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Preface to the Instructor’s Manual 
This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected 
problems and includes additional problems (many with solutions) that did not make the cut for 
inclusion in the text Introduction to Parallel Processing: Algorithms and Architectures (Plenum 
Press, 1999) or that were designed after the book went to print. Volume 2 contains enlarged 
versions of the figures and tables in the text as well as additional material, presented in a format 
that is suitable for use as transparency masters.  

The winter 2002 edition Volume 1, which consists of the following parts, is available to quali fied 
instructors through the publisher: 

Volume 1 Part I  Selected solutions and additional problems 

   Part II   Question bank, assignments, and projects 

The winter 2002 edition of Volume 2, which consists of the following parts, is available as a 
large file in postscript format through the book’s Web page: 

Volume 2 Parts I-VI Lecture slides and other presentation material 

The book’s Web page, given below, also contains an errata and a host of other material (please 
note the upper-case “F” and “P” and the underscore symbol after “ text” and “par” ): 

http://www.ece.ucsb.edu/Faculty/Parhami/text_par_proc.htm  

The author would appreciate the reporting of any error in the textbook or in this manual, 
suggestions for other tables, diagrams, or lecture topics, and sharing of teaching experiences. 
Please e-mail your comments to  

 parhami@ece.ucsb.edu  

or send them by regular mail to the author’s postal address: 

 Department of Electrical and Computer Engineering 
 University of Cali fornia 
 Santa Barbara, CA 93106-9560, USA 

Contributions will be acknowledged to the extent possible. 

 

      Behrooz Parhami 
      Santa Barbara, Winter 2002 
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Part I Fundamental Concepts 

Back to TOC 

Part Goals 
● Motivate us to study parallel processing  
● Paint the big picture  
● Provide background in the three Ts: 
 Taxonomy – including basic terminology 
 Tools – for evaluation or comparison 
 Theory – easy and hard problems  
 
Part Contents 
● Chapter 1: Introduction to Parallelism 
● Chapter 2: A Taste of Parallel Algorithms 
● Chapter 3: Parallel Algorithm Complexity 
● Chapter 4: Models of Parallel Processing 
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1 Introduction to Parallelism 

Back to TOC 

Chapter Goals 
● Set the context in which the course material 

will be presented  
● Review challenges that face the designers 

and users of parallel computers 
● Introduce metrics for evaluating the 

effectiveness of parallel systems 
  
Chapter Contents 
● 1.1. Why Parallel Processing? 
● 1.2. A Motivating Example 
● 1.3. Parallel Processing Ups and Downs 
● 1.4. Types of Parallelism: A Taxonomy 
● 1.5. Roadblocks to Parallel Processing 
● 1.6. Effectiveness of Parallel Processing  
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1.1 Why Parallel Process ing?  
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Fig. 1.1. The expon ential growth of microprocess or 

performance, known as Moore’s Law, shown over the 
past two decades. 

 
Figures rounded/averaged from “2001 Technology 
Roadmap for Semiconductors” [Alla02] 

Calendar year Æ 2001 2004 2007 2010 2013 2016 
Halfpitch (nm) 140 90 65 45 32 22 
Clock freq. (GHz) 2 4 7 12 20 30 
Wiring levels 7 8 9 10 10 10 
Power supply (V) 1.1 1.0 0.8 0.7 0.6 0.5 
Max. power (W) 130 160 190 220 250 290 
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Factors contributing to the validity of Moore’s law 

 Denser circuits 
 Architectural improvements 
 
Measures of processor performance 

 Instructions per second (MIPS, GIPS, TIPS, PIPS) 
 Floating-point operations per second  

(MFLOPS, GFLOPS, TFLOPS, PFLOPS) 
 Running time on benchmark suites  
  Examples of benchmarks 
 
Categories of supercomputers 

 Uniprocessor (vector processor) 
 Multiprocessor 
 Multicomputer 
 Massively parallel processor (MPP) 
 
There is a limit to the speed of a single processor (the 
speed-of-light argument) 

 Light travels 30 cm/ns;  
  signals on wires travel at a fraction of this speed 
  (≅ c/Er

1/2, where Er ≅ 2-4 is the dielectric coeff.) 
 If signals must travel 1 cm in an instruction cycle,  
  cycle time cannot be shorter than 1/30 ns; 
  thus, 30 GIPS is the best we can hope for 
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Motivations for concurrency 

 

1. Higher speed (solve problems faster) 

Important when there are “hard” or “soft” deadlines;  

e.g., 24-hour weather forecast 

 

2. Higher throughput (solve more problems) 

Important when there are many similar tasks to perform; 

e.g., transaction processing 

 

3. Higher computational power (solve larger problems) 

e.g., weather forecast for a week rather than 24 hours, 

or with a finer mesh for greater accuracy 
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Fig. 1.2. The exponential growth in supercomputer 

performance over the past two decades (from [Bell92], 
with ASCI performance goals and microprocessor 
peak FLOPS superimposed as dotted lines). 
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The need for TFLOPS 

Modeling of heat transport to the South Pole in the 
southern oceans [Ocean model: 4096 E-W regions × 1024 
N-S regions × 12 layers in depth] 

 30 000 000 000 FLOP per 10-min iteration ×  
 300 000 iterations per six-year period  =   
 1016 FLOP 

Fluid dynamics 

 1000 × 1000 × 1000 lattice × 
 1000 FLOP per lattice point × 10 000 time steps  =   
 1016 FLOP 

Monte Carlo simulation of nuclear reactor 

 100 000 000 000 particles to track (for ≅1000 escapes) 
 × 10 000 FLOP per particle tracked  =   
 1015 FLOP 

Reasonable running time =  
 Fraction of hour to several hours (103-104 s) 

Computational power =  
 1016 FLOP / 104s  or 1015 FLOP / 103s = 1012 FLOPS 

Why the current quest for PFLOPS? 

