
INSTRUCTOR’S MANUAL FOR

Volume 2: Presentation Material

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu

© Plenum Press, Winter 2002

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 2

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The structure of this book in parts, half-parts, and chapters

Part I:
Fundamental
Concepts

 Introduction to Parallelism
 A Taste of Parallel Algorithms
 Parallel Algorithm Complexity
 Models of Parallel Processing

Part II:
Extreme
Models

 PRAM and Basic Algorithms
 More Shared-Memory Algorithms
 Sorting and Selection Networks
 Other Circuit-Level Examples

Part III:
Mesh-Based
Architectures

 Sorting on a 2D Mesh or Torus
 Routing on a 2D Mesh or Torus
 Numerical 2D Mesh Algorithms
 Other Mesh-Related Architectures

Part IV:
Low-Diameter
Architectures

 Hypercubes and Their Algorithms
 Sorting and Routing on Hypercubes
 Other Hypercubic Architectures
 A Sampler of Other Networks

Part V:
Some Broad
Topics

 Emulation and Scheduling
 Data Storage, Input, and Output
 Reliable Parallel Processing
 System and Software Issues

Part VI:
Implementation
Aspects

 Shared-Memory MIMD Machines
 Message-Passing MIMD Machines
 Data-Parallel SIMD Machines
 Past, Present, and Future

Parts Chapters

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

A
rc

hi
te

ct
ur

al
 V

ar
ia

tio
ns

Half-Parts

Background and
Motivation
Complexity and
Models

Abstract View of
Shared Memory
Circuit Model of
Parallel Systems

Data Movement
on 2D Arrays
Mesh Algorithms
and Variants

The Hypercube
Architecture
Hypercubic and
Other Networks

Coordination and
Data Access
Robustness and
Ease of Use

Control-Parallel
Systems
Data Parallelism
and Conclusion

This instructor ’s manual is for

Introduction to Parallel Processing: Algorithms and Architectures, by Behrooz Parhami
ISBN 0-306-45970-1, QA76.58.P3798

©1999 Plenum Press, New York, http://www.plenum.com

For information and errata, see http://www.ece.ucsb.edu/Faculty/Parhami/text_par_proc.htm

All rights reserved for the author. No part of this instructor’s manual may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without written permission. Contact the author at:
ECE Dept., Univ. of Cali fornia, Santa Barbara, CA 93106-9560, USA (parhami@ece.ucsb.edu)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 3

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Preface to the Instructor’s Manual
This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected
problems and includes additional problems (many with solutions) that did not make the cut for
inclusion in the text Introduction to Parallel Processing: Algorithms and Architectures (Plenum
Press, 1999) or that were designed after the book went to print. Volume 2 contains enlarged
versions of the figures and tables in the text as well as additional material, presented in a format
that is suitable for use as transparency masters.

The winter 2002 edition Volume 1, which consists of the following parts, is available to quali fied
instructors through the publisher:

Volume 1 Part I Selected solutions and additional problems

 Part II Question bank, assignments, and projects

The winter 2002 edition of Volume 2, which consists of the following parts, is available as a
large file in postscript format through the book’s Web page:

Volume 2 Parts I-VI Lecture slides and other presentation material

The book’s Web page, given below, also contains an errata and a host of other material (please
note the upper-case “F” and “P” and the underscore symbol after “ text” and “par”):

http://www.ece.ucsb.edu/Faculty/Parhami/text_par_proc.htm

The author would appreciate the reporting of any error in the textbook or in this manual,
suggestions for other tables, diagrams, or lecture topics, and sharing of teaching experiences.
Please e-mail your comments to

 parhami@ece.ucsb.edu

or send them by regular mail to the author’s postal address:

 Department of Electrical and Computer Engineering
 University of Cali fornia
 Santa Barbara, CA 93106-9560, USA

Contributions will be acknowledged to the extent possible.

 Behrooz Parhami
 Santa Barbara, Winter 2002

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 4

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Table of Contents, Vol. 2
 Preface to the Instructor’s Manual 3

Part I Fundamental Concepts 5

1 Introduction to Parallelism 6
2 A Taste of Parallel Algorithms 29
3 Parallel Algorithm Complexity 45
4 Models of Parallel Processing 57

Part II Extreme Models 71

5 PRAM and Basic Algorithms 72
6 More Shared-Memory Algorithms 92
7 Sorting and Selection Networks 108
8 Other Circuit-Level Examples 124

Part III Mesh-Based Architectures 141

9 Sorting on a 2D Mesh or Torus 142
10 Routing on a 2-D Mesh or Torus 158
11 Numerical 2D Mesh Algorithms 171
12 Mesh-Related Architectures 195

Part IV Low-Diameter Architectures 222

13 Hypercubes and Their Algorithms 223
14 Sorting and Routing on Hypercubes 243
15 Other Hypercubic Architectures 265
16 A Sampler of Other Networks 283

Part V Some Broad Topics 313

17 Emulation and Scheduling 314
18 Data Storage, Input, and Output 332
19 Reliable Parallel Processing 342
20 System and Software Issues 359

Part VI Implementation Aspects 380

21 Shared-Memory MIMD Machines 381
22 Message-Passing MIMD Machines 392
23 Data-Parallel SIMD Machines 404
24 Past, Present, and Future 417

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 5

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Part I Fundamental Concepts

Back to TOC

Part Goals
● Motivate us to study parallel processing
● Paint the big picture
● Provide background in the three Ts:
 Taxonomy – including basic terminology
 Tools – for evaluation or comparison
 Theory – easy and hard problems

Part Contents
● Chapter 1: Introduction to Parallelism
● Chapter 2: A Taste of Parallel Algorithms
● Chapter 3: Parallel Algorithm Complexity
● Chapter 4: Models of Parallel Processing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 6

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1 Introduction to Parallelism

Back to TOC

Chapter Goals
● Set the context in which the course material

will be presented
● Review challenges that face the designers

and users of parallel computers
● Introduce metrics for evaluating the

effectiveness of parallel systems

Chapter Contents
● 1.1. Why Parallel Processing?
● 1.2. A Motivating Example
● 1.3. Parallel Processing Ups and Downs
● 1.4. Types of Parallelism: A Taxonomy
● 1.5. Roadblocks to Parallel Processing
● 1.6. Effectiveness of Parallel Processing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 7

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1.1 Why Parallel Process ing?

1990 1980 2000 2010
KIPS

MIPS

GIPS

TIPS

P
ro

ce
ss

or
 p

er
fo

rm
a

nc
e

Calendar year

80286
68000

80386

80486
68040

Pentium

Pentium II R10000

×1.6 / yr

Fig. 1.1. The expon ential growth of microprocess or

performance, known as Moore’s Law, shown over the
past two decades.

Figures rounded/averaged from “2001 Technology
Roadmap for Semiconductors” [Alla02]

Calendar year Æ 2001 2004 2007 2010 2013 2016
Halfpitch (nm) 140 90 65 45 32 22
Clock freq. (GHz) 2 4 7 12 20 30
Wiring levels 7 8 9 10 10 10
Power supply (V) 1.1 1.0 0.8 0.7 0.6 0.5
Max. power (W) 130 160 190 220 250 290

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 8

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Factors contributing to the validity of Moore’s law

 Denser circuits
 Architectural improvements

Measures of processor performance

 Instructions per second (MIPS, GIPS, TIPS, PIPS)
 Floating-point operations per second

(MFLOPS, GFLOPS, TFLOPS, PFLOPS)
 Running time on benchmark suites
 Examples of benchmarks

Categories of supercomputers

 Uniprocessor (vector processor)
 Multiprocessor
 Multicomputer
 Massively parallel processor (MPP)

There is a limit to the speed of a single processor (the
speed-of-light argument)

 Light travels 30 cm/ns;
 signals on wires travel at a fraction of this speed
 (≅ c/Er

1/2, where Er ≅ 2-4 is the dielectric coeff.)
 If signals must travel 1 cm in an instruction cycle,
 cycle time cannot be shorter than 1/30 ns;
 thus, 30 GIPS is the best we can hope for

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 9

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Motivations for concurrency

1. Higher speed (solve problems faster)

Important when there are “hard” or “soft” deadlines;

e.g., 24-hour weather forecast

2. Higher throughput (solve more problems)

Important when there are many similar tasks to perform;

e.g., transaction processing

3. Higher computational power (solve larger problems)

e.g., weather forecast for a week rather than 24 hours,

or with a finer mesh for greater accuracy

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 10

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1990 1980 2000 2010
MFLOPS

S
up

er
co

m
pu

te
r

pe
rf

or
m

an
ce

Calendar year

Cray
X-MP

Y-MP

CM-2

GFLOPS

TFLOPS

PFLOPS

Vector supers

CM-5

CM-5

$240M MPPs

$30M MPPs

ASCI goals

 Micros

 80386

 80860

 Alpha

Fig. 1.2. The exponential growth in supercomputer

performance over the past two decades (from [Bell92],
with ASCI performance goals and microprocessor
peak FLOPS superimposed as dotted lines).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 11

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The need for TFLOPS

Modeling of heat transport to the South Pole in the
southern oceans [Ocean model: 4096 E-W regions × 1024
N-S regions × 12 layers in depth]

 30 000 000 000 FLOP per 10-min iteration ×
 300 000 iterations per six-year period =
 1016 FLOP

Fluid dynamics

 1000 × 1000 × 1000 lattice ×
 1000 FLOP per lattice point × 10 000 time steps =
 1016 FLOP

Monte Carlo simulation of nuclear reactor

 100 000 000 000 particles to track (for ≅1000 escapes)
 × 10 000 FLOP per particle tracked =
 1015 FLOP

Reasonable running time =
 Fraction of hour to several hours (103-104 s)

Computational power =
 1016 FLOP / 104s or 1015 FLOP / 103s = 1012 FLOPS

Why the current quest for PFLOPS?

Same problems, perhaps with finer grids or longer
simulated times

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 12

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

ASCI: Advanced Strategic Computing Initiative,

 US Department of Energy

2000 1995 2005 2010

P
er

fo
rm

a
nc

e
(T

F
L

O
P

S
)

Calendar year

Option Red

Option Blue

Option White

1+ TFLOPS, 0.5 TB

3+ TFLOPS, 1.5 TB

10+ TFLOPS, 5 TB

30+ TFLOPS, 10 TB

100+ TFLOPS, 20 TB

1

10

100

1000 Plan Develop Use

ASCI

Fig. 24.1. Milestones in the Accelerated Strategic Computing

Initiative (ASCI) program, sponsored by the US
Department of Energy, with extrapolation up to the
PFLOPS level.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 13

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Status of Computing Power (circa 2000)

GFLOPS on desktop

Apple Macintosh, with G4 processor

TFLOPS in supercomputer center

1152-processor IBM RS/6000 SP

 uses a switch-based interconnection network

 see IEEE Concurrency, Jan.-Mar. 2000, p. 9

Cray T3E, torus-connected

PFLOPS on drawing board

1M-processor IBM Blue Gene (2005?)

 see IEEE Concurrency, Jan.-Mar. 2000, pp. 5-9

32 proc’s/chip, 64 chips/board, 8 boards/tower, 64 towers

Processor: 8 threads, on-chip memory, no data cache

Chip: defect-tolerant, row/column rings in a 6 × 6 array

Board: 8 × 8 chip grid organized as 4 × 4 × 4 cube

Tower: Boards linked to 4 neighbors in adjacent towers

System: 32×32×32 cube of chips, 1.5 MW (water-cooled)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 14

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1.2 A Motivating Example

Sieve of Eratosthenes ('er-a-'taas-tha-neez)

 for finding all primes in [1, n]

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 m=2

 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29
 m=3

 2 3 5 7 11 13 17 19 23 25 29
 m=5

 2 3 5 7 11 13 17 19 23 29
 m=7

Fig. 1.3. The sieve of Eratosthenes yielding a list of 10 primes
for n = 30. Marked elements have been distinguished
by erasure from the list.

1 2 n

Current Prime Index
P

Fig. 1.4. Schematic representation of single-processor solution

for the sieve of Eratosthenes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 15

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1 2 n

Current Prime

Index
P1

Index
P2

Index
Pp...

Shared
Memory I/O Device

(b)

Fig. 1.5. Schematic representation of a control-parallel solution
for the sieve of Eratosthenes.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2 | 3 | 5 | 7 | 11 |13|17

 2 | 7 |17
 3 5 | 11 |13|

 2 |
| 3 11 | 19 29 31
 5 | 7 13|17 23

Time

19 29
23 31 p = 1, t = 1411

p = 2, t = 706

p = 3, t = 499

19

23 29 31

Fig. 1.6. Control-parallel realization of the sieve of

Eratosthenes with n = 1000 and 1 ≤≤ p ≤≤ 3.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 16

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

P1 finds each prime and broadcasts it to all other
processors

Assume n/p ≥ n (p ≤ n), so that all primes whose
multiples are to be marked reside in P1

1 2

Current PrimeP1 Index

n/p

n/p+1

Current PrimeP2 Index

2n/p

Current PrimePp Index

Communi-
 cation

n–n/p+1 n

Fig. 1.7. Data-parallel realization of the sieve of Eratosthenes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 17

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Some reasons for sublinear speed-up

 Communication overhead

Number of processors

Communication

Computation

Solution time

Ideal speedup

Number of processors

Actual speedup

Fig. 1.8. Trade-off between communication time and

computation time in the data-parallel realization of the
sieve of Eratosthenes.

 Input/output overhead

Number of processors

I/O time

Computation

Solution time

Ideal speedup

Number of processors

Actual speedup

Fig. 1.9. Effect of a constant I/O time on the data-parallel

realization of the sieve of Eratosthenes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 18

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1.3 Parallel Process ing Ups and Downs

Early 1900s: 1000s of “computers” (humans + calculators)
to do 24-hour weather prediction in a few hours

Conductor

b

b

b

b
b b

b

b

b

b
b
b

b b

b

b b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b
b

b

b

b b
b b

b
b b

Fig. 1.10. Richardson’s c ircular theater for weather forecasting

calculations.

Parallel processing is used in virtually all computers

Compute-I/O overlap, pipelining (fetch/exec overlap),
multitasking, VLIW, multiple function units

But ... in this course we use “parallel processing” in a
stricter sense implying the availability of multiple CPUs

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 19

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

History of Parallel Processing

1960s: ILLIAC IV (U Illinois) – Four 8 × 8 mesh quadrants

1980s: Commercial interest resurfaced; technology was
driven by government contracts. Once funding dried up,
many companies went bankrupt

2000s: Internet revolution – info providers, multimedia,
data mining, etc. need extensive computational power

1960 1970 1980 1990 2000

Graphics

Networking

RISC

Parallelism

GovResGovResGovResGovResGovResGovResGovResGovResGovResGovRes

IndResIndResIndResIndResIndResIndResIndResIndResIndResIndRes

IndDevIndDev

GovResGovResGovResG GovResGovResGovResGo

GovResGovResGovResGovResGovResGovResGovResGovResGovResGovRes

IndResIndResIndResIndResIndResIndResIndResIndResIndResIndRes

IndDevIndDev $1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1

IndResIndResIndResIndResIndResIndResIndResIndResIndResIndRes

GovRes

IndDev

IndResIndR

$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1

IndDevIndDev $1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1

$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B

Transfer of
ideas/people

 Development of some technical fields into $1B

businesses and the roles of government research and
industrial R&D over time (IEEE Computer, early 90s?).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 20

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1.4 Types of Parallelism: A Taxonomy

SISD
“Uniprocessor”

SIMD
“Array processor”

MISD
(Rarely used)

MIMD
GMSV GMMP

DMSV DMMP

“Shared-memory
multiprocessor”

“Distributed
shared memory”

“Distrib-memory
multicomputer

Data stream(s)

C
on

tr
o

l s
tr

ea
m

(s
)

Single Multiple

M
ul

tip
le

S

in
g

le

M
e

m
or

y

D
is

tr
ib

G

lo
b

al

Communication/
Synchronization

Shared
variables

Message
passing

Fig. 1.11. The Flynn-Johnson classification of computer

systems.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 21

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Why are computer architects so fascinated by four-letter
acronyms and abbreviations?

 Systems: RISC, CISC, PRAM, NUMA, VLIW

 Journals: JPDC, TPDS

 Conferences: ICPP, IPPS, SPDP, SPAA

My contribution:

 SINC: Scant/Simple Interaction Network Cell

 FINC: Full Interaction Network Cell

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 22

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1.5 Roadblocks to Parallel Processing

a. Grosch’s law (economy of scale applies, or
 computing power proportional to the square of cost)

Rebuttal: Not true any more. Even if it were, there is
only one fastest computer; cannot get a faster one by
spending more

b. Minsky’s conjecture (speedup proportional to
 the logarithm of the number p of processors)

This is due to a statistical argument; you don’t need a
lot of people in a room to have some with identical
birthdays (memory accesses will have conflicts)

Rebuttal: Just like the assumption of no conflict, and
thus linear speedup, randomness is too pessimistic;
perhaps p/logp is more realistic than either extreme

c. Tyranny of IC technology (since hardware becomes
 about 10 times faster every 5 years, by the time
 a parallel machine with 10-fold performance is built,
 uniprocessors will be just as fast)

Rebuttal: We might try to design parallel systems into
which faster components can be incorporated as they
become available. Also, we might aim for 100-fold or
1000-fold speedup, not just 10-fold

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 23

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

d. Tyranny of vector supercomputers
 (vector supercomputers are rapidly improving
 in performance, offer a familiar programming model
 and excellent vectorizing compilers;
 why bother with parallel processors?)

Rebuttal: Many compute-intensive problems do not
involve vector operations; besides, even vector
machines nowadays use multiprocessing

e. Software inertia (Billions of dollars worth of existing
 software makes it hard to switch to parallel systems)

Rebuttal: Not all future applications have already been
developed. Improved automatic tools can convert
“dusty deck” programs into efficient parallel programs.
Students are being trained to “think parallel”

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 24

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

f. Amdahl’s law
 (a small fraction f of inherently sequential
 or unparallelizable computation
 severely limits the speed-up)

 speedup ≤
1

f + (1 – f)/p =
p

1 + f(p – 1)

0

1 0

2 0

3 0

4 0

5 0

0 1 0 20 30 4 0 50
Enha ncem en t f ac tor (p)

S
p

e
e

d
u

p
 (

s
)

f = 0

f = 0.1

f = 0.05

f = 0.02

f = 0.01

Fig. 1.12. Limit on speed-up according to Amdahl’s law.

Rebuttal: Applications with very small f exist. Besides,
sequential overhead need not be a fixed fraction

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 25

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

ABCs of Parallel Process ing
in on e transparency* (parhami@ece.ucsb.edu)

* Originally appeared in Computer Architecture News, Vol. 27, No. 1, p. 2, March 1999.

 f = unparallelizable fraction of a task (sequential overhead)
 Tx = running time of a task when executed on x processors

A Amdahl’s Law (Speed-up Fo rmula)
 Bad news: Sequential overhead will kill you, since:

 Speed-up =
T1

Tp
 ≤

1

 f +
1 – f

p

 ≤ min (
1
f , p)

 Morale: For f = 0.1, e.g., the speed-up will be at best 10,
 no matter what the number of processors (peak OPS).

B Brent’s Scheduling Th eorem
 Good news: Optimal scheduling is a very difficult problem,
 but even a naive scheduling algorithm can ensure:

T1

p ≤ Tp <
T1

p + T∞ =
T1

p (1 +
p

T1/T �
)

 Result: For a reasonably parallel task (with small T∞),
 or for a suitably small number of processors (say, p < T1/T∞),
 good speed-up and high utilization are attainable.

C Cost-Effectiveness Adage
 Real news: The most cost-effective parallel solution
 to a given problem is often not the one with:
 Highest peak OPS (communication can kill you)
 Greatest speed-up (at what cost?)
 Best utilization (hardware busy doing what?)
 Analogy: Mass transit (SIMD) might be more cost-effective
 than using private vehicles (MIMD) even if it is slower
 and leads to many empty seats on some trips.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 26

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1.6 Effectiveness of Parallel Processing

1

2

3

4

5

67

8

9
10

11

12

13

Fig. 1.13. Task graph exhibiting limited inherent parallelism.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 27

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Measures for comparing parallel architectures/algorithms:

 p Number of processors

 W(p) Total number of unit operations performed by
 p processors; computational work or energy

 T(p) Execution time with p processors;
 T(1) = W(1) and T(p) ≤ W(p)

 S(p) Speedup =
T(1)
T(p)

 E(p) Efficiency =
T(1)
pT(p)

 R(p) Redundancy =
W(p)
W(1)

 U(p) Utilization =
W(p)
pT(p)

 Q(p) Quality =
T3(1)

pT2(p)W(p)
Relationships among the preceding measures:

 1 ≤ S(p) ≤ p U(p) = R(p)E(p)

 E(p) =
S(p)

p Q(p) = E(p)
S(p)
R(p)

1
p ≤ E(p) ≤ U(p) ≤ 1 1 ≤ R(p) ≤

1
E(p) ≤ p

 Q(p) ≤ S(p) ≤ p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 28

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Example: Adding 16 numbers, assuming unit-time
additions and ignoring all else, with p = 8

 ----------- 16 numbers to be added -----------

Sum

+ + ++++ ++

++

+

++

+

+

Fig. 1.14. Computation graph for finding the sum of 16 numbers.

Zero-time communication: W(8) = 15 T(8) = 4

E(8) = 15 / (8 × 4) = 47%
S(8) = 15 / 4 = 3.75 R(8) = 15/15 = 1 Q(8) = 1.76

Unit-time communication: W(8) = 22 T(8) = 7

E(8) = 15 / (8 × 7) = 27%
S(8) = 15 / 7 = 2.14 R(8) = 22 / 15 = 1.47 Q(8) = 0.39

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 29

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2 A Taste of Parallel Algorithms

Back to TOC

Chapter Goals
● Consider five basic building-block parallel

operations
● Implement them on four simple parallel

architectures
● Learn about the nature of parallel

computations, complexity analysis, and the
algorithm/architecture interplay

Chapter Contents
● 2.1. Some Simple Computations
● 2.2. Some Simple Architectures
● 2.3. Algorithms for a Linear Array
● 2.4. Algorithms for a Binary Tree
● 2.5. Algorithms for a 2D Mesh
● 2.6. Algorithms with Shared Variables

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 30

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2.1 Some Simple Computations
x0

identity
element

x1

⊗

⊗
x2

⊗

xn–2

⊗
x

⊗

s

.
 .
 .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

Fig. 2.1. Semigroup computation on a uniprocessor.

x0 x1

⊗

x2

⊗

s

x3

⊗ ⊗ ⊗

⊗

⊗

⊗

⊗

⊗

x4 x5 x6 x7 x8 x9 x10

 Semigroup computation viewed as a tree or fan-in

computation.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 31

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x0

identity
element

x1

⊗

⊗
x2

⊗

xn–2

⊗
x

⊗

.
 .
 .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s0

s1

s2

sn–2

sn–1
 Prefix computation on a uniprocessor.

3. Packet routing

 one processor sending a packet of data to another

4. Broadcasting

 one processor sending a packet of data to all others

5. Sorting

 processors cooperating in rearranging their data

 into desired order

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 32

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2.2 Some Simple Architectures

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

Fig. 2.2. A linear array of nine processors and its ring variant.

Diameter of linear array: D = p – 1

(Max) Node degree: d = 2

P1

P0

P3

P4

P2
P5

P7 P8

P6

Fig. 2.3. A balanced (but incomplete) binary tree of nine

processors.

Diameter of balanced binary tree: D = 2 log2p; or 1 less

(Max) Node degree: d = 3

We almost always deal with complete binary trees:

 p one less than a power of 2, D = 2 log2(p + 1) – 2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 33

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Fig. 2.4. 2D mesh of 9 processors and its torus variant.

Diameter of r × (p/r) mesh: D = r + p/r – 2

(Max) Node degree: d = 4

Square meshes preferred; they minimize D (= 2 p – 2)

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Fig. 2.5. A shared-variable architecture modeled as a complete

graph.

Diameter of complete graph: D = 1

(Max) Node degree: d = p – 1

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 34

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2.3 Algorithms for a Linear Array

 5 2 8 6 3 7 9 1 4
 5 8 8 8 7 9 9 9 4
 8 8 8 8 9 9 9 9 9
 8 8 8 9 9 9 9 9 9
 8 8 9 9 9 9 9 9 9
 8 9 9 9 9 9 9 9 9
 9 9 9 9 9 9 9 9 9

Initial
values

Maximum
identified

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Fig. 2.6. Maximum-finding on a linear array of nine processors.

 5 2 8 6 3 7 9 1 4
 5 7 8 6 3 7 9 1 4
 5 7 15 6 3 7 9 1 4
 5 7 15 21 3 7 9 1 4
 5 7 15 21 24 7 9 1 4
 5 7 15 21 24 31 9 1 4
 5 7 15 21 24 31 40 1 4
 5 7 15 21 24 31 40 41 4
 5 7 15 21 24 31 40 41 45

Initial
values

Final
results

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Fig. 2.7. Computing prefix sums on a linear array of nine

processors.

Diminished prefix computation: the ith result excludes the
ith element (e.g., sum of the first i – 1 elements)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 35

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5 2 8 6 3 7 9 1 4
 1 6 3 2 5 3 6 7 5

5 2 8 6 3 7 9 1 4
 6 8 11 8 8 10 15 8 9
 +
 0 6 14 25 33 41 51 66 74
 =
5 8 22 31 36 48 60 67 78
 6 14 25 33 41 51 66 74 83

Initial
values

Final
results

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Local
prefixes

Diminished
prefixes

Fig. 2.8. Computing prefix sums on a linear array with two

items per processor.

Packet routing or broadcasting:

 right- and left-moving packets have no conflict

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Right-moving packets

Left-moving packets

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 36

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5 2 8 6 3 7 9 1

 5 2 8 6 3 7 9

 5 2 8 6 3 7

 5 2 8 6 3

 5 2 8 6

 5 2 8

 5 2

 5

5 2 8 6 3 7 9 1 4

4

1 4

4 9
1

1 9 4 7

1 7 4 3 9

1 3

4
7 9

1

1 2

3

3

4 7 6

8

8

6

9

4 6 7 9

1

1

1

4 9
1

1 9 4 7

1

7
3

9

1

3

4 7 9

1

1

2

3

3

4
7 6

8

8

6

9
4

5

6 7
9

5

5

5

5

2

2

2 8

8

6
6

2

2

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

5 6

6

6

6

7

7

7

8

8

8
9

9

7 8

8

9
Fig. 2.9. Sorting on a linear array with the keys input

sequentially from the left.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 37

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5 2 8 6 3 7 9 1 4
5 2 8 3 6 7 9 1 4
2 5 3 8 6 7 1 9 4
2 3 5 6 8 1 7 4 9
2 3 5 6 1 8 4 7 9
2 3 5 1 6 4 8 7 9
2 3 1 5 4 6 7 8 9
2 1 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

In odd steps,
1, 3, 5, etc.,
odd-
numbered
processors
exchange
values with
their right
neighbors

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4

Fig. 2.10. Odd-even transposition sort on a linear array.

For odd-even transposition sort:

 Speed-up = O(p log p) / p = O(log p)

 Efficiency = O((log p) / p)

 Redundancy = O(p / (log p))

 Utilization = 1/2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 38

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2.4 Algorithms for a Binary Tree

x x x

x x

x x

Upward
Propagation

1 2

3 4

0

10⊗

x x 43⊗

x x 32⊗ x 4⊗

x x 10⊗ ⊗ x x 32⊗ x 4⊗

x x x

x x

x x

Downward
Propagation

1 2

3 4

0

10⊗

x x 10⊗ x 2⊗

x x 10⊗ ⊗x x 32⊗

x0 x x 10⊗

x x 10⊗ x 2⊗

x0 x x 0⊗
x x 10⊗ x ⊗

x x 10⊗ ⊗x x 32⊗

x x 10⊗ ⊗x x 32⊗ x 4⊗

Results

1
2

Identity

Identity

Identity

Fig. 2.11. Parallel prefix computation on a binary tree of

processors.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 39

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Some applications of the parallel prefix computation

Finding the rank of each 1 in a list of 0s and 1s:

 Data: 0 0 1 0 1 0 0 1 1 1 0

 Prefix sums: 0 0 1 1 2 2 2 3 4 5 5

 Ranks of 1s: 1 2 3 4 5

Priority circuit:

 Data: 0 0 1 0 1 0 0 1 1 1 0

 Dim’d prefix ORs: 0 0 0 1 1 1 1 1 1 1 1

 Complement: 1 1 1 0 0 0 0 0 0 0 0

 AND with data: 0 0 1 0 0 0 0 0 0 0 0

Carry computation in fast adders

Let “g”, “p”, and “a” denote the event that a particular digit
position in the adder generates, propagates, or annihilates
a carry. The input data for the carry circuit consists of a
vector of three-valued elements such as:

 p g a g g p p p g a cin
 ← g or a
 direction of indexing

Parallel prefix computation using the carry operator “¢”

 p ¢ x = x x propagates over p, for all x ∈ {g, p, a}

 a ¢ x = a x is annihilated or absorbed by a

 g ¢ x = g x is immaterial; a carry is generated

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 40

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Packet routing on a tree

P1

P0

P3

P4

P2
P5

P7 P8

P6

 A balanced binary tree with preorder node indices.

maxl (maxr) = largest node number in left (right) subtree
if dest = self
then remove the packet {done}
else if dest < self or dest > maxr
 then route upward
 else if dest ≤ maxl
 then route leftward
 else route rightward
 endif
 endif
endif

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 41

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Other indexing schemes might lead to simpler routing
algorithms

XXX

LXX RXX

LLX
RLXLRX

RRX

RRRRRL

Broadcasting is done via the root node

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 42

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Sorting: let the root “see” all data in nondescending order

(a) (b)

(c) (d)

5 2 3

1 4 5 2

1 4

3

2

∞ ∞

∞ ∞

∞

5 1 3

4 ∞ ∞

∞ ∞

∞

2

5

1

3

4 ∞ ∞

∞ ∞

∞ ∞

∞

Fig. 2.12. The first few steps of the sorting algorithm on a binary

tree.

Bisection Width = 1

Fig. 2.13. The bisection width of a binary tree architecture.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 43

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2.5 Algorithms for a 2D Mesh

5 2 8

6 3 7

9 1 4

8 8 8

7 7 7

9 9 9

9 9 9

9 9 9

9 9 9

Row maximums Column maximums
Finding the max value on a 2D mesh

5 7

6 9

9

Diminished prefix
sums in last column

Broadcast in rows
and combine

15

16

10 14

Row prefix sums

5 7

6 9

9

15

16

10 14

15

31

5 7 150

21 24 31

40 41 45

Computing prefix sums on a 2D mesh

Row-major order required if operator not commutative

Routing and broadcasting done via row/column operations

 5 2 8 2 5 8 1 4 3 1 3 4 1 3 2 1 2 3

 6 3 7 7 6 3 2 5 8 8 5 2 6 5 4 4 5 6

 9 1 4 1 4 9 7 6 9 6 7 9 8 7 9 7 8 9

Initial values Snake-like
 row sort

Top-to-bottom
 column
sort

Snake-like
 row sort

Top-to-bottom
 column
sort

Left-to-right
 row sort

Phase
1

Phase
2

Phase
3

Fig. 2.14. The shearsort algorithm on a 3 ×× 3 mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 44

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2.6 Algorithms with Shared Variables

P0

P1

P2

P3

P4P5

P6

P7

P8

Fig. 2.5. A shared-variable architecture modeled as a complete

graph.

