole routing on a hypercube

A

B

C

D

Packet 1

Packet 2

Some of the preceding results are directly applicable here

Any good routing problem, yielding node- and edge-disjoint
paths, will remain good for wormhole routing

In Fig. 14.7, e.g., the four worms carrying messages A, B,
C, D, will move with no conflict among them. Each message
is thus delivered to its destination in the shortest possible
time, regardless of the length of the worms

For bad routing problems, on the other hand, wormhole
routing aggravates the difficulties, since each message can
now tie up a number of nodes and links

In the case of wormhole routing, one also needs to be
concerned with deadlocks resulting from circular waiting of
messages for one another

Dimension-order routing is always deadlock-free

With hot-potato or deflection routing, which is attractive for
reducing the message buffering requirements within nodes,
dimension orders are occasionally modified or more than
one routing step along some dimensions may be allowed

Deadlock considerations in this case are similar to those of
other adaptive routing schemes discussed in Section 14.6
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14.5 Broadcasting on a Hypercube

Simple “flooding” scheme with all-port communication

00000 Source node

00001, 00010, 00100, 01000, 10000 Neighbors of source

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000 Distance-2 nodes

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100 Distance-3 nodes

01111, 10111, 11011, 11101, 11110 Distance-4 nodes

11111  Distance-5 node

Binomial broadcast tree with single-port communication

0
1
2
3
4
5

Time00000

10000

01000 11000

00100 01100 10100 11100

00001

00010

Fig. 14.9. The binomial broadcast tree for a 5-cube.
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Fig. 14.10. Three hypercube broadcasting schemes as
performed on a 4-cube.
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14.6 Adaptive and Fault-Tolerant Routing

Because there are up to q node-disjoint and edge-disjoint
shortest paths between any node pairs in a q-cube, one can
route messages around congested or failed nodes/links

A useful notion for designing adaptive wormhole routing
algorithms is that of virtual communication networks
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Subnetwork 0 Subnetwork 1
Fig. 14.11. Partitioning a 3-cube into subnetworks for

deadlock-free routing.

Because each of the subnetworks in Fig. 14.11 is acyclic,
any routing scheme that begins by using links in Subnet 0,
at some point switches the routing path to Subnet 1, and
from then on remains in Subnet 1, is deadlock-free

Fault diameter of q-cube is at most q + 1 with q – 1 or fewer
faults and at most q + 2 with 2q – 3 or fewer faults [Lati93]
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Figure for Problem 14.15.
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15 Other Hypercubic Architectures

Chapter Goals
● Learn how the binary hypercube can be

generalized to provide cost or performance
benefits over the original version

● Derive algorithms for these architectures
based on emulating a hypercube

Chapter Contents
● 15.1. Modified and Generalized Hypercubes
● 15.2. Butterfly and Permutation Networks
● 15.3. Plus-or-Minus-2i Network
● 15.4. The Cube-Connected Cycles Network
● 15.5. Shuffle and Shuffle-Exchange Networks
● 15.6. That’s Not All Folks!
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15.1 Modified and Generalized Hypercubes

Twisted 3-cube
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5

3-cube and a 4-cycle in it

0
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6 7

Fig. 15.1. Deriving a twisted 3-cube by redirecting two
links in a 4-cycle.
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Fig. 15.2. Deriving a folded 3-cube by adding four
diametral links.
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Fig. 15.3. Folded 3-cube viewed as 3-cube with a
redundant dimension.
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A hypercube is a power or homogeneous product network

q-cube  =   (            ) q

q-cube  =  qth power of K2

Generalized hypercube = qth power of Kr

(node labels are radix-r numbers)

Example: radix-4 generalized hypercube

Node labels are radix-4 numbers

Node x is connected to y iff x and y differ in one digit

Each node has r – 1 dimension-k links
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15.2 Butterfly and Permutation Networks

dim 0 dim 1 dim 2
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Fig. 15.4. Butterfly and wrapped butterfly networks.
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Switching these 
two row pairs 
converts this 
to the original
butterfly network. 
Changing the 
order of stages 
in a butterfly 
is thus equivalent 
to a relabeling of 
the rows (in this 
example, row xyz 
becomes row xzy).

0        1        2        3

Fig. 15.5. But ter f ly  network wi th  permuted
dimensions.
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Fat trees eliminate the bisection bottleneck of an “skinny”
tree by making the bandwidth of links correspondingly
higher near the root

Fig. 15.6. Two representations of a fat tree.

One way of realizing a fat tree

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

Front view:
Binary tree

Side view:
Inverted 
binary tree

1 3 5 7

1 2 3
5 6 7

1 2 3 4 5 6 7

Fig. 15.7. Butterfly network redrawn as a fat tree.
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Butterfly as a multistage interconnection network
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Fig. 15.8. Butterfly network used to connect modules
that are on the same side.