Same problems, perhaps with finer grids or longer 
simulated times 
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ASCI: Advanced Strategic Computing Initiative, 

  US Department of Energy 
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Fig. 24.1. Milestones in the Accelerated Strategic Computing 

Initiative (ASCI) program, sponsored by the US 
Department of Energy, with extrapolation up to the 
PFLOPS level. 
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Status of Computing Power (circa 2000) 

 
GFLOPS on desktop   

Apple Macintosh, with G4 processor 

 
TFLOPS in supercomputer center  

1152-processor IBM RS/6000 SP 

 uses a switch-based interconnection network 

  see IEEE Concurrency, Jan.-Mar. 2000, p. 9 

Cray T3E, torus-connected 

 
PFLOPS on drawing board  

1M-processor IBM Blue Gene (2005?) 

  see IEEE Concurrency, Jan.-Mar. 2000, pp. 5-9 

32 proc’s/chip, 64 chips/board, 8 boards/tower, 64 towers 

Processor: 8 threads, on-chip memory, no data cache 

Chip: defect-tolerant, row/column rings in a 6 × 6 array 

Board: 8 × 8 chip grid organized as 4 × 4 × 4 cube 

Tower: Boards linked to 4 neighbors in adjacent towers  

System: 32×32×32 cube of chips, 1.5 MW (water-cooled) 
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1.2 A Motivating Example 

Sieve of Eratosthenes ('er-a-'taas-tha-neez)  

 for finding all primes in [1, n]  
 
 
 
     2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
    m=2 
 
     2  3     5     7     9    11    13    15    17    19    21    23    25    27    29  
       m=3 
 
     2  3     5     7          11    13          17    19          23    25          29    
             m=5 
 
     2  3     5     7          11    13          17    19          23                29  
                   m=7 
  

Fig. 1.3. The sieve of Eratosthenes yielding a list of 10 primes 
for n = 30. Marked elements have been distinguished 
by erasure from the list. 

 
 

1 2 n

Current Prime Index
P

 
Fig. 1.4. Schematic representation of single-processor solution 

for the sieve of Eratosthenes. 
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Pp...

Shared 
Memory I/O Device

(b)
 

Fig. 1.5. Schematic representation of a control-parallel solution 
for the sieve of Eratosthenes. 

 

0    100   200   300   400   500   600   700   800   900  1000  1100  1200  1300  1400  1500  
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+   
              2               |         3         |     5     |   7   | 11 |13|17       
                                                                                        
  
  
              2               |   7   |17      
          3               5     | 11 |13|                                         
  
  
  
              2               |   
|         3           11 |   19 29 31                                              
      5     |   7    13|17  23  
  

Time 

19 29  
23  31 p = 1, t = 1411 

p = 2, t =  706 

p = 3, t =  499 

19  

23 29 31  

 
Fig. 1.6. Control-parallel realization of the sieve of 

Eratosthenes with n = 1000 and 1 ≤≤ p ≤≤ 3. 
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P1 finds each prime and broadcasts it to all other 
processors  

Assume n/p ≥ n  (p ≤ n ), so that all primes whose 
multiples are to be marked reside in P1 

 

1 2

Current PrimeP1 Index

n/p

n/p+1

Current PrimeP2 Index

2n/p

Current PrimePp Index

Communi- 
  cation

n–n/p+1 n
 

Fig. 1.7. Data-parallel realization of the sieve of Eratosthenes. 
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Some reasons for sublinear speed-up 

 Communication overhead 

Number of processors 

Communication 

Computation 

Solution time 

Ideal speedup 

Number of processors 

Actual speedup 

 
Fig. 1.8. Trade-off between communication time and 

computation time in the data-parallel realization of the 
sieve of Eratosthenes. 

 

 Input/output overhead 
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I/O time 

Computation 

Solution time 

Ideal speedup 

Number of processors 

Actual speedup 

 
Fig. 1.9. Effect of a constant I/O time on the data-parallel 

realization of the sieve of Eratosthenes. 
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1.3 Parallel Process ing Ups and Downs 

Early 1900s: 1000s of “computers” (humans + calculators) 
to do 24-hour weather prediction in a few hours 
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Fig. 1.10. Richardson’s c ircular theater for weather forecasting 

calculations. 

 
Parallel processing is used in virtually all computers 

Compute-I/O overlap, pipelining (fetch/exec overlap), 
multitasking, VLIW, multiple function units 

But ... in this course we use “parallel processing” in a 
stricter sense implying the availability of multiple CPUs 
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History of Parallel Processing 

1960s: ILLIAC IV (U Illinois) – Four 8 × 8 mesh quadrants 

1980s: Commercial interest resurfaced; technology was 
driven by government contracts. Once funding dried up, 
many companies went bankrupt 

2000s: Internet revolution – info providers, multimedia, 
data mining, etc. need extensive computational power 
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$1B$1B$1B$1B$1B$1B$1B$1B$1B$1B$1 
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Transfer of 
ideas/people 

 
 Development of some technical fields into $1B 

businesses and the roles of government research and 
industrial R&D over time (IEEE Computer, early 90s?). 
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1.4 Types of Parallelism: A Taxonomy 
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Fig. 1.11. The Flynn-Johnson classification of computer 

systems. 
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Why are computer architects so fascinated by four-letter 
acronyms and abbreviations? 

 Systems:  RISC, CISC, PRAM, NUMA, VLIW 

 Journals:  JPDC, TPDS 

 Conferences:  ICPP, IPPS, SPDP, SPAA 

My contribution: 

 SINC:  Scant/Simple Interaction Network Cell 

 FINC:  Full Interaction Network Cell 
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1.5 Roadblocks to Parallel Processing 

a. Grosch’s law (economy of scale applies, or 
 computing power proportional to the square of cost) 

Rebuttal: Not true any more. Even if it were, there is 
only one fastest computer; cannot get a faster one by 
spending more 

 
b. Minsky’s conjecture (speedup proportional to  
 the logarithm of the number p of processors) 

This is due to a statistical argument; you don’t need a 
lot of people in a room to have some with identical 
birthdays (memory accesses will have conflicts) 

Rebuttal: Just like the assumption of no conflict, and 
thus linear speedup, randomness is too pessimistic; 
perhaps p/logp is more realistic than either extreme 

 
c. Tyranny of IC technology (since hardware becomes  
 about 10 times faster every 5 years, by the time  
 a parallel machine with 10-fold performance is built,  
 uniprocessors will be just as fast) 

Rebuttal: We might try to design parallel systems into 
which faster components can be incorporated as they 
become available. Also, we might aim for 100-fold or 
1000-fold speedup, not just 10-fold 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 23 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

d. Tyranny of vector supercomputers  
 (vector supercomputers are rapidly improving  
 in performance, offer a familiar programming model  
 and excellent vectorizing compilers;  
 why bother with parallel processors?) 