Semigroup computation: each processor read all values in
turn and combine

Parallel prefix: processor i read/combine values 0 to i – 1

Both of the above are quite inefficient, given the high cost

Routing/broadcasting: 1 step, with all-port communication

Sorting: rank each element by comparing it to all others,
then permute according to ranks

Figure for Problem 2.13.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 45

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3 Parallel Algorithm Complexity

Back to TOC

Chapter Goals
● Review algorithm complexity and various

complexity classes
● Introduce the notions of time and time-cost

optimality
● Derive tools for analyzing, comparing, and

fine-tuning parallel algorithms

Chapter Contents
● 3.1. Asymptotic Complexity
● 3.2. Algorithm Optimality and Efficiency
● 3.3. Complexity Classes
● 3.4. Parallelizable Tasks and the NC Class
● 3.5. Parallel Programming Paradigms
● 3.6. Solving Recurrences

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 46

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3.1 Asymptotic Complexity

f(n) = O(g(n)) if ∃c, n0 such that ∀n > n0, f(n) < c g(n)

f(n) = Ω(g(n)) if ∃c, n0 such that ∀n > n0, f(n) > c g(n)

f(n) = Θ(g(n)) if ∃c, c', n0 such that

 ∀n > n0, cg(n) < f(n) < c'g(n)

f(n) = o(g(n)) < Growth rate strictly less than

f(n) = O(g(n)) ≤ Growth rate no greater than

f(n) = Θ(g(n)) = Growth rate the same as

f(n) = Ω(g(n)) ≥ Growth rate no less than

f(n) = ω(g(n)) > Growth rate strictly greater than

n

c g(n)

g(n)

f(n)

n n

c g(n)

c' g(n)

f(n)

n n

g(n)

c g(n)

f(n)

n 0 0 0

f(n) = O(g(n)) f(n) = (g(n)) f(n) = (g(n))Ω Θ

f(n) = O(g(n)) f(n) = ΩΩ(g(n)) f(n) = ΘΘ(g(n))

Fig. 3.1. Graphical representation of the notions of

asymptotic complexity.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 47

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Table 3.1. Comparing the Growth Rates of Sublinear and
Superlinear Functions (K = 1000, M = 1 000 000)

 Sublinear Linear Superlinear
 log2n n n n log2n n3/2
 ------- ------- ------- ------- -------
 9 3 10 90 30
 36 10 100 3.6K 1K
 81 31 1K 81K 31K
 169 100 10K 1.7M 1M
 256 316 100K 26M 32M
 361 1K 1M 361M 1000M

Table 3.2. Effect of Constants on the Growth Rates of Selected
Functions Involving Constant Factors

 n n
4 log2 n n log2n 100 n n3/2

 ------- ------- ------- ------- -------
 10 22 90 300 30
 100 900 3.6K 1K 1K
 1K 20K 81K 3.1K 31K
 10K 423K 1.7M 10K 1M
 100K 6M 26M 32K 32M
 1M 90M 361M 100K 1000M

Table 3.3. Effect of Constants on the Growth Rates of Selected
Functions Using Larger Time Units and Round Figures

 n n
4 log2n n log2n 100 n n3/2

 ------- ------- ------- ------- -------
 10 20 s 2 min 5 min 30 s
 100 15 min 1 hr 15 min 15 min
 1K 6 hr 1 day 1 hr 9 hr
 10K 5 days 20 days 3 hr 10 days
 100K 2 mo 1 yr 9 hr 1 yr
 1M 3 yr 11 yr 1 day 32 yr

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 48

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3.2 Algorithm Optimality and Efficiency

f(n) Running time of fastest (possibly unknown)
 algorithm for solving a problem

g(n) Running time of some algorithm A ⇒ f(n) = O(g(n))

h(n) Min time for solving the problem ⇒ f(n) = Ω(h(n))

g(n) = h(n) ⇒ Algorithm A is time-optimal

Redundancy = Utilization = 1 ⇒ A is cost-time optimal

Redundancy = Utilization = Θ(1) ⇒ A is cost-time efficient

Typical complexity classes

Improving upper bounds Shifting lower bounds

log n log n 2 n / log n n n log log n n log n n 2

1988
Zak’s thm.

Ω(log n)

1994
Ying’s thm.

Ω(log n) 2

1996
Dana’s alg.

O(n)

1991
Chin’s alg.

O(n log log n)

1988
Bert’s alg.
O(n log n)

1982
Anne’s alg.

O(n) 2

Optimal
algorithm?

Sublinear
Linear

Superlinear

Fig. 3.2. Upper and lower bounds may tighten over time.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 49

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Machine or
algorithm A

Machine or
algorithm B

4 steps

Solution

20 steps

Fig. 3.3. Five times fewer steps does not necessa rily mean five

times faster.

Exponential time
(intractable problems)

NP-
complete

Pspace-complete

NP

P
(tractable)

Pspace

Co-NP
Co-NP-

complete

 Alternate, more detailed, form of the “ complexity

classes ” diagram for Section 3.3.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 50

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3.3 Complexity Classes

P = NP
?

Nondeterministic
 Polynomial

NP

NP-complete
(e.g. the subset sum problem)

(Intractable?)
NP-hard

(Tractable)
 Polynomial

P

Conceptual view of the P, NP, NP-complete, and NP-hard classes.

Example NP(-complete) problem: the subset sum problem

 Given a set of n integers and a target sum s,
 determine if a subset of the integers add up to s.

The subset sum problem looks deceptively simple,
 yet no one knows how to solve it other than by trying
 practically all of the 2n subsets of the given set.

 Even if each trial takes only one picosecond (10–12 s),
 the problem is virtually unsolvable for n = 100.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 51

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3.4 Parallelizable Tasks and the NC Class

P-complete

"efficiently"
parallelizable

P = NP
?

NC = P
?

Nondeterministic
 Polynomial

Nick's Class

NP

(Tractable)
 Polynomial

NP-complete
(e.g. the subset sum problem)

(Intractable?)

P

NP-hard

NC

Fig. 3.4. A conceptual view of complexity classes and their

relationships.

NC (Nick’s class, Niclaus Pippenger)
 Problems solvable in polylog time (T = O(logkn))
 using a polynomially bounded number of processors

Example P-complete problem: the circuit-value problem

 For a logic circuit with known inputs, find its output
 The circuit-value problem is obviously in P,
 but no general algorithm exists for
 efficient parallel evaluation of a circuit’s output.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 52

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3.5 Parallel Programming Paradigms

Divide and conquer

 Decompose problem of size n into smaller problems
 Solve the subproblems independently
 Combine subproblem results into final answer
 T(n) = Td(n) + Ts + Tc(n)
 Decompose Solve in parallel Combine

Randomization

Often it is impossible or difficult to decompose a large
problem into subproblems with equal solution times.

In these cases, one might use random decisions that lead
to good results with very high probability.

Example: sorting with random sampling

Other forms of randomization: Random search, control
randomization, symmetry breaking

Approximation

Iterative numerical methods often use approximation to
arrive at the solution(s).

Example: Solving linear systems using Jacobi relaxation.

Under proper conditions, the iterations converge to the
correct solutions; more iterations ⇒ greater accuracy

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 53

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

3.6 Solving Recurrences

Solution via unrolling

 1. f(n) = f(n – 1) + n {rewrite f(n – 1) as f((n – 1) – 1) + n – 1}
 = f(n – 2) + n – 1 + n
 = f(n – 3) + n – 2 + n – 1 + n

 ...
 = f(1) + 2 + 3 + . . . + n – 1 + n
 = n(n + 1)/2 – 1
 = Θ(n2)

 2. f(n) = f(n/2) + 1 {Rewrite f(n/2) as f((n/2)/2 + 1}
 = f(n/4) + 1 + 1
 = f(n/8) + 1 + 1 + 1

 . . .
 = f(n/n) + 1 + 1 + 1 + . . . + 1
 ------ log2n times ------

 = log2n

 = Θ(log n)

 3. f(n) = 2f(n/2) + 1
 = 4f(n/4) + 2 + 1
 = 8f(n/8) + 4 + 2 + 1

 . . .
 = n f(n/n) + n/2 + . . . + 4 + 2 + 1
 = n – 1

 = Θ(n)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 54

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 4. f(n) = f(n/2) + n
 = f(n/4) + n/2 + n
 = f(n/8) + n/4 + n/2 + n

 . . .
 = f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n
 = 2n – 2 = Θ(n)

 5. f(n) = 2f(n/2) + n
 = 4f(n/4) + n + n
 = 8f(n/8) + n + n + n

 . . .
 = n f(n/n) + n + n + n + . . . + n
 ------ log2n times ------

 = n log2n = Θ(n log n)

 Alternate solution for the recurrence f(n) = 2f(n/2) + n:

 Rewrite the recurrence as
f(n)
n =

f(n/2)
n/2 + 1

 and denote f(n)/n by h(n) to convert the problem to Example 2

 6. f(n) = f(n/2) + log2n

 = f(n/4) + log2(n/2) + log2n
 = f(n/8) + log2(n/4) + log2(n/2) + log2n

 . . .
 = f(n/n) + log22 + log24 + . . . + log2(n/2) + log2n

 = 1 + 2 + 3 + . . . + log2n

 = log2n (log2n + 1)/2 = Θ(log2n)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 55

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Solution via guessing

Guess the solution and verify it by substitution

Substitution also useful to find the constant multiplicative
factors and lower-order terms

Example: f(n) = f(n – 1) + n ; guess f(n) = Θ(n2)

Write f(n) = an2 + g(n), where g(n) = o(n2)

Substituting in the recurrence equation, we get:

 an2 + g(n) = a(n – 1)2 + g(n – 1) + n

This equation simplifies to:

 g(n) = g(n – 1) + (1 – 2a)n + a

Choose a = 1/2 to make g(n) = o(n2) possible

 g(n) = g(n – 1) + 1/2 = n/2 – 1 {g(1) = –1/2, g(2) = 0}

The solution to the original recurrence then becomes

 f(n) = n2/2 + g(n) = n2/2 + n/2 – 1

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 56

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Solution via a basic theorem

Theorem 3.1 (basic theorem for recurrences): Given

f(n) = a f(n/b) + h(n); a, b constant, h an arbitrary function

the asymptotic solution to the recurrence is

f(n) = Θ(nlogba) if h(n) = O(nlogba – ε) for some ε > 0

f(n) = Θ(nlogba log n) if h(n) = Θ(nlogba)

f(n) = Θ(h(n)) if h(n) = Ω(nlogba + ε) for some ε > 0

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 57

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4 Models of Parallel Processing

Back to TOC

Chapter Goals
● Elaborate on the taxonomy of parallel

processing from Chapter 1
● Introduce abstract models of shared and

distributed memory
● Understand the differences between

abstract models and real hardware

Chapter Contents
● 4.1. Development of Early Models
● 4.2. SIMD versus MIMD Architectures
● 4.3. Global versus Distributed Memory
● 4.4. The PRAM Shared-Memory Model
● 4.5. Distributed-Memory or Graph Models
● 4.6. Circuit Model & Physical Realizations

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 58

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4.1 Development of Early Models

Thousands of processors were found in some computers
as early as the 1960s

These architectures were variously referred to as

 associative memories
 associative processors
 logic-in-memory machines

More recent names are

 processor-in-memory and
 intelligent RAM

Table 4.1. Entering the Second Half-Century of Associative
Processing

––

Decade Events and Advances Technology Performance

––

1940s Formulation of need & concept Relays

1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS

1960s Introduction of basic architectures Transistors

1970s Commercialization & applications ICs Giga-bit-OPS

1980s Focus on system/software issues VLSI Tera-bit-OPS

1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS?

––

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 59

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Revisiting the Flynn-Johnson classification

SISD
“Uniprocessor”

SIMD
“Array processor”

MISD
(Rarely used)

MIMD
GMSV GMMP

DMSV DMMP

“Shared-memory
multiprocessor”

“Distributed
shared memory”

“Distrib-memory
multicomputer

Data stream(s)

C
on

tr
o

l s
tr

ea
m

(s
)

Single Multiple

M
ul

tip
le

S

in
g

le

M
e

m
or

y

D
is

tr
ib

G

lo
b

al

Communication/
Synchronization

Shared
variables

Message
passing

SIMD
versus
MIMD

Global
versus

Distributed
memory

Fig. 4.1. The Flynn-Johnson classification of computer

systems.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 60

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

MISD can be viewed as a flexible (programmable) pipeline

Data
In

Data
Out

I

I

I

I

I

1

2

3 4

5

Fig. 4.2. Multiple instruction streams operating on a single data

stream (MISD).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 61

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4.2 SIMD versus MIMD Architectures

Most early parallel machines were of SIMD type

Synchronous SIMD

 To run data-dependent conditionals (if-then-else),
 first processors satisfying the condition are enabled,
 next the remainder are enabled for the “else” part

 Critics of SIMD view the above as being wasteful

 But: are buses less efficient than private cars, or
 is PC hardware wasted when you answer the phone?

Asynchronous SIMD = SPMD

Custom- versus commodity-chip SIMD

Most recent parallel machines are MIMD-type

MPP: massively or moderately parallel processor?

Tight versus loose coupling of processors

 Tightly coupled: multiprocessors
 Loosely coupled: multicomputers
 Network or cluster of workstations (NOW, COW)
 Hybrid: loosely coupled clusters, each tightly coupled

Message passing versus virtual shared memory

 Shared memory is easier to program
 Message passing is more efficient

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 62

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4.3 Global versus Distributed Memory

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors
Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Fig. 4.3. A parallel processor with global memory.

Example processor-to-memory/processor networks:

1. Crossbar; p × m array of switches or crosspoints;

 cost too high for massively parallel systems

2. Single/multiple bus (complete or partial connectivity)

3. Multistage interconnection network (MIN);

 cheaper than crossbar, more bandwidth than bus

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 63

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Fig. 4.4. A parallel processor with global memory and

processor caches.

Solving the cache coherence problem

1. Do not cache any shared data

2. Do not cache “writeable” shared data

 or allow only one cache copy

3. Use a cache coherence protocol (Chapter 18)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 64

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

1

Interconnection
network

p-1

Processors

Parallel I/O

.

.

.

.

.

.

Memories

Fig. 4.5. A parallel processor with distributed memory.

Examples networks for distributed memory machines

1. Crossbar; cost too high for massively parallel system
2. Single/multiple bus (complete or partial connectivity)
3. Multistage interconnection network (MIN)
4. Various direct networks (Section 4.5)

Terminology

UMA Uniform memory access
NUMA Nonuniform memory access
COMA Cache-only memory architecture (aka all-cache)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 65

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4.4 The PRAM Shared-Memory Model

Processors

.

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Fig. 4.6. Conceptual view of a parallel random-access machine

(PRAM).

PRAM cycle
1. Processors access memory (usually different locations)
2. Processors perform a computation step
3. Processors store their results in memory

Processors

Memory Access
 Network &
 Controller

Proces-
sor
Control .

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Fig. 4.7. PRAM with some hardware details shown.

In practice, memory is divided into modules and
simultaneous accesses to same module are disallowed

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 66

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4.5 Distributed-Memory or Graph Models

Parameters of interest for direct interconnection networks
 Diameter
 Bisection (band)width
 Node degree

Symmetry properties simplify algorithm development:
 Node or vertex symmetry
 Link or edge symmetry

Table 4.2. Topological Parameters of Selected Interconnection
Networks

–––
Network name(s) Number Network Bisection Node Local
 of nodes diameter width degree links?
–––
1D mesh (linear array) k k – 1 1 2 Yes
1D torus (ring, loop) k k/2 2 2 Yes
2D Mesh k2 2k – 2 k 4 Yes
2D torus (k-ary 2-cube) k2 k 2k 4 Yes1
3D mesh k3 3k – 3 k2 6 Yes
3D torus (k-ary 3-cube) k3 3k/2 2k2 6 Yes1
Pyramid (4k2 – 1)/3 2 log2k 2k 9 No
Binary tree 2l – 1 2l – 2 1 3 No
4-ary hypertree 2l (2l+1 – 1) 2l 2l+1 6 No
Butterfly 2l (l + 1) 2l 2l 4 No
Hypercube 2l l 2l–1 l No
Cube-connected cycles 2ll 2l 2l–1 3 No
Shuffle-exchange 2l 2l – 1 ≥ 2l–1/l 4 unidir. No
De Bruijn 2l l 2l /l 4 unidir. No
––
 1 With folded layout.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 67

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fig. 4.8. The sea of interconnection networks.

Bus-based architectures are dominant in small-scale
parallel systems.

Low-level
cluster

Bus switch
(Gateway)

Fig. 4.9. Example of a hierarchical interconnection architecture.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 68

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Because each interconnection network requires its own
algorithms, various abstract (architecture-independent)
models have been suggested for such networks

The LogP model

Characterizes an architecture with just four parameters:

L Latency upper bound when a small message is sent
 from an arbitrary source to an arbitrary destination

o overhead, defined as the length of time a processor is
 dedicated to transmission or reception of a message,
 thus being unable to do any other computation

g gap, defined as the minimum time that must elapse
 between consecutive message transmissions
 or receptions by a single processor (1/g is the
 available per-processor communication bandwidth)

P Processor multiplicity (p in our notation)

If LogP is in fact an accurate model for capturing the
effects of communication in parallel processors, then
details of interconnection network do not matter

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 69

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The BSP model (bulk-synchronous parallel)

Hides the communication latency altogether through a
specific parallel programming style, thus making the
network topology irrelevant

Synchronization of processors occurs once every L time
steps, where L is a periodicity parameter

Computation consists of a sequence of supersteps

In a given superstep, each processor performs a task
consisting of local computation steps, message
transmissions, and message receptions

Data received in messages will not be used in the current
superstep but rather beginning with the next superstep

After each period of L time units, a global check is made to
see if the current superstep has been completed

 If so, then the processors move on to executing
 the next superstep

 Else, the next period of length L is allocated
 to the unfinished super-step

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 70

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4.6 Circuit Model and Physical Realizations

0.5

1.0

1.5

0.0
0 2 4 6

Wire Length (mm)

2-D Mesh
2-D Torus

Hypercube

Fig. 4.10. Intrachip wire delay as a function of wire length.

O(10)4

Scaled up ant on the rampage!
What is wrong with this picture?

Scaled up ant collapses under own weight.

O(10) 4

Scaled up ant on the rampage!
What is wrong with this picture?

Scaled up ant collapses under own weight.

Fig. 4.11. Pitfalls of scaling up.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 71

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Part II Extreme Models

Back to TOC

Part Goals
● Study two extreme parallel machine models
 ● Abstract PRAM shared-memory model
 ignores implementation issues altogether
 ● Concrete circuit model accommodates
 details like circuit depth and layout area
● Prepare for everything else that falls in

between the two extremes

Part Contents
● Chapter 5: PRAM and Basic Algorithms
● Chapter 6: More Shared-Memory Algorithms
● Chapter 7: Sorting and Selection Networks
● Chapter 8: Other Circuit-Level Examples

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 72

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5 PRAM and Basic Algorithms

Back to TOC

Chapter Goals
● Define PRAM and its various submodels
● Show PRAM to be a natural extension of

the sequential computer (RAM)
● Develop five important parallel algorithms

that can serve as building blocks
 (more algorithms in the next chapter)

Chapter Contents
● 5.1. PRAM Submodels and Assumptions
● 5.2. Data Broadcasting
● 5.3. Semigroup or Fan-in Computation
● 5.4. Parallel Prefix Computation
● 5.5. Ranking the Elements of a Linked List
● 5.6. Matrix Multiplication

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 73

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5.1 PRAM Submodels and Assumptions

Processors

.

.

.

Shared Memory

0

1

p–1

.

.

.

0

1

2

3

m–1

Fig. 4.6. Conceptual view of a parallel random-access machine
(PRAM).

Processor i can do the following in 3 phases of one cycle:
1. Fetch an operand from address si in shared memory
2. Perform computations on data held in local registers
3. Store a value into address di in shared memory

EREW
Least “powerful”,
most “realistic”

CREW
Default

ERCW
Not useful

CRCW
Most “powerful”,

further subdivided

Reads from same location

W
rit

es
 to

 s
am

e
lo

ca
tio

n

Exclusive

C
on

cu
rr

e
nt

Concurrent

E
xc

lu
si

ve

Fig. 5.1 Submodels of the PRAM model.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 74

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

CRCW PRAM is classified according to how concurrent
writes are handled. These submodels are all different from
each other and from EREW and CREW.

Undefined: In case of multiple writes, the value written is
undefined (CRCW-U)

Detecting: A code representing “detected collision” is
written (CRCW-D)

Common: Multiple writes allowed only if all store the
same value (CRCW-C); this is sometimes
called the consistent-write submodel

Random: The value written is randomly chosen from
those offered (CRCW-R)

Priority: The processor with the lowest index succeeds
in writing (CRCW-P)

Max/Min: The largest/smallest of the multiple values is
written (CRCW-M)

Reduction: The arithmetic sum (CRCW-S), logical AND
(CRCW-A), logical XOR (CRCW-X), or
another combination of the multiple values is
written.

Ordering the submodels by computational power:

 EREW < CREW < CRCW-D

 < CRCW-C < CRCW-R < CRCW-P

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 75

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Theorem 5.1: A p-processor CRCW-P (priority) PRAM
can be simulated (emulated) by a p-processor EREW
PRAM with a slowdown factor of Θ(log p).

Intuitive justification for concurrent read emulation:

 Write the p desired addresses in a list
 Sort the list of addresses in ascending order
 Remove all duplicate addresses
 Access data from desired addresses
 Replicate data via parallel prefix computation

Each of these steps requires constant or O(log p) time

Some elementary PRAM computations

Initializing an n-vector (base address = B) to all 0s:

 for j = 0 to n/p – 1 processor i do
 if jp + i < n then M[B + jp + i] := 0
 endfor

Adding two n-vectors and storing the results in a third
 (base addresses B′, B″, B)

Convolution of two n-vectors: Wk = ∑i+j=k Ui × Vj
 (base addresses BW, BU, BV)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 76

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5.2 Data Broadcasting

Broadcasting is built-in for the CREW and CRCW models

EREW broadcasting: make p copies of the data in a
broadcast vector B

 Making p copies of B[0] by recursive doubling

 for k = 0 to log2p – 1 Processor j, 0 ≤ j < p, do

 Copy B[j] into B[j + 2k]

 endfor

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Fig. 5.2. Data broadcasting in EREW PRAM via recursive

doubling.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 77

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Fig. 5.3. EREW PRAM data broadcasting without redundant

copying.

 EREW PRAM algorithm for broadcasting by Processor i
 Processor i write the data value into B[0]
 s := 1
 while s < p Processor j, 0 ≤ j < min(s, p – s), do
 Copy B[j] into B[j + s]
 s := 2s
 endwhile
 Processor j, 0 ≤ j < p, read the data value in B[j]

 EREW PRAM algorithm for all-to-all broadcasting
 Processor j, 0 ≤ j < p, write own data value into B[j]
 for k = 1 to p – 1 Processor j, 0 ≤ j < p, do
 Read the data value in B[(j + k) mod p]
 endfor

Both of the preceding algorithms are time-optimal (shared
memory is the only communication mechanism and each
processor can read but one value per cycle)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 78

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

In the following naive sorting algorithm, processor j
determines the rank R[j] of its data element S[j] by
examining all the other data elements; it then writes S[j] in
element R[j] of the output (sorted) vector

 Naive EREW PRAM sorting algorithm
 (using all-to-all broadcasting)
 Processor j, 0 ≤ j < p, write 0 into R[j]
 for k = 1 to p – 1 Processor j, 0 ≤ j < p, do
 l := (j + k) mod p
 if S[l] < S[j] or S[l] = S[j] and l < j
 then R[j] := R[j] + 1
 endif
 endfor
 Processor j, 0 ≤ j < p, write S[j] into S[R[j]]

This O(p)-time algorithm is far from being optimal

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 79

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5.3 Semigroup or Fan-in Computation

This computation is trivial for a CRCW PRAM of the
reduction variety if the reduction operator happens to be ⊗

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Fig. 5.4. Semigroup computation in EREW PRAM.

 EREW PRAM semigroup computation algorithm
 Processor j, 0 ≤ j < p, copy X[j] into S[j]
 s := 1
 while s < p Processor j, 0 ≤ j < p – s, do
 S[j + s] := S[j] ⊗ S[j + s]
 s := 2s
 endwhile
 Broadcast S[p – 1] to all processors

Time-optimal algorithm (CRCW can do better: prob. 5.16)

Speed-up = p/log2p

Efficiency = Speed-up/p = 1/log2p

Utilization =
 W(p)
pT(p) ≅

(p–1)+(p–2)+(p–4)+ ... +(p–p/2)
p log2p

 ≅ 1 – 1/log2p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 80

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Semigroup computation with each processor holding n/p
data elements:

 Each processor combine its sublist n/p steps

 Do semigroup computation on results log2p steps

Speedup(n, p) =
n

n/p + 2 log2p
 =

p
1 + (2p log2p)/n

Efficiency(n, p) = Speedup/p =
1

1 + (2p log2p)/n

For p = Θ(n), the speedup of Θ(n/log n) is sublinear

The efficiency in this case is Θ(n/log n)/Θ(n) = Θ(1/log n)

Limit the number of processors to p = O(n/log n):

 Speedup(n, p) = n/O(log n) = Ω(n/log n) = Ω(p)

 Efficiency(n, p) = Θ(1)

Using fewer processors than tasks = parallel slack

Higher degree
of parallelism
near the leaves

Lower degree
of parallelism
near the root

Fig. 5.5. Intuitive justification of why parallel slack helps

improve the efficiency.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 81

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Inner product of two n-vectors, storing the result in s

 Base addresses B′ and B″,

auxiliary vector of length p with base address B

 for j = 0 to n/p – 1 processor i do
 if jp + i < n then

load M[B′ + jp + i]
multiply by M[B″ + jp + i]
add to M[B + i]

 endif
 find sum or the p-vector, store the result in s
 endfor

T(n, p) = O(n/p + log p)

Matrix-by-vector multiplication U := M × V

 Ui is the inner product of row i of M and V

T(n, p) = O(n2/p + n log p))

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 82

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5.4 Parallel Prefix Computation

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Fig. 5.6. Parallel prefix computation in EREW PRAM via

recursive doubling.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 83

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Two other solutions, based on divide and conquer

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

x 0 x 1 x 2 x 3 x n-1 x n-2

0:0
0:1

0:2
0:3

0:n-2
0:n-1

Parallel prefix
computation
of size n/2

Fig. 5.7 Parallel prefix computation using a divide-and-conquer

scheme.

 Assume n = p

T(p) = T(p/2) + 2 = 2 log2p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 84

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x 0 x 1 x 2 x 3 x n-1 x n-2

0:0
0:1

0:2
0:3

0:n-2
0:n-1

Parallel prefix
computation on n/2
odd-indexed inputs

Parallel prefix
computation on n/2
even-indexed inputs

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Fig. 5.8. Another divide-and-conquer scheme for parallel prefix

computation.

 Assume n = p

 T(p) = T(p/2) + 1 = log2p Requires commutativity

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 85

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5.5 Ranking the Elements of a Linked List

C F A E B D
Rank: 5 4 3 2 1 0

info next
head

Terminal element

(or distance from terminal)

Distance from head:
1 2 3 4 5 6

Fig. 5.9. Example linked list and the ranks of its elements.

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

Fig. 5.10. PRAM data structures representing a linked list and

the ranking results.

List-ranking appears to be hopelessly sequential

However, we can in fact use a recursive doubling scheme
to determine the rank of each element in optimal time

There exist other problems that seem unparallizable

This is why intuition can be misleading when it comes to
determining which computation is or is not efficiently
parallelizable (i.e., it is or is not in NC)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 86

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1 1 1 1 1 0

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

Fig. 5.11. Element ranks initially and after each of the three

iterations.

 PRAM list ranking algorithm (via pointer jumping)
 Processor j, 0 ≤ j < p, do {initialize the partial ranks}
 if next[j] = j
 then rank[j] := 0
 else rank[j] := 1
 endif
 while rank[next[head]] ≠ 0 Processor j, 0 ≤ j < p, do
 rank[j] := rank[j] + rank[next[j]]
 next[j] := next[next[j]]
 endwhile

Which PRAM submodel is implicit in this algorithm?

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 87

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

5.6 Matrix Multiplication

For m × m matrices, C = A × B means: cij = ∑
k=0

m–1

 aik bkj

 Sequential matrix multiplication algorithm
 for i = 0 to m – 1 do
 for j = 0 to m – 1 do
 t := 0
 for k = 0 to m – 1 do
 t := t + aikbkj
 endfor
 cij := t
 endfor
 endfor

=×
i

j

ij

Fig. 5.12. PRAM matrix multiplication; p = m2 processors.

 PRAM matrix multiplication algorithm using m2 processors
 Processor (i, j), 0 ≤ i, j < m, do
 begin
 t := 0
 for k = 0 to m – 1 do
 t := t + aikbkj
 endfor
 cij := t
 end

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 88

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

=×
i

j

ij

 PRAM matrix multiplication algorithm using m processors
 for j = 0 to m – 1 Processor i, 0 ≤ i < m, do
 t := 0
 for k = 0 to m – 1 do
 t := t + aikbkj
 endfor
 cij := t
 endfor

Both of the preceding algorithms are efficient and provide
linear speedup

Using fewer than m processors: each processor computes
m/p rows of C

=×
i

j

ij m / p
rows

This solution inefficient for NUMA parallel architectures

Each element of B is fetched m/p times

For each such access, only two arith ops are performed

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 89

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Block matrix multiplication
1 2 ¦p

1

2

¦p

One processor
computes these
elements of C
that it holds in
local memory

q

q=m/¦p

Fig. 5.13. Partitioning the matrices for block matrix

multiplication.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 90

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

=×
i

j

ij
BlockBlock-

band

Block-band

Each multiply-add computation on q × q blocks needs

 2q2 = 2m2/p memory accesses to read the blocks

 2q3 arithmetic operations

So, q arithmetic operations are done per memory access

We assume that processor (i, j) has local memory to hold

 Block (i, j) of the result matrix C (q2 elements)

 One block-row of B; say row kq + c of block (k, j) of B

 (Elements of A can be brought in one at a time)

For example, as element in row iq + a of column kq + c in
block (i, k) of A is brought in, it is multiplied in turn by the
locally stored q elements of B, and the results added to the
appropriate q elements of C

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 91

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

iq + q - 1

iq + a

iq + 1

iq

jq jq + b jq + q - 1

kq + c

kq + c

iq + q - 1

iq + a

iq + 1

iq

jq jq + 1 jq + b jq + q - 1

Multiply

Add
Elements of
block (i, j)
in matrix C

Elements of
block (k, j)
in matrix B

Element of
block (i, k)
in matrix A

jq + 1

Fig. 5.14. How Processor (i, j) operates on an element of A and

one block-row of B to update one block-row of C.