Generalization of the butterfly network

High-radix or m-ary butterfly (built of m × m switches)

Has mq rows and q + 1 columns (q if wrapped)
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0        1        2        3        4
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Fig. 15.9. Benes˘ network formed from two back-to-
back butterflies.

Benes˘ network can route any permutation

(it is rearrangeable)
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Fig. 15.10. Another example of a Benes˘ network.
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15.3 Plus-or-Minus-2i Network

±4

±1
0    1    2    3    4    5    6    7

±2
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5

7

Fig. 15.11. Two representations of the eight-node plus-
or-minus-2i network.
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Fig. 15.12. Augmented data manipulator network.
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15.4 The Cube-Connected Cycles Network
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Fig. 15.13. A wrapped butterfly (left) converted into
cube-connected cycles.

How CCC was originally defined:
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Fig. 15.14. Alternate derivation of CCC from a
hypercube.
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Emulating normal hypercube algorithms on CCC
Hypercube
Dimension

q–1
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0

Algorithm Steps
0        1        2        3      .  .  .  

.

.

.
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2   bitsm m  bits
Cycle ID = x Proc ID = y
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 , j–1j–1

, j

, j+1

Dim j–1

Dim j

Dim j+1
 , j–1

Cycle
    x

 , j

N    (x)

j+1

N    (x)j+1

N (x)j

N (x)j

Fig. 15.15. CCC emulating a normal hypercube
algorithm.
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15.5 Shuffle and Shuffle-Exchange Networks
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Fig. 15.16. Shuffle, exchange, and shuffle–exchange
connectivities.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 15.17. Alternate views of an eight-node shuffle–
exchange network.
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In a 2q-node shuffle network, node x = xq–1xq–2 . . . x2x1x0

is connected to xq–2 . . . x2x1x0xq–1 (cyclic left-shift of x)

In the shuffle-exchange network, node x is additionally
connected to xq–2 . . . x2x1x0xq–1

Routing in a shuffle-exchange network

Source              01011011

Destination       11010110

Positions that differ ^   ^^ ^

Route 01011011  Shuffle to 10110110  Exchange to  10110111

10110111  Shuffle to 01101111

01101111  Shuffle to 11011110

11011110  Shuffle to 10111101

10111101  Shuffle to 01111011  Exchange to  01111010

01111010  Shuffle to 11110100  Exchange to  11110101

11110101  Shuffle to 11101011

11101011  Shuffle to 11010111  Exchange to  11010110

For 2q-node shuffle-exchange network: D = q = log2p, d  = 4
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With shuffle and exchange links provided separately, as
shown in Fig. 15.18, the diameter increases to 2q – 1 and
node degree reduces to 3

0 1 2 3 4 5 6 7
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1
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7

Exchange
(dotted)

Shuffle
(solid)

Fig. 15.18. Eight-node network with separate shuffle
and exchange links.



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2 (4/00), Page 237

B. Parhami, UC Santa Barbara  Plenum Press, 1999

Multistage shuffle-exchange network = butterfly network
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Fig. 15.19. Multistage shuffle–exchange network
(omega network) is the same as butterfly
network.
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15.6 That’s Not All, Folks!

When q is a power of 2, the 2qq-node cube-connected
cycles network derived from the q-cube, by replacing each
node with a q-cycle, is a subgraph of the (q + log2q)-cube

Thus, CCC can be viewed as a pruned hypercube

Other pruning strategies are possible, leading to interesting
tradeoffs

0
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3

4

6

5

7

All dimension-0 links are kept

Even-dimension
links are kept in
the left subcube

Odd-dimension
links are kept in 
the right subcube

Fig. 15.20. Example of a pruned hypercube.
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Mobius cube

Dimension-i neighbor of x = xq–1xq–2 . . . xi+1xi  . . . x1x0 is

xq–1xq–2 . . . 0xi  . . . x1x0    if    xi+1 = 0

(as in the hypercube, xi is complemented)

xq–1xq–2 . . . 1xi  . . .x1x0    if    xi+1 = 1

(xi and all the bits to its right are complemented)

For dimension q – 1, since there is no xq ,

the neighbor can be defined in two ways,

leading to 0- and 1-Mobius cubes

A Mobius cube has a diameter of about 1/2 and an average
inter-node distance of about 2/3 of that of a hypercube
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Fig. 15.21. Two 8-node Mobius cubes.
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16 A Sampler of Other Networks

Chapter Goals
● Study examples of composite or hybrid

architectures
● Study examples of hierarchical or multilevel

architectures
● Complete the picture of the sea of

interconnection networks

Chapter Contents
● 16.1. Performance Parameters for Networks
● 16.2. Star and Pancake Networks
● 16.3. Ring-Based Networks
● 16.4. Composite or Hybrid Networks
● 16.5. Hierarchical (Multilevel) Networks
● 16.6. Multistage Interconnection Networks
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16.1 Performance Parameters for Networks