Rebuttal: Many compute-intensive problems do not 
involve vector operations; besides, even vector 
machines nowadays use multiprocessing 

 
e. Software inertia (Billions of dollars worth of existing  
 software makes it hard to switch to parallel systems) 

Rebuttal: Not all future applications have already been 
developed. Improved automatic tools can convert 
“dusty deck” programs into efficient parallel programs. 
Students are being trained to “think parallel” 
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f. Amdahl’s law  
 (a small fraction f of inherently sequential  
 or unparallelizable computation  
 severely limits the speed-up) 

  speedup  ≤  
1

f + (1 – f)/p   =  
p

1 + f(p – 1)     

0

1 0
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3 0

4 0

5 0
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e
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p
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s
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f  = 0.05

f  = 0.02
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Fig. 1.12. Limit on speed-up according to Amdahl’s law. 

 

Rebuttal: Applications with very small f exist. Besides, 
sequential overhead need not be a fixed fraction 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 25 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

ABCs of Parallel Process ing  
in on e transparency* (parhami@ece.ucsb.edu) 

 
* Originally appeared in Computer Architecture News, Vol. 27, No. 1, p. 2, March 1999.   

 f = unparallelizable fraction of a task (sequential overhead) 
 Tx = running time of a task when executed on x processors 
 
A Amdahl’s Law (Speed-up Fo rmula) 
 Bad news: Sequential overhead will kill you, since: 

  Speed-up    =    
T1

Tp
     ≤    

1

 f + 
1 – f

p

     ≤    min (
1
f   , p) 

 Morale: For f = 0.1, e.g., the speed-up will be at best 10,         
 no matter what the number of processors (peak OPS). 

B Brent’s Scheduling Th eorem 
 Good news: Optimal scheduling is a very difficult problem,  
 but even a naive scheduling algorithm can ensure: 

  
T1

p     ≤   Tp    <   
T1

p   + T∞    =    
T1

p  (1 + 
p

T1/T �
)  

 Result: For a reasonably parallel task (with small T∞),  
 or for a suitably small number of processors (say, p < T1/T∞),  
 good speed-up and high utilization are attainable. 

C Cost-Effectiveness Adage 
 Real news: The most cost-effective parallel solution  
 to a given problem is often not the one with: 
  Highest peak OPS (communication can kill you) 
  Greatest speed-up (at what cost?) 
  Best utilization  (hardware busy doing what?) 
 Analogy: Mass transit (SIMD) might be more cost-effective  
 than using private vehicles (MIMD) even if it is slower  
 and leads to many empty seats on some trips.  
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1.6 Effectiveness of Parallel Processing 
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Fig. 1.13. Task graph exhibiting limited inherent parallelism. 
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Measures for comparing parallel architectures/algorithms: 

 p    Number of processors 

 W(p)  Total number of unit operations performed by 
     p processors; computational work or energy 

 T(p)  Execution time with p processors;  
     T(1) = W(1)   and   T(p) ≤ W(p) 

 S(p)  Speedup   =  
T(1)
T(p)  

 E(p)  Efficiency   =  
T(1)
pT(p)  

 R(p)  Redundancy =  
W(p)
W(1)  

 U(p)  Utilization   =  
W(p)
pT(p)  

 Q(p)  Quality    =  
T3(1)

pT2(p)W(p)  
Relationships among the preceding measures: 

 1  ≤  S(p)  ≤  p        U(p) =  R(p)E(p) 

 E(p) = 
S(p)

p            Q(p)  = E(p) 
S(p)
R(p)  

 
1
p   ≤  E(p)  ≤  U(p)  ≤  1   1  ≤  R(p)  ≤   

1
E(p)   ≤  p 

 Q(p)  ≤  S(p)  ≤  p 
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Example: Adding 16 numbers, assuming unit-time 
additions and ignoring all else, with p = 8  

 -----------  16 numbers to be added  -----------

Sum

+ + ++++ ++

++

+

++

+

+

 
Fig. 1.14. Computation graph for finding the sum of 16 numbers.  

 

Zero-time communication: W(8) = 15 T(8) = 4             

E(8) = 15 / (8 × 4) = 47%        
S(8) = 15 / 4 = 3.75     R(8) = 15/15 = 1   Q(8) = 1.76 

 
Unit-time communication:   W(8) = 22 T(8) = 7  

E(8) = 15 / (8 × 7) = 27%       
S(8) = 15 / 7 = 2.14   R(8) = 22 / 15 = 1.47    Q(8) = 0.39 
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2 A Taste of Parallel Algorithms 

Back to TOC 

Chapter Goals 
● Consider five basic building-block parallel 

operations  
● Implement them on four simple parallel 

architectures 
● Learn about the nature of parallel 

computations, complexity analysis, and the 
algorithm/architecture interplay 

 
Chapter Contents 
● 2.1. Some Simple Computations 
● 2.2. Some Simple Architectures 
● 2.3. Algorithms for a Linear Array 
● 2.4. Algorithms for a Binary Tree 
● 2.5. Algorithms for a 2D Mesh 
● 2.6. Algorithms with Shared Variables  
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2.1 Some Simple Computations 
x0

identity 
element

x1

⊗

⊗
x2

⊗

xn–2

⊗
x

⊗

s

. 
     . 
          .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

 
Fig. 2.1. Semigroup computation on a uniprocessor. 

 
x0 x1

⊗

x2

⊗

s

x3

⊗ ⊗ ⊗

⊗

⊗

⊗

⊗

⊗

x4 x5 x6 x7 x8 x9 x10

 
 Semigroup computation viewed as a tree or fan-in 

computation. 
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x0

identity 
element

x1

⊗

⊗
x2

⊗

xn–2

⊗
x

⊗

. 
     . 
          .

t = 0

t = 1

t = 2

t = 3

t = n – 1

t = n

n–1

s0

s1

s2

sn–2

sn–1  
 Prefix computation on a uniprocessor. 

 

3. Packet routing 

 one processor sending a packet of data to another 

 

4. Broadcasting  

 one processor sending a packet of data to all others 

 

5. Sorting 

 processors cooperating in rearranging their data  

 into desired order 
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2.2 Some Simple Architectures 

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

 
Fig. 2.2. A linear array of nine processors and its ring variant. 

 

Diameter of linear array: D = p – 1 

(Max) Node degree: d = 2 

P1

P0

P3

P4

P2
P5

P7 P8

P6

 
Fig. 2.3. A balanced (but incomplete) binary tree of nine 

processors. 

 

Diameter of balanced binary tree: D = 2 log2p; or 1 less 

(Max) Node degree: d = 3 

We almost always deal with complete binary trees: 

 p one less than a power of 2,  D = 2 log2(p + 1) – 2 
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P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

 
Fig. 2.4. 2D mesh of 9 processors and its torus variant. 