On the Cm* NUMA-type shared-memory multiprocessor,
this block algorithm exhibited good, but sublinear, speedup

 p = 16, speed-up = 5 in multiplying 24 × 24 matrices;

 improved to 9 (11) for 36 × 36 (48 × 48) matrices

The improved locality of block matrix multiplication can
also improve the running time on a uniprocessor, or
distributed shared-memory multiprocessor with caches

 Reason: higher cache hit rates.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 92

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6 More Shared-Memory Algorithms

Back to TOC

Chapter Goals
● Develop PRAM algorithms for more

complex problems
 (background on corresponding sequential

algorithms also presented)
● Discuss some practical implementation

issues such as data distribution

Chapter Contents
● 6.1. Sequential Rank-Based Selection
● 6.2. A Parallel Selection Algorithm
● 6.3. A Selection-Based Sorting Algorithm
● 6.4. Alternative Sorting Algorithms
● 6.5. Convex Hull of a 2D Point Set
● 6.6. Some Implementation Aspects

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 93

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6.1 Sequential Rank-Based Selection

Selection: Find the (a) kth smallest among n elements

Naive solution through sorting, O(n log n) time

Linear-time sequential algorithm can be developed

Median

m = the median
of the medians:
< n/4 elements
> n/4 elements

L

E

G

< m

= m

> m

k < |L|

k > |L| + |E|

q

n/q m n

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 94

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 Sequential rank-based selection algorithm select(S, k)
 1. if |S| < q {q is a small constant}
 then sort S and return the kth smallest element of S
 else divide S into |S|/q subsequences of size q
 Sort each subsequence and find its median
 Let the |S|/q medians form the sequence T
 endif
 2. m = select(T, |T|/2)
 {find the median m of the |S|/q medians}
 3. Create 3 subsequences
 L: Elements of S that are < m
 E: Elements of S that are = m
 G: Elements of S that are > m
 4. if |L| ≥ k
 then return select(L, k)
 else if |L| + |E| ≥ k
 then return m
 else return select(G, k – |L| – |E|)
 endif

Analysis:

 T(n) = T(n/q) + T(3n/4) + cn

 Let q = 5; we guess the solution to be T(n) = dn

 dn = dn / 5 + 3dn / 4 + cn ⇒ d = 20c

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 95

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Examples for sequential selection

 from an input list of size n = 25 using q = 5

 ←−−−−−−−−−−− n/q sublists of q elements −−−−−−−−−−−−→
S 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 1 4 5 4 9 5
 --------- --------- --------- --------- ---------
T 6 3 3 2 5
m 3
 1 2 1 0 2 1 1 3 3 6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
 ------------- --- -------------------------------
 L E G

 | L | = 7 | E | = 2 | G | = 16

To find the 5th smallest element in S, select the 5th
smallest element in L

 S 1 2 1 0 2 1 1
 --------- ---
 T 1 1
 m 1
 0 1 1 1 1 2 2
 - ------- ---
 L E G Answer: 1

The 9th smallest element of S is 3

The 13th smallest element of S is found by selecting the
4th smallest element in G

 S 6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
 --------- --------- --------- -
 T 6 5 5 5
 m 5
 4 4 4 4 5 5 5 5 5 6 6 7 8 6 7 9
 ------- --------- -------------
 L E G Answer: 4

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 96

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6.2 A Parallel Selection Algorithm

 Parallel rank-based selection algorithm PRAMselect(S, k, p)
 1. if |S| < 4
 then sort S and return the kth smallest element of S
 else broadcast |S| to all p processors
 divide S into p subsequences S(j) of size |S|/p
 Processor j, 0 ≤ j < p, compute Tj := select(S(j), |S(j)|/2)
 endif
 2. m = PRAMselect(T, |T|/2, p) {median of the medians}
 3. Broadcast m to all processors and create 3 subsequences
 L: Elements of S that are < m
 E: Elements of S that are = m
 G: Elements of S that are > m
 4. if |L| ≥ k
 then return PRAMselect(L, k, p)
 else if |L| + |E| ≥ k
 then return m
 else return PRAMselect(G, k – |L| – |E|, p)
 endif

Analysis: Let p = n1–x, with x > 0 a known constant

 e.g., x = 1/2 ⇒ p = n

 T(n, p) = T(n1–x, p) + T(3n/4, p) + cnx = O(nx)

 Speed-up(n, p) = Θ(n)/O(nx) = Ω(n1–x) = Ω(p)

 Efficiency = Ω(1)

What if x = 0, i.e., we use p = n processors for an n-input
selection problem?

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 97

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6.3 A Selection-Based Sorting Algorithm

. . .m m m m

n/k elements n/k n/k n/k

–
� +

�

1 2 3 k–1 +∞ −∞

Fig. 6.1. Partitioning of the sorted list for selection-based

sorting.

 Parallel selection-based sort PRAMselectionsort(S, p)
 1. if |S| < k then return quicksort(S)
 2. for i = 1 to k – 1 do
 mj := PRAMselect(S, i|S|/k, p)
 {for notational convenience, let m0 := –∞ ; mk := +∞}
 endfor
 3. for i = 0 to k – 1 do
 make the sublist T(i) from elements of S in (mi, mi+1)
 endfor
 4. for i = 1 to k /2 do in parallel
 PRAMselectionsort(T(i), 2p/k)
 {p/(k/2) processors used for each
 of the k/2 subproblems}
 endfor
 5. for i = k/2 + 1 to k do in parallel
 PRAMselectionsort(T(i), 2p/k)
 endfor

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 98

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Analysis: p = n1–x, with x > 0 a known constant, k = 21/x

 T(n, p) = 2T(n/k, 2p/k) + cnx = O(nx log n)

Why can’t all k subproblems be solved in step 4 at once?

 Speedup(n, p) = Ω(n logn)/O(nxlogn) = Ω(n1–x) = Ω(p)

 Efficiency = Speedup / p = Ω(1)

 Work(n, p) = pT(n, p) = Θ(n1–x) O(nxlogn) = O(n logn)

Our asymptotic analysis is valid for x > 0 but not for x = 0;

i.e., PRAMselectionsort does not allow us to sort p keys

 in optimal O(log p) time

Example:

 S: 6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5

Threshold values:

 m0 = –∞

 n/ k = 25/4 ≅ 6 m1 = PRAMselect(S, 6, 5) = 2

 2n/ k = 50/4 ≅ 13 m2 = PRAMselect(S, 13, 5) = 4

 3n/ k = 75/4 ≅ 19 m3 = PRAMselect(S, 19, 5) = 6

 m4 = + ∞

 | | |
 T: - - - - - 2| - - - - - - 4| - - - - - 6| - - - - - -
 | | |

 | | |
 T: 0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9
 | | |

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 99

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6.4 Alternative Sorting Algorithms

Sorting via random sampling

Given a large list S of inputs, a random sample of the
elements can be used to find k comparison thresholds

In fact, it is easier if we pick k = p, so that each of the
resulting subproblems is handled by a single processor.

Assume p << n :

 Parallel randomized sort PRAMrandomsort(S, p)

 1. Processor j, 0 ≤ j < p, pick |S|/p2 random samples

 of its |S|/p elements and store them in its

 corresponding section of a list T of length |S|/p

 2. Processor 0 sort the list T

 {the comparison threshold mi is

 the (i |S| / p2)th element of T}

 3. Processor j, 0 ≤ j < p, store its elements falling

 in (mi , mi+1) into T(i)

 4. Processor j, 0 ≤ j < p, sort the sublist T(i)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 100

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Parallel radixsort

In binary version of radixsort, we examine every bit of the
k-bit keys in turn, starting from the LSB

In Step i, bit i is examined, 0 ≤ i < k

Records are stably sorted by the value of the ith key bit

Example (keys are followed by their binary representations
in parentheses):

 Input Sort by Sort by Sort by
 list LSB middle bit MSB
 –––––– –––––– –––––– ––––––
 5 (101) 4 (100) 4 (100) 1 (001)
 7 (111) 2 (010) 5 (101) 2 (010)
 3 (011) 2 (010) 1 (001) 2 (010)
 1 (001) 5 (101) 2 (010) 3 (011)
 4 (100) 7 (111) 2 (010) 4 (100)
 2 (010) 3 (011) 7 (111) 5 (101)
 7 (111) 1 (001) 3 (011) 7 (111)
 2 (010) 7 (111) 7 (111) 7 (111)

Performing the required data movements

 Input Compl. Diminished Prefix sums Shifted
 list of Bit 0 prefix sums Bit 0 plus 2 list
 –––––– –––––– –––––– –––––– –––––– ––––––
 5 (101) 0 – 1 1 + 2 = 3 4 (100)
 7 (111) 0 – 1 2 + 2 = 4 2 (010)
 3 (011) 0 – 1 3 + 2 = 5 2 (010)
 1 (001) 0 – 1 4 + 2 = 6 5 (101)
 4 (100) 1 0 0 – 7 (111)
 2 (010) 1 1 0 – 3 (011)
 7 (111) 0 – 1 5 + 2 = 7 1 (001)
 2 (010) 1 2 0 – 7 (111)

The running time consists mainly of the time to perform 2k
parallel prefix computations: O(log p) for k constant

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 101

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6.5 Convex Hull of a 2D Point Set

x

y

x

y
Point
Set Q

CH(Q)

0

1

2

3

4

5

6

7

9

8

10

11

12

13

14

15

0

1

2

7

8

11

14

15

Fig. 6.2. Defining the convex hull problem.

Best sequential algorithm for p points: Ω(p log p) steps

x’

y’

All points
fall on this
side of line

Angle

0

1

7

11

15

Fig. 6.3. Illustrating the properties of the convex hull.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 102

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 Parallel convex hull algorithm PRAMconvexhull(S, p)
 1. Sort point set by x coordinates
 2. Divide sorted list into p subsets Q(i) of size p , 0 ≤ i < p
 3. Find convex hull of each subset Q(i) using p processors

4. Merge p convex hulls CH(Q(i)) into overall hull CH(Q)

x

y

x

y

CH(Q)(0)
Q(0) Q(1) Q(2) Q(3)

Fig. 6.4. Multiway divide and conquer for the convex hull

problem.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 103

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Tangent lines

CH(Q) (j)

CH(Q) (i)

CH(Q) (k)

(a) No point of CH(Q(i)) is on CH(Q)

CH(Q) (j)

CH(Q) (i)

CH(Q) (k)

(b) Points of CH(Q(i)) from A to B are on CH(Q)

A B

Fig. 6.5. Finding points in a partial hull that belong to the

combined hull.

Analysis:

 T(p, p) = T(p1/2, p1/2) + c log p ≅ 2c log p

The initial sorting time is also O(log p)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 104

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

6.6 Some Implementation Aspects

EREW-PRAM: Any p locations accessible by p processors

Realistic: p locations must be in different memory modules

0,0
1,0
2,0
3,0
4,0
5,0

Row 1
0,1
1,1
2,1
3,1
4,1
5,1

0,2
1,2
2,2
3,2
4,2
5,2

0,3
1,3
2,3
3,3
4,3
5,3

0,4
1,4
2,4
3,4
4,4
5,4

0,5
1,5
2,5
3,5
4,5
5,5

Module 0 1 2 3 4 5

Column 2

Fig. 6.6. Matrix storage in column-major order to allow

concurrent accesses to rows.

0,0
1,5
2,4
3,3
4,2
5,1

Row 1
0,1
1,0
2,5
3,4
4,3
5,2

0,2
1,1
2,0
3,5
4,4
5,3

0,3
1,2
2,1
3,0
4,5
5,4

0,4
1,3
2,2
3,1
4,0
5,5

0,5
1,4
2,3
3,2
4,1
5,0

Module 0 1 2 3 4 5

Column 2

Fig. 6.7. Skewed matrix storage for conflict-free accesses to

rows and columns.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 105

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 0
 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34
35

Vector
indices

A is viewed as vector element i + jm ij

Fig. 6.8. A 6 ×× 6 matrix viewed, in column-major order, as a 36-
element vector.

The vector in Fig. 6.8 may be accessed in some or all of
the following ways

Column: k, k+1, k+2, k+3, k+4, k+5 Stride = 1

Row: k, k+m, k+2m, k+3m, k+4m, k+5m Stride = m

Diagonal: k, k+m+1, k+2(m+1), k+3(m+1),
 k+4(m+1), k+5(m+1) Stride = m+1

Antidiagonal: k, k+m–1, k+2(m–1), k+3(m–1),

 k+4(m–1), k+5(m–1) Stride = m–1

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 106

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Linear skewing scheme:

 stores the kth vector element in bank a + kb mod B

The address within the bank is irrelevant to conflict-free
parallel access

In fact, the constant a above is also irrelevant and can be
safely ignored

So we can limit our attention to linear skewing schemes
that assign Vk to memory module Mkb mod B

With a linear skewing scheme, the vector elements k, k+s,
k+2s, ... , k+(B–1)s will be assigned to different memory
modules iff sb is relatively prime with respect to the
number B of memory banks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 107

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

To allow access from each processor to every memory
bank, we need a permutation network

Even with a full permutation network (complex, expensive),
full PRAM functionality is not realized

Practical processor-to-memory network cannot realize all
permutations (they are blocking)

0 1 2 3
log p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2

Fig. 6.9. Example of a multistage memory access network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 108

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7 Sorting and Selection Networks

Back to TOC

Chapter Goals
● Become familiar with the circuit-level

models of parallel processing
● Architecture ⇒ algorithm (studied so far)
 Problem ⇒ develop a suitable architecture
 (three more application-specific examples

to come in Chapter 8)
● Introduce useful design tools and study

trade-off issues via a familiar problem

Chapter Contents
● 7.1. What Is a Sorting Network?
● 7.2. Figures of Merit for Sorting Networks
● 7.3. Design of Sorting Networks
● 7.4. Batcher Sorting Networks
● 7.5. Other Classes of Sorting Networks
● 7.6. Selection Networks

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 109

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7.1 What Is a Sorting Network?

x
x
x

x

.

.

.

.

.

.

n-sorter

0

1

2

n–1

y
y
y

y

0

1

2

n–1

The outputs are a
permutation of the
inputs satisfying
y Š y Š ... Š y
(non-descending)

0 1 n–1≤ ≤ ≤

Fig. 7.1. An n-input sorting network or an n-sorter.

2-sorter

input min0

input 1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

Fig. 7.2. Block diagram and four different schematic

representations for a 2-sorter.

 Q
 R

 S

Com-
pare

1

0

1

0

k

k

k

k

min(a, b)

max(a, b)

 b<a?

a

b

 Q
 R

 S

1

0

1

0

min(a, b)

max(a, b)

 b<a?

a

b

M
S

B
-f

irs
t s

er
ia

l i
np

ut
s

 a<b?

Reset
Fig. 7.3. Parallel and bit-serial hardware realizations of a 2-

sorter.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 110

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x
0

x1

x

x3

2

y
0

y1

y

y3

2

2

3

1

5

3

2

5

1

1

3

2

5

1

2

3

5

Fig. 7.4. Block diagram and schematic representation of a 4-

sorter.

How to verify that the circuit of Fig. 7.4 is a valid 4-sorter?

The answer is easy in this case

After the first two circuit levels, the top line carries the
smallest and the bottom line the largest of the four values

The final 2-sorter orders the middle two values

More generally, we need to verify the correctness of an n-
sorter through formal proofs or by time-consuming
exhaustive testing. Neither approach is attractive.

The zero-one principle: A comparison-based sorter is valid
iff it correctly sorts all 0/1 sequences.

6-sorter

1
3
6*
5*
8
9

3
6
9
1
8
5

Invalid

0
1
1
0
1
0

0
0
1
0
1
1

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 111

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7.2 Figures of Merit for Sorting Networks

a. Cost: number of 2-sorters used in the design

b. Delay: number of 2-sorters on the critical path

c. Cost × Delay

n = 9, 25 modules, 9 levels
n = 10, 29 modules, 9 levels

n = 12, 39 modules, 9 levels

n = 16, 60 modules, 10 levels
Fig. 7.5. Some low-cost sorting networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 112

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels

Fig. 7.6. Some fast sorting networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 113

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7.3 Design o f Sorting Networks

Rotate
by 90
degrees

Rotate by
90 degrees
to see the
odd-even
exchange
patterns

Fig. 7.7. Brick-wall 6-sorter based on odd –even transposition.

C(n) = C(n – 1) + n – 1 = (n – 1) + (n – 2) + . . . + 2 + 1 = n(n – 1)/2

D(n) = D(n – 1) + 2 = 2 + 2 + . . . + 2 + 1 = 2(n – 2) + 1 = 2n – 3
Cost × Delay = n(n – 1)(2n – 3)/2 = Θ(n3)

x
x
x

x

.

.

.

(n–1)-sorter

0

1

2

n–2

y
y
y

y

0

1

2

n–2

xn–1

.

.

.

yn–1

x
x
x

x

.

.

.

(n–1)-sorter

0

1

2

n–2

y
y
y

y

0

1

2

n–2

xn–1

.

.

.

yn–1

.

.

.

Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

Fig. 7.8. Sorting n etwork based on insertion sort or selection

sort.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 114

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7.4 Batcher Sorting Networks

x

x

x

x

y

y

y

y

y

y

y v

v

v

v

v

v

0

1

2

3

0

1

2

3

4

5

6

0

1

2

3

4

5

w

w

w

w

w

0

1

2

3

4

(2, 4)-merger (2, 3)-merger

First
sorted
sequ-
ence x

Second
sorted
sequ-
ence y

Fig. 7.9. Batcher’s even–odd merging n etwork for 4 + 7 inpu ts.

x0 ≤ x1 ≤ . . . ≤ xm–1 (k 0s) y0 ≤ y1 ≤ . . . ≤ ym'–1 (k' 0s)

Merge x0, x2, ... and y0, y2, ... to get v0, v1, ... keven = k/2+k'/2 0s

Merge x1, x3, ... and y1, y3, ... to get w0, w1, ... kodd = k/2+k'/2 0s

Compare-exchange the pairs of elements w0:v1, w1:v2, w2:v3, . . .

Case a: keven = kodd The sequence v0 w0 v1 w1 v2 w2 ... already sorted

Case b: keven = kodd+1 The sequence v0 w0 v1 w1 v2 w2 ... already sorted

Case c: keven = kodd+2

 v 0 0 0 0 0 0 0 0 1 1 1 1
 w 0 0 0 0 0 0 1 1 1 1 1
 Out of order

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 115

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Batcher’s (m, m) even-odd merger, when m is a power of
2, is characterized by the following recurrences:

C(m) = 2C(m/2) + m – 1
 = (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .
 = m log2m + 1

D(m) = D(m/2) + 1

 = log2 m + 1

Cost × Delay = Θ(m log2 m)

n/2-sorter

n/2-sorter

(n/2, n/2)-
merger

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 7.10. The recursive structure of Batcher’s even–odd merge

sorting n etwork.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 116

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4-sorters Even
(2,2)-merger

Odd
(2,2)-merger

Fig. 7.11. Batcher’s even-odd merge sorting n etwork for eight
inpu ts.

Batcher sorting networks based on the even-odd merge
technique are characterized by the following recurrences:

C(n) = 2C(n/2) + (n/2)(log2(n/2)) + 1

 ≅ n(log2n)2/ 2

D(n) = D(n/2) + log2(n/2) + 1

 = D(n/2) + log2n

 = log2n (log2n + 1)/2

Cost × Delay = Θ(n log4n)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 117

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Bitonic sorters

Bitonic sequence: “rises then falls”, “falls then rises”, or is obtained from
the first two categories through cyclic shifts or rotations. Examples include:

1 3 3 4 6 6 6 2 2 1 0 0 Rises, then falls

8 7 7 6 6 6 5 4 6 8 8 9 Falls, then rises

8 9 8 7 7 6 6 6 5 4 6 8 The previous sequence, right-rotated by 2

n/2-sorter

n/2-sorter

n-input bitonic-
sequence sorter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bitonic
sequence

.
 .
 .

.
 .
 .

Fig. 7.12. The recursive structure of Batcher’s biton ic sorting

network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 118

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Shift right half of
data to left half
(superimpose the
two halves)

In each position,
keep the smaller
value of each pair
and ship the larger
value to the right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2 n–1

0 1 2 n–1

. . .

. . .

Bitonic
sequence

Shifted
right half

n/2

n/2

. . .

. . .
Fig. 14.2. Sorting a biton ic sequence on a linear array.

8-input bitonic-
sequence sorter

4-input bitonic-
sequence sorters

2-input
sorters

Fig. 7.13. Batcher’s biton ic sorting n etwork for eight inpu ts.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 119

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7.5 Other Classes of Sorting Networks

Periodic balanced sorting networks

Fig. 7.14. Periodic balanced sorting network for eight inputs.

Desirable properties:

a. Regular and modular (easier VLSI layout).

b. Slower, but more economical, implementations are
possible by reusing the blocks

c. Using an extra block provides tolerance to some faults
(missed exchanges)

d. Using 2 extra blocks provides tolerance to any single
fault (a missed or incorrect exchange)

e. Multiple passes through a faulty network can lead to
correct sorting (graceful degradation)

f. Single-block design can be made fault-tolerant by
adding an extra stage to the block

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 120

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Shearsort-based sorting networks

Offer some of the same advantages enumerated for
periodic balanced sorting networks

0 1 2 3

4567

Snake-like
row sorts

Column
sorts

0
1
2
3
4
5
6
7

Snake-like
row sorts

Corresponding
2-D mesh

Fig. 7.15. Design of an 8-sorter based on shearsort on 2××4 mesh.

0
1
2
3
4
5
6
7

0 1

3 2

54

7 6

Corresponding
2-D mesh

Left
column
sort

Right
column
sort

Snake-like row sort

Left
column
sort

Right
column
sort

Snake-like row sort
Fig. 7.16. Design of an 8-sorter based on shearsort on 4××2 mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 121

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

7.6 Selection Networks

Any sorting network can be used as a selection network,
but a selection network (yielding the kth smallest or largest
input value) is in general simpler and faster

One way to get a selection network is by pruning a sorting
network

4-sorters Even
(2,2)-merger

Odd
(2,2)-merger

3rd smallest element

Can remove
this block if
smallest three
inputs needed

Can remove
these four
comparators

Deriving an (8, 3)-selector from Batcher’s even-odd merge 8-sorter.

Direct design is likely to lead to more efficient networks,
but unfortunately we know even less about selection
networks than we do about sorting networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 122

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

One can define three selection problems:

I. Select the k smallest values; present in sorted order
II. Select kth smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,7]

[0,6]

[1,7]

[0,6]

[0,6]

[0,6]

[1,7]

[1,7]

[1,7]

[1,6]

[1,6]

[1,6]

[1,6]

[0,3]

[0,4]

[0,4]

[0,4]

[0,4] [0,3]

[3,7]

[4,7][3,7][3,7]

[3,7]

[4,7]

[1,3]

[1,5]

[1,5] [1,3]

[4,6][2,6]

[2,6]

[4,6]

Fig. 7.17. A type III (8, 4)-selector.

Classifier: a selection network that can divide a set of n
values into n/2 largest and n/2 smallest values

The selection network of Fig. 7.17 is an 8-input classifier

Generalizing from Fig. 7.17, an n-input classifier can be
built from two (n/2)-sorters followed by n/2 comparators

An n-classifier and two n/2-sorters can form an n-sorter.
For such a sorting network:

T(n) = 2T(n/2) + 1 = n – 1

C(n) = 4C(n/2) + n/2 = n(n – 1)/2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 123

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

I
N

O
U
T

Left half Right half
Figure for Problem 7.7.

x

y(0)

y(n–1)

y(1)

x
y(0)
y(1)

y(n/2–1)
y(n/2)

y(n/2+1)

y(n–1)
y(n/2+2)

 Figure for Problem 7.9.

I
N

O
U
T

 Figure for Problem 7.11.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 124

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8 Other Circuit-Level Examples

Back to TOC

Chapter Goals
● Study three application areas: dictionary

operations, parallel prefix, DFT
● Develop circuit-level parallel architectures

for solving these problems:
 ● Tree machine
 ● Parallel prefix networks
 ● FFT circuits

Chapter Contents
● 8.1. Searching and Dictionary Operations
● 8.2. A Tree-Structured Dictionary Machine
● 8.3. Parallel Prefix Computation
● 8.4. Parallel Prefix Networks
● 8.5. The Discrete Fourier Transform
● 8.6. Parallel Architectures for FFT

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 125

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8.1 Searching and Dictionary Operations

Parallel (p + 1)-ary search:

 logp+1(n + 1) = log2(n + 1)/log2(p + 1) steps

P0

P1

0
1
2

25

8

17

P0

P1P0P1

Example:

n = 26

p = 2

Step
2

Step
1

Step
0

This algorithm is optimal: no comparison-based search
algorithm can be faster

 Speed-up ≅ log2(p + 1)

A single search in a sorted list cannot be significantly
speeded up by parallel processing, but all hope is not lost

 Dynamic data sets (sorting implies large overhead)

 Batch searching (finding multiple keys at once)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 126

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Basic dictionary operations: record keys x0, x1, . . . , xn–1

search(y) Find record with key y and return its data

insert(y, z) Augment list with a record: key = y, data = z

delete(y) Remove record with key y, return data

Some or all of the following ops might also be of interest:

findmin Find record with smallest key; return data

findmax Find record with largest key; return data

findmed Find record with median key; return data

findbest(y) Find record with key “nearest” to y

findnext(y) Find record whose key would appear
immediately after y if ordered

findprev(y) Find record whose key would appear
immediately before y if ordered

extractmin Remove record(s) with min key; return data?

extractmax Remove record(s) with max key; return data?

extractmed Remove the record(s) with median key value;
return data?

The operations “findmin” and “extractmin” (or “findmax”
and “extractmax”) are priority queue operations

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 127

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8.2 A Tree-Structured Dictionary Machine

x

Input Root

Output Root

"Circle"
 Tree

"Triangle"
 Tree

0 x1 x2 x4x3 x5 x6 x7

Fig. 8.1. A tree-structured dictionary machine.

Combining function of the triangular nodes is as follows:

search(y) Pass OR of “yes” signals, with data from
“yes” side, or from either side if both “yes”

findmin Pass smaller of two key values, with data
(findmax is similar; findmed not supported)

findbest(y) Pass the larger of two match-degree
indicators, with the corresponding record

findnext(y) Leaf nodes generate a “larger” flag bit;
findmin is performed among all larger values
(findprev is similar)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 128

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

Fig. 8.2. Tree machine storing five records and containing three

free slots.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 129

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

S L
M

Fig. 8.3. Systolic data structure for minimum, maximum, and

median finding.

[5, 87] [87, 176]
Insert 2
Insert 20
Insert 127
Insert 195

Extractmin
Extractmed
Extractmax19 or 20

items 20 items

1765
87

Update/access examples for the systolic data structure of Fig. 8.3.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 130

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8.3 Parallel Prefix Computation

⊗
x i

s i
x i

s i

Latches Four-stage pipeline Function unit

Fig. 8.4. Prefix computation using a latched or pipelined
function unit.

Example: Prefix sums

x0 x1 x2 . . . xi

x0 x0 + x1 x0 + x1 + x2 . . . x0 + x1 + . . . + xi

s0 s1 s2 . . . si

a[i]

x[i – 12]
Delay

Delays

a[i–1]

a[i–6] ³ a[i–7]

a[i–4] ³ a[i–5]

a[i–8] ³ a[i–9] ³ a[i–10] ³ a[i–11]

si–12

xi

Delay

Delays

xi–1

⊗xi–4 xi–5

xi–6 xi–7⊗

xi–8 xi–9 xi–10 xi–11⊗⊗⊗
Function unit

⊗computing

Fig. 8.5. High-throughput prefix computation using a pipelined

function unit.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 131

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8.4 Parallel Prefix Networks

. . .

Prefix Sum n/2

xn–1 xn–2 x3 x2 x1 x0. . .

sn–1 sn–2 s3 s2 s1 s0

++

+

+

+

Fig. 8.6. Prefix sum network buil t of one n/2-inpu t networks and

n – 1 adders.

 T(n) = T(n/2) + 2 = 2 log2n – 1

 C(n) = C(n/2) + n – 1 = 2n – 2 – log2n

.

.

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Fig. 8.7. Prefix sum network buil t of two n/2-inpu t networks and

n/2 adders.

 T(n) = T(n/2) + 1 = log2n

 C(n) = 2C(n/2) + n/2 = (n/2) log2n

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 132

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

Fig. 8.8. Brent–Kung p arallel prefix graph for n = 16.

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

Fig. 8.9. Kogg e–Stone parallel prefix graph for n = 16.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 133

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

Brent-
Kung

Brent-
Kung

Kogge-
Stone

Fig. 8.10. A hybrid Brent–Kung /Kogg e–Stone parallel prefix

graph for 16 inpu ts.

Brent-Kung: ≅ 2n cost, 2 log2n – 2 delay

Kogge-Stone: ≅ n log2n cost, log2n delay

Hybrid: intermediate in cost and delay

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 134

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Linear-cost, log2n-delay parallel prefix networks

Define a type-x parallel prefix network as one that:

 Produces the leftmost output in log2(n) time

 Yields all other outputs with at most x additional delay

Recursive construction of the fastest possible parallel
prefix networks (type-0)

.

.

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Type-0 Type-1

Type-0

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 135

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8.5 The Discrete Fourier Transform

 yi = �n–1
j=0 ωn

ijxj

The DFT is expressed in matrix form as y = Fnx









y0
y1
:
:

yn–1

 =









1 1 1 ... 1

1 ωn ωn2 ... ωnn–1

: : : ... :
1 ωnn–1 ωn2(n–1) ... ωn(n–1)2









x0
x1
:
:

xn–1

ωn:nth primitive root of unity; ωn
n = 1, ωn

j
���

IR �
�

≤ j < n

Examples: ω4 = i = –1 , ω3 = –1/2 + i 3 /2

Inverse DFT, for recovering x, given y, is essentially the
same computation as DFT:

 xi =
1
n �n–1

j=0 ωn
–ijyj

Can do DFT by any matrix-vector multiplication algorithm

However, the special structure of Fn can be exploited to
devise a much faster divide-and-conquer algorithm:

the fast Fourier transform (FFT)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 136

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

DFT Applications
Spectral analysis

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209
 Hz

1477
 Hz

1336
 Hz

1633
 Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments
 for touch-tone dialing

Frequency spectrum of received tone

Signal smoothing or filtering

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 137

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fast Fourier Transform (FFT)

Partition the DFT sum into odd- and even-indexed terms

 yi = �n–1
j=0 ωn

ijxj = �
j even (2r) ωn

ijxj + �
j odd (2r+1) ωn

ijxj

 = �n/2–1
r=0 ωn/2

irx2r + ωn �n/2–1
r=0 ωn/2

irx2r+1

The identity ωn/2 = ωn
2 has been used in the derivation

The two terms in the last expression are n/2-point DFTs

 u = Fn/2









x0
x2
:
:

xn–2

 v = Fn/2









x1
x3
:
:

xn–1

Then:

 ui + ωn
ivi 0 ≤ i < n/2

 yi = 
 ui–n/2+ωn

ivi–n/2 n/2≤i<n (or yi+n/2 = ui + ωn
i+n/2vi)

Hence:n-point FFT = two n/2-point FFTs + n multiply-adds

Sequential complexity of FFT:T(n) = 2T(n/2) + n = n log2n

Unit of time = latency of one multiply-add operation

If the n/2-point subproblems are solved in parallel and the
n multiply-add operations are also concurrent, with their
inputs supplied instantly, the parallel time complexity is:

 T(n) = T(n/2) + 1 = log2n

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 138

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

8.6 Parallel Architectures for FFT

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Fig. 8.11. Butterfly network for an 8-point FFT.

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Fig. 8.12. FFT network variant and its shared-hardware

realization.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 139

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

Bit-reversal
permutation

Butterfly
operation

a
b j

a + bω
a − bω

j
j

0

0

0

0

0

0

0

0

0

4

0

4

0
4

0

4

0

2

4

6

0

2

4

6

0

1

2
3

4

5

6

7

Computation scheme of 16-point FFT.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 140

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Project

Project

Project

Project

0

1

1

0

 Control

x

b

a

a − b

a + b

−

+

×

ω n

 i

y

Fig. 8.13. Linear array of log2n cells for n-point FFT computation.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 141

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Part III Mesh-Based Architectures

Back to TOC

Part Goals
● Study 2D mesh & torus networks in depth
 ● of great practical significance
 ● used in recent parallel machines
 ● regular with short wires -- scalable
● Briefly review other mesh(like) networks
 ● higher-dimensional meshes/tori
 ● variants and derivative architectures

Part Contents
● Chapter 9: Sorting on a 2D Mesh or Torus
● Chapter 10: Routing on a 2D Mesh or Torus
● Chapter 11: Numerical 2D Mesh Algorithms
● Chapter 12: Mesh-Related Architectures

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 142

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9 Sorting on a 2D Mesh or Torus

Back to TOC

Chapter Goals
● Introduce the mesh model (processors,

links, communication)
● Develop 2D mesh sorting algorithms
● Learn about mesh strengths/weaknesses in

communication-intensive problems

Chapter Contents
● 9.1. Mesh-Connected Computers
● 9.2. The Shearsort Algorithm
● 9.3. Variants of Simple Shearsort
● 9.4. Recursive Sorting Algorithms
● 9.5. A Nontrivial Lower Bound
● 9.6. Achieving the Lower Bound

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 143

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9.1 Mesh-Connected Computers

Row wrap-around link for torus

Fig. 9.1. Two-dimensional mesh-connected computer.

We focus on 2D mesh (>2D in Chapter 12)

NEWS or four-neighbor mesh (others in Chapter 12)

Square (p × p) or rectangular (r × p/r) mesh

MIMD, SPMD, or SIMD mesh

All-port versus single-port communication

Weak SIMD model: all communications in same direction

Diameter-based and bisection-based lower bounds

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 144

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fig. 9.2. A 5 ×× 5 torus folded along its columns. Folding this

diagram along the rows will produce a layout with only
short links.

 0 1 2 3

 4 5 6 7

 8 9 10 11

12 13 14 15

a. Row-major

 0 1 2 3

 7 6 5 4

 8 9 10 11

15 14 13 12

b. Snakelike row-major

 0 1 4 5

 2 3 6 7

 8 9 12 13

10 11 14 15

c. Shuffled row-major

 1 2 5 6

 0 3 4 7

15 12 11 8

14 13 10 9

d. Proximity order

 --- ---
 | | | |

 |
 --
 | | | |
 -- --

Fig. 9.3. Some linear indexing schemes for the processors in a

2D mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 145

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Interprocessor communication

R1
R2

R3
R4

R5

R5

R5

R5

R5
R2

R3
R4

R1

R5

R5

R6
R6

R7

R7

R8

R8

Fig. 9.4. Reading data from NEWS neighbors via virtual local

registers.

a. MIMD all-port b. MIMD Single-port

c. SIMD single-port d. Weak SIMD
 Some communication modes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 146

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9.2 The Shearsort Algorithm

then
sort the
columns
(top-to-
bottom)

Sort the
rows
(snake-
like)

repeat log r times

endrepeat
Sort the rows

Snakelike Row-Major

.
.

.

.

.

.

.

.

(depending on the desired final sorted order)
or

 2

Shearsort algorihm for a 2D mesh with r rows

Fig. 9.5. Description of the shearsort algorithm on an r-row 2D

mesh.

 Tshearsort = log2r (p/r + r) + p/r

On a square p × p mesh, Tshearsort = p (log2p + 1)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 147

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Proof of correctness of shearsort via the 0-1 principle

Assume that in doing the column sorts, we first sort pairs
of elements in the column and then sort the entire column

0 0 0 1 1
1 1 1 0 0

0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1
1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1

0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

Row 2i
Row 2i + 1

Case (a):
More 0s

Case (b):
More 1s

Case (c):
Equal #
0s & 1s

⇒

⇒

⇒

Bubbles up in the
next column sort

Sinks down in the
next column sort

Fig. 9.6. A pair of dirty rows create at least one clean row in

each shearsort iteration.

Dirty Dirty
x dirty
rows

At most x/2
dirty rows

0

1

0

1

⇒
 

Fig. 9.7. The number of dirty rows halves with each shearsort

iteration.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 148

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1 12 21 4

15 20 13 2

5 9 18 7

22 3 14 17

1 4 12 21

20 15 13 2

5 7 9 18

22 17 14 3

1 4 9 2

5 7 12 3

20 15 13 18

22 17 14 21

1 2 4 9

12 7 5 3

13 15 18 20

22 21 17 14

1 2 4 3

12 7 5 9

13 15 17 14

22 21 18 20

1 2 3 4

12 9 7 5

13 14 15 17

22 21 20 18

1 2 3 4

5 7 9 12

13 14 15 17

18 20 21 22

After first row sort
(snakelike)

After second row sort
(snakelike)

After final row sort
(snakelike)

Column sort Column sort (left to right)

Initial arrangement
of keys in the mesh

Fig. 9.8. Example of shearsort on a 4 ×× 4 mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 149

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9.3 Variants of Simple Shearsort

Sorting 0s & 1s on a linear array: odd-even transposition
steps can be limited to the number of dirty elements

Example: sorting 000001011111 requires at most 2 steps

Thus, we can replace complete column sorts of shearsort
with successively fewer odd-even transposition steps

 Topt shearsort = (p/r)(log2r + 1) + r + r/2 + . . . + 2

 = (p/r)(log2r + 1) + 2r – 2

[r = p : p(12 log2p + 3) – 2]

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 150

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 1 12 21 4

15 20 13 2

 5 9 18 7

22 3 14 17

 1 6 12 25

31 20 15 2

 5 8 11 19

28 23 17 3

Keys

Row
sort

 1 6 11 2

 5 9 15 13

28 20 17 19

31 24 21 26

The final row sort (snake-like or row-major) is not shown.

 6 26 25 10

31 32 16 30

11 19 27 8

28 23 29 24

 4 10 21 26

32 30 16 13

 7 9 18 27

29 24 22 14

 4 8 12 3

 7 10 16 14

29 23 18 25

32 30 22 27

 1 3 6 11

15 13 9 5

17 19 23 28

31 27 24 21

 2 4 8 12

16 14 10 7

18 20 25 29

32 30 26 22

 1 3 6 5

15 13 9 11

17 19 23 21

31 27 25 28

 2 4 8 7

16 14 10 12

18 20 24 22

32 30 26 29

Row
sort

Column
sort

Column
sort

x
 y

Two keys held
by one processor

Fig. 9.9. Example of shearsort on a 4 ×× 4 mesh with two keys

stored per processor.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 151

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9.4 Recursive Sorting Algorithms

 . . .

.

.

.

1. Sort quadrants 2. Sort rows

3. Sort columns 4. Apply 4¦p steps of odd-even
 transposition along the snake

.

.

.

1. Sort quadrants 2. Sort rows

3. Sort columns 4. Apply 4√p steps of
odd-even transposition
along the overall snake

Fig. 9.10. Graphical depiction of the first recursive algorithm for
sorting on a 2D mesh based on four-way divide and
conquer.

 T(p) = T(p /2) + 5.5 p ≅ 11 p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 152

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

1

Dirty

x rows

x' rows

0
0

00

1
1

11

a

a'

b

b'

c

c'

d

d'

Numbers of clean rows in
each of the four quadrants

 p – x – x'
rows

State of the array
after Phase 3

Fig. 9.11. The proof of the first recursive sorting algorithm for 2D
meshes.

 x ≥ b + c + (a – b)/2 + (d – c)/2

A similar inequality for x' leads to:

 x + x' ≥ b + c + (a – b)/2 + (d – c)/2
 + a' + d' + (b' – a')/2 + (c' – d')/2

 ≥ b + c + a' + d' + (a – b)/2 + (d – c)/2

 + (b' – a')/2 + (c' – d')/2 – 4 × 1/2

 = (a + a')/2 + (b + b')/2 + (c + c')/2 + (d + d')/2 – 2

 ≥ p – 4

The number of dirty rows after Phase 3: p – x – x' ≤ 4

Thus, at most 4 p of the p elements are out of order
along the overall snake

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 153

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Another recursive sorting algorithm

1. Sort quadrants 2. Shuffle row elements

3. Sort double columns
 in snake-like order

4. Apply 2¦p steps of
 odd-even transposition
 along the overall snake

.

.

.

. . .

0 1 2 3

Distribute
these ¦p/2
columns
evenly

1. Sort quadrants

2. Shuffle row elements

3. Sort double columns
in snakelike order

4. Apply 2√p steps of
odd-even transposition
along the overall snake

Distribute
these √p/2
columns
evenly

0 1

 2 3

Fig. 9.12. Graphical depiction of the second recursive algorithm

for sorting on a 2D mesh based on four-way divide and
conquer.

 T(p) = T(p /2) + 4.5 p ≅ 9 p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 154

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

0
0

00

1
1

11

a
b

c
d

Numbers of clean 0 rows
 in the four quadrants

. . .

. . .

Numbers of 0s in two different
 double-columns differ by Š 2

a
b

c d

. . .

. . .

Š 2¦p elements

0
0

0
0

0
0

0
0

0 0 0

0 0 0

1 1 1

≤ 2√p elements

Numbers of 0s in two different
double-columns differ by ≤ 2

Numbers of clean 0 rows
in the four quadrants

Fig. 9.13. The proof of the second recursive sorting algorithm for

2D meshes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 155

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9.5 A Nontrivial Lower Bound

We now have a 9 p -time mesh sorting algorithm

Two questions of interest:

1. Raise the 2 p – 2 diameter-based lower bound?

 Yes, for snakelike sort, the bound 3 p – o(p)
 can be derived

2. Design an algorithm with better time than 9 p ?
 Yes, the Schnorr-Shamir sorting algorithm

 requires 3 p + o(p) steps

2p 1/4

2p 1/4

2p
items

1/2

Shortest path from the
upper left triangle to the
opposite corner in hops:

2p 1/4 − 2p 1/2 2 − x[t]:
Value held
in this corner
after t steps

p 1/2

p 1/2

Fig. 9.14. The proof of the 3 p – o(p) lower bound for sorting

in snakelike row-major order.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 156

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

64 64 64 64 64 1 2 3 4

64 64 64 64 5 6 7 8 9

64 64 64 10 11 12 13 14 15

64 64 64 16 17 18 19 20 21

64 64 22 23 24 25 26 27 28

64 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

 0 0 0 0 0 1 2 3 4

 0 0 0 0 5 6 7 8 9

 0 0 0 10 11 12 13 14 15

 0 0 0 16 17 18 19 20 21

 0 0 22 23 24 25 26 27 28

 0 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

 1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

19 20 21 22 23 24 25 26 27

36 35 34 33 32 31 30 29 28

37 38 39 40 41 42 43 44 45

54 53 52 51 50 49 48 47 46

55 56 57 58 59 60 61 62 63

64 64 64 64 64 64 64 64 64

64 64 64 64 64 64 64 64 64

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

 1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

19 20 21 22 23 24 25 26 27

36 35 34 33 32 31 30 29 28

37 38 39 40 41 42 43 44 45

54 53 52 51 50 49 48 47 46

55 56 57 58 59 60 61 62 63

Fig. 9.15. Illustrating the effect of fewer or more 0s in the shaded

area.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 157

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

9.6 Achieving the Lower Bound

 .
. . .
 .

p3/8

p3/8

Vertical slice

Horizontal
slice

Block

p Blocks1/8

. . .

.

.

.

.

.

.

. . .

p1/2

Proc's

Fig. 9.16. Notation for the asymptotically optimal sorting

algorithm.

Schnorr-Shamir algorithm for snakelike sorting on a 2D mesh
1. Sort all blocks in snakelike order, independently & in parallel
2. Permute the columns such that the columns of each vertical

slice are evenly distributed among all vertical slices
3. Sort each block in snakelike order
4. Sort the columns independently from top to bottom

5. Sort Blocks 0&1, 2&3, . . . of all vertical slices together in
snakelike order; i.e., sort within 2p3/8 × p3/8 submeshes

6. Sort Blocks 1&2, 3&4, . . . of all vertical slices together in
snake-like order; again done within 2p3/8 × p3/8 submeshes

7. Sort the rows independently in snakelike order
8. Apply 2p3/8 steps of odd-even transposition to the snake

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 158

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10 Routing on a 2-D Mesh or Torus

Back to TOC

Chapter Goals
● Learn how to route multiple data items to

their respective destinations
 (in PRAM routing is nonexistent and in the

circuit model it is hardwired)
● Become familiar with issues in packet

routing and wormhole routing

Chapter Contents
● 10.1. Types of Data Routing Operations
● 10.2. Useful Elementary Operations
● 10.3. Data Routing on a 2D Array
● 10.4. Greedy Routing Algorithms
● 10.5. Other Classes of Routing Algorithms
● 10.6. Wormhole Routing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 159

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10.1 Types of Data Routing Operations

One-to-one communication (point-to-point messages)
a b

c

d e f
g h

a

b

cd

e

f

g

h

Packet sources Packet destinations Routing paths

0 2
3

4

01

2

3

3210

01

2

2

10

1

2

3
4

0

1

2

0

10
1

Collective communication (per the MPI standard)

a. One to many: broadcast, multicast, scatter

b. Many to one: combine, fan-in, gather

c. Many to many: many-to-many m-cast, all-to-all b-cast,
scatter-gather (gossiping), total exchange

Some special data routing operations
a. Data compaction or packing

a b
c

d e f
g h

a b c

d e f
g h

Fig. 10.1. Example of data compaction or packing.

b. Random-access write (RAW): Emulating one memory

write step of a PRAM with p processors

c. Random-access read (RAR): Emulating one memory
read step of a PRAM with p processors

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 160

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10.2 Useful Elementary Operations

Row or column rotation

Sorting records by a key field

Semigroup computation

Horizontal combining
 ¦p/2 steps

Vertical combining
 ¦p/2 steps- -Horizontal combining

≅ √p/2 steps

Vertical combining
≅ √p/2 steps

Fig. 10.2. Recursive semigroup computation in a 2D mesh.

Parallel prefix computation

Quadrant Prefixes Horizontal Combining
 (includes reversal)

Vertical Combining

Fig. 10.3. Recursive parallel prefix computation in a 2D mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 161

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Routing within a row or column
Processor number

(data, destination)

Left-moving
Right-moving

(d,2) (b,5) (a,0)

0 1 2 3 4 5

(e,4) (c,1)

 (a,–2) (c,–4)
(d,+2) (b,+4) (e,+1)

 (a,–2) (c,–4)
 (d,+1) (b,+3) (e,0) Right

 (a,–1) (c,–3) Left
 (d,+1) (b,+3)

 (a,–1) (c,–3)
 (d,0) (b,+2) Right

(a,0) (c,–2) Left
 (b,+2)

 (c,–2)
 (b,+1) Right

 (c,–1) Left
 (b,+1)

 (b,0) Right

 (c,0) Left

Fig. 10.4. Example of routing multiple packets on a linear array.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 162

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10.3 Data Routing on a 2D Array

Exclusive random-access write on a 2D mesh: MeshRAW

1. Sort packets in column-major order by destination

column number; break ties by destination row number

2. Shift packets to the right, so that each item is in the

correct column. There will be no conflict since at most
one element in each row is headed for a given column

3. Route the packets within each column

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column

Fig. 10.5. Example of random-access write on a 2D mesh.

Not a shortest-path routing algorithm

 e.g., packet headed to (3, 1) first goes to (0, 1)

But fairly efficient

 T = 3p1/2 + o(p1/2) {snakelike sorting}

 + p1/2 {column reversal}

 + 2p1/2 – 2 {row & column routing}

 = 6p1/2 + o(p1/2)

Or 11p1/2 + o(p1/2) with unidirectional communication

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 163

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10.4 Greedy Routing Algorithms

Greedy: pick a move that causes the most progress
toward the destination in each step

Example greedy algorithm: dimension-order (e-cube)

0

1

2

3

0 1 2 3

2,1 2,0 1,1

2,2 1,0

0,0 0,1

0

1

2

3

0 1 2 3

1,00,0

2,0

2,2

0,1

2,1
1,1 0

1

2

3

0 1 2 3

1,0
0,1

0,0

2,1
2,0

1,1

2,2

Initial state After 1 step After 2 steps

0

1

2

3

1,0

0,10,0

2,12,0

1,1

2,2

After 3 steps

0 1 2 3

Fig. 10.6. Greedy row-first routing on a 2D mesh.

 T = 2p1/2 – 2 {but requires large buffers}

Row i

Column j

Node (i,j)

Fig. 10.7. Demonstrating the worst-case buffer requirement with

row-first routing.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 164

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Routing algorithms thus far

 Slow 6p1/2, but with no conflict (no additional buffer)
 Fast 2p1/2, but with large node buffers

An algorithm that allows trading off time for buffer space

p /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p /q1/2

q–10 1 2

Fig. 10.8. Illustrating the structure of the intermediate routing

algorithm.

 T = 4p1/2/q + o(p1/2/q) {column-major block sort}

 + 2p1/2 – 2 {route}

 = (2 + 4/q)p1/2 + o(p1/2/q)

Buffer space per node

 rk = number of packets in Bk headed for column j

 �
q–1
k=0 

rk
p1/2/q  < �

q–1
k=0(1 +

rk
p1/2/q) ≤ q + (q/p1/2)�q–1

k=0 rk ≤ 2q

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 165

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10.5 Other Classes of Routing Algorithms

Row-first greedy routing has very good average-case
performance, even if the node buffer size is restricted

Idea: Convert any routing problem to 2 random instances
by picking a random intermediate node for each message

Using combining for concurrent writes:

Destination
processor for 5
write requests

W

W

W

W W1 2

3

4

5

W1,2

W3,4,5

Fig. 10.9. Combining of write requests headed for the same

destination.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 166

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Terminology for routing problems or algorithms

 Static: packets to be routed all available at t = 0

 Dynamic: packets “born” in course of computation

 Off-line: routes precomputed, stored in tables

 On-line: routing decisions made on the fly

 Oblivious: path depends only on source & dest’n

 Adaptive: path may vary by link and node conditions

 Deflection: any received packet leaves immediately,
 even if this means misrouting (via detour
 path); also known as hot-potato routing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 167

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

10.6 Wormhole Routing

A

B

C

D

Packet 1

Packet 2
Deadlock!

Fig. 10.10. Worms and deadlock in wormhole routing.

Any routing algorithm can be used to choose the path
taken by the worm, but practical choices limited by the
need for a quick decision

Example: row-first routing, with 2-byte header for row &
column displacements

Buffer Block

Drop Deflect

Fig. 10.11. Various ways of dealing with conflicts in wormhole

routing.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 168

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The deadlock problem in wormhole routing

Deadlock!
Two strategies for dealing with deadlocks:

 (1) Avoidance (2) Detection and recovery

Checking for deadlock potential via link dependence
graph; existence of cycles may lead to deadlock

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 169

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1 3

45

6 8
9

10

2 7

11 13

12 14
15

16
17

18
19

2021

22

23

24

1

2

3

4

5 6 7 8 9
1
0

11

12

13

14

 Unrestricted routing
(following shortest path)

1

2

3

4

5 6 7 8 9 1
0

11

12

13

14

 E-cube routing
 (row-first)

3-by-3 mesh with its links numbered

21

22

23

24

1
5

1
6

1
8

1
9

1
7

2
0

21

22

23

24

1
5

1
6

1
8

1
9

1
7

2
0

Fig. 10.12. Use of dependence graph to check for the possibility

of deadlock.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 170

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Using virtual channels

Several virtual channels time-share one physical channel

Virtual channels serviced in round-robin fashion

Eastbound
messages

Westbound
messages

Fig. 10.13. Use of virtual channels for avoiding deadlocks.

1 4

5 632

[1, 3]

[0, 0]

[2, 2]

[0, 1]
[3, 3]

[0, 1]

[3, 6] [2, 2] [4, 6] [0, 3]

[4, 6] [2, 3]

[4, 6]

[0, 1]

[6, 6]

[0, 2]
[5, 5]

[4, 4]

 [6, 6] [3, 5]

0

Figure for Problem 10.14.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 171

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11 Numerical 2D Mesh Algorithms

Back to TOC

Chapter Goals
● Deal with a sample of numerical and

seminumerical algorithms for meshes
● Introduce additional techniques for the

design of mesh algorithms

Chapter Contents
● 11.1. Matrix Multiplication
● 11.2. Triangular System of Equations
● 11.3. Tridiagonal System of Equations
● 11.4. Arbitrary System of Linear Equations
● 11.5. Graph Algorithms
● 11.6. Image-Processing Algorithms

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 172

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11.1 Matrix Multiplication

Matrix-vector multiplication yi = �
m–1
j=0 aijxj

 --

a 33

 -- --

a 22

a 23

 --

a 13

 --

a 12

 --

a 02

 --

 Col 0 of A

 --
a 00

a 01

x 3 x 2 x 1 x 0

y 3

a 20
a 10

a 03

 --
 --
 --

 --

 --

P P P P

a 11

y 2
y 1

y 0

a 21 a 30

a 31

a 32

 --
 -- --

 --

 --

 Row 0 of A

0 1 2 3

Fig. 11.1. Matrix–vector multiplication on a linear array.

a a a a

a a a a

a a a a

a a a a

 00 01 02 03

 10 11 12 13

 20 21 22 23

 30 31 32 33

x

x

x

x

0

1

2

3

y

y

y

y

0

1

2

3

× =

Delay

With p = m processors, T = 2m – 1 = 2p – 1

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 173

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Matrix-matrix multiplication Cij = �
m–1
k=0 aik bkj

c 03

c 13

c 23

c 33

c 02

c 12

c 22

c 32

c 01

c 11

c 21

c 31

b 00

 --

 --

a

33

a

22

a

23
 a

13
 a

12
 a

02

 Col 0 of A

 --
 a

00

a

01

a

20
 a

10

a

03

 --

 --
 --

 --

a

11

a

21

a

30

a

31

a

32

 Row 0 of A

b 10

b 20

b 30

c 00

c 10

c 20

c 30

 --

 --

 --

 --

 --

b 01

b 11

b 21

b 31

b 02

b 12

b 22

b 32

b 03

b 13

b 23

b 33

 Col 0 of B

Fig. 11.2. Matrix–matrix multiplication on a 2D mesh.

With p = m2 processors, T = 3m – 2 = 3 p – 2

a 33

a 22

a 23
a 13

a 12

a 02

 Col 0 of A

a 00

a 01

x 3 x 2

y 3

a 20
a 10

a 03

a 11

y 2 y 1 y 0

a 21 a 30

a 31

a 32

 Row 0 of A

x 1 x 0

Fig. 11.3. Matrix-vector multiplication on a ring.

With p = m processors, T = m = p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 174

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

a a a a 03 12 21 30
b b b b 30 20 10 00

a a a a 02 11 20 33
b b b b 21 11 01 31

a a a a 01 10 23 32
b b b b 12 02 32 22

a a a a 00 13 22 31
b b b b 03 33 23 13

Fig. 11.4. Matrix-matrix multiplication on a torus.

With p = m2 processors, T = m = p

For m > p , use block matrix multiplication

 communication can be overlapped with computation

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 175

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11.2 Triangular System of Equations

0

0
a ij

a ij

i ≥ j

i ≤ j

Fig. 11.5. Lower/upper triangular square matrix; if aii = 0 for all i,

then it is strictly lower/upper triangular.

a00x0 = b0
a10x0 + a11x1 = b1
a20x0 + a21x1 + a22x2 = b2
 . . .

am–1,0 x0 + am–1,1 x1 + ... + am–1, m–1xm–1 = bm–1

Forward substitution (lower triangular)

Back substitution (upper triangular)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 176

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

-- -- --
-- --

a

11

 --
a 10 --

a 20 --

a 22
a 21 -- --

a 31 --

a
a 32 --

 Col 0 of A

 --
a 00 --

x 3 x 2 x 1 x 0

 --
a 30

 --
 --

b 2 b 3
b 0 b 1

/ ×− ×− ×−

33

--

--

--

x 3

x 2

x 1

x 0

 Outputs

Placeholders
for values to
be computed

x -1 x -2

Fig. 11.6. Solving a triangular system of linear equations on a

linear array.

1
1

1
1

1

0

a ij
i ≥ j 0

0

× = .
 .
 .

A I X =

0

a ij
i ≥ j

×

A

=

0

1

0

0

.

.

.

.

.

.

−1

A multiplied by ith column
of X yields ith column of
the identity matrix I
(solve m such triangular
systems to invert A)

Fig. 11.7. Inverting a triangular matrix by solving triangular

systems of linear equations.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 177

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

a 11

 --
a 10 --

a 20 --

a 22
a 21 -- --

a 31 --

a
a 32 --

 Col 0 of A

 --
a 00 --

 --
a 30

 --
 --

-- -- --
-- --

 x 30 x 20 x 10 x 00

t 20 t 30
t 00 t 10

/× ×− ×− ×−

33

-- -- --
-- --

 x 31 x 21 x 11 x 01

t 21 t 31
t 01 t 11 ×− ×− ×−

-- -- --
-- --

 x 32 x 22 x 12 x 02

t 22 t 32
t 02 t 12 ×− ×− ×−

-- -- --
-- --

 x 33 x 23 x 13 x 03

t 23 t 33 t 03 t 13

×

×

× ×− ×− ×−

--

--

--

--

--

--

-- --

1/a ii

Fig. 11.8. Inverting a lower triangular matrix on a 2D mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 178

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11.3 Tridiagonal System of Linear Equations

2

1

0

m−1

x 2

x 1

x 0 d 0
d 1

d 2

d

l 1
l 2

l
d

m−1 m−1

0

0
.
 .
 .

.
 .
 .

x m−1

m−2

.

.

.

×

b
b
b

b

.

.

.

=

2 u
1 u

0 u

m−2 u

.

.

.
m−1 u

l 0

.
 .
 .

l m−2

Fig. 11.9. A tridiagonal system of linear equations.

 l0 x–1 + d0 x0 + u0 x1 = b0
 l1 x0 + d1 x1 + u1 x2 = b1
 l2 x1 + d2 x2 + u2 x3 = b2
 . . .
 lm–1xm–2 + dm–1 xm–1 + um–1 xm = bm–1

Tridiagonal, pentadiagonal, matrices arise in the solution
of differential equations using finite difference methods

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 179

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Odd-even reduction: the ith equation can be rewritten as:

 xi = (1/di) (bi – li xi–1 – ui xii+1)

Take the xi equations for odd i and plug into even-indexed
equations (the ones with even subscripts for l, d, u, b)

We get for each even i (0
�

i < m) an equation of the form:

–
li–1li
di–1

 xi–2 + (di –
liui–1
di–1

 –
uili+1
di+1

)xi –
uiui+1
di+1

 xi+2 = bi –
libi–1
di–1

 –
uibi+1
di+1

Each new equation needs 6 multiplies, 6 divides, 4 adds

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 180

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

x14 x12 x10 x8 x6 x4 x2 x0

x12 x8 x4 x0

x8 x0

x0

*

 * Find x in terms of x and x from Eqn. 1;
 substitute in Eqns. 0 and 2.

1 0 2

Fig. 11.10. The structure of odd-even reduction for solving a

tridiagonal system of equations.

Assuming unit-time arithmetic operations and p = m

 T(m) = T(m/2) + 8 ≅ 8 log2m

The 6 divides can be replaced with 1 reciprocation per
equation, to find 1/dj for each odd j, plus 6 multiplies

We have ignored interprocessor communication time. The
analysis is thus valid only for PRAM or for an architecture
whose topology matches the structure of Fig. 11.10.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 181

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x
15

x
14

x
13

x
12

x
11

x
10

x
9

x
8

x
7

x
6

x
5

x
4

x
3

x
2

x
1

x
0

x 14
x 12 x 10 x 8 x 6 x 4 x 2

x 0

x 12 x 8 x 4 x 0

x 8 x 0

x 0

Fig. 11.11. Binary X-tree (with dotted links) and multigrid

architectures.

Odd-even reduction on a linear array of p = m processors

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Communication time = 2(1 + 2 + 4 + . . . + m/2) = 2m – 2

Sequential complexity of odd-even reduction is also O(m)

On an m-processor 2D mesh, odd-even reduction can be
easily organized to require Θ(m) time

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 182

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11.4 Arbitrary System of Linear Equations

Gaussian elimination

 2x0 + 4 x1 – 7 x2 = 3 2x0 + 4 x1 – 7 x2 = 7
 3x0 + 6 x1 – 10 x2 = 4 3x0 + 6 x1 – 10 x2 = 8
 –x0 + 3 x1 – 4 x2 = 6 –x0 + 3 x1 – 4 x2 = –1

The extended A' matrix for these k = 2 sets of equations in
m = 3 unknowns has m + k = 5 columns:

 A' =






2 4 –7 3 7

3 6 –10 4 8
–1 3 –4 6 –1

Divide row 0 by 2; add –3 times row 0 to row 1 and add 1
times row 0 to row 2:

 A'(0) =






1 2 –7/2 3/2 7/2

0 0 1/2 –1/2 –5/2
0 5 –15/2 15/2 5/2

 A"(0) =






1 2 –7/2 3/2 7/2

0 5 –15/2 15/2 5/2
0 0 1/2 –1/2 –5/2

 A'(1) =






1 0 –1/2 –3/2 5/2

0 1 –3/2 3/2 1/2
0 0 1/2 –1/2 –5/2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 183

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 A'(2) =






1 0 0 –2 0

0 1 0 0 –7
0 0 1 –1 –5

Solutions are read out from the last column of A'(2)

Gaussian elimination on a 2D array

a 10 a 01

a 02 a 20 a 11

a 13

y

a 21

a 22 Row 0 of
extended
matrix A’

 -- a 00
x

z stored
in cell

b 1

1/ ×− ×− ×−

 -- --

 -- --

 --

b 2

b 0 *

*

*
*

×− x

y − xz

Termination
symbol

Fig. 11.12. A linear array performing the first phase of Gaussian

elimination.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 184

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

a 10 a 01

a 02 a 20 a 11

a 13

y

a 21

a 22 Row 0 of
extended
matrix A’

 -- a 00
x

z stored
in cell

b 1

 1/ ×− ×− ×−

 -- --

 -- --

 --

b 2

b 0 *

*

*
*

×− x

y − xz

Termination
symbol

 1/ ×− ×−

 1/ ×−

x 1

x 2

x 0

Outputs

Fig. 11.13. Implementation of Gaussian elimination on a 2D array.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 185

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

a 10 a 01

a 02 a 20 a 11

a 13 a 21

a 22

Row 0 of
extended
matrix A’

 -- a 00

 0

 1/ ×− ×−

 --

 --

 0

 1 *

*

*
*

 1/ ×−

1/

×−

 --

 --

 --

×−

 ×−

x 10

x 20

x 00

Outputs

×−

 --

 --

 --

×−

 ×−

x 11

x 21

x 01

×−

 --

 --

 --

×−

 ×−

x 12

x 22

x 02

 1

 0

 0

*
 0

 1

 0

*

 --

 --

 --

 --

 --

 --

Fig. 11.14. Matrix inversion by Gaussian elimination.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 186

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Jacobi relaxation

Assuming aii
�
� � VROY � W ��� ith equation for xi, yielding m

equations from which new (better) approximations to the
answers can be obtained.

 xi
(t+1) = (1/aii)[bi – �j≠i aii xj

(t)]; xi
(0) = initial approx for xi

On an m-processor linear array, each iteration takes O(m)
steps. The number of iterations needed is O(log m) in
most cases, leading to O(m log m) average time.

A variant: Jacobi overrelaxation

 xi
(t+1) = (1 – γ)xi

(t) + (γ/aii)[bi – �j≠i aii xj
(t)] 0 < γ � �

For γ = 1, the method is the same as Jacobi relaxation

For smaller γ, overrelaxation may offer better performance

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 187

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11.5 Graph Algorithms

0 1 2

3 4 5

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

A =

0

1
2

34

0 2 2 � 2
1 0 2 � �
� � 0 3 �
� � � 0 0
1 � � � 0

W

2
1

2

2
–3

0
1

2

= -

0 0 0 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 2 2 ∞ 2
1 0 2 ∞ ∞
∞ ∞ 0 3 ∞
∞ ∞ ∞ 0 0
1 ∞ ∞ ∞ 0

−

Fig. 11.15. Matrix representation of directed graphs.

The transitive closure of a graph

Graph with same node set but with an edge between two
nodes if there is any path between them in original graph

 A0 = I Paths of length 0 (the identity matrix)

 A1 = A Paths of length 1

Compute higher “powers” of A using matrix multiplication,
except that AND/OR replace multiplication/addition

 A2 = A × A Paths of length 2

 A3 = A2 × A Paths of length 3 etc.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 188

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The transitive closure has the adjacency matrix A*

 A* = A0 + A1 + A2 + ... (A*
ij = 1 iff j is reachable from i)

To compute A*, we need only proceed up to the term An–1;
if there exists a path from i to j, there is one of length < n

Rather than base the derivation of A* on computing the
various powers of the Boolean matrix A, we can use the
following simpler algorithm:

Phase 0 Insert the edge (i, j) into the graph if (i, 0) and
(0, j) are in the graph

Phase 1 Insert the edge (i, j) into the graph if (i, 1) and
(1, j) are in the graph

 .
 .
 .

Phase k Insert the edge (i, j) into the graph if (i, k) and
(k, j) are in the graph

 Graph A(k) then has an edge (i, j) iff there is
a path from i to j that goes only through
nodes {1, 2, . . . , k} as intermediate hops

 .
 .
 .

Phase n – 1 The graph A(n–1) is the required answer A*

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 189

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

A key question is how to proceed so that each phase takes
O(1) time for an overall O(n) time on an n × n mesh

The O(n) running time would be optimal due to the O(n3)
sequential complexity of the transitive closure problem

 Row 2
 Row 1
 Row 0

 Row 2
Row 0/1

Row 0/2
 Row 1

Row 2
Row 1
Row 0

 Row 0
Row 1/2

Row 1/0
 Row 2

 Row 1
Row 2/0

Row 2/1
 Row 0

 Row 2
 Row 1
 Row 0

 Row 2
 Row 1
 Row 0

Initially

Fig. 11.16. Transitive closure algorithm on a 2D mesh.