 
Diameter of r × (p/r) mesh: D = r + p/r – 2 

(Max) Node degree: d = 4 

Square meshes preferred; they minimize D  (= 2 p  – 2) 

P 
1 

P 
2 

P 
3 

P 
4 

P 
5 

P 
6 

P 
7 

P 
8 

P 
0 

 
Fig. 2.5. A shared-variable architecture modeled as a complete 

graph. 

 
Diameter of complete graph: D = 1 

(Max) Node degree: d = p – 1 
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2.3 Algorithms for a Linear Array 

 5    2    8    6    3    7    9    1    4 
 5    8    8    8    7    9    9    9    4 
 8    8    8    8    9    9    9    9    9 
 8    8    8    9    9    9    9    9    9 
 8    8    9    9    9    9    9    9    9 
 8    9    9    9    9    9    9    9    9 
 9    9    9    9    9    9    9    9    9 

Initial 
values 

Maximum 
identified 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

 
Fig. 2.6. Maximum-finding on a linear array of nine processors. 

 

 5    2    8    6    3    7    9    1    4 
 5    7    8    6    3    7    9    1    4 
 5    7   15    6    3    7    9    1    4 
 5    7   15   21    3    7    9    1    4 
 5    7   15   21   24    7    9    1    4 
 5    7   15   21   24   31    9    1    4 
 5    7   15   21   24   31   40    1    4 
 5    7   15   21   24   31   40   41    4 
 5    7   15   21   24   31   40   41   45 

Initial 
values 

Final 
results 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

 
Fig. 2.7. Computing prefix sums on a linear array of nine 

processors. 

 

Diminished prefix computation: the ith result excludes the 
ith element (e.g., sum of the first i – 1 elements) 
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5    2    8    6    3    7    9    1    4 
  1    6    3    2    5    3    6    7    5 
  
5    2    8    6    3    7    9    1    4 
  6    8   11    8    8   10   15    8    9 
                + 
  0    6   14   25   33   41   51   66   74 
                = 
5    8   22   31   36   48   60   67   78 
  6   14   25   33   41   51   66   74   83 

Initial 
values 

Final 
results 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

Local 
prefixes 

Diminished 
prefixes 

 
Fig. 2.8. Computing prefix sums on a linear array with two 

items per processor. 

 

 

Packet routing or broadcasting:  

 right- and left-moving packets have no conflict 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

Right-moving packets 

Left-moving packets 
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5 2 8 6 3 7 9 1     
                      

  5 2 8 6 3 7 9         
                        

      5 2 8 6 3 7   
  
        5 2 8 6 3   
  
          5 2 8 6   
  
            5 2 8   
  

               5 2  
  
               5 

5 2 8 6 3 7 9 1 4 

  
    

4 

1 4 

4 9 
1 

1 9 4 7 

1 7 4 3 9 

1 3 

4 
7 9 

1 

1 2 

3 

3 

4 7 6 

8 

8 

6 

9 

4 6 7 9 

1 

1 

1 

4 9 
1 

1 9 4 7 

1 

7 
3 

9 

1 

3 

4 7 9 

1 

1 

2 

3 

3 

4 
7 6 

8 

8 

6 

9 
4 

5 

6 7 
9 

5 

5 

5 

5 

2 

2 

2 8 

8 

6 
6 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

4 

4 

4 

4 

5 

5 

5 

5 6 

6 

6 

6 

7 

7 

7 

8 

8 

8 
9 

9 

7 8 

8 

9  
Fig. 2.9. Sorting on a linear array with the keys input 

sequentially from the left. 
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5    2    8    6    3    7    9    1    4 
5    2    8    3    6    7    9    1    4 
2    5    3    8    6    7    1    9    4 
2    3    5    6    8    1    7    4    9 
2    3    5    6    1    8    4    7    9 
2    3    5    1    6    4    8    7    9 
2    3    1    5    4    6    7    8    9 
2    1    3    4    5    6    7    8    9 
1    2    3    4    5    6    7    8    9 

In odd steps, 
1, 3, 5, etc., 
odd-
numbered 
processors 
exchange 
values with 
their right 
neighbors 

0 P 1 P 2 P 3 P P P 6 P 7 P 8 P 5 4 

 
 

Fig. 2.10. Odd-even transposition sort on a linear array. 

 

For odd-even transposition sort: 

 Speed-up  =  O(p log p) / p = O(log p)     

 Efficiency =  O((log p) / p)           

 Redundancy =  O(p / (log p)) 

 Utilization =  1/2 
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2.4 Algorithms for a Binary Tree 

x x x

x x 

x     x 

Upward 
Propagation

1 2

3 4

0

10⊗

x     x 43⊗

x     x 32⊗ x   4⊗

x     x 10⊗ ⊗ x     x 32⊗ x   4⊗

x x x

x x 

x     x 

Downward 
Propagation

1 2

3 4

0

10⊗

x     x 10⊗ x   2⊗

x     x 10⊗ ⊗x     x 32⊗

x0 x     x 10⊗

x     x 10⊗ x   2⊗

x0 x     x 0⊗
x     x 10⊗ x   ⊗

x     x 10⊗ ⊗x     x 32⊗

x     x 10⊗ ⊗x     x 32⊗ x   4⊗

Results

1
2

Identity

Identity

Identity

 
Fig. 2.11. Parallel prefix computation on a binary tree of 

processors. 
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Some applications of the parallel prefix computation 

Finding the rank of each 1 in a list of 0s and 1s: 

    Data:  0     0     1     0     1     0     0     1     1     1     0 

           Prefix sums:  0     0     1     1     2     2     2     3     4     5     5 

            Ranks of 1s:    1            2                    3     4     5 

Priority circuit: 

  Data: 0     0     1     0     1     0     0     1     1     1     0 

 Dim’d prefix ORs: 0     0     0     1     1     1     1     1     1     1     1 

 Complement: 1     1     1     0     0     0     0     0     0     0     0 

 AND with data: 0     0     1     0     0     0     0     0     0     0     0 

Carry computation in fast adders 

Let “g”, “p”, and “a” denote the event that a particular digit 
position in the adder generates, propagates, or annihilates 
a carry. The input data for the carry circuit consists of a 
vector of three-valued elements such as: 

   p     g     a     g     g     p     p     p     g     a     cin 
   ←    g or a 
               direction of indexing 

Parallel prefix computation using the carry operator “¢” 

  p ¢ x = x  x propagates over p, for all x ∈ {g, p, a} 

  a ¢ x = a x is annihilated or absorbed by a  

  g ¢ x = g x is immaterial; a carry is generated 
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Packet routing on a tree 

P1

P0

P3

P4

P2
P5

P7 P8

P6

 
 A balanced binary tree with preorder node indices. 