Systolic retiming
Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

 Example of retiming by delaying the inputs to CL and

advancing the outputs from CL by d units [Fig. 12.8 in
Computer Arithmetic: Algorithms and Hardware
Designs, by Parhami, Oxford, 2000]

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 190

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Input host

Output host

Cut 1

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Input host

Output host

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

7 1 1 1

1 5 1 1

1 1 3 1

1 2 3 4

1 2 3 4

1 1 1

1 1 1

1 3 1

5 1 1

Broadcasting
nodes

Fig. 11.17. Systolic retiming to eliminate broadcasting.

Diagram on the left represents the algorithm

Zero-time horizontal arrows represent broadcasting by
diagonal elements

Goal of systolization is to eliminate zero-time transitions

To systolize the preceding example:

Add 2n – 2 = 6 units of delay to edges crossing cut 1

Move 6 units of delay from inputs to outputs of node (0, 0)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 191

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

11.6 Image-Processing Algorithms

Labeling the connected components of a binary image

1 0 C 0 C 3

C 49

C 47

1 1 1 0 1 1

0 1 1 0 1 0 1

1 0 0 0

0

1 0 0 0

1 0 1 1 0 1 1 1

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1

1 0 0 0 1 0 0 1

Fig. 11.18. Connected components in an 8××8 binary image.

Recursive algorithm, p = n:

T(n) = T(n/4) + O(n) = O(n)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 192

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

1 0 1 1 1 0 1 1

0 1 1 0 1 0 1

1 0 0 0

0

1 0 0 0

1 0 1 1 0 1 1 1

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1

1 0 0 0 1 0 0 1

0 0

0

0

0

3

3

26 26

4 4

4

4

4

4

4 4 4

49

49 49

36

36

36

47

47

47 47

Fig. 11.19. Finding the conn ected compon ents via divide and

conqu er.

Levialdi’s algorithm
0 1 1 1 0 is changed to 1
1 0 1 0 if N = W = 1

 0 0 1 is changed to 0
 0 1 if N = W = NW = 0

Fig. 11.20. Transformation o r rewriting rules for Levialdi’s

algorithm in the shrinkage phase (no o ther pixel
changes).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 193

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0 1 0 1 0

1

0 1 0

0 1

0

1 0 0 1

0

1

0 1 0 1

0

1

0 1

0 1 1 0 0 1

1

0 0 1 0

1

0 1 1

0 0 0 1 0 0 1

1 0

0

0 1 0 0 1 1

0 0 0 1 0 0 1

Initial im age

0 0

1

0

1

0

1

0

0 1 1 0 0 1

0

1

0

1

0 1

0

1

0 1

0 1 1 0 1

1

0

0 1 0

1

0 1 1

0 0 0 1 0 0 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0

0 0

1

0

1

0

1

0

0

1

1 0 0

1

1

0

1

0 1

0

1

0 1

0 1 1 0 1

1

0

0 1

1

0 1 1

0 0 1 0 0 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0

0 0

1

0 0

1

0

1

0

1

0

0

1

1 0 0

1

1

0

1

0 1

0

1

0

1

0 1 1 0 1

1

0

0 1

1

1 1

0 1 0 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0

0 0

1

After step 1 After step 2

0

0

0

0 0

1

0

1

0

1

0

0

1

0 0

1

0

1

0 1

0

1

0

1

0

1

1 0

0

0 1

1

1 1

0 1 1

1 0

0

0 1 0 0 1

1 0 0 1 0 0 1

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0

0 0

1

0

1

0 0

0

1

0 0

1

0

1

0 1

0

0

1

0

1

1 0

0

0

1

1

0 1 1

1 0

0

0 1

0

0 1

1 0 0 1 0 0 1

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0 0 0

0 0

0 0

1

0

1

0 0

0

1

0 0

1

0

0

0

0

1

0

1

0

0

0

1

0

1

1

1 0

0

0 1

0

0

1

1 0 0 1 0 0 1

0

0

0

0 0

1

0

0

0

0

0

1

0

0

0 0 0

0 0

0

0

0

0

0

0 0 0

1

0 0

0 0 0

0

0

0

0

1

0

1

0

0

0

1

0

1 1 0

0

0

0

0

1 0 1 0 0 1

0

0

0

0 0 0

0

0

0

0

1

0

0

0 0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

1

0 0 0 0 0

0 0 0

0

0

0

0

0

1

0

0

0

1

0

1 0

0

0

0

0

* 0 1 0 0

0

0

0

0 0 0

0

0

0

0

0

0

0 0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

After step 6 After step 7 After step 8

Fig. 11.21. Example of the shrinkage phase of Levialdi’s

compon ent labeling algorithm.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 194

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Latency of Levialdi’s algorithm

 T(n) = 2 n – 1 {shrinkage} + 2 n – 1 {expansion}

Component do not merge in the shrinkage phase

Consider a 0 that is about to become a 1

x 1 y If any y is 1, then already connected
1 0 y If z is 1 then it will change to 0 unless
y y z at least one neighboring y is 1

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 195

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12 Mesh-Related Architectures

Back to TOC

Chapter Goals
● Study variants of simple mesh architectures

that offer higher performance or greater
cost-effectiveness

● Learn about related architectures such as
pyramids and mesh of trees

Chapter Contents
● 12.1. Three or More Dimensions
● 12.2. Stronger and Weaker Connectivities
● 12.3. Meshes Augmented with Nonlocal Links
● 12.4. Meshes with Dynamic Links
● 12.5. Pyramid and Multigrid Systems
● 12.6. Meshes of Trees

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 196

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12.1 Three or More Dimensions

3D mesh: D = 3p1/3 – 3 instead of 2p1/2 – 2

 B = p2/3 rather than p1/2

Example: 8 × 8 × 8 mesh D = 21, B = 64
 22 × 23 mesh D = 43, B = 23

Circuit
Board

Backplane

Fig. 12.1. 3D and 2.5D physical realizations of a 3D mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 197

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Packaging issues for higher-dimensional meshes

PC board

Backplane

Memory

CPU

Bus

Connector

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common

Stacked layers
glued together

Interlayer connections
deposited on the

outside of the stack
Die

4D, 5D, . . . meshes: optical links?

qD mesh with m processors along each dimension: p = mq

 Node degree d = 2q

 Diameter D = q(m – 1) = q (p1/q – 1)

 Bisection width: B = p1–1/q when m = p1/q is even

qD torus with m processors along each dimension

 = m-ary q-cube

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 198

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Sorting on a 3D mesh

A generalized form of shearsort is available

However, the following algorithm (due to Kunde) is both
faster and simpler. Let Processor (i, j, k) in an m × m × m
mesh be in Row i, Column j, and Layer k

x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering
of processors

0 1 2
3 4 5

6 7 8
9 10

Sorting on 3D mesh (zyx order; reverse of node index)

Phase 1: Sort elements on each zx plane into zx order

Phase 2: Sort elements on each yz plane into zy order

Phase 3: Sort elements on each xy layer into yx order
 (odd layers in reverse order).

Phase 4: Apply 2 steps of odd-even transposition along z

Phase 5: Sort elements on each xy layer into yx order

Time = 4 × (2D-sort time) + 2 steps

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 199

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Data routing on a 3D mesh

 Greedy zyx (layer-first, row last) routing algorithm

 Phase 1: Sort into zyx order by destination addresses

 Phase 2: Route along z dimension to correct xy layer

 Phase 3: Route along y dimension to correct column

 Phase 4: Route along x dimension to destination

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 200

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Matrix multiplication on a 3D mesh

Divide matrices into m1/4×m1/4 arrays of m3/4×m3/4 blocks

m

m

m3/4

m
3/4

m
3/4

m3/4

m
3/4

Matrices
Processor
 array

m processors 9/4

A total of (m1/4)3 = m3/4 block multiplications are needed

Assume the use of an m3/4×m3/4×m3/4 mesh with p = m9/4

Each m3/4×m3/4 layer of the mesh is assigned to one of the
m3/4×m3/4 matrix multiplications (m3/4 multiply-adds)

The rest of the process takes time that is of lower order

The algorithm matches both the sequential work and the
diameter-based lower bound

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 201

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Modeling of physical systems

Natural mapping of a 3D physical model to a 3D mesh

Low- vs. high-dimensional meshes

A low-dimensional mesh can simulate a high-dimensional
mesh quite efficiently

It is thus natural to ask the following question:

Is it more cost effective, e.g., to have 4-port processors in
a 2D mesh architecture or 6-port processors in a 3D mesh,
given that for the 4-port processors, fewer ports and ease
of layout allow us to make each channel wider?

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 202

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12.2 Stronger and Weaker Connectivities

Fortified meshes

0 1 2

3 4 5

6 7 8 9

10 11 12 13

14 15 16

17 18

Node i connected to i ± 1,
i ± 7, and i ± 8 (mod 19).

Fig. 12.2. Eight-neighbor and hexagonal (hex) meshes.

Oriented meshes (can be viewed as a type of pruning)

Fig. 12.3. A 4 ×× 4 Manhattan street network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 203

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Pruned meshes

Same diameter as ordinary mesh, but much lower cost.

X

Y
Z

Fig. 12.4. A pruned 4 ×× 4 ×× 4 torus with nodes of degree four

[Kwai97].

Pruning and orientation can be combined

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 204

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Another form of pruning

 Honeycomb mesh or torus.

NE
NW

SE
SW

NE

SE

Fig. 12.5. Eight-neighbor mesh with shared links and example

data paths.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 205

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12.3 Meshes Augmented with Nonlocal Links

Motivation: reduce the diameter, a weakness of meshes

Bypass links or express channels along rows/columns

Fig. 12.6. Three examples of bypass links along the rows of a 2D

mesh.

One-way street

Freeway

 Road analogy for bypass connections.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 206

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Using a single global bus

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

 .
 .
 .

p 1/3

p 1/3

p 1/2

Fig. 12.7. Mesh with a global bus and semigroup computation on

it.

A p × p mesh with a single global bus can perform a
semigroup computation O(p1/3) rather than O(p1/2) steps

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 207

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Assume that the semigroup operation ⊗ is commutative

Semigroup computation on 2D mesh with a global bus

 Phase 1: Find the partial results in p1/3 × p1/3
 submeshes in O(p1/3) steps; results stored
 in the upper left corner of each submesh

 Phase 2: Combine the partial results in O(p1/3) steps,
 using a sequential algorithm in one node
 and the global bus for data transfers

 Phase 3: Broadcast the result to all nodes (one step)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 208

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Row and column buses

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

 .
 .
 .

p 1/6

p 1/6

p 1/2

A row
slice

A column slice

 Column
 bus

Row bus

Fig. 12.8. Mesh with row/column buses and semigroup

computation on it.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 209

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 2D-mesh semigroup computation, row/column buses

 Phase 1: Find the partial results in p1/6 × p1/6
 submeshes in O(p1/6) steps

 Phase 2: Distribute the p1/3 values left on some rows
 among the p1/6 rows in the same slice

 Phase 3: Combine row values in p1/6 steps (row bus)

 Phase 4: Distribute column-0 values to p1/3 columns

 Phase 5: Combine column values in p1/6 steps

 Phase 6: Use column buses to distribute the p1/3
 values on row 0 among the p1/6 rows of
 row slice 0 in constant time

 Phase 7: Combine row values in p1/6 steps
 Phase 8: Broadcast the result to all nodes (2 steps)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 210

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12.4 Meshes with Dynamic Links

Linear array with a separable bus

Fig. 12.9. Linear array with a separable bus using

reconfiguration switches.

Semigroup computation: O(log p) steps

2D mesh with separable row/column buses

Reconfigurable mesh architecture

{N}{E}{W}{S} {NS}{EW} {NEWS}

{NES}{W}{NE}{WS} {NE}{W}{S}

Fig. 12.10. Some processor states in a reconfigurable mesh.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 211

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12.5 Pyramid and Multigrid Systems

Apex

Base

Fig. 12.11. Pyramid with 3 levels and 4 ×× 4 base along with its 2D

layout.

Originally developed for image processing applications

Roughly 3/4 of the processors belong to the base

For an l-level pyramid: D = 2l – 2 d = 9 B = 2l

Semigroup computation faster than on mesh, but not
sorting or arbitrary routing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 212

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fig. 12.12. The relationship between pyramid and 2D multigrid

architectures.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 213

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

12.6 Meshes of Trees

m × m base

Column tree
(one per col.)

Row tree
(one per row)

Fig. 12.13. Mesh of trees architecture with 3 levels and a 4 ×× 4

base.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 214

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

2D layout for mesh of trees network with a 4 ́ 4 base; root nodes are in the middle row and column

P 0 0 M P 1 P 2 P 3
 1 M 2 M 3 M

Fig. 12.14. Alternate views of the mesh of t rees architecture with

a 4 ×× 4 base.

Semigroup computation: done via row/column combining

Parallel prefix computation: similar

Routing m2 packets, one per processor on the m × m
base: row-first routing yields an Ω(m) = Ω(p) scheme

In the view of Fig. 12.14, with only m packets to be routed
from one side of the network to the other, 2 log2m steps
are required, provided that destination nodes are distinct

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 215

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Sorting m2 keys, one per processor on the m × m base:
emulate shearshort

In the view of Fig. 12.14, with only m keys to be sorted, the
following algorithm can be used (assume that row/column
root nodes have been merged and each holds one key)

Sorting m keys on a mesh of trees with an m × m base

Phase 1: Broadcast keys to leaves within both trees

 (leaf i,j gets xi and xj)

Phase 2: At a base node:

 if xj>xi or xj=xi and j>i then flag := 1 else flag := 0

Phase 3: Add the “flag” values in column trees

 (root i obtains the rank of xi)

Phase 4: Route xi from root i to root rank[i]

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 216

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Matrix-vector multiplication Ax = y: matrix A is stored on
the base and vector x in the column roots, say; the result
vector y is obtained in the row roots

Multiplying m × m matrix by m-vector on mesh of trees

 Phase 1: Broadcast xj in the ith column tree

 (leaf i,j has aij and xi)

 Phase 2: At each base processor compute aij xj

 Phase 3: Sum over row trees

 (row root i obtains �
m–1
i=0 aij xj = yi)

With pipelining, r matrix-vector pairs multiplied in 2l – 2 + r
steps

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 217

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Convolution of two vectors

Assume the mesh of trees with an m × (2m – 1) base
contains m diagonal trees in addition to the row and
column trees, as shown in Fig. 12.15

 Convolution of two m-vectors on a mesh of trees
 with an m × (2m – 1) base

 Phase 1: Broadcast xj from the ith row root
 to all row nodes on the base

 Phase 2: Broadcast ym–1–j from the diagonal root
 to the base diagonal

 Phase 3: Leaf i,j, which has xi and y2m–2–i–j,
 multiplies them to get xi y2m–2–i–j

 Phase 4: Sum columns to get z2m–2–j=�
m–1
i=0 xi y2m–2–i–j

 in column root j

Phases 1 and 2 can be overlapped

Column tree
(only one shown) Diagonal trees

Fig. 12.15. Mesh of trees variant with row, column, and diagonal

trees.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 218

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Minimal-weight spanning tree for an undirected graph

A spanning tree of a connected graph is a subset of its
edges that preserves the connectivity of all nodes in the
graph but does not contain any cycle

A minimal-weight spanning tree (MWST) is a subset of
edges that has the minimum total weight among all
spanning trees

This is an important problem: if the graph represents a
communication (transportation) network, MWSP tree might
correspond to the best way to broadcast a message to all
nodes (deliver products to the branches of a chain store
from a central warehouse)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 219

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Greedy sequential MWST algorithm

Assume weights are distinct: min-weight edge is unique

At each step, we have a set of connected components or
“supernodes” (initially n single-node components)

We connect each component to its “nearest” neighbor; i.e.,
we find the min-weight edge connecting it to another

31

19
14

11

12

24

25

22

21

27

37

23

0

8

7

6
5

4

3

2

1
31

19
14

11

12

24

25

22

21

27

37

23

0

8

7

6
5

4

3

2

1

Supernode 3
Supernode 6

0

6 3

1
31

25

21 37 23

Supernode 0

0 1
25

19
14

11

12

25

22

21

23

0

8

7

6
5

4

3

2

1

Resulting
MWST

Supernode 1

Supernode 1 Supernode 0

Fig. 12.16. Example for min-weight spanning tree algorithm.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 220

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

If the graph’s weight matrix W is stored in the leaves of a
mesh of trees architecture, each phase requires O(log2n)
steps with a simple algorithm (to be shown) and O(log n)
steps with a more sophisticated algorithm.

The total running time is thus O(log3n) or O(log2n).

Sequential algorithms and their time complexities:

 Kruskal’s: O(e log e) ⇒ O(n2 log n) for dense graphs

 Prim’s (binary heap): O((e + n)log n) ⇒ O(n2 log n)

 Prim’s (Fibonacci heap): O(e + n log n) ⇒ O(n2)

Our best parallel solution offers a speedup of O(n2/log2n);
sublinear in the number p = O(n2) of processors

Key part of the simple parallel version of greedy algorithm
is showing that each phase takes O(log2n) steps.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 221

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The algorithm for each phase consists of two subphases:

a. Find the min-weight edge incident to each supernode

b. Merge the supernodes for the next phase

Example pointer
after one jump

A
B

 C

 2

7

Supernode A
is merging with
supernode B
and B with C

Leader of the
new supernode

Remove and make
node 2 point to itself

Fig. 12.17. Finding the new supernode ID when several

supernodes merge.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 222

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Part IV Low-Diameter Architectures

Back to TOC

Part Goals
● Study the hypercube as an example of

architectures with
 ● low (logarithmic) diameter
 ● wide bisection
 ● rich theoretical properties
● Discuss hypercube’s realizability/scalability

problems and present alternatives
● Complete our view of the “sea of

interconnection networks”

Part Contents
● Chapter 13: Hypercubes and Their Algorithms
● Chapter 14: Sorting and Routing on Hypercubes
● Chapter 15: Other Hypercubic Architectures
● Chapter 16: A Sampler of Other Networks

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 223

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13 Hypercubes and Their Algorithms

Back to TOC

Chapter Goals
● Introduce the hypercube and its topological

and algorithmic properties
● Design simple hypercube algorithms

(sorting & routing to follow in Chapter 14)
● Learn about embeddings and their role in

algorithm design and evaluation

Chapter Contents
● 13.1. Definition and Main Properties
● 13.2. Embeddings and Their Usefulness
● 13.3. Embedding of Arrays and Trees
● 13.4. A Few Simple Algorithms
● 13.5. Matrix Multiplication
● 13.6. Inverting a Lower Triangular Matrix

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 224

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13.1 Definition and Main Properties

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

P P P

P P P

P P P

0

1

2

3

4

5

6

7

8

Intermediate
architectures:
logarithmic or
sublogarithmic

diameter

Binary tree has logarithmic diameter, but small bisection

Hypercube has a much larger bisection

Hypercube can be viewed as a mesh with the largest
possible number of dimensions

2 × 2 × 2 × . . . × 2
 ← log2p →

We saw that increasing the number of dimensions made it
harder to design and visualize algorithms for the mesh

Oddly, at the extreme of log2p dimensions, things become
simple again!

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 225

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Brief history of the hypercube (binary q-cube) architecture

 Concept developed: early 1960s [Squi63]

 Direct (single-stage) & indirect or multistage versions
 proposed for parallel processing: mid 1970s
 (early proposals [Peas77], [Sull77], no hardware)

 Caltech’s 64-node Cosmic Cube: early 1980s [Seit85]
 elegant solution to routing (wormhole routing)

 Several commercial machines: mid to late 1980s
 Intel PSC, CM-2, nCUBE (Section 22.3)

Terminology

 Hypercube: generic term

 3-cube, 4-cube, . . . , q-cube

 when the number of dimensions is of interest

A qD binary hypercube (q-cube) is defined recursively:

 1-cube: 2 connected nodes, labeled 0 and 1

 q-cube consists of two (q – 1)-cubes; 0 & 1 subcubes

q-cube nodes labeled by preceding subcube node labels
with 0 and 1 and connecting node 0x to node 1x

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 226

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0 1
00 01

10 11

(a) Binary 1-cube,
built of two
binary 0-cubes,
labeled 0 and 1

(b) Binary 2-cube,
built of two
binary 1-cubes,
labeled 0 and 1

0

1

(c) Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1

0

000 001

010 011

100 101

110 111

1

000

001

010

011

100

101

110

111

(d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1

0 1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Fig. 13.1. The recursive structure of binary hypercubes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 227

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Number of nodes in a q-cube: p = 2q

Bisection width: B = p / 2 = 2q–1

Diameter: D = q = log2p

Node degree: d = q = log2p

q neighbors of node x with binary ID xq–1xq–2 ... x2x1x0:

xq–1xq–2 . . . x2x1x0 dimension-0 neighbor; N0(x)

xq–1xq–2 . . . x2x1x0 dimension-1 neighbor; N1(x)

 . . .

xq–1xq–2 . . . x2x1x0 dimension-(q – 1) neighbor; Nq–1(x)

Dim 0

Dim 1

Dim 2 Dim 3

0100 0101

0110

0000
1100

1101

1111

0111

0011

x

1011

0010

1010

x

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 228

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Some properties of hypercubes:

Two nodes whose labels differ in k bits (have a Hamming
distance of k) are connected by a shortest path of length k

Logarithmic diameter and linear bisection width are key
reasons for the hypercube’s high performance

Hypercube is both node- and edge-symmetric

Logarithmic node degree hinders hypercube’s scalability

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 229

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13.2 Embeddings and Their Usefulness

0

2

4 3

1

6 5

0 2

4 3

1 6

5

0,1

2

4

3

6

5

6

0 1

3,4

2,5

a b

c d e f

a b

c

d

e

f

a b

c

d

e

f

b

f c, d

Fig. 13.2. Embedding a seven-node binary tree into 2D meshes

of various sizes.

 Examples of Fig. 13.2 → 3×3 2×4 2×2

Dilation Longest path onto which any edge is mapped 1 2 1
 (indicator of communication slowdown)

Congestion Max number of edges mapped onto one edge 1 2 2
 (indicator of contention during emulation)

Load factor Max number of nodes mapped onto one node 1 1 2
 (indicator of processing slowdown)

Expansion Ratio of number of nodes in the two graphs 9/7 8/7 4/7
 (indicator of emulation cost)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 230

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13.3 Embedding of Arrays and Trees

(q – 1)-cube 0

x

(q – 1)-cube 1

N (x)k

N (x)q–1

N (N (x)) q–1 k

Fig. 13.3. Hamiltonian cycle in the q-cube.

Proof of Hamiltonicity using Gray code:

 Assumed Gray code Assumed Gray code in reverse
 ←−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−→
(q–1)-bit codes 0q–1 0q–21 . . . 10q–2 10q–2 . . . 0q–21 0q–1
q-bit Gray code 0q 0q–11 . . . 010q–2 110q–2 . . . 10q–21 10q–1

 ←−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−→
 Prefix with 0 Prefix with 1

The 2m0×2m1×...×2mh–1 mesh/torus is a subgraph of q-cube

 where q = m0 + m1 + ... + mh–1

This is akin to the mesh/torus being embedded in q-cube
with dilation 1, congestion 1, load factor 1, expansion 1

The proof is based on the notion of cross-product graphs

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 231

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Given k graphs Gi = (Vi, Ei), 1 ≤ i ≤ k, their (cross-)product

graph G = G1 × G2 × . . . × Gk = (V, E) has:

 node set V = {(v1, v2, . . . , vk) | vi ∈ Vi, 1 ≤ i ≤ k}

 edge set E = {[(u1, u2, . . . , uk), (v1, v2, . . . , vk)] |

 for some j, (uj, vj) ∈ Ej and for i ≠ j, ui = vi}

× =
3-by-2
torus

× × =

× =

0

1

2

a

b

0a

1a

2a
0b

1b

2b

Fig. 13.4. Examples of product graphs.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 232

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

a. The 2m0 × 2m1 × ... × 2mh–1 torus is the product of

 h rings of sizes 2m0, 2m1, . . . , 2mh–1

b. The (m0 + m1 + . . . + mh–1)-cube is the product of

 an m0-cube, an m1-cube, . . . , an mh–1-cube

c. The 2mi-node ring is a subgraph of the mi-cube

d. If component graphs are subgraphs of
 other component graphs, then the product graph
 will be a subgraph of the other product graph

Dim 0

Dim 1

Dim 2 Dim 3

Column 0

Column 1

Column 2

Column 3

Fig. 13.5. The 4 ×× 4 mesh/torus is a subgraph of the 4-cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 233

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Embedding (2q – 1)-node complete binary tree in q-cube

 Achieving dilation 1 is impossible
even weight

odd weights
even weights

odd weights

even weights

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 234

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Embedding the 2q-node double-rooted complete binary
tree in q-cube

New Roots

x N (N (x))
N (N (x))

2 -node double-rooted
complete binary tree

q Double-rooted tree
in the (q–1)-cube 0

Double-rooted tree
in the (q–1)-cube 1

N (x)c

N (x)b

N (x)a
b c

bc

N (N (x))
N (N (x))

c a

ca

Fig. 13.6. The 2q-node double-rooted complete binary tree is a

subgraph of the q-cube.

Processor 000

001

010

011

100

101

110

111

Dim-2
link

Dim-1
links

Dim-0
links

Fig. 13.7. Embedding a 15-node complete binary tree into the 3-

cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 235

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13.4 A Few Simple Algorithms

 Semigroup computation on the q-cube
 Processor x, 0 ≤ x < p do t[x] := v[x]
 {initialize “total” to own value}
 for k = 0 to q – 1 Processor x, 0 ≤ x < p, do
 get y :=t[Nk(x)]
 set t[x] := t[x] ⊗ y
 endfor

0

2

1

3

4

6

5

7

0-1

2-3

0-1

2-3

4-5

6-7

4-5

6-7

0-3

0-3

0-3

0-3

4-7

4-7

4-7

4-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

Fig. 13.8. Semigroup computation on a 3-cube.

Commutativity of the operator ⊗ is implicit in this algorithm

How to remove this assumption?

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 236

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 Parallel prefix computation on the q-cube
 Processor x, 0 ≤ x < p, dot[x] := u[x] := v[x]
 {initialize subcube “total” and partial prefix to own value}
 for k = 0 to q – 1 Processor x, 0 ≤ x < p, do
 get y :=t[Nk(x)]
 set t[x] := t[x] ⊗ y
 if x > Nk(x) then set u[x] := y ⊗ u[x]
 endfor

0

2

1

3

4

6

5

7

0-1

2-3

0-1

2-3

4-5

6-7

4-5

6-7

0-3

0-3

0-3

0-3

4-7

4-7

4-7

4-7

4 4-5

0 0-1

6 6-7

2 2-3

t: Subcube "total"
u: Subcube prefix

4

0

0-2

4-6

0-1

0-3

4-5

4-7

0-4

0 0-1

0-2

0-5

0-6 0-7

0-3

All "totals" 0-7

Legend t

u

Fig. 13.9. Parallel prefix computation on a 3-cube.

Again, commutativity of ⊗ is implicit in this algorithm

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 237

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

2

1

3

4

6

5

7

0

0+2

Identity

1

0+2+4

0+2+4+6

1+3

1+3+5

0

0-2

0

0-2

0-4

0-6

0-4

0-6

0

0-2

0-1

0-3

0-4

0-6

0-5

0-7

Parallel prefixes formed in
even and odd subcubes;
own value excluded in the
odd subcube computation

Odd processors now
combine own values Exchange and combine

Fig. 13.10. A second algorithm for parallel prefix computation on

a 3-cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 238

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 Reversing a sequence on the q-cube
 for k = 0 to q – 1 Processor x, 0 ≤ x < p, do
 get y := v[Nk(x)]
 set v[x] := y
 endfor

000

001

010

011

100

101

110

111

000

001

010

011

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

100
 a b

c d

e f

g h

a b

c d

e f

g
h

g h

e f

c d

a b

c d

a b

g h

e f

Fig. 13.11. Sequence reversal on a 3-cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 239

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Ascend, descend, and normal algorithms

Hypercube
Dimension

q–1

3

2

1

0

Algorithm Steps
0 1 2 3 . . .

.

.

.

Ascend

Descend

Normal

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 240

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13.5 Matrix Multiplication

Multiplying m × m matrices (C = A × B) on a q-cube,

 where m = 2q/3 and p = m3

Processor (0,j,k) begins with Ajk & Bjk in registers RA & RB

 and ends with element Cjk in register RC

 Multiplying m × m matrices on a q-cube, with q = 3 log2m
 for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do
 if bit l of i is 1
 then get y := RA[Nl±2q/3(x)] and z := RB[Nl±2q/3(x)]
 set RA[x] : = y; RB[x] := z
 endif
 endfor
 for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do
 if bit l of i and k are different
 then get y := RA[Nl(x)]; set RA[x] : = y
 endif
 endfor
 for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do
 if bit l of i and j are different
 then get y := RB[Nl±q/3(x)]; set RB[x] : = y
 endif
 endfor
 Processor x, 0 ≤ x < p, do RC := RA × RB
 {p = m3 = 2q parallel multiplications in one step}
 for l = 0 to q/3 – 1 Processor x = ijk, 0 ≤ i, j, k < m, do
 if bit l of i is 0
 then get y :=RC[Nl±2q/3(x)]; set RC[x] : = RC[x] + y
 endif
 endfor

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 241

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

2

1

3

4

6

5

7

1
5

2
6

3
7

4
8

1 2
3 4

5 6
7 8

× [][]

000 001

010 011

100 101

110 111

1
5

2
6

3
7

4
8

1
5

2
6

3
7

4
8

1
5

1
6

3
7

3
8

2
5

2
6

4
7

4
8

1
5

1
6

3
5

3
6

2
7

2
8

4
7

4
8

14 16

5

15

28

6

32

18

19 22

43 50

R
R

A
B

R
R

A
B

RC

R
R

A
B

R
R

A
B

R := R RC A B×

Fig. 13.12. Multiplying two 2 ×× 2 matrices on a 3-cube.

Running time of the preceding algorithm: O(q) = O(log p)

Analysis in the case of block matrix multiplication:

The m × m matrices are partitioned into p1/3 × p1/3 blocks
 of size (m/p1/3) × (m/p1/3)

Each communication step involves m2/p2/3 block elements

Each multiplication involves 2m3/p arithmetic operations

 Tmul(m, p) = m2/p2/3 × O(log p) + 2m3/p
 Communication Computation

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 242

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

13.6 Inverting a Lower Triangular Matrix

For A =




B 0

C D we have A–1 =








B–1 0

–D–1CB–1 D–1

If B and D are inverted in parallel by independent
subcubes, the algorithm’s running time is given by:

 Tinv(m) = Tinv(m/2) + 2Tmul(m/2)

 = Tinv(m/2) + O(log m) = O(log2m)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 243

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14 Sorting and Routing on Hypercubes

Back to TOC

Chapter Goals
● Present hypercube sorting algorithms,

showing perfect fit to bitonic sorting
● Derive hypercube routing algorithms,

utilizing elegant recursive methods
● Learn about inherent limitations of oblivious

routing schemes

Chapter Contents
● 14.1. Defining the Sorting Problem
● 14.2. Bitonic Sorting on a Hypercube
● 14.3. Routing Problems on a Hypercube
● 14.4. Dimension-Order Routing
● 14.5. Broadcasting on a Hypercube
● 14.6. Adaptive and Fault-Tolerant Routing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 244

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14.1. Defining the Sorting Problem

Arrange data in order of processor ID numbers (labels)

0

2

1

3

4

6

5

7

The ideal parallel sorting algorithm

 T(p) = Θ((n log n)/p)

We cannot achieve this optimal time for all n and p

1-1 sorting (n = p)

 Batcher’s bitonic sort: O(log2n) = O(log2p) time

 Same for Batcher’s odd-even merge sort

 O(log n)-time deterministic algorithm not known

k-k sorting (n = pk)

 Optimal algorithms known for n >> p or when

 average running time is considered (randomized)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 245

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Attempts and progress in hypercube sorting algorithms

? log n

One of the oldest
parallel algorithms;
discovered ≈1960,
published 1968

Practical, deterministic

Fewer than p items

Practical, probabilistic

More than p items

1960s

1990

≈1988

1987

≈1980

log n log log n

log n (log log n) 2

(n log n)/p for n >> p

log n randomized

log p log n/log(p/n), n ≤ p/4;
 1– ε

log n for n = p, bitonic 2

in particular, log p for n = p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 246

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

(a)

(b)

Cyclic shift of (a)

Cyclic shift of (b)
Fig. 14.1. Examples of bitonic sequences.