 

maxl (maxr) = largest node number in left (right) subtree 
if dest = self  
then remove the packet {done} 
else if  dest < self   or  dest > maxr   
 then route upward  
 else if dest ≤ maxl 
  then route leftward 
  else route rightward 
  endif 
 endif 
endif 
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Other indexing schemes might lead to simpler routing 
algorithms 

XXX

LXX RXX

LLX
RLXLRX

RRX

RRRRRL  
 

Broadcasting is done via the root node 
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Sorting: let the root “see” all data in nondescending order 

(a) (b) 

(c) (d) 

5 2 3 

1 4 5 2 

1 4 

3 

2 

∞ ∞ 

∞ ∞ 

∞ 

5 1 3 

4 ∞ ∞ 

∞ ∞ 

∞ 

2 

5 

1 

3 

4 ∞ ∞ 

∞ ∞ 

∞ ∞ 

∞ 

 
Fig. 2.12. The first few steps of the sorting algorithm on a binary 

tree. 

 

Bisection Width = 1

 
Fig. 2.13. The bisection width of a binary tree architecture. 
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2.5 Algorithms for a 2D Mesh 

5 2 8

6 3 7

9 1 4

8 8 8

7 7 7

9 9 9

9 9 9

9 9 9

9 9 9

Row maximums Column maximums 
Finding the max value on a 2D mesh 

 
5 7

6 9

9

Diminished prefix 
sums in last column

Broadcast in rows 
and combine

15

16

10 14

Row prefix sums

5 7

6 9

9

15

16

10 14

15

31

5 7 150

21 24 31

40 41 45

 
Computing prefix sums on a 2D mesh 

 
Row-major order required if operator not commutative 

Routing and broadcasting done via row/column operations 

 
 
  5   2   8    2   5   8    1   4   3    1   3   4    1   3   2    1   2   3                 
  
  6   3   7    7   6   3    2   5   8    8   5   2    6   5   4    4   5   6      
  
  9   1   4    1   4   9    7   6   9    6   7   9    8   7   9    7   8   9        
  
         

Initial values  Snake-like  
 row sort 

Top-to-bottom  
  column 
sort 

Snake-like  
 row sort 

Top-to-bottom  
  column 
sort 

Left-to-right  
   row sort 

Phase 
1 

Phase 
2 

Phase 
3  

Fig. 2.14. The shearsort algorithm on a 3 ××  3 mesh. 
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2.6 Algorithms with Shared Variables 

P0

P1

P2

P3

P4P5

P6

P7

P8

 
Fig. 2.5. A shared-variable architecture modeled as a complete 

graph. 

 
Semigroup computation: each processor read all values in 
turn and combine 

Parallel prefix: processor i read/combine values 0 to i – 1  

Both of the above are quite inefficient, given the high cost 

Routing/broadcasting: 1 step, with all-port communication 

Sorting: rank each element by comparing it to all others, 
then permute according to ranks 

 
Figure for Problem 2.13.   



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 45 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

3 Parallel Algorithm Complexity 

Back to TOC 

Chapter Goals 
● Review algorithm complexity and various 

complexity classes 
● Introduce the notions of time and time-cost 

optimality 
● Derive tools for analyzing, comparing, and 

fine-tuning parallel algorithms 
 
Chapter Contents 
● 3.1. Asymptotic Complexity 
● 3.2. Algorithm Optimality and Efficiency 
● 3.3. Complexity Classes 
● 3.4. Parallelizable Tasks and the NC Class 
● 3.5. Parallel Programming Paradigms 
● 3.6. Solving Recurrences 
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3.1 Asymptotic Complexity 

f(n) = O(g(n)) if ∃c, n0 such that ∀n > n0, f(n) < c g(n) 

f(n) = Ω(g(n)) if ∃c, n0 such that ∀n > n0, f(n) > c g(n) 

f(n)  = Θ(g(n)) if ∃c, c', n0 such that  

      ∀n > n0, cg(n) < f(n) < c'g(n) 

 

f(n) = o(g(n))  <    Growth rate strictly less than 

f(n) = O(g(n))  ≤    Growth rate no greater than 

f(n) = Θ(g(n))  =    Growth rate the same as 

f(n) = Ω(g(n))  ≥    Growth rate no less than 

f(n) = ω(g(n))  >    Growth rate strictly greater than 

n 

c g(n)

g(n)

f(n)

n n 

c g(n)

c' g(n) 

f(n)

n n 

g(n)

c g(n)

f(n)

n 0 0 0 

f(n) = O(g(n)) f(n) =    (g(n)) f(n) =    (g(n))Ω Θ 
 

f(n) = O(g(n))                  f(n) = ΩΩ(g(n))                  f(n) = ΘΘ(g(n)) 
 
Fig. 3.1. Graphical representation of the notions of 

asymptotic complexity. 
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Table 3.1. Comparing the Growth Rates of Sublinear and 
Superlinear Functions (K = 1000, M = 1 000 000) 

     Sublinear Linear Superlinear  
     log2n n  n  n log2n n3/2 
     ------- ------- ------- ------- ------- 
     9 3 10 90 30 
     36 10 100 3.6K 1K 
     81 31 1K 81K 31K 
     169 100 10K 1.7M 1M 
     256 316 100K 26M 32M 
     361 1K 1M 361M 1000M 

Table 3.2. Effect of Constants on the Growth Rates of Selected 
Functions Involving Constant Factors 

     n n
4  log2 n n log2n 100 n  n3/2 

     ------- ------- ------- ------- ------- 
     10 22 90 300 30 
     100 900 3.6K 1K 1K 
     1K 20K 81K 3.1K 31K 
     10K 423K 1.7M 10K 1M 
     100K 6M 26M 32K 32M 
     1M 90M 361M 100K 1000M 

Table 3.3. Effect of Constants on the Growth Rates of Selected 
Functions Using Larger Time Units and Round Figures 

     n n
4  log2n n log2n 100 n  n3/2 

     ------- ------- ------- ------- ------- 
     10 20 s 2 min 5 min 30 s 
     100 15 min 1 hr 15 min 15 min 
     1K 6 hr 1 day 1 hr 9 hr 
     10K 5 days 20 days 3 hr 10 days 
     100K 2 mo 1 yr 9 hr 1 yr 
     1M 3 yr 11 yr 1 day 32 yr 
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3.2 Algorithm Optimality and Efficiency 

f(n) Running time of fastest (possibly unknown)  
 algorithm for solving a problem 

g(n) Running time of some algorithm A ⇒ f(n) = O(g(n)) 

h(n) Min time for solving the problem  ⇒ f(n) = Ω(h(n)) 

g(n) = h(n)    ⇒    Algorithm A is time-optimal  

Redundancy = Utilization = 1    ⇒    A is cost-time optimal 

Redundancy = Utilization = Θ(1) ⇒  A is cost-time efficient 

 