Bitonic sequence Shifted right half

Shift right half of data to
left half (superimpose
the two halves)

In each position, keep
the smaller of the two
values and ship the
larger value to the right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2 n−1

0 1 2 n−1

n/2

n/2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 247

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Shift right half of
data to left half
(superimpose the
two halves)

In each position,
keep the smaller
value of each pair
and ship the larger
value to the right

Each half is a bitonic
sequence that can be
sorted independently

0 1 2 n–1

0 1 2 n–1

. . .

. . .

Bitonic
sequence

Shifted
right half

n/2

n/2

. . .

. . .
Fig. 14.2. Sorting a bitonic sequence on a linear array.

 5 9 10 15 3 7 14 12 8 1 4 13 16 11 6 2
 ----> <---- ----> <---- ----> <---- ----> <----

 5 9 15 10 3 7 14 12 1 8 13 4 11 16 6 2
 ------------> <------------ ------------> <------------

 5 9 10 15 14 12 7 3 1 4 8 13 16 11 6 2
 ----------------------------> <----------------------------

 3 5 7 9 10 12 14 15 16 13 11 8 6 4 2 1
 -->

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 14.3. Sorting an arbitrary sequence on a linear array through
recursive application of bitonic sorting.

 T(p) = T(p/2) + B(p)

 = T(p/2) + 2p – 2 = 4p – 4 – 2 log2p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 248

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Alternate derivation for the running time of bitonic sorting
on a linear array:

 T(p) = B(2) + B(4) + . . . + B(p)

 = 2 + 6 + 14 + . . . + (2p – 2) = 4p – 4 – 2 log2p

For linear array, the bitonic sorting algorithm is inferior to
simpler odd-even transposition sort which requires only p
compare-exchanges or 2p unidirectional communications

However, the situation is quite different for a hypercube

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 249

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14.2 Bitonic Sorting on a Hypercube

Sort lower (xq–1 = 0) and upper (xq–1 = 1) subcubes

 in opposite directions; yields a bitonic sequence

Shifting the halves takes one compare-exchange step

 B(q) = B(q – 1) + 1 = q

 Sorting a bitonic sequence of size n on q-cube, q = log2n
 for l = q – 1 downto 0 Processor x, 0 ≤ x < p, do
 if xl = 0
 then get y := v[Nl(x)]; keep min(v(x), y);
 send max(v(x), y) to Nl(x)
 endif
 endfor

Bitonic sorting algorithm

 T(q) = T(q – 1) + B(q) = T(q – 1) + q

 = q(q + 1)/2 = log2p (log2p + 1)/2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 250

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

000

001

010

011

100

101

110

111

000

001

010

011

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

100
 b a

c c

f e

h g

a c

e g

h f

c
b

c a

b c

f h

g e

b a

c c

f e

g h

Data ordering
in lower cube

Data ordering
in upper cube

Dimension 2 Dimension 1 Dimension 0

Fig. 14.4. Sorting a bitonic sequence of size 8 on the 3-cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 251

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14.3 Routing Problems on a Hypercube

Types of routing algorithms

Oblivious: path uniquely determined by node addresses

Nonoblivious or adaptive: the path taken by a message
may also depend on other messages in the network

On-line: make the routing decisions on the fly as you route

Off-line: route selections are precomputed for each
problem of interest and stored within nodes (routing tables)

Positive result for off-line routing on a p-node hypercube

Any 1-1 routing problem with p or fewer packets can be
solved in O(log p) steps, using an off-line algorithm

The off-line algorithm chooses routes in a way that the
route taken by one message does not significantly overlap
or conflict with those of others (for each source/destination
pair, there are many paths to choose from)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 252

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Negative result for oblivious routing on any network

Theorem 14.1: Let G = (V, E) be a p-node, degree-d
network. Any oblivious routing algorithm for routing p
packets in G needs Ω(p / d) worst-case time

For a hypercube: oblivious routing requires Ω(p / log p)
time in the worst case (only slightly better than mesh)

In most instances, actual routing performance is much
closer to the log-time best case than to the worst case.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 253

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Proof Sketch for Theorem 14.1

Let Pu,v be the unique path used for routing from u to v

There are p(p – 1) paths for routing among all node pairs

These paths are predetermined and independent of other
traffic within the network

Our strategy: find k node pairs ui, vi (1 ≤ i ≤ k) such that

 ui ≠ uj and vi ≠ vj for i ≠ j, and

 Pui,vi all pass through the same edge e

Because ≤ 2 packets can go through a link in one step,
Ω(k) steps will be needed for some 1-1 routing problem

The main part of the proof consists of showing that k can
be as large as p /d

v

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 254

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14.4 Dimension-Order Routing

Route from node 01011011
 to node 11010110
 ^ ^^ ^ Dimensions that differ

Path: 01011011, 11011011, 11010011,
 11010111, 11010110

Unfolded hypercube (indirect cube, butterfly network)
facilitates the discussion of routing algorithms

Dimension-order routing between nodes i and j in a
hypercube can be viewed as routing from node i in column
0 (q) to node j in column q (0) of the butterfly

dim 0 dim 1 dim 2

0 1 2 3

q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rowsq

0

1

2

3

4

5

6

7

Hypercube

Unfold

Fold
Fig. 14.5. Unfolded 3-cube or the 32-node butterfly network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 255

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Self-routing in a butterfly

From node 3 to node 6: routing tag = 011 ⊕ 110 = 101
 (this indicates the “cross-straight-cross” path)

From node 6 to node 1: routing tag 110 ⊕ 001 = 111
 (this represents a “cross-cross-cross” path)

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Ascend Descend

Fig. 14.6. Example dimension-order routing paths.

The butterfly network cannot route all permutations without
node or edge conflicts; e.g., any permutation involving the
routes (1, 7) and (0, 3) leads to a conflict

The extent of conflicts depends on the routing problem

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 256

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

There exist “good” routing problems for which conflicts are
non-existent or rare

dim 0 dim 1 dim 2

0 1 2 3

A

B

C

D

A

B

C

D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 14.7. Pack ing is a “ good ” routing p roblem for dimension-

order routing on the hypercube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 257

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

There are also “bad” routing problems that lead to
maximum conflicts and thus the worst-case running time
predicted by Theorem 14.1

dim 0 dim 1 dim 2

0 1 2 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 14.8. Bit-reversal permutation is a “ bad” routing p roblem for

dimension-order routing on the hypercube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 258

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Message buffer needs of dimension-order routing

True or false: if we limit nodes to a constant number of
message buffers, then the above bound still holds, except
that messages are queued at several levels before
reaching node 0

False: queuing messages at multiple intermediate nodes
introduces added delays that we have not accounted for,
so that even the Θ(p) running time is not guaranteed

Bad news: if each node of the hypercube is limited to O(1)
buffers, there exist permutation routing problems that
require O(p) time; i.e., as bad as on a linear array!

Good news: the performance is usually much better; i.e.,
log2p + o(log p) for most permutations. The average
running time of dimension-order routing is very close to its
best case and message buffer requirements are modest

If we anticipate encountering (near) worst-case routing
patterns in an application, two options are available to us:

 Compute the routing paths off-line and store in tables

 Use randomized routing to convert the worst-case
 to average-case performance

Probabilistic analyses for showing the good average-case
performance of dimension-order routing are complicated

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 259

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Wormhole routing on a hypercube

A

B

C

D

Packet 1

Packet 2

Some of the preceding results are directly applicable here

Any good routing problem, yielding node- and edge-
disjoint paths, will remain good for wormhole routing

In Fig. 14.7, the four worms carrying messages A, B, C, D,
will move with no conflict among them. Each message is
delivered to its destination in the shortest possible time,
regardless of the length of the worms

dim 0 dim 1 dim 2

0 1 2 3

A

B

C

D

A

B

C

D

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 260

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

For bad routing problems, on the other hand, wormhole
routing aggravates the difficulties, given that one message
can now tie up a number of nodes and links

In the case of wormhole routing, one also needs to be
concerned with deadlocks resulting from circular waiting of
messages for one another

Dimension-order routing is always deadlock-free

With hot-potato or deflection routing, which is attractive for
reducing the message buffering requirements, dimension
orders are occasionally modified or more than one routing
step along some dimensions may be allowed

Deadlock considerations in this case are similar to those of
other adaptive routing schemes (see Section 14.6)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 261

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14.5 Broadcasting on a Hypercube

Simple “flooding” scheme with all-port communication

00000 Source node

00001, 00010, 00100, 01000, 10000 Neighbors of source

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000 Distance-2 nodes

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100 Distance-3 nodes

01111, 10111, 11011, 11101, 11110 Distance-4 nodes

11111 Distance-5 node

Binomial broadcast tree with single-port communication

0
1
2
3
4
5

Time00000

10000

01000 11000

00100 01100 10100 11100

00001

00010

Fig. 14.9. The binomial broadcast tree for a 5-cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 262

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Binomial-t ree scheme (nonpipelined)

Pipelined binomial-tree scheme

Johnsson & Ho’s method

ABCD

ABCD

ABCD ABCD

A

A

A

B

B

B

C

A

A

A

A

C

C

D

B

B

B

B

 A

A

A

 A

A

A

A A

A

A

A

A

A

A

A

 A

A

A

 A

A

A

A A

To avoid clutter, only A shown

B

 B

B

 B

B

B

 B

B

B

B B C C

 C
 C

 C

C
D

D

D

D

D

D

D

C

Fig. 14.10. Three hypercube broadcasting schemes as performed

on a 4-cube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 263

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

14.6 Adaptive and Fault-Tolerant Routing

There are up to q node-disjoint and edge-disjoint shortest
paths between any node pairs in a q-cube

Thus, one can route messages around congested or failed
nodes/links

A useful notion for designing adaptive wormhole routing
algorithms is that of virtual communication networks

0

2

1

3

4

6

5

7

0

2

1

3

4

6

5

7

Subnetwork 0 Subnetwork 1
Fig. 14.11. Partitioning a 3-cube into subnetworks for deadlock-

free routing.

Because each of the subnetworks in Fig. 14.11 is acyclic,
any routing scheme that begins by using links in Subnet 0,
at some point switches the routing path to Subnet 1, and
from then on remains in Subnet 1, is deadlock-free

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 264

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fault diameter of q-cube is at most q + 1 with ≤ q – 1 faults
and at most q + 2 with ≤ 2q – 3 faults [Lati93]

0
1
2
3
4
5
6

0 1 2 0 1 2

2 3

3

2 3
Cycle
or
Time
Step

 Figure for Problem 14.15.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 265

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15 Other Hypercubic Architectures

Back to TOC

Chapter Goals
● Learn how the binary hypercube can be

generalized to provide cost or performance
benefits over the original version

● Derive algorithms for these architectures
based on emulating a hypercube

Chapter Contents
● 15.1. Modified and Generalized Hypercubes
● 15.2. Butterfly and Permutation Networks
● 15.3. Plus-or-Minus-2i Network
● 15.4. The Cube-Connected Cycles Network
● 15.5. Shuffle and Shuffle-Exchange Networks
● 15.6. That’s Not All Folks!

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 266

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15.1 Modified and Generalized Hypercubes

Twisted 3-cube

0

2

1

3

4

6

5

7

5

3-cube and a 4-cycle in it

0

2

1

3

4

6 7

Fig. 15.1. Deriving a twisted 3-cube by redirecting two links in a

4-cycle.

Folded 3-cube

0

2

1

3

4

6

5

7

5

A diametral path in the 3-cube

0

2

1

3

4

6 7

Fig. 15.2. Deriving a folded 3-cube by adding four diametral

links.

Rotate
180
degrees

Folded 3-cube with
Dim-0 links removed

0

2

7

5

4

6

3

1

5

0

2

1

3

4

6 7

After renaming, diametral
links replace dim-0 links

5

1

3 7

Fig. 15.3. Folded 3-cube viewed as 3-cube with a redundant

dimension.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 267

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

A hypercube is a power or homogeneous product network

 q-cube = (oo)q

 q-cube = qth power of K2

Generalized hypercube = qth power of Kr

 (node labels are radix-r numbers)

 Example: radix-4 generalized hypercube

 Node labels are radix-4 numbers

 Node x is connected to y iff x and y differ in one digit

 Each node has r – 1 dimension-k links

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 268

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15.2 Butterfly and Permutation Networks

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Dim 0 Dim 1 Dim 2

0 1 2 3

0

1

2

3

4

5

6

7

Dim 1 Dim 2
Dim 0

0

1

2

3

4

5

6

7

2 rows, q + 1 columns
q

2 rows, q columns
q

1 2 3 = 0

Fig. 15.4. Butterfly and wrapped butterfly networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 269

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

1

2

3

4

5

6

7

Dim 0 Dim 1 Dim 2

0 1 2 3

Dim 3

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
4

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 270

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Dim 1 Dim 0 Dim 2

0 1 2 3

Switching these
two row pairs
converts this to
the original
butterfly network.
Changing the
order of stages in
a butterfly is thus
equi valent to a
relabeling of the
rows (in this
example, row xyz
becomes row xzy)

Fig. 15.5. Butterfly network with permuted dimensions.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 271

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fat trees eliminate the bisection bottleneck of a “skinny”
tree by making the bandwidth of links correspondingly
higher near the root

Fig. 15.6. Two representations of a fat tree.

One way of realizing a fat tree

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

Front view:
Binary tree

Side view:
Inverted
binary tree

1 3 5 7

1 2 3
5 6 7

1 2 3 4 5 6 7

Fig. 15.7. Butterfly network redrawn as a fat tree.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 272

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Butterfly as a multistage interconnection network

0 1 2 3
log p + 1 Columns of 2-by-2 Switches

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7
 0
 1
 2
 3
 4
 5
 6
 7

2

Fig. 15.8. Butterfly network used to connect modules that are on

the same side.

Generalization of the butterfly network

 High-radix or m-ary butterfly (built of m × m switches)

 Has mq rows and q + 1 columns (q if wrapped)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 273

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Beneš network can route any permutation

 (it is rearrangeable)

0 1 2 3 4
2 log p – 1 Columns of 2-by-2 Switches

000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7

Processors Memory Banks

000
001
010
011
100
101
110
111

 0
 1
 2
 3
 4
 5
 6
 7

2

Fig. 15.9. Beneš network formed from two back-to-back

butterflies.

0 1 2 3 4 5 6

2q + 1 Columns

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 Rows,q

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

2 Inputsq+1 2 Outputsq+1

Fig. 15.10. Another example of a Beneš network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 274

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15.3 Plus-or-Minus-2i Network

±4

±1
0 1 2 3 4 5 6 7

±2
0

2

1

3

4

6

5

7

Fig. 15.11. Two representations of the eight-node PM2I network.

0 1 2 3

q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows
q

a

b

a

b

Fig. 15.12. Augmented data manipulator network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 275

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15.4 The Cube-Connected Cycles Network

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

q columns/dimensions
0 1 2

0

1

2

3

4

5

6

7

Dim 1 Dim 2
Dim 0

0

1

2

3

4

5

6

7

q columns
1 2 3 = 0

2 rows
q

Fig. 15.13. A wrapped butterfly (left) converted into cube-

connected cycles.

How CCC was originally defined:

0

2

1

3

4

6

5

7

0,0
0,1

0,2

1,0

4,2

2,1

Fig. 15.14. Alternate derivation of CCC from a hypercube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 276

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Emulating normal hypercube algorithms on CCC

Hypercube
Dimension

q–1

3

2

1

0

Algorithm Steps
0 1 2 3 . . .

.

.

.

Ascend

Descend

Normal

2 bitsm m bits
Cycle ID = x Proc ID = y

N (x)

x, j–1

x, j

x, j+1

 , j–1j–1

, j

, j+1

Dim j–1

Dim j

Dim j+1
 , j–1

Cycle
 x

 , j

N (x)

j+1

N (x)j+1

N (x)j

N (x)j

Fig. 15.15. CCC emulating a normal hypercube algorithm.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 277

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15.5 Shuff le and Shuff le-Exchange Networks

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Shuffle Exchange Shuffle-Exchange Alternate
Structure

Unshuffle
Fig. 15.16. Shuff le, exchange, and shuff le–exchange

conn ectivities.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 15.17. Alternate views of an eight-nod e shuff le–exchange

network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 278

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

In a 2q-node shuffle network, node x = xq–1xq–2 . . . x2x1x0

is connected to xq–2 . . . x2x1x0xq–1 (cyclic left-shift of x)

In the shuffle-exchange network, node x is additionally
connected to xq–2 . . . x2x1x0xq–1

Routing in a shuffle-exchange network

Source 01011011
Destination 11010110
Positions that differ ^ ^^ ^
Route 01011011 Shuffle to 10110110 Exchange to 10110111
 10110111 Shuffle to 01101111
 01101111 Shuffle to 11011110
 11011110 Shuffle to 10111101
 10111101 Shuffle to 01111011 Exchange to 01111010
 01111010 Shuffle to 11110100 Exchange to 11110101
 11110101 Shuffle to 11101011
 11101011 Shuffle to 11010111 Exchange to 11010110

For 2q-node shuffle-exchange network:

D = q = log2p, d = 4

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 279

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

With shuffle and exchange links provided separately, as
shown in Fig. 15.18, the diameter increases to 2q – 1 and
node degree reduces to 3

0 1 2 3 4 5 6 7

0

3

6

2

5

1

4

7

Exchange
(dotted)

Shuffle
(solid)

Fig. 15.18. Eight-node network with separate shuffle and

exchange links.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 280

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Multistage shuffle-exchange network = butterfly network

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

q Columns q Columns
0 1 2 0 1 2

A

A

A

A

Fig. 15.19. Multistage shuff le–exchange network (omega network)

is the same as butterfly network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 281

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

15.6 That’s Not All, Folks!

When q is a power of 2, the 2qq-node cube-connected
cycles network derived from the q-cube, by replacing each
node with a q-cycle, is a subgraph of the (q + log2q)-cube

Thus, CCC can be viewed as a pruned hypercube

Other pruning strategies are possible, leading to
interesting tradeoffs

000

001

010

011

100

101

110

111

All dimension-0
links are kept

Even-dimension
links are kept in
the even subcube

Odd-dimension
links are kept in
the odd subcube

Fig. 15.20. Example of a pruned hypercube.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 282

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Möbius cube

Dimension-i neighbor of x = xq–1xq–2 . . . xi+1xi . . . x1x0 is

 xq–1xq–2 . . . 0xi . . . x1x0 if xi+1 = 0

 (as in the hypercube, xi is complemented)

 xq–1xq–2 . . . 1xi . . .x1x0 if xi+1 = 1

 (xi and all the bits to its right are complemented)

For dimension q – 1, since there is no xq ,

 the neighbor can be defined in two ways,

 leading to 0- and 1-Mobius cubes

A Möbius cube has a diameter of about 1/2 and an
average inter-node distance of about 2/3 of that of a
hypercube

0

2

1

3

4

6

5

7

6

0-Mobius cube

0

2

1

3

7

4 5

1-Mobius cube

Fig. 15.21. Two 8-nod e Möbius cubes.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 283

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16 A Sampler of Other Networks

Back to TOC

Chapter Goals
● Study examples of composite or hybrid

architectures
● Study examples of hierarchical or multilevel

architectures
● Complete the picture of the sea of

interconnection networks

Chapter Contents
● 16.1. Performance Parameters for Networks
● 16.2. Star and Pancake Networks
● 16.3. Ring-Based Networks
● 16.4. Composite or Hybrid Networks
● 16.5. Hierarchical (Multilevel) Networks
● 16.6. Multistage Interconnection Networks

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 284

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16.1 Performance Parameters for Networks

The sea of direct interconnection networks (Fig. 4.8, expanded).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 285

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Diameter D (indicator of worst-case message latency)

 Routing diameter D(R); based on routing algorithm R

Average internode distance ∆ (based on shortest paths)

 Routing average internode distance ∆(R)

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Sum of distances
from corner node:
2 × 1 + 3 × 2 + 2 × 3
+ 1 × 4 = 18

Sum of distances
from side node:
3 × 1 + 3 × 2 +
2 × 3 = 15

Sum of distances
from center node:
4 × 1 + 4 × 2 = 12 Average distance:

(4 × 18 + 4 × 15 +
1 × 12) / (9 x 8) = 2

For the node-symmetric 3 × 3 torus, the average internode
distance is determined by considering only paths from a
single source node:

 ∆3×3 torus = (4 × 1 + 4 × 2) / 8 = 1.5

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 286

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Bisection width (indicator of random communication
capacity)

Bisection bandwidth incorporates link capacities as well as
their number

P 0 P 1 P 2

P 3 P 4 P 5

P 6 P 7 P 8

0 1 2

3 4 5

6 7 8

7

7

An embedding of
K into 3 × 3 mesh 9

P 0

P 1

P 2

P 3

P 4 P 5

P 6

P 7

P 8

Bisection width = 4 × 5 = 20

K 9

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 287

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

31
30

29

0 1
2

3

4

5

6

7

8

9

20

21

22

23

24

25

26

27

28

10

11

12

13

14
15 16 17

18

19

Fig. 16.2. A network whose bisection width is not as large at it

appears.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 288

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Why so many different interconnection networks?

No single network provides optimal performance under all
conditions

Each network has its advantages and drawbacks in terms
of cost, latency, and bandwidth

We need to understand the interplay of these parameters
to select suitable interconnection structures or to evaluate
the relative merits of networks (parallel architectures)

Interplay between the node degree d and diameter D

Node degree is related to cost

Given p nodes of known degree d, we can interconnect
them in different ways, leading to varying diameters

Question: What is the best way to interconnect p nodes of
degree d to minimize the diameter of the resulting graph?

The problem of constructing a network of minimal
diameter, given p nodes of degree d, or alternatively,
building the largest possible network for a given node
degree d and diameter D, is quite difficult

However, some useful bounds can be established that
serve as benchmarks

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 289

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Moore’s bound s

A diameter-D regular digraph can have no more than 1 + d
+ d2 + ... + dD nodes

This yields a lower bound on the diameter of a p-node
digraph of degree d which is known as Moore’s bound

 p ≤ 1 + d + d2 + . . . + dD =
dD+1 – 1

d – 1

 D ≥ logd[p(d – 1) + 1] – 1

A graph matching this bound is a Moore digraph

The only possible Moore digraphs are:

 Rings (d = 1, D = p – 1)

 Complete graphs (d = p – 1, D = 1)

But there are near-optimal graphs that come close

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 290

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

A similar bound can be derived for undirected graphs

The largest undirected graph of diameter D has at most 1
+ d + d(d – 1) + d(d – 1)2 + ... + d(d – 1)D–1 nodes

This leads to Moore’s bound on the diameter of a p-node
undirected graph of degree d:

 p ≤ 1 + d [1 + (d – 1) + (d – 1)2 + ... + (d – 1)D–1]

 = 1 + d
(d – 1)D – 1

d – 2

 D ≥ logd–1[
(p – 1)(d – 2)

d + 1]

For d = 2: p ≤ 1 + 2D or D ≥ (p – 1)/2

This diameter lower bound is achieved by ring with odd p

For d = 3: D ≥ log2[(p + 2)/3] or p ≤ 3 × 2D – 2

D = 1 allows us to have 4 nodes (the complete graph K4)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 291

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The first interesting or nontrivial case is for D = 2 which
allows at most p = 10 nodes (the Petersen graph)

11010

01101

1001111100

00111

11001

10101

10110

0111001011

Fig. 16.1. The 10-node Petersen graph.

For larger networks, Moore’s bound cannot be matched;
but there exist networks that come very close to this bound

e.g. shuffle-exchange and CCC networks, with d = 3, have
asymptotically optimal diameters within constant factors

For d = 4, Moore’s diameter lower bound is log2[(p + 1)/2]

So, 2D mesh and torus networks are far from optimal in
terms of their diameters, whereas the butterfly network is
asymptotically optimal within a constant factor

For a q-cube with p = 2q and d = q, Moore’s lower bound
yields D = Ω(q/log q). So, the diameter of a q-cube is a
factor of log q worse than the optimal

Summary: for node degree d, Moore’s bound establishes
the lowest possible diameter that we can hope to achieve.
Coming within a constant factor of this bound is usually
good enough; the smaller the constant factor, the better.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 292

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Layout area and longest wire

The VLSI layout area required by an interconnection
network is intimately related to its bisection width B

If B wires must cross the bisection in a 2D layout and wire
separation is to be 1 unit, then the smallest dimension of
the VLSI chip will be at least B units

The chip area will thus be Ω(B2) units

 p-node 2D mesh needs O(p) area

 p-node hypercube needs at least Ω(p2) area

B wires crossing a bisection

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 293

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The total number pd/2 of links (edges) is a very crude
measure of network cost

With this measure, constant-degree networks have linear
O(p) cost and the p-node hypercube has O(p log p) cost.

The longest wire required in VLSI layout also affects the
network performance

For example, any 2D layout of a p-node hypercube
requires wires of length Ω(p/log p)

Because the length of the longest wire grows with system
size, the per-node performance is bound to degrade for
larger systems, thus implying sublinear speed-up

Composite figures of merit -- Example: dD, the product of
node degree and network diameter, is a good measure for
comparing networks of the same size, since it is a rough
indicator of the cost of unit performance (d is proportional
to cost, 1/D represents performance)

This measure has its limitations, particularly when applied
to bus-based systems

Other network parameters include robustness and fault
tolerance

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 294

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16.2 Star and Pancake Networks

A qD star network, or q-star, has p = q! (q factorial) nodes

Each node is labeled with a string x1x2 . . . xq

 where (x1, x2, ... , xq) is a permutation of {1, 2, ... , q}

Node x1x2 . . . xi . . . xq is connected to xi x2 . . . x1 . . . xq

 for each i (note that x1 and xi are interchanged)

The node degree of a q-star with q! nodes is q – 1

When the ith symbol is switched with x1, the corresponding
link is referred to as a dimension-i link

1234 4231

2134 3241 2431

3421

4321

2413

23413124
1324

2314

3214

1423

4123

2143

1243

4213

3142

1342

4312

1432

4132

3412

3

2

3 2

3

2

4

Fig. 16.3. The four-dimensional star graph.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 295

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The diameter of a q-star is at most 2q – 3
Justification: the following routing algorithm

 Source node 1 5 4 3 6 2
 Dimension-2 link to 5 1 4 3 6 2
 Dimension-6 link to 2 1 4 3 6 5
 Last symbol now adjusted
 Dimension-2 link to 1 2 4 3 6 5
 Dimension-5 link to 6 2 4 3 1 5
 Last 2 symbols now adjusted
 Dimension-2 link to 2 6 4 3 1 5
 Dimension-4 link to 3 6 4 2 1 5
 Last 3 symbols now adjusted
 Dimension-2 link to 6 3 4 2 1 5
 Dimension-3 link to 4 3 6 2 1 5
 Last 4 symbols now adjusted
 Dimension-2 link to 3 4 6 2 1 5 Destination

D = Θ(q) and d = Θ(q); but how is q related to p?

A q-star contains p = q! ≅ e–qqq 2πq processors
 (using Stirling’s approximation)

 ln p ≅ –q + (q + 1/2) ln q + ln(2π)/2 = Θ(q log q)

 or q = Θ(log p/log log p)

Hence, node degree and diameter are sublogarithmic

Star graph is asymptotically optimal to within a constant
factor with regard to Moore’s diameter lower bound

Routing on star graphs is simple and reasonably efficient;
however, virtually all other algorithms are more complex
than the corresponding algorithms on a hypercube

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 296

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Because the node degree of a star network grows with its
size, making it non-scalable, a degree-3 version of it,
known as star-connected cycles (SCC) has been proposed

The diameter of SCC is about the same as a comparably
sized CCC network

However, the routing algorithm for SCC is somewhat more
complex

1234,4

3

2

3 2

3

2
1234,3

4
1234,2

Fig. 16.4. The four-dimensional star-connected cycles network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 297

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Like the star graph, the pancake network also has p = q!
nodes that are labeled by the various permutations of the
symbols {1, 2, . . . , q}

In the q-pancake, Node x1x2 . . . xi xi+1 . . . xq is connected

to nodes xi xi–1 . . . x2x1xi+1 . . . xq for each i (x1x2 . . . xi is
flipped, like a pancake)

Routing in pancake networks is very similar to routing in
star graphs

Denoting the connection that results from flipping the first i
symbols (2 ≤ i ≤ q) as the dimension-i link, we have for
example:

 Source node 1 5 4 3 6 2
 Dimension-2 link to 5 1 4 3 6 2
 Dimension-6 link to 2 6 3 4 1 5
 Last 2 symbols now adjusted
 Dimension-4 link to 4 3 6 2 1 5
 Last 4 symbols now adjusted
 Dimension-2 link to 3 4 6 2 1 5 Destination

Generally, we need 2 flips per symbol; one flip to bring the
symbol to the front from its current position i, and another
one to send it to its desired position j

Thus, the diameter of the q-pancake is 2q – 3

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 298

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

One can define the connectivities of the q! nodes labeled
by the permutations of {1, 2, ... , q} in other ways

In a rotator graph, node x1x2 . . . xi xi+1 . . . xq is connected

to x2 . . . xi x1xi+1 . . . xq (obtained by a left rotation of the

first i symbols) for each i in the range 2 ≤ i ≤ q

The node degree of a q-rotator is q – 1, as in star and
pancake graphs, but its diameter and average inter-node
distance are smaller

Except for SCC, all of the networks introduced in this
section represent special cases of a class of networks
known as Cayley graphs

A Cayley graph is characterized by a set Λ of node labels
and a set Γ of generators, each defining one neighbor of a
node x

The ith generator γi can be viewed as a rule for permuting
the node label to get the label of its “dimension-i” neighbor

For example, the star graph has q – 1 generators that
correspond to interchanging the 1st and ith symbols in the
node label

Index-permutation graphs, a generalization of Cayley
graphs in which the node labels are not restricted to
consist of distinct symbols, can lead to other interesting
and useful interconnection networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 299

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16.3 Ring-Based Networks

Ring: simple, but low-performance

Multilevel rings and chordal rings

Message
source

Local Ring
Remote
Ring

S

D

Message
destination

Fig. 16.5. A 64-node ring-of-rings architecture composed of eight

8-node local rings and one second-level ring.

0

3

6

7

2

5

s 0

x x+1x–1

s 1
s 2

1

4 x+s gx–sg

sg

0
1

2

3
4

5

6

7

0
1

2

3
4

5

6

7

x–s1

x–s2 x+s2

x+s1

Fig. 16.6. Unidirectional ring, two chordal rings, and node

connectivity in general.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 300

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

0

4

26

7

3

1

5

0

4

26

7

3

1

5

(a) (b)

v

(a)

v+1v–1

v+s

v+sv–s

v–s 1

k–1k–1

1

sk–1

s1
.

. .
.

..

s =100

4

26

7

3

1

5

(b)

v+1

v+s

k–1

(a)

(d) (c)

(b)

Fig. 16.6. Unidirectional ring, two chordal rings, and node

connectivity in general.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 301

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Chordal rings are node symmetric

Optimal chordal rings derived as above are very similar,
though not isomorphic, to (g+1)-dimensional tori

0 1 2

3

6 7

4 5

0 1 2

3

6 7

4

8

5

Fig. 16.7. Chordal rings redrawn to show their similarity to torus

networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 302

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Periodically regular chordal ring

0

4

26

7

3

1

5

Group 0

s1
s0

s0

s2

Group 0

Group 1

Group 2

Group p/g – 1

Group i

Nodes 0
to g – 1

Nodes g
to 2g – 1

Nodes 2g
to 3g – 1

Nodes ig
to (i+1)g – 1

Nodes p – g
to p – 1

A skip link leads to
the same relative
position in the
destination
group

Fig. 16.8. Periodically regular chordal ring.

A variant of the greedy routing algorithm (first route a
packet to the head of a group) works nicely

Chordal rings and PRC rings have bidirectional variants
with similar properties to the unidirectional versions

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 303

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Area-efficient VLSI layouts are known for PRC rings

0

1

2

3

4

5

63

6

7
To 3
To 6

Fig. 16.9. VLSI layout for a 64-node periodically regular chordal

ring.