Typical complexity classes 

Improving upper bounds Shifting lower bounds 

log n log n 2 n / log n n n log log n n log n n 2 

1988 
Zak’s thm. 

Ω(log n) 

1994 
Ying’s thm. 

Ω(log n) 2 

1996 
Dana’s alg. 

O(n) 

1991 
Chin’s alg.  

O(n log log n) 

1988 
Bert’s alg. 
O(n log n) 

1982 
Anne’s alg. 

O(n  ) 2 

Optimal 
algorithm? 

Sublinear 
Linear 

Superlinear 

 
Fig. 3.2. Upper and lower bounds may tighten over time. 
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Machine or 
algorithm A 

Machine or 
algorithm B 

4 steps 

Solution 

20 steps 

 
Fig. 3.3. Five times fewer steps does not necessa rily mean five 

times faster. 

 

Exponential time 
(intractable problems) 

NP- 
complete 

Pspace-complete 

NP 

P 
(tractable) 

Pspace 

Co-NP 
Co-NP- 

complete 

 
 Alternate, more detailed, form of the “ complexity 

classes ” diagram for Section 3.3. 
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3.3 Complexity Classes 

P = NP
?

Nondeterministic 
     Polynomial

NP

NP-complete
(e.g. the subset sum problem) 
     

(Intractable?)
NP-hard

(Tractable)
 Polynomial

P

 
Conceptual view of the P, NP, NP-complete, and NP-hard classes. 

 
Example NP(-complete) problem: the subset sum problem  

 Given a set of n integers and a target sum s,  
 determine if a subset of the integers add up to s.  
  

The subset sum problem looks deceptively simple,  
 yet no one knows how to solve it other than by trying  
 practically all of the 2n subsets of the given set.  

 Even if each trial takes only one picosecond (10–12 s),  
 the problem is virtually unsolvable for n = 100. 
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3.4 Parallelizable Tasks and the NC Class 

P-complete

"efficiently" 
parallelizable

P = NP
?

NC = P
?

Nondeterministic 
     Polynomial

Nick's Class

NP

(Tractable)
 Polynomial

NP-complete
(e.g. the subset sum problem) 
     

(Intractable?)

P

NP-hard

NC

 
Fig. 3.4. A conceptual view of complexity classes and their 

relationships. 

 
NC (Nick’s class, Niclaus Pippenger) 
 Problems solvable in polylog time (T = O(logkn)) 
 using a polynomially bounded number of processors 

Example P-complete problem: the circuit-value problem 

 For a logic circuit with known inputs, find its output  
 The circuit-value problem is obviously in P, 
 but no general algorithm exists for  
 efficient parallel evaluation of a circuit’s output. 
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3.5 Parallel Programming Paradigms  

Divide and conquer 

 Decompose problem of size n into smaller problems  
 Solve the subproblems independently 
 Combine subproblem results into final answer   
 T(n)  = Td(n) +  Ts    +     Tc(n) 
            Decompose  Solve in parallel     Combine 
 
Randomization 

Often it is impossible or difficult to decompose a large 
problem into subproblems with equal solution times.  

In these cases, one might use random decisions that lead 
to good results with very high probability. 

Example: sorting with random sampling 

Other forms of randomization: Random search, control 
randomization, symmetry breaking 
 
Approximation 

Iterative numerical methods often use approximation to 
arrive at the solution(s).  

Example: Solving linear systems using Jacobi relaxation.  

Under proper conditions, the iterations converge to the 
correct solutions; more iterations ⇒ greater accuracy 
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3.6 Solving Recurrences  

Solution via unrolling 

  1.  f(n) = f(n – 1) + n     {rewrite f(n – 1) as f((n – 1) – 1) + n – 1} 
      = f(n – 2) + n – 1 + n 
      = f(n – 3) + n – 2 + n – 1 + n 

      ... 
      = f(1) + 2 + 3 + . . . + n – 1 + n                          
      = n(n + 1)/2 – 1 
      = Θ(n2) 

  2.  f(n) = f(n/2) + 1   {Rewrite f(n/2) as f((n/2)/2 + 1}             
      = f(n/4) + 1 + 1 
      = f(n/8) + 1 + 1 + 1 

      . . . 
      = f(n/n) + 1 + 1 + 1 + . . . + 1 
               ------ log2n  times ------                                                   

      = log2n 

      = Θ(log n) 

 3.  f(n) = 2f(n/2) + 1                                 
      = 4f(n/4) + 2 + 1 
      = 8f(n/8) + 4 + 2 + 1 

      . . . 
      = n f(n/n) + n/2 + . . . + 4 + 2 + 1   
      = n – 1         

      = Θ(n) 
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  4.  f(n) = f(n/2) + n                                    
      = f(n/4) + n/2 + n 
      = f(n/8) + n/4 + n/2 + n 

      . . . 
      = f(n/n) + 2 + 4 + . . . + n/4 + n/2 + n                  
      = 2n – 2 = Θ(n) 

  5.  f(n) = 2f(n/2) + n                                    
      = 4f(n/4) + n + n 
      = 8f(n/8) + n + n + n 

      . . . 
      = n f(n/n) + n + n + n + . . . + n                      
                ------ log2n  times ------                                                   

      = n log2n = Θ(n log n) 

    Alternate solution for the recurrence f(n) = 2f(n/2) + n:   

    Rewrite the recurrence as 
f(n)
n   = 

f(n/2)
n/2   + 1 

    and denote f(n)/n by h(n) to convert the problem to Example 2 

  6.  f(n) = f(n/2) + log2n                        

      = f(n/4) + log2(n/2) + log2n 
      = f(n/8) + log2(n/4) + log2(n/2) + log2n 

      . . . 
      = f(n/n) + log22 + log24 + . . . + log2(n/2) + log2n            

      = 1 + 2 + 3 + . . . + log2n 

      = log2n (log2n + 1)/2 = Θ(log2n) 
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Solution via guessing 

Guess the solution and verify it by substitution 

Substitution also useful to find the constant multiplicative 
factors and lower-order terms   