Providing nil skips for some of the nodes in each group
constitutes a mechanism for performance-cost tradeoffs
that are identical in nature to those offered by the q-D
CCC architecture when rings have more than q nodes

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 304

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

31 30 29

0 1 2 3

4 5 6 7

8 9

20 21 22 23

24 25 26 27

28

10 11

12 13 14 15

16 17 18 19

Dimension 1
s = nil

Dimension 2
s = 4

Dimension 1
s = 8

Dimension 1
s = 16

No skip in this
dimension

1

2

3

4

b

a

d

c

f

e g

b

a

d

c

f

e

g

Fig. 16.10. A PRC ring redrawn as a butterfly- or ADM-like

network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 305

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16.4 Composite or Hybrid Networks

Composite or hybrid networks combine the connectivity
rules from two (or more) pure networks in order to

 • achieve some advantages from each structure

 • derive network sizes that are unavailable

 with either pure architecture

 • realize any number of performance/cost benefits

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 306

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Network composition by Cartesian product operation

× =
3-by-2
torus

× × =

× =

0

1
2

a

b

0a

1a

2a
0b

1b

2b

Fig. 13.4. Examples of product graphs.

Topological properties of product graphs

 p = p′p″ d = d′ + d″ D = D′ + D″ ∆ = ∆′ + ∆″

Routing on product graphs:

Given optimal/efficient/deadlock-free routing algorithms for
G′ and G″, the following 2-phase algorithm will be
optimal/efficient/deadlock-free for routing from u′u″ to v′v″
in the product graph G

Phase 1. Route from u′u″ to v′u″ via G′ edges

Phase 2. Route from v′u″ to v′v″ via G" edges

The algorithm above may be called the “G′-first” routing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 307

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Broadcasting on product graphs:

First send from v′v″ to all nodes xv″, x ∈ V′, using a
broadcasting algorithm for G'; then broadcast from each
node xv″ to all nodes xy, y ∈ V″, using a broadcasting
algorithm for G″

Semigroup and parallel prefix computations can be
similarly performed by using the respective algorithms for
the component networks

If the component graphs are Hamiltonian, then the p′ × p″
torus will be a subgraph of G

Fig. 16.11. Mesh of trees compared with mesh-connected trees.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 308

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16.5 Hierarchical (Multilevel) Networks

Hierarchical or multilevel interconnection networks can be
defined in a variety of ways

Example: hierarch. composition by recursive substitution
 (replacing each node with a network, as in CCC)

EW

N

S

Fig. 16.12. The mesh of meshes network exhibits greater

modularity than a mesh.

Motivations for designing hierarchical networks include

 greater modularity lower cost
 finer scalability better fault tolerance

Fig. 16.13. Hierarchical or multilevel bus network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 309

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

16.6 Multistage Interconnection Networks

Direct versus indirect (multistage) network

Rearrangeable network (e.g. Beneš network)

Self-routing MIN

The butterfly network is a self-routing MIN, but it is not a
permutation network

Beneš network can realize any permutation, but is not self-
routing

A natural question is whether there exist self-routing
permutation networks (yes there are!)

A full permutation can be realized via sorting of the
destination addresses

Any p-sorter of the type discussed in Chapter 7 can be
viewed as a self-routing MIN capable of routing p × p
permutations

7 (111)
 0 (000)
 4 (100)
 6 (110)
 1 (001)
 5 (101)
 3 (011)
 2 (010)

7 (111)

0 (000)

4 (100)

6 (110)

1 (001)

5 (101)

3 (011)

2 (010)

0
 1
 3
 2

5

7
 4
 6

0
 1
 3
 2

6

4
 5
 7

Sort by
MSB

Sort by
LSB

Sort by the
middle bit

Fig. 16.14. Example of sorting on a binary radix sort network.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 310

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The sea of indirect interconnection networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 311

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Partial List of Important MINs

Augmented data manipu lator (ADM): aka unfolded PM2I
(Fig. 15.12)

Banyan: Any MIN with a unique path between any input
and any output (e.g. butterfly)

Baseline: Butterfly network with nodes labeled differently

Beneš: Back-to-back butterfly networks, sharing one
column (Figs. 15.9-10)

Bidelta: A MIN that is a delta network in either direction

Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5)

Data manipu lator: Same as ADM, but with switches in a
column restricted to same state

Delta: Any MIN for which the outputs of each switch have
distinct labels (say 0 & 1 for 2 × 2 switches) and path label,
composed of concatenating switch output labels leading
from an input to an output depends only on the output

Flip: Reverse of the omega network (inputs × outputs)

Ind irect cube: Same as butterfly or omega

Omega: Multi-stage shuffle-exchange network; isomorphic
to butterfly (Fig. 15.19)

Permutation : Any MIN that can realize all permutations

Rearrangeable: Same as permutation network

Reverse baseline: Baseline network, with the roles of
inputs and outputs interchanged

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 312

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 Figure for Problem 16.11.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 313

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Part V Some Broad Topics

Back to TOC

Part Goals
● Study topics that cut across architectures
 ● Mapping a computation onto a machine
 ● Previously dealt with computation
 and communication; what about I/O?
 ● Hardware faults and resultant errors
 ● System and software issues?

Part Contents
● Chapter 17: Emulation and Scheduling
● Chapter 18: Data Storage, Input, and Output
● Chapter 19: Reliable Parallel Processing
● Chapter 20: System and Software Issues

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 314

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17 Emulation and Scheduling

Back to TOC

Chapter Goals
● Learn how to achieve algorithm portability

via emulation
● Study task scheduling for parallel systems,
 including complexity aspects and bounds

Chapter Contents
● 17.1. Emulations Among Architectures
● 17.2. Distributed shared memory
● 17.3. The task scheduling problem
● 17.4. A class of scheduling algorithms
● 17.5. Some useful bounds for scheduling
● 17.6. Load balancing and dataflow systems

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 315

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17.1 Emulations Among Architectures

General result 1 (emulation via graph embedding)

 Slowdown ≤ dilation × congestion × load factor

 The bound is tight; e.g., embedding Kp into K2

 dilation = 1, congestion = p2/4, load = p/2

General result 2 (PRAM emulating degree-d network)

 EREW PRAM can emulate any degree-d network

 with slowdown O(d)

General result 3 (butterfly emulating degree-d network)

 A (wrapped) butterfly can emulate any degree-d

 network with O(d log p) slowdown

 Butterfly is a universally efficient bounded-degree net

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 316

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 0

1

2

3

u 0

u 1

u 2

u 3

v 0

v 1

2

v 3

v

u 0

u 1

u 2

u 3

v 0

v 1

2

v 3

v

0

0

 0

 0

0

0

0

0

 1

1

1

1

1

 1

 1

1

2

 2

 2

2

2

2

 2

 2

Fig. 17.1. Converting a routing step in a degree-3 network to

three permutations or perfect matchings.

u v 3 3

u 0

u 1

u 2

u

v 0

v 1

2

v

v

u 0

u 1

u 2

v 0

v 1

2 v

u 0

u 1

u 2

u

v 0

v 1

2

v

v

3 3 3 3

A set of three perfect matchings for a degree-3 bipartite graph.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 317

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17.2 Distributed Shared Memory

Randomized emulation of PRAM on p-node butterfly

Use hash function to map memory locations to modules

 p locations → p modules, not necessarily distinct

With high probability, at most O(log p) of the p locations
will be in modules located in the same row

Average slowdown = O(log p)

dim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rows q

One of p =

processors
q Memory module

holding m/p
memory locations

P M P M P M P M

Each node =
router +
processor +
memory

2 (q + 1)

Fig. 17.2. Butterfly distributed-memory machine emulating the

PRAM.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 318

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Emulation of PRAM using (p log p)-node butterfly MIN

Average slowdown = O(log p)

Less efficient than Fig. 17.2, which uses a smaller butterfly

By using only p/(log p) physical processors to emulate a
p-processor PRAM this emulation scheme becomes quite
efficient (memory accesses of the log p virtual processors
assigned to each physical processor can be pipelined)

Mdim 0 dim 1 dim 2

0 1 2 3
q + 1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2 Rowsq

POne of p =2
processors

q Memory module
holding m/p
memory locations

Fig. 17.3. Distributed-memory machine, with a butterfly

multistage interconnection network, emulating the
PRAM.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 319

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Deterministic emulation of PRAM on a network

Both more difficult and less efficient

Recall that a butterfly can route random permutations in
O(log p) steps on the average but that worst-case
communication patterns take O(p) time

One idea:

 Store log2m copies of each of m memory locations

 Time-stamp each updated value

 A “write” is complete if majority of copies are updated

 A “read” is satisfied when a majority of copies are
 accessed and the one with latest time stamp is used

 Thus, a few congested links won’t delay the operation

Recunstruction
algorithm

Original data word
and its k pieces

The k pieces
after encoding
(approx. three
times larger)

Original data word recovered
from k /3 encoded pieces

Up-to-date
pieces

Possible read set
of size 2k/3

Possible update set
of size 2k/3

Fig. 17.4. Illustrating the information dispersal approach to

PRAM emulation with lower data redundancy.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 320

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17.3 The Task Scheduling Problem

1

2

3

4

5

67

8

9
10

11

x

x

x

y

Vertex v represents
Task or Computation j

T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8)

Output

1

2

3

1

p
1

�

j

12

13

Vertex v represents
task or computation j

j T Latency with p processors
T Number of nodes (here 13)
T Depth of the graph (here 8) ∞

1

p

Output
Fig. 17.5. Example task system showing communications or

dependencies.

Scheduling parameters and criteria
Running time, task creation (static/dynamic), relationships
(priority, precedence, ...), start/end time (release, deadline)

Types of scheduling algorithms
Preemptive/nonpreemptive, fine/medium/coarse grain

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 321

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17.4 A Class of Scheduling Algorithms

List scheduling

 Assign a priority level to each task

 Construct a task list in priority order

 (tag the tasks that are ready for execution)

 Assign to an available processor the first tagged task

 (update the list tags when tasks terminate)

When all processors are identical, list schedulers differ
only in their priority assignment schemes

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 322

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

A possible priority assignment scheme for list scheduling:

Determine the depth T∞ of the task graph, which is an
indicator of its minimum possible execution time

Take T∞ as a goal for the total running time Tp

Determine the latest possible time step in which each task
can be scheduled if our goal is to be met (done by
“layering” the nodes beginning with the output node)

The results of layering for the task graph of Fig. 17.5 are:

 1 2 3 4 5 6 7 8 9 10 11 12 13 Tasks in numerical order
 1 2 3 4 6 5 6 6 6 7 7 7 8 Latest possible times (layers)

Assign task priorities in order of the latest possible times.
Ties broken, e.g., by giving priority to a task with a larger
number of descendants

For our example, this secondary criterion is of no help, but
generally, if a task with more descendants is executed
first, the running time will likely be improved.

 1* 2 3 4 6 5 7 8 9 10 11 12 13 Tasks in priority order
 1 2 3 4 5 6 6 6 6 7 7 7 8 Latest possible times
 2 1 3 3 2 1 1 1 1 1 1 1 0 Number of descendants

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 323

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Schedule on p = 2 processors
 Tasks listed in priority order

 1* 2 3 4 6 5 7 8 9 10 11 12 13 t = 1 v1 scheduled
 2* 3 4 6 5 7 8 9 10 11 12 13 t = 2 v2 scheduled
 3* 4 6 5 7 8 9 10 11 12 13 t = 3 v3 scheduled
 4* 6 5* 7 8* 9 10 11 12 13 t = 4 v4, v5 scheduled
 6* 7* 8* 9 10 11 12 13 t = 5 v6, v7 scheduled
 8* 9* 10* 11 12 13 t = 6 v8, v9 scheduled
 10* 11* 12* 13 t = 7 v10, v11 scheduled
 12* 13 t = 8 v12 scheduled
 13* t = 9 v13 scheduled (done)

Schedule on p = 3 processors
 Tasks listed in priority order
 1* 2 3 4 6 5 7 8 9 10 11 12 13 t = 1 v1 scheduled
 2* 3 4 6 5 7 8 9 10 11 12 13 t = 2 v2 scheduled
 3* 4 6 5 7 8 9 10 11 12 13 t = 3 v3 scheduled
 4* 6 5* 7 8* 9 10 11 12 13 t = 4 v4, v5, v8 scheduled
 6* 7* 9 10 11* 12 13 t = 5 v6, v7, v11 scheduled
 9* 10* 12 13 t = 6 v9, v10 scheduled
 12* 13 t = 7 v12 scheduled
 13* t = 8 v13 scheduled (done)

1 2 3 4 5 6 7 8 9 10 11 12 13P1

P1

P2

P3

P1

P2

1 2 3 4 6 8 10 12 13

 5 7 9 11

1 2 3 4 6 9 12 13

 5 7 10

 8 11

1 2 3 4 5 6 7 8 9 10 11 12 13
Time Step

Fig. 17.6. Schedules with p = 1, 2, 3 processors for an example
task graph with unit-time tasks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 324

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Scheduling with non-unit-time tasks
x

x
x

y Output

1

2
3

1

v 1

v 3

v 5

v 2
v 4

v 6

Fig. 17.7. Example task system with task running times of 1, 2,

or 3 units.

1 2 3 4 5 6P1

P1

P2

P3

P1

P2

1 3 4 5 6

 2

1 3 5 6

 4

1 2 3 4 5 6 7 8 9 10 11
Time Step

 2

Fig. 17.8. Schedules with p = 1, 2, 3 processors for an example

task graph with nonuniform running times.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 325

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17.5 Some Useful Bounds for Scheduling

Brent’s scheduling theorem:

 Tp < T∞ + T1/p

First assume the availability of an unlimited number of
processors; schedule each node at earliest possible time

Let there be nt nodes scheduled at time t.

Clearly, �t nt = T1

With p processors, tasks scheduled for time step t can be

executed in nt / p steps by running them p at a time.
Thus:

 Tp ≤ �
T�
t=1 nt / p < �

T�
t=1 (nt / p + 1) = T∞ + T1/p

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 326

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Brent’s theorem offers an approximation to the speedup:

 Speedup ≅
T1

T� + T1/p =
p

1 + pT�/T1

This can be viewed as a generalized form of Amdahl’s law

A large value for T∞/T1 is an indication that the task has a
great deal of sequential dependencies, which limits the
speedup to at most T1/T∞ with any number of processors

A small value for T∞/T1 allows us to approach the ideal
speedup of p with p processors

Good-news corollary 1: T∞ ≤ Tp < 2T∞ for p ≥ T1/T∞

Good-news corollary 2: T1/p ≤ Tp < 2T1/p for p ≤ T1/T∞

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 327

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

ABCs of Parallel Process ing
in on e transparency* (parhami@ece.ucsb.edu)

* Originally appeared in Computer Architecture News, Vol. 27, No. 1, p. 2, March 1999.

 f = unparallelizable fraction of a task (sequential overhead)
 Tx = running time of a task when executed on x processors

A Amdahl’s Law (Speed-up Fo rmula)
 Bad news: Sequential overhead will kill you, since:

 Speed-up =
T1

Tp
 ≤

1

 f +
1 – f

p

 ≤ min (
1
f , p)

 Morale: For f = 0.1, e.g., the speed-up will be at best 10,
 no matter what the number of processors (peak OPS).

B Brent’s Scheduling Th eorem
 Good news: Optimal scheduling is a very difficult problem,
 but even a naive scheduling algorithm can ensure:

T1

p ≤ Tp <
T1

p + T∞ =
T1

p (1 +
p

T1/T �
)

 Result: For a reasonably parallel task (with small T∞),
 or for a suitably small number of processors (say, p < T1/T∞),
 good speed-up and high utilization are attainable.

C Cost-Effectiveness Adage
 Real news: The most cost-effective parallel solution
 to a given problem is often not the one with:
 Highest peak OPS (communication can kill you)
 Greatest speed-up (at what cost?)
 Best utilization (hardware busy doing what?)
 Analogy: Mass transit (SIMD) might be more cost-effective
 than using private vehicles (MIMD) even if it is slower
 and leads to many empty seats on some trips.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 328

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

17.6 Load Balancing and Dataflow Systems

Task running times are not constants

A processor may run out of things to do before other
processors complete their assigned tasks

Some processors may remain idle for long periods of time
as they wait for prerequisite tasks to be executed

In these cases, a load balancing policy may be applied

As we learn about execution times and interdependencies
of tasks at run time, we may switch as yet unexecuted
tasks from an overloaded processor to a less loaded one

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 329

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Load balancing can be initiated by a lightly loaded or by an
overburdened node (receiver/sender-initiated)

Unfortunately, load balancing may involve a great deal of
overhead that reduces the potential gains

The ultimate in automatic load-balancing is a self-
scheduling system that tries to keep all processing
resources running at maximum efficiency

There may be a central location to which processors refer
for work and where they return their results

An idle processor requests that it be assigned new work by
sending a message to this central supervisor and in return
receives one or more tasks to perform

This works nicely for tasks with small contexts and/or
relatively long running times

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 330

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Dataflow systems

Hardware-level implementation of self-scheduling scheme

A dataflow computation is characterized by a dataflow
graph (we consider only decision/loop-free graphs)

Tokens are used to keep track of data availability

Once tokens appear on all inputs of a node, the node is
enabled or “fired”, resulting in tokens to be removed from
its inputs and placed on each of its outputs

Static dataflow: an edge can carry no more than one token

Dynamic dataflow: multiple tagged tokens can appear on
the edges and are “consumed” after matching their tags

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 331

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

x

x x

y Output

1

2 3

1

v 1

v 3

v 5

v 2
v 4

v 6

x

x x

y Output

1

2 3

1

v 1

v 3

v 5

v 2
v 4

v 6

Fig. 17.9. Example dataflow graph with token distribution at the

outset (left) and after 2 time units (right).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 332

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18 Data Storage, Input, and Output

Back to TOC

Chapter Goals
● Elaborate on problems of data distribution

and caching
● Deal with the memory/processor speed gap

which is particularly severe in distributed-
memory systems

● Learn about parallel I/O technology

Chapter Contents
● 18.1. Data Access Problems and Caching
● 18.2. Cache Coherence Protocols
● 18.3. Multithreading and Latency Hiding
● 18.4. Parallel I/O Technology
● 18.5. Redundant Disk Arrays
● 18.6. Interfaces and Standards

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 333

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18.1 Data Access Problems and Caching

Processor-memory speed gap aggravated by parallelism

 Global shared memory access mechanism slower

 Distributed memory penalizes remote accesses

Remedies

 Data distribution -- good with static data sets

 Data caching -- introduces coherence problems

 Latency tolerance (hiding) -- e.g., multithreading

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 334

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Why data caching works

Hit rate r = fraction of accesses satisfied by the cache
 Ceff = Cfast + (1 – r)Cslow

Cache parameters: size, block length (line width),
placement policy, replacement policy, write policy

Example: two-way set-associative cache
Placement Option 0 Placement Option 1

.

.

.

Tag
State bits

--- One cache block ---Tag
State bits

--- One cache block ---

.

.

.

.

.

.

.

.

.

Block
address

Word
offset

The two candidate words
and their tags are read out

Tag Index

Address in

Mux
0 1

Data outCache miss

=

=Com-
 pare

Com-
 pare

Fig. 18.1. Data storage and access in a two-way set-associative

cache.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 335

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18.2 Cache Coherence Protocols

0

1

Processor-
to-memory

network

p–1

Proc.-
to-

proc.
net-
work

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

w
x

y

z ′

w
y ′

w
z ′

x
z

w

x

y ′

z

Multiple
consistent

Single
consistent

Single
inconsistent

Invalid

Fig. 18.2. Various types of cached data blocks in a parallel

processor with global memory and processor caches.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 336

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Example: a bus-based write-invalidate write-back snoopy
cache coherence protocol

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU
write miss:
Write back
the block,
Put write
miss on bus

CPU read hit

CPU
read miss:
Put read
miss on bus

Bus write miss for this block:
Write back the block

Bus write miss for this block

CPU read miss:
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

Fig. 18.3. Finite-state control mechanism for a bus-based

snoopy cache coherence protocol.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 337

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Example: state transition diagram for a directory entry in a
directory-based cache coherence protocol

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation,
return data value, sharing set = {c}

Read miss: Return data value,
sharing set = sharing set + {c}

Data write-back:
Sharing set = { }

Read miss: Return data value,
sharing set = {c}Write miss: Return data value,

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},
return data value

Read miss: Fetch data value, return data value,
sharing set = sharing set + {c}

Fig. 18.4. States and transitions for a directory entry in a

directory-based coherence protocol (c denotes the
cache sending the message).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 338

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18.3 Multithreading and Latency hiding

Sequential
thread

Thread
computations

Remote
accesses

Scheduling
overhead

Synchronization
overhead

Idle
time

Fig. 18.5. The concept of multithreaded parallel computation.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 339

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18.4 Parallel I/O Technology

Track 0
Track 1

Track c – 1

Sector

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

Fig. 18.6. Moving-head magnetic disk elements.

Moving-head disk access =

 seek cylinder + rotate to sector + transfer data

Track 0 Track 1

Track c–1

Fig. 18.7. Head-per-track disk concept.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 340

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18.5 Redundant Disk Arrays

 0 0
Copy

Mirrored disks

 0 1 2 3 Parity

Bit- or byte-level striping
with parity or checksum

Parity or checksum applied
to sectors; parity disk still
a performance bottleneck

0 1 2 3 P

4 5 6 P7

8 9 P10 11 RAID4

 1 1
Copy RAID1

Distributed parity
(only "small" writes
suffer an overhead)

0 1 2 3 P

4 5 6 P 7

8 9 P 10 11 RAID5

RAID3

(RAID 2 used Hamming code
for error correction)

(RAID 0 used multiple disks for
higher data rate; no redundancy)

2

0

1

2

0

1

Fig. 18.8. Alternative data organizations on redundant disk

arrays.

Computing sector parity for a disk write operation

 New parity = New data ⊕ Old data ⊕ Old parity

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 341

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

18.6 Interfaces and Standards

Scalable Coherent Interface (SCI) standard

Processor 0 Processor 1 Processor 2 Processor 3

Memory

Noncoherent
data blocks Coherent

data block

 Cache 0 Cache 1 Cache 2 Cache 3

Head pointer

Fig. 18.9. Two categories of data blocks and the structure of the

sharing set in the Scalable Coherent Interface.

High-Performance Parallel Interface (HiPPI) standard:

 point-to-point connectivity between two devices

 (typically a supercomputer and a peripheral)

 0.8 or 1.6 Gb/s over a (copper) cable of 25m or less

 uses very wide cables with clock rate of only 25 MHz

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 342

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19 Reliable Parallel Processing

Back to TOC

Chapter Goals
● Develop appreciation of reliability problems

in parallel systems
● Examine key methods for dealing with such

problems at various levels, from circuit
redundancy to robustness features for
algorithms or applications

Chapter Contents
● 19.1. Defects, Faults, . . . , Failures
● 19.2. Defect-Level Methods
● 19.3. Fault-Level Methods
● 19.4. Error-Level Methods
● 19.5. Malfunction-Level Methods
● 19.6. Degradation-Level Methods

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 343

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19.1 Defects, Faults, . . . , Failures

The multilevel model of dependable computing

Abstraction level Dealing with deviant

Defect / component atomic parts

Fault / logic signal values or decisions

Error / information data or internal states

Malfunction / system functional behavior

Degradation / service performance

Failure / result outputs or actions.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 344

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED

Fig. 19.1. System states and state transitions in our multilevel
model.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 345

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Wall heights represent
interlevel latencies

Inlet valves represent
avoidance techniques

Drain valves represent
tolerance techniques

Concentric reservoirs are
analogues of the six model
levels (defect is innermost)

I I I I I I

I I I I I I

Fig. 19.2. An analogy for the multilevel model of dependable

computing.

Fault tolerance in parallel systems

Opportunities:

 multiple resources of same type (built in spares)
 load redistribution
 graceful degradation

Difficulties:

 change in structure due to faults (e.g., 2D mesh)
 bad units disturbing good ones (e.g., on a bus)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 346

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19.2 Defect-Level Methods

Defects are caused in two ways (sideways and downward
transitions into the defective state of Fig. 19.1)

 Physical design slips leading to defective components
 Component wear/aging or harsh operating conditions

A dormant or ineffective defect is extremely hard to detect

Methods for coping with defects during dormancy

 Periodic maintenance
 Burn-in testing

Goal of defect tolerance methods

 Improving the manufacturing yield
 dynamic reconfiguration during system operation

 Spare or
Defective

P0 P1 P2 P3

Bypassed

I/O

Test

I/O

Test

Fig. 19.3. A linear array with a spare processor and

reconfiguration switches.

 Spare or
Defective

Mux
P0 P1 P2 P3

Fig. 19.4. A linear array with a spare processor and embedded

switching.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 347

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Pa Pb

Pc Pd

Pa Pb

Pc Pd

Mux

Fig. 19.5. Two types of reconfiguration switching for 2D arrays.

Spare
Row

Spare Column

Fig. 19.6. A 5 ×× 5 working array salvaged from a 6 ×× 6 redundant
mesh through reconfiguration switching.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 348

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fig. 19.7. Seven faulty processors and their associated

compensation paths.

No compensation path
exists for this faulty node

A set of three faults, one of which cannot be accommodated

by the compensation-path method.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 349

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19.3 Fault-Level Methods

Hardware replication

 Duplication with comparison

 Triplication with voting
Coded
inputs Decode

 1

Decode
 2

Compute
 1

Compare

Mismatch
detected

Encode

Coded
outputs

Coded
inputs Decode

 1

Decode
 2

Decode
 3

Vote Encode

Coded
outputs

Non-codeword
detected

Compute
 2

Compute
 3

Compute
 1

Compute
 2

Fig. 19.8. Fault detection or tolerance with replication.

These schemes involve high redundancy: 100 or 200%

Lower redundancy is possible in some cases: e.g.,
periodic balanced sorters tolerate certain faults with extra
stages

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 350

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Fault detection and bypassing (extra-stage MIN)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

q Columns
0 1 2

q+1 Columns

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 2 3

Fig. 19.9. Regular butterfly and extra-stage butterfly networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 351

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19.4 Error-Level Methods

Protected
 by
Encoding

Input

Encode

Send

Store

Send

Decode

Output

Manipulate

Unprotected

Fig. 19.10. A common way of applying information coding

techniques.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 352

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

INPUT

ENCODE

SEND

STORE

SEND

DECODE

OUTPUT

MANIPULATE
Protected

by Encoding

Unprotected

Fig. 19.10. A common way of applying information coding

techniques.

Special coding methods; e.g., arithmetic codes

Robust data structures

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 353

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Algorithm-based error tolerance

 M =






 2 1 6
 5 3 4
 3 2 7

 Mr =






 2 1 6 1
 5 3 4 4
 3 2 7 4

 Mc =







 2 1 6
 5 3 4
 3 2 7
 2 6 1

 Mf =







 2 1 6 1
 5 3 4 4
 3 2 7 4
 2 6 1 1

If X, Y, and Z are matrices satisfying Z = X × Y

 Zf = Xc × Yr

In a full-checksum matrix, any single erroneous element
can be corrected and any three erroneous elements can
be detected

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 354

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19.5 Malfunction-Level Methods

System-level testing and diagnosis

Start from a core and expand to the whole system

Modules test each other and draw inferences from results

The theory of malfunction diagnosis

Given a diagnosis matrix, identify:

 all malfunctioning units

 at least one malfunctioning unit

 a subset guaranteed to contain all malfunctions

P P

P

x x 1 0 1
x x 1 0 x
1 1 x 0 x
0 0 0 x 0
1 x x 0 x

D =0 2

4

P1

P3

Fig. 19.11. A testing graph and the resulting diagnosis matrix.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 355

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Low-redundancy sparing
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

11 12 13 14

15 0 1

 2 3 4 5

 6 7 8 9

10Spare

Malfn.

Fig. 19.12. Reconfigurable 4 ×× 4 mesh with one spare.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 356

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

19.6 Degradation-Level Methods

Fig. 19.13 depicts the performance variations in three
types of parallel systems:

S1: fail-hard system with performance Pmax up to the failure
time t1 as well as after off-line repair at time t'1

S2: fail-soft system with gradually degrading performance
level and off-line repair at time t2

S3: fail-soft system with on-line repair which, from the
viewpoint of an application that requires a performance
level of at least Pmin, postpones its failure time to t3

Performance

P
max

Pmin Performance Threshold

Off-Line Repair

t t' t t' t t" t'

Time

1 1 2 2 3 2 3

S1

S 3

S 2

S , S2 3

S 2

S 3

S 1

Fig. 19.13. Performance variations in three example parallel

computers.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 357

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Long-running computation

Divided into 6 segments

Checkpointing overhead

Time

Completion
w/o checkpoints

Completion
with checkpoints

Task 0

Task 1

Task 2

Consistent checkpoints Inconsistent checkpoints

Checkpoints added

Fig. 19.14. Checkpointing, its overhead, and pitfalls.

 0 1 2

 6 5 4

 7 8 9

 13 12 11 10

 3 0 1 2

 6 5 4

 7 8 9

 13121110

 3

Fig. 19.15. Two types of incomplete meshes, with and without

bypass links.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 358

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

A system fails when its degradation tolerance capacity is
exhausted and, as a result, its performance falls below an
acceptable threshold

As degradations are themselves consequences of
malfunctions, it is interesting to skip a level and relate
system failures directly to malfunctions

It has been noted that failures in a gracefully degrading
system can be attributed to:

a. Isolated malfunction of a critical subsystem

b. Catastrophic (multiple space-domain) malfunctions

c. Accumulation of (multiple time-domain) malfunctions

d. Resource exhaustion causing
inadequate performance or total shutdown

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 359

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20 System and Software Issues

Back to TOC

Chapter Goals
● Deal with some system, software, and

application topics so that there isn’t a
complete void in these areas

● Review key issues and introduce
references for further study on these topics

Chapter Contents
● 20.1. Coordination and Synchronization
● 20.2. Parallel Programming
● 20.3. Software Portability and Standards
● 20.4. Parallel Operating Systems
● 20.5. Parallel File Systems
● 20.6. Hardware/Software Interaction

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 360

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20.1 Coordination and Synchronization

Process B:
–––
–––

receive x
–––
–––
–––
–––

 B
waits

Time

Process A:
–––
–––
–––
–––
–––
–––
send x
–––
–––
–––
–––
–––
–––

t

t

t

1

2

3

A B
Schematic
representation
of data
dependence

Details of
dependence

{
Commu-
nication
latency

Fig. 20.1. Automatic synchronization in message-passing

systems.

With shared memory, synchronization is accomplished by
accessing specially designated shared control variables

A popular way is through atomic fetch-and-add instruction

The fetch-and-add instruction has two parameters:

 A shared variable x and an increment a

If the current value of x is c, fetch-and-add(x, a) returns c
to the process and overwrites x = c with the value c + a

A second process executing fetch-and-add(x, b) then gets
the now current value c + a and modifies it to c + a + b

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 361

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Why the atomicity of fetch-and-add is important

Consider the following timing of events if each of two
processes were to execute fetch-and-add by

 reading the x value from memory into an accumulator

 adding its increment to the accumulator

 storing the sum back into x

The three steps of fetch-and-add for the two processes
may be interleaved in time as follows:

 Process A Process B Comments
Time step 1 read x A’s accumulator holds c
Time step 2 read x B’s accumulator holds c
Time step 3 add a A’s accumulator holds c + a
Time step 4 add b B’s accumulator holds c + b
Time step 5 store x x holds c + a
Time step 6 store x x holds c + b

This leads to incorrect semantics, as both processes
receive the same value c in return and the final value of x
in memory will be c + b rather than c + a + b

fetch-and-add(x, a)

Combining
 Switch

fetch-and-add(x, b)

fetch-and-add(x, a+b)

c

c

c+a
aSave

Fig. 20.2. Combining of two fetch-and-add requests.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 362

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Barrier synchronization: A processor, in a designated set,
must wait at a barrier until each of the other processors
has arrived at the corresponding point in its computation

Strategy 1: Reduce the synchronization overhead

Using a single AND tree: if it is possible for a processor to
be randomly delayed between raising it flag and checking
the AND tree output, then some processors might cross
the barrier and lower their flags before others have had a
chance to examine the AND tree output

Using two AND trees that are connected to the set and
reset inputs of a flip-flop

Set
AND
tree

fo
fo
fo

fo

0
1
2

p–1 S

R

Q

Reset
AND
tree

fe
fe
fe

fe

0
1
2

p–1

Barrier
SignalFlip-

flop

Fig. 20.4. Example of hardware aid for fast barrier

synchronization [Hoar96].