Example: f(n) = f(n – 1) + n ; guess f(n ) = Θ(n2)  

Write f(n) = an2 + g(n), where g(n) = o(n2)   

Substituting in the recurrence equation, we get: 

 an2 + g(n) = a(n – 1)2 + g(n – 1) + n 

This equation simplifies to: 

 g(n) = g(n – 1) + (1 – 2a)n + a 

Choose a = 1/2 to make g(n) = o(n2) possible 

 g(n) = g(n – 1) + 1/2 = n/2 – 1   {g(1) = –1/2, g(2) = 0} 

The solution to the original recurrence then becomes  

 f(n) = n2/2 + g(n) = n2/2 + n/2 – 1 
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Solution via a basic theorem 

Theorem 3.1 (basic theorem for recurrences): Given  

f(n) = a f(n/b) + h(n); a, b constant, h an arbitrary function  

the asymptotic solution to the recurrence is 

f(n) = Θ(nlogba)  if h(n) = O(nlogba – ε) for some ε > 0   

f(n) = Θ(nlogba log n) if h(n) = Θ(nlogba) 

f(n) = Θ(h(n))   if h(n) = Ω(nlogba + ε) for some ε > 0 
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4 Models of Parallel Processing 

Back to TOC 

Chapter Goals 
● Elaborate on the taxonomy of parallel 

processing from Chapter 1 
● Introduce abstract models of shared and 

distributed memory 
● Understand the differences between 

abstract models and real hardware  
 
Chapter Contents 
● 4.1. Development of Early Models 
● 4.2. SIMD versus MIMD Architectures 
● 4.3. Global versus Distributed Memory 
● 4.4. The PRAM Shared-Memory Model 
● 4.5. Distributed-Memory or Graph Models 
● 4.6. Circuit Model & Physical Realizations 
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4.1 Development of Early Models  

Thousands of processors were found in some computers 
as early as the 1960s 

These architectures were variously referred to as  

 associative memories 
 associative processors  
 logic-in-memory machines  

More recent names are 

 processor-in-memory and  
 intelligent RAM  

Table 4.1. Entering the Second Half-Century of Associative 
Processing 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Decade Events and Advances  Technology Performance 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

1940s Formulation of need & concept Relays  

1950s Emergence of cell technologies Magnetic, Cryogenic Mega-bit-OPS 

1960s Introduction of basic architectures Transistors  

1970s Commercialization & applications ICs Giga-bit-OPS 

1980s Focus on system/software issues VLSI Tera-bit-OPS 

1990s Scalable & flexible architectures ULSI, WSI Peta-bit-OPS? 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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Revisiting the Flynn-Johnson classification  

SISD 
“Uniprocessor” 

SIMD 
“Array processor” 
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Fig. 4.1. The Flynn-Johnson classification of computer 

systems. 
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MISD can be viewed as a flexible (programmable) pipeline 

Data 
In

Data 
Out

I

I

I 

I

I

1

2

3 4

5

 
Fig. 4.2. Multiple instruction streams operating on a single data 

stream (MISD). 
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4.2 SIMD versus MIMD Architectures  

Most early parallel machines were of SIMD type 

Synchronous SIMD 

 To run data-dependent conditionals (if-then-else), 
 first processors satisfying the condition are enabled, 
 next the remainder are enabled for the “else” part 

 Critics of SIMD view the above as being wasteful 

 But: are buses less efficient than private cars, or   
 is PC hardware wasted when you answer the phone? 

Asynchronous SIMD = SPMD 

Custom- versus commodity-chip SIMD 

 
Most recent parallel machines are MIMD-type 

MPP: massively or moderately parallel processor? 

Tight versus loose coupling of processors 

 Tightly coupled: multiprocessors 
 Loosely coupled: multicomputers 
  Network or cluster of workstations (NOW, COW) 
 Hybrid: loosely coupled clusters, each tightly coupled 

Message passing versus virtual shared memory 

 Shared memory is easier to program 
 Message passing is more efficient 
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4.3 Global versus Distributed Memory  

0 0 

1 1 
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to-processor 
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Fig. 4.3. A parallel processor with global memory. 

 

Example processor-to-memory/processor networks: 

1. Crossbar; p × m array of switches or crosspoints; 

 cost too high for massively parallel systems 

2. Single/multiple bus (complete or partial connectivity) 

3. Multistage interconnection network (MIN); 

 cheaper than crossbar, more bandwidth than bus 
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Fig. 4.4. A parallel processor with global memory and 

processor caches. 
 

Solving the cache coherence problem 

1. Do not cache any shared data 

2. Do not cache “writeable” shared data  

 or allow only one cache copy 

3. Use a cache coherence protocol (Chapter 18) 
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Fig. 4.5. A parallel processor with distributed memory. 

 

Examples networks for distributed memory machines 

1. Crossbar; cost too high for massively parallel system 
2. Single/multiple bus (complete or partial connectivity) 
3. Multistage interconnection network (MIN) 
4. Various direct networks (Section 4.5) 

 

Terminology 

UMA Uniform memory access 
NUMA Nonuniform memory access 
COMA Cache-only memory architecture (aka all-cache) 
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4.4 The PRAM Shared-Memory Model 
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Fig. 4.6. Conceptual view of a parallel random-access machine 

(PRAM). 

 
PRAM cycle 
1. Processors access memory (usually different locations) 
2. Processors perform a computation step 
3. Processors store their results in memory 
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Fig. 4.7. PRAM with some hardware details shown. 

 
In practice, memory is divided into modules and 
simultaneous accesses to same module are disallowed 
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4.5 Distributed-Memory or Graph Models  

Parameters of interest for direct interconnection networks 
 Diameter 
 Bisection (band)width 
 Node degree 

Symmetry properties simplify algorithm development: 
 Node or vertex symmetry 
 Link or edge symmetry 

Table 4.2. Topological Parameters of Selected Interconnection 
Networks 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Network name(s) Number Network Bisection  Node Local 
 of nodes diameter width degree links? 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
1D mesh (linear array) k k – 1 1 2 Yes 
1D torus (ring, loop) k k/2 2 2 Yes 
2D Mesh k2 2k – 2 k 4 Yes 
2D torus (k-ary 2-cube) k2 k  2k 4 Yes1  
3D mesh k3 3k – 3 k2 6 Yes 
3D torus (k-ary 3-cube) k3 3k/2 2k2 6 Yes1 
Pyramid (4k2 – 1)/3 2 log2k 2k 9 No 
Binary tree 2l – 1 2l – 2 1 3 No 
4-ary hypertree 2l (2l+1 – 1) 2l 2l+1 6 No 
Butterfly 2l (l + 1) 2l 2l 4 No 
Hypercube 2l l 2l–1 l No 
Cube-connected cycles 2ll 2l 2l–1  3 No 
Shuffle-exchange 2l 2l – 1 ≥ 2l–1/l 4 unidir. No 
De Bruijn 2l l 2l /l 4 unidir. No 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
    1 With folded layout. 
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Fig. 4.8. The sea of interconnection networks. 