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 363

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Once we provide a mechanism like Fig. 20.4 for barrier
synchronization, it is only a small step to generalize it to a
“global combine” (semigroup computation) facility

The AND tree implements a semigroup computation using
the binary AND operator. The generalization might involve
doing OR and XOR logical reductions as well

P1P0 P3P2 P1P0 P
3

P2

Time

Synchro-
nization
overhead

Done

Done

Fig. 20.3. The performance benefit of less frequent

synchronization.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 364

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Strategy 2: Perform less frequent synchronization

Bulk-synchronous parallel (BSP) mode of computation

Synchronization of processors occurs once every L time
steps, where L is a periodicity parameter

A parallel computation consists of a sequence of
supersteps

In one superstep, each processor performs a task
composed of local computation, message transmissions,
and message receptions from other processors

Data received in messages will not be used in the current
super-step but rather beginning with the next super-step

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 365

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20.2 Parallel Programming

Approaches to parallel program development:

a. Parallelizing compilers
b. Data-parallel programming
c. Shared-variable programming
d. Communicating processes
e. Functional programming

Parallelizing compiler

Each iteration of the i loop below can be assigned to a
different processor for asynchronous execution;
successive iterations are totally independent

 for i = 2 to k do
 for j = 2 to k do
 ai,j : = (ai,j–1 + ai,j+1)/2

 endfor
 endfor

The irony in parallelizing compilers:

Force a naturally parallel computation into sequential mold

Apply the powers of an intelligent compiler to determine
which of these artificially sequentialized computations can
be performed concurrently!

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 366

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Data-parallel programming

The APL programming language

 C ← A + B array add

 x ← +/V reduction

 U ← +/V × W inner product

 A write-only language?

Fortran-90 (superset of Fortran-77)

Extensions that include facilities for array operations

 A = SQRT(A) + B ** 2

 WHERE (B /= 0) A = A / B

When run on a distributed-memory machine, some
Fortran-90 constructs imply interprocessor communication

 A = S/2 assign scalar value to array

 A(I:J) = B(J:I:–1) assign a section of B to A

 A(P) = B A(P(I)) = B(I) for all I}

 S = SUM(B) gather operation

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 367

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

High-performance Fortran (HPF) extends Fortran-90 by

 adding new directives and language constructs

 imposing some restrictions for efficiency reasons

HPF includes a number of compiler directives that assist
the compiler in data distribution

These directives, which do not alter the semantics of the
program, are presented as Fortran-90 comments (begin
with the comment symbol “!”)

If an HPF program is presented to a Fortran-90 compiler, it
will be compiled, and subsequently executed, correctly

As an example, the HPF statement

 !HPF ALIGN A(I) WITH B(I + 2)

is a hint to the compiler that it should distribute the
elements of arrays A and B among processors or memory
banks such that A(I) and B(I + 2) are stored together

If this statement is ignored, the program will still execute
correctly, but perhaps less efficiently.

Data-parallel extensions have also been implemented for
other popular programming languages

 C* language introduced in 1987 by TMC

 pC++, based on the popular C++

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 368

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Shared-variable programming

Concurrent Pascal, Modula-2, Sequent C

Communicating processes

Languages: Ada, OccamLanguage-independent libraries:
MPI standard

Functional programming

Based on reduction and evaluation of expressions

There is no concept of storage, assignment, or branching

Results are obtained by applying functions to arguments

One can view a functional programming language as
allowing only one assignment of value to each variable,
with the assigned value maintained throughout the course
of the computation

Thus, computations have the property of referential
transparency or freedom from side effects

Due to inefficiencies inherent in the single-assignment
approach, practical application of functional programming
has been limited to

 Lisp-based systems (MIT’s Multilisp)

 Data-flow architectures (Manchester U’s SISAL)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 369

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20.3 Software Portability and Standards

Portable parallel applications elusive

Program portability requires strict adherence to design and
specification standards that provide machine-independent
views or logical models

Programs are developed according to these logical models
and are then adapted to specific hardware architectures by
automatic tools (e.g., compilers)

HPF is an example of a standard language that, if
implemented correctly, should allow programs to be easily
ported across platforms

Two other logical models are: MPI and PVM

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 370

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Message passing interface (MPI) standard

Specifies a library of functions that implement the
message-passing model of parallel computation

Was developed by the MPI Forum, a consortium of parallel
computer vendors and software development specialists

As a standard, MPI provides a common high-level view of
a message-passing environment that can be mapped to
various physical systems

Software implemented using MPI functions can be easily
ported among machines that support the MPI model

MPI includes functions for:

Point-to-point communication
 (Blocking and non-blocking send/receive, ...)

Collective communication
 (Broadcast, gather, scatter, total exchange, ...)

Aggregate computation
 (Barrier, reduction, and scan or parallel prefix)

Group management
 (Group construction, destruction, inquiry, ...)

Communicator specification
 (Inter-/intracommunicator construction, destruction, ...)

Virtual topology specification
 (Various topology definitions, ...)

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 371

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Parallel virtual machine (PVM)

Software platform for developing and running parallel
applications on a set of independent, heterogeneous,
computers that are interconnected in a variety of ways

PVM defines a suite of user-interface primitives that
support both the shared-memory and the message-
passing parallel programming paradigms

These primitives provide functions similar to those of MPI
and are embedded within a procedural host language
(usually Fortran or C)

A PVM support process or daemon (PVMD) runs
independently on each host, performing message routing
and control functions

PVMDs perform the following functions:

 Exchange network configuration information
 Allocate memory to in-transit packets
 Coordinate task execution on associated hosts

The available pool of processors may change dynamically

Names can be associated with groups or processes

Group membership can change dynamically

One process can belong to many groups

Group-oriented functions take group names as arguments
 e.g., broadcast and barrier synchronization

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 372

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20.4 Parallel Operating Systems

Classes of parallel processors:

Back-end, front-end, stand-alone

Back-end system: the host computer has a standard OS,
and manages the parallel processor essentially like a
coprocessor or I/O device

Front-end system: similar to backend, except that the
parallel processor handles its own data (e.g., an array
processor doing radar signal processing) and relies on the
host computer for certain post-processing functions,
diagnostic testing, and interface with the users

Stand-alone system: a special OS is included that can run
on one, several, or all of the processors in a floating or
distributed (master-slave or symmetric) fashion

 Most parallel OSs are based on Unix

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 373

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

The Mach operating system

Unix Compatibility

User
Processes

Servers Distr.
Shared
 Mem.

Proc.
Alloc.

Ext'l
Mem.Network

Message

User Mode

Supervisor Mode

Mach Kernel: Virtual Memory Management,
Port/Message Management, and Scheduling

Fig. 20.5. Functions of the supervisor and user modes in the

Mach operating system.

To make a compact, modular kernel possible, Mach
incorporates a small set of basic abstractions:

a. Task: A “container” for resources like virtual
address space and communication ports

b. Thread: An executing program with little context; a
task may contain many threads

c. Port: A communication channel along with certain
access rights

d. Message: A basic unit of information exchange

e. Memory object: A “handle” to part of a task’s virtual
memory

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 374

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Unlike Unix whose memory consists of contiguous areas,
the virtual address space in Mach is composed of
individual pages with separate protection and inheritance

Messages in Mach are communicated via ports

Messages are typed to indicate the data type they carry
and can be communicated over a port only if the
sending/receiving thread has the appropriate access rights

For efficiency purposes, messages that involve a large
amount of data do not actually carry the data; instead a
pointer to the actual data pages is transmitted

Copying of the data to the receiver’s pages does not occur
until the receiver accesses the data

So, even though a message may refer to an extensive
data set, only the segments actually referenced by the
receiver will ever be copied

The Mach scheduler has some interesting features

Each thread is assigned a time quantum upon starting its
execution. When the time quantum expires, a context
switch is made to a thread with highest priority, if such a
thread is awaiting execution

To avoid starvation of low-priority threads, priorities are
reduced based on “age”; the more CPU time a thread
uses, the lower its priority becomes. This policy not only
prevents starvation, but also tends to favor interactive
tasks over computation-intensive ones

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 375

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20.5 Parallel File Systems

A parallel file system efficiently maps data access requests
by processors to high-bandwidth data transfers between
primary and secondary memory devices

To avoid a performance bottleneck, a parallel file system
must itself be a highly parallel and scalable program that
efficiently deals with many access scenarios:

a. Concurrent file access by independent processes

b. Shared access to files by cooperating processes

c. Access to large data sets by a single process

User space in
(distributed) shared memory

User process

Message

High-bandwidth data transfer

File system
library

Read

Message

DISP: READ: COPYRD:
Cache access

DISKRD:
Disk access

File system
dispatcher
process

File system
worker
thread

Create
thread

Fig. 20.6. Handling of a large read request by a parallel file

system [Hell93].

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 376

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

20.6 Hardware/Software Interaction

A parallel application program should be executable, with
little or no modification, on a variety of parallel hardware
platforms that differ in architecture and scale

Changeover from an 8-processor to 16-processor
configuration, say, should not require modification in the
system or application programs

Ideally, the upgrade should be done by simply plugging in
new processors, along with interconnects, and rebooting

Thus, workstation clusters are ideal in that they are readily
scalable both in time and space

Scalability in time: introduction of faster workstations and
interconnects leads to a corresponding increase in system
performance with little or no redesign

Scalability in space: computational power can be
increased by simply plugging in more processors

Many commercially available parallel processors are
scalable in space within a range (say 4-256 processors)

Scalability in time is difficult at present but may be made
possible in future through the adoption of implementation
and interfacing standards

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 377

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Users are also interested in software/application scalability
(for degradation tolerance and/or portability)

Scaled speedup and isoefficiency are relevant here

We use parallel processing not just to speed up the
solution of fixed problems but also to make the solution of
larger problems feasible with realistic turn-around times

Speedup, with the problem size n explicitly included, is:

 S(n, p) =
T(n, 1)
T(n, p)

The total time pT(n, p) spent by the processors can be
divided into computation time C(n, p) and overhead time

 H(n, p) = pT(n, p) – C(n, p)

Assuming for simplicity that we have no redundancy

 C(n, p) = T(n, 1) H(n, p) = pT(n, p) – T(n, 1)

 S(n, p) =
p

1 + H(n, p)/T(n, 1)

 E(n, p) = S(n, p)/p =
1

1 + H(n, p)/T(n, 1)
When the overhead per processor, H(n, p)/p, is a fixed
fraction f of T(n, 1), speedup and efficiency become:

 S(n, p) =
p

1 + pf < 1/f E(n, p) =
1

1 + pf

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 378

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Assume that efficiency is to be kept above 1/2, but the
arguments apply to any fixed efficiency target

To have E(n, p) > 1/2, we need pf < 1 or

 p < 1/f

That is, for a fixed problem size and under the assumption
of the per-processor overhead being a fixed fraction of the
single-processor running time, there is an upper limit to the
number of processors that can be applied cost-effectively

Going back to our initial efficiency equation, we note that
keeping E(n, p) above 1/2 requires:

 T(n, 1) > H(n, p)

Generally, the cumulative overhead H(n, p) increases with
both n and p, whereas T(n, 1) only depends on n

p

T(n, 1)

H(n, p)fixed n

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 379

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

For many problems, good efficiency can be achieved
provided that we sufficiently scale up the problem size

The amount of growth in problem size that can counteract
the increase in machine size in order to achieve a fixed
efficiency is referred to as the isoefficiency function n(p)
which can be obtained from the equation:

 T(n, 1) = H(n, p)

With the above provisions, a scaled speedup of p/2 or
more is achievable for problems of suitably large size

Note, however, that the parallel execution time

 T(n, p) =
T(n, 1) + H(n, p)

p

grows as we scale up the problem size to obtain good
efficiency

Thus, there is a limit to the usefulness of scaled speedup

In particular, when there is a fixed computation time
available due to deadlines (as in daily or weekly weather
forecasting), the ability to achieve very good scaled
speedup may be irrelevant

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 380

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Part VI Implementation Aspects

Back to TOC

Part Goals
● Study real parallel machines, MIMD & SIMD
● Learn about parallel machines that
 ● are of historical significance
 ● incorporate key ideas, influencing the
 development of parallel processing
 ● are currently in production and/or use
● Put our knowledge in historical context

Part Contents
● Chapter 21: Shared-Memory MIMD Machines
● Chapter 22: Message-Passing MIMD Machines
● Chapter 23: Data-Parallel SIMD Machines
● Chapter 24: Past, Present, and Future

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 381

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21 Shared-Memory MIMD Machines

Back to TOC

Chapter Goals
● Survey topics pertaining to the practical

implementation and performance of shared
memory

● Case studies of research prototypes and
production machines that use global or
distributed shared memory

Chapter Contents
● 21.1. Variations in Shared Memory
● 21.2. MIN-Based BBN Butterfly
● 21.3. Vector-Parallel Cray Y-MP
● 21.4. Latency-Tolerant Tera MTA
● 21.5. CC-NUMA Stanford DASH
● 21.6. SCI-Based Sequent NUMA-Q

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 382

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21.1 Variations in Shared Memory

Central
Main
Memory

Distributed
Main
Memory

Single Copy of
Modifiable Data

UMA

BBN Butterfly
 Cray Y-MP

COMA
CC-NUMA

Tera MTA

NUMA

 Stanford DASH
Sequent NUMA-Q

CC-UMA

Multiple Copies of
 Modifiable Data

Fig. 21.1. Classification of shared-memory hardware

architectures and example systems that will be studied
in the rest of this chapter.

16 × 16
crossbar

Mem
0

modules

.

.

.

Mem
1

Mem
15

.

.

.

Cache

Cache

Cache

Proc
0

Proc
1

Proc
15

 Clock

 Bus
control

BI

BI

BI

Map

Map

Map

Bus
interface

Fig. 21.2. Organization of the C.mmp multiprocessor.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 383

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Shared-memory consistency models:

a Sequential consistency (strictest and most intuitive);
it mandates that interleaving of reads and writes be
the same from the viewpoint of all processors. This
provides the illusion of a FCFS single-port memory.

b Processor consistency (less strict); it only mandates
that writes be observed in the same order by all
processors. This allows reads to overtake writes,
providing better performance due to optimizations
afforded by out-of-order execution.

c Weak consistency separates ordinary memory
accesses from synchronization accesses and only
mandates that memory become consistent on
synchronization accesses. Synch accesses must
wait for completion of all previous accesses, while
ordinary read and write accesses can proceed as
long as there is no pending synch access.

d Release consistency is similar to weak consistency
but recognizes two synch accesses, called “acquire”
and “release”, with protected shared accesses
sandwiched between them. Ordinary read/write
accesses can proceed only when there is no
pending acquire access from the same processor
and a release access must wait for all reads and
writes to be completed.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 384

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21.2 MIN-Based BBN Butterfly

MC 68000
Processor

Processor Node
 Controller

Memory Manager

EPROM

 1 MB
Memory

 Daughter Board Connection
for Memory Expansion (3 MB)

 Switch
Interface

To I/O
Boards

Fig. 21.3. Structure of a processing node in the BBN Butterfly.

4 4×

4 4×

4 4×

4 4×

Processing Node 0

Processing Node 15

4 4×

4 4×

4 4×

4 4×

Fig. 21.4. A small 16-node version of the multistage

interconnection network of the BBN Butterfly.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 385

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21.3 Vector-Parallel Cray Y-MP

V0

V7
V6

V5
V4

V3
V2

V1
 0
 1
 2
 3

 .
 .
 .

62
63

Vector
Registers

Vector
Integer
Units Shift

 Add

Logic

Weight/
Parity

Floating-
Point
Units Multiply

 Add

Reciprocal
Approx.

Scalar
Integer
Units Shift

 Add

Logic

Weight/
Parity

T Registers
(8 64-bit) S Registers

(8 64-bit)

From address
registers/units

Central
Memory

Inter-
Processor
Commun.

CPU

64 bit

64 bit

32 bit

Input/Output

Fig. 21.5. Key elements of the Cray Y-MP processor. Address
registers, address function units, instruction buffers,
and control not shown.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 386

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

P0

P1

P2

P3

P4

P5

P6

P7

4 4×

8 8×

1 8×

8 8×

8 8×

8 8×

4 4×

4 4×

4 4×

4 4×

4 4×

4 4×

4 4×

Sections Subsections
0, 4, 8, ... , 28
32, 36, 40, ... , 92

1, 5, 9, ... , 29

2, 6, 10, ... , 30

3, 7, 11, ... , 31

227, 231, ... , 255

Memory Banks

Fig. 21.6. The processor-to-memory interconnection network of

Cray Y-MP.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 387

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21.4 Latency-Tolerant Tera MTA

Memory Internal Pipeline

M A C

Instr. Fetch

Interconnection Network

Issue Pool

Retry Pool

Fig. 21.7. The instruction execution pipelines of Tera MTA.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 388

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21.5 CC-NUMA Stanford Dash

Processor
cluster

Processor
cluster

Processor
cluster

Main memory

Reply mesh

Request mesh

Processor
cluster

Directory
& network
interface

Level-2 cache

Processor

I-cache D-cache

Wormhole routers

Fig. 21.8. The architecture of Stanford DASH.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 389

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

21.6 SCI-Based Sequent NUMA-Q

 IQ-link

Fig. 21.9. The physical placement of Sequent’s quad

compon ents on a rackmoun t baseboard (not to sca le).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 390

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

P6

P6

P6

P6
OPB

OPB

Memory

IQ-Link

PCI/FC

PCI/LAN

MDP

Console
Bridge

Bridge

Quad

Quad

Quad

SCSI

SCSI

Peripheral
bay

Peripheral
bay

Private
Ethernet

IQ-Plus
(SCI
ring)

.
 .
 .

Public
LAN

100 MB/s Fibre Channel

1 GB/s Interquad SCI link

Orion PCI bridge

4 x 33 MB/s
PCI buses

533 MB/s local bus
(64 bits, 66 MHz)

Pentium Pro
(P6) proc’s

Fig. 21.10. The architecture of Sequent NUMA-Q 2000.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 391

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

P6
bus

SCI in

SCI out

Bus interface
 controller

Directory
controller

Interconnect
 controller

 Remote
cache data

 Local
directory

Remote
 tags

 Local
directory

Remote
 tags

 Bus-side
snooping tags

Network-side
 tags

32 MB

Fig. 21.11. Block diagram of the IQ-Link board.

SCI in

SCI out

 Stripper Assemble Elastic
buffer

Request
receive Q

Response
receive Q

Request
 send Q

Response
 send Q

Bypass
 FIFO

 Disassemble

Fig. 21.12. Block diagram of IQ-Link’s interconn ect controller.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 392

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22 Message-Passing MIMD Machines

Back to TOC

Chapter Goals
● Survey topics pertaining to the practical

implementation and performance of
message passing mechanisms

● Case studies of research prototypes and
production machines that use explicit
message passing for communication

Chapter Contents
● 22.1. Mechanisms for Message Passing
● 22.2. Reliable Bus-Based Tandem NonStop
● 22.3. Hypercube-Based nCUBE3
● 22.4. Fat-Tree-Based Connection Machine 5
● 22.5. Omega-Network-Based IBM SP2
● 22.6. Commodity-Based Berkeley NOW

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 393

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22.1 Mechanisms for Message Passing

 Q

 Q

 Q

 Q

LC

LC

LC

LC

 QLC

 QLC

 QLC

 QLC

 Switch

LC LC

Routing/Arbitration

Q Q

Link Controller

Message Queue

Input
Channels

Output
Channels

Output QueueInput Queue

Injection
Channel

Ejection
Channel

Fig. 22.1. The structure of a generic router.

Inputs

Outputs

 Crosspoint switch

Through
(straight)

Crossed
(exchange)

Lower
broadcast

Upper
broadcast

Fig. 22.2. Example 4 ×× 4 and 2 ×× 2 switches used as building

blocks for larger networks.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 394

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Coarse-
Grain

Medium-
Grain

Shared-Medium
 Network

Tandem NonStop
 (Bus)

Berkeley NOW
 (LAN)

 nCUBE3

Router-Based
 Network

TMC CM-5
 IBM SP2

Switch-Based
 Network

Fine-
Grain

Fig. 22.3. Classification of message-passing hardware

architectures and example systems that will be studied
in this chapter.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 395

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22.2 Reliable Bus-Based Tandem Nonstop

I/O I/O

Processor
 and
 Memory

I/O I/O I/O I/O I/O I/O

Dynabus

Controller

Processor
 and
 Memory

Processor
 and
 Memory

Processor
 and
 Memory

I/O

Fig. 22.4. One section of the Tandem NonStop Cyclone system.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 396

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Four-processor
sections

Dynabus +

Fig. 22.5. Four four-processor sections interconnected by

Dynabus+.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 397

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22.3 Hypercube-Based nCUBE3

Host

Host

I/O

I/O

I/O

I/O

Fig. 22.6. An eight-node nCUBE architecture.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 398

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22.4 Fat-Tree-Based Connection Machine 5

P

M

P

M

P

M

P

M

P

M

CP

M

CP

M

CP

M
I/O I/O

 Control
Network

Diagnostic
 Network

 Data
Network

 Up to 16K
Processing Nodes

 One or more
Control Processors

.

Graphics
 Output

HIPPI or VME
 Interface

Data
Vault

Fig. 22.7. The overall structure of CM-5.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 399

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Control
Network

Data
Network

Network
Interface

 SPARC
Processor

MemoryMemory MemoryMemory

Vector Unit

Vector
 Unit

Vector
 Unit

Vector
 Unit

Instr. Decode

Bus Interface

Memory
Control

Pipelined
 ALU

64 64
Register
 File

×

64-Bit Bus

Fig. 22.8. The components of a processing node in CM-5.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 400

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Processors
and I/O Nodes

Data Routers
(4 2 Switches)×

012 3

63
Fig. 22.9. The fat-tree (hyper-tree) data network of CM-5.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 401

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22.5 Omega-Network Based IBM SP2

High-performance switch

E

Ethernet

. . .

I/O bus

P

M

Disk

MCC

NIC Netw ork
interface

Micro Channel
Controller

Ethernet
adapter

C

Console

C

Compute
nodes

Memory

Processor

I/O I/O I/O I/O . . . H H . . .

G

G

Gateways

To other
systems

Input/output nodes Host nodes

Fig. 22.10. The architecture of IBM SP series of systems.

Micro Channel interface

2 x 2 KB
FIFO

buffers

Left
DMA

Micro
Channel

Right
DMA

40 MHz
i860

processor

8-MB
DRAM

Input
FIFO

Output
FIFO

Memory and switch
management unit

160 MB/s i860 bus

Fig. 22.11. The network interface controller of IBM SP2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 402

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

4 x 4
crossbars

Only 1/4 of links at
this level are shown

 0 1 2 3 63

Fig. 22.12. A section of the high-performance switch network of
IBM SP2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 403

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

22.6 Commodity-Driven Berkeley NOW

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 404

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23 Data-Parallel SIMD Machines

Back to TOC

Chapter Goals
● Examining SIMD in more depth
● Discussing SIMD’s successes and failures
● Looking at real SIMD machines, old and

new

Chapter Contents
● 23.1. Where Have All the SIMDs Gone?
● 23.2. The First Supercomputer: ILLIAC IV
● 23.3. Massively Parallel Goodyear MPP
● 23.4. Distributed Array Processor (DAP)
● 23.5. Hypercubic Connection Machine 2
● 23.6. Multiconnected MasPar MP-2

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 405

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23.1 Where Have All the SIMDs Gone?

.

.

.

Global Operations Control & Response

Cell 0

Cell 1

Cell 2

Cell m–1

 Data and
Commands
 Broadcast

Read
Lines Response

 Store
 (Tags)

Global Tag
Operations
 Unit

Control
 Unit

Comparand

Mask

tm–1

t2

t1

t 0

.

.

.
.
.
.

Fig. 23.1. Functional view of an associative memory/processor.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 406

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

System Control Unit

Mid-Level Controllers

. . .A B A B A B A B
Memory
Modules

Proc.
 0

Proc.
 1

Proc.
 p–1

Proc.
 2

. . .
 Inter-
connection
 Netwrok

 Memory
Management
 System

Control
Storage

Parallel
Computation
Unit

Memory Storage System

Fig. 23.2. The architecture of Purdue PASM.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 407

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23.2 The First Supercomputer: ILLIAC IV

0

1
2
3

299
298

0

1
2
3

299
298

0

1
2
3

299
298

0

1
2
3

299
298

Mem.
 0

Mem.
 1

Mem.
 63

Mem.
 2

Control Unit Host
(B6700)

. . .

Mode
Data Control

Fetch data or
instructions

Proc.
 0

Proc.
 1

Proc.
 63

Proc.
 2

. . . To Proc. 0To Proc. 63

. . .
Synchronized
Disks
(Main Memory)

Band 0 Band 1 Band 2 Band 51

Fig. 23.3. The ILLIAC IV computer (the inter-processor routing
network is only partially shown).

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 408

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23.3 Massively Parallel Goodyear MPP

Tape Disk Printer Terminal Network

Host processor
(VAX 11/780)

Program and data management unit

Array control Staging
memory

Staging
memory

Array unit

128 × 128
processors

128-bit
output

interface

128-bit
input

interface

Status Control

Switches

Fig. 23.4. The architecture of Goodyear MPP.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 409

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

C

A

G

S

Sum

CarryFull
adder

Data
bus

P

Logic

B

Variable-
length
shift
register

Comparator
To/from
neighbors

NEWS

Mask

Memory

Address

From left
processor

To right
processor

To global
OR tree

Fig. 23.5. The single-bit processor of MPP.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 410

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23.4 Distributed Array Processor (DAP)

{N E S
W

From
neighboring
processors

C

Q

Mux

N

S

EW

To neighboring
processors

A

D

S

MuxSum

CarryFull
adder

Row
Col{

From
control
unit

Memory

From south neighbor To north neighbor

To row/col
responses

Condition

N
E
S
W

Fig. 23.6. The bit-serial processor of DAP.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 411

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Program
memory

Master
control

unit

Host
interface

unit

Host
work-
station

Array memory
(at least

32K planes)
Local memory
for processor ij

Q plane

C plane

A plane

D plane

 Row i

Column j

Processors Fast I/O

Register Q in
processor ij

One plane
of memory

W

 S

 E

N

Fig. 23.7. The high-level architecture of DAP system.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 412

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23.5 Hypercubic Connection Machine 2

Data Vault

Sequencer 0

 16K
Processors

Bus
Inter-
face

Front
End 0

Nexus

1
2

3

Data Vault Data Vault

Graphic
Display

1
2

3

 I/O
System

Fig. 23.8 The architecture of CM-2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 413

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

a
b c

f op-
code

g op-
code

f(a, b, c)

g(a, b, c)

 From
Memory

0
1
2
3
4
5
6
7

Mux

0
1
2
3
4
5
6
7

Mux

Flags

To Memory

Fig. 23.9 The bit-serial ALU of CM-2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 414

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

23.6 Multiconnected MasPar MP-2

 Processor Array
(X-net connected)

Array Control Unit

I/O Channel
 Controller
& Memory

Disk Array

Front EndEthernet

Global Router

Fig. 23.10. The architecture of MasPar MP-2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 415

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

 .
.
.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

Processor
cluster

Stage
1

Stage
3

Stage
2

Fig. 23.11. The physical packaging of processor clusters and the

3-stage global router in MasPar MP-2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 416

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Word Bus

Bit Bus

32 bits

Flags

ALU Logic
Barrel
Shifter

Significand
 Unit

Exponent
 Unit

To Router
Stage 3

To Router
Stage 1

X-net
 In

X-net
 Out

Comm.
 Input

Comm.
Output

External Memory

Memory
 Address
 Unit

 Memory
Data/ECC
 Unit

Register
 File

Control

Instruction Broadcast

Reduction

Fig. 23.12. Processor architecture in MasPar MP-2.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 417

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24 Past, Present, and Future

Back to TOC

Chapter Goals
● Review the history of parallel processing
● Discuss the current trends and debates
● Preview emerging technologies and

architectures

Chapter Contents
● 24.1. Milestones in Parallel Processing
● 24.2. Current Status, Issues, and Debates
● 24.3. TFLOPS, PFLOPS, and Beyond
● 24.4. Processor and Memory Technologies
● 24.5. Interconnection Technologies
● 24.6. The Future of Parallel Processing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 418

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24.1 Milestones in Parallel Processing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 419

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24.2 Current Status, Issues, and Debates

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 420

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24.3 TFLOPS, PFLOPS, and Beyond

2000 1995 2005 2010

P
er

fo
rm

a
nc

e
(T

F
L

O
P

S
)

Calendar year

Option Red

Option Blue

Option White

1+ TFLOPS, 0.5 TB

3+ TFLOPS, 1.5 TB

10+ TFLOPS, 5 TB

30+ TFLOPS, 10 TB

100+ TFLOPS, 20 TB

1

10

100

1000 Plan Develop Use

ASCI

Fig. 24.1. Milestones in the Accelerated Strategic Computing

Initiative (ASCI) program, sponsored by the US
Department of Energy, with extrapolation up to the
PFLOPS level.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 421

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24.4 Processor and Memory Technologies

Integer
Execution
Unit 0

86

86

86

Port-0
Units

Port-1
Units

Port 0

Port 1

Port 2Dedicated to
memory access
(address
generation
units, etc)

Port 3

Port 4

Reservation
 Station

Reorder
Buffer and
Retirement
Register
File

FLP Add

Integer Div
FLP Div

FLP Mult

Shift

Integer
Execution
Unit 1

Jump
Exec
Unit

Fig. 24.2. Key parts of the CPU in the Intel Pentium Pro

microprocessor.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 422

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24.5 Interconnection Technologies

Continued use
of Al/Oxide

Changeover to lower-resistivity
wires & low-dielectric-constant
insulator; e.g., Cu/Polyimide

Feature size (µm)
0.5 0.35 0.25 0.18 0.13

R
at

io
 o

f w
ir

e
de

la
y

to
 s

w
itc

hi
ng

 t
im

e

4

5

6

7

8

Fig. 24.3. Changes in the ratio of a 1-cm wire delay to device

switching time as the feature size is reduced.

Latency (s)
10–9 10–6 10–3 1

1012

109

106

103

Backplane
 Buses I/O

Networks
System-Area
 Networks

103

Local-Area
 Networks

Metro-Area
 Networks

Wide-Area
 Networks

Geographically
 Distributed

 Same
Location

Fig. 24.4. Various types of intermodule and intersystem

connections.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 423

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

Coaxial
cable

Outer
conductor

Copper
core

Insulator

Plastic

Twisted
pair

Optical
fiber

Light
source

Reflection Silica

Fig. 24.5. The three commonly used media for computer and

network connections.

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 424

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

24.6 The Future of Parallel Processing

Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 425

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara

ABCs of Parallel Process ing
in on e transparency* (parhami@ece.ucsb.edu)

* Originally appeared in Computer Architecture News, Vol. 27, No. 1, p. 2, March 1999.

 f = unparallelizable fraction of a task (sequential overhead)
 Tx = running time of a task when executed on x processors

A Amdahl’s Law (Speed-up Fo rmula)
 Bad news: Sequential overhead will kill you, since:

 Speed-up =
T1

Tp
 ≤

1

 f +
1 – f

p

 ≤ min (
1
f , p)

 Morale: For f = 0.1, e.g., the speed-up will be at best 10,
 no matter what the number of processors (peak OPS).

B Brent’s Scheduling Th eorem
 Good news: Optimal scheduling is a very difficult problem,
 but even a naive scheduling algorithm can ensure:

T1

p ≤ Tp <
T1

p + T∞ =
T1

p (1 +
p

T1/T �
)

 Result: For a reasonably parallel task (with small T∞),
 or for a suitably small number of processors (say, p < T1/T∞),
 good speed-up and high utilization are attainable.

C Cost-Effectiveness Adage
 Real news: The most cost-effective parallel solution
 to a given problem is often not the one with:
 Highest peak OPS (communication can kill you)
 Greatest speed-up (at what cost?)
 Best utilization (hardware busy doing what?)
 Analogy: Mass transit (SIMD) might be more cost-effective
 than using private vehicles (MIMD) even if it is slower
 and leads to many empty seats on some trips.