 

Bus-based architectures are dominant in small-scale 
parallel systems. 

Low-level 
cluster

Bus switch 
(Gateway)

 
Fig. 4.9. Example of a hierarchical interconnection architecture. 
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Because each interconnection network requires its own 
algorithms, various abstract (architecture-independent) 
models have been suggested for such networks 

  

The LogP model  

Characterizes an architecture with just four parameters: 

 
L Latency upper bound when a small message is sent  
 from an arbitrary source to an arbitrary destination  

o overhead, defined as the length of time a processor is  
 dedicated to transmission or reception of a message,  
 thus being unable to do any other computation 

g gap, defined as the minimum time that must elapse  
 between consecutive message transmissions  
 or receptions by a single processor (1/g is the  
 available per-processor communication bandwidth) 

P Processor multiplicity (p in our notation) 

 
If LogP is in fact an accurate model for capturing the 
effects of communication in parallel processors, then 
details of interconnection network do not matter 

  



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 69 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

The BSP model (bulk-synchronous parallel)  

Hides the communication latency altogether through a 
specific parallel programming style, thus making the 
network topology irrelevant   

Synchronization of processors occurs once every L time 
steps, where L is a periodicity parameter  

Computation consists of a sequence of supersteps  

In a given superstep, each processor performs a task 
consisting of local computation steps, message 
transmissions, and message receptions  

Data received in messages will not be used in the current 
superstep but rather beginning with the next superstep  

After each period of L time units, a global check is made to 
see if the current superstep has been completed   

 If so, then the processors move on to executing  
 the next superstep  

 Else, the next period of length L is allocated  
 to the unfinished super-step 
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4.6 Circuit Model and Physical Realizations  
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Fig. 4.10. Intrachip wire delay as a function of wire length. 

 

O(10  )4

Scaled up ant on the rampage! 
What is wrong with this picture? 

Scaled up ant collapses under own weight. 

O(10  )  4 

Scaled up ant on the rampage! 
What is wrong with this picture? 

Scaled up ant collapses under own weight. 
 

Fig. 4.11. Pitfalls of scaling up. 
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Part II Extreme Models 

Back to TOC 

Part Goals 
● Study two extreme parallel machine models  
 ● Abstract PRAM shared-memory model  
  ignores implementation issues altogether 
 ● Concrete circuit model accommodates  
  details like circuit depth and layout area 
● Prepare for everything else that falls in 

between the two extremes 
 
Part Contents 
● Chapter 5: PRAM and Basic Algorithms 
● Chapter 6: More Shared-Memory Algorithms 
● Chapter 7: Sorting and Selection Networks 
● Chapter 8: Other Circuit-Level Examples 
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5 PRAM and Basic Algorithms 

Back to TOC 

Chapter Goals 
● Define PRAM and its various submodels 
● Show PRAM to be a natural extension of 

the sequential computer (RAM) 
● Develop five important parallel algorithms 

that can serve as building blocks 
 (more algorithms in the next chapter)  
 
Chapter Contents 
● 5.1. PRAM Submodels and Assumptions 
● 5.2. Data Broadcasting 
● 5.3. Semigroup or Fan-in Computation 
● 5.4. Parallel Prefix Computation 
● 5.5. Ranking the Elements of a Linked List 
● 5.6. Matrix Multiplication 
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5.1 PRAM Submodels and Assumptions  
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Fig. 4.6. Conceptual view of a parallel random-access machine 
(PRAM). 

 
Processor i can do the following in 3 phases of one cycle: 
1. Fetch an operand from address si in shared memory 
2. Perform computations on data held in local registers 
3. Store a value into address di in shared memory 
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Fig. 5.1 Submodels of the PRAM model. 
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CRCW PRAM is classified according to how concurrent 
writes are handled. These submodels are all different from 
each other and from EREW and CREW.  

Undefined: In case of multiple writes, the value written is 
undefined (CRCW-U) 

Detecting: A code representing “detected collision” is 
written (CRCW-D) 

Common: Multiple writes allowed only if all store the 
same value (CRCW-C); this is sometimes 
called the consistent-write submodel 

Random: The value written is randomly chosen from 
those offered (CRCW-R) 

Priority: The processor with the lowest index succeeds 
in writing (CRCW-P) 

Max/Min: The largest/smallest of the multiple values is 
written (CRCW-M) 

Reduction: The arithmetic sum (CRCW-S), logical AND 
(CRCW-A), logical XOR (CRCW-X), or 
another combination of the multiple values is 
written. 

Ordering the submodels by computational power:  

 EREW  <  CREW  <  CRCW-D    

         <  CRCW-C  <  CRCW-R  <  CRCW-P 
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Theorem 5.1: A p-processor CRCW-P (priority) PRAM 
can be simulated (emulated) by a p-processor EREW 
PRAM with a slowdown factor of Θ(log p). 

 

Intuitive justification for concurrent read emulation: 

 Write the p desired addresses in a list 
 Sort the list of addresses in ascending order 
 Remove all duplicate addresses 
 Access data from desired addresses 
 Replicate data via parallel prefix computation 

Each of these steps requires constant or O(log p) time 

 

Some elementary PRAM computations 

Initializing an n-vector (base address = B) to all 0s: 

 for j = 0 to n/p – 1 processor i do 
  if jp + i < n then M[B + jp + i] := 0 
 endfor 

Adding two n-vectors and storing the results in a third 
 (base addresses B′, B″, B) 

Convolution of two n-vectors: Wk = ∑i+j=k Ui × Vj 
 (base addresses BW, BU, BV) 
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5.2 Data Broadcasting  

Broadcasting is built-in for the CREW and CRCW models 

EREW broadcasting: make p copies of the data in a 
broadcast vector B  

  

 Making p copies of B[0] by recursive doubling 

 for k = 0 to log2p – 1 Processor j, 0 ≤ j < p, do 

  Copy B[j] into B[j + 2k]  

 endfor 

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11

B

 
Fig. 5.2. Data broadcasting in EREW PRAM via recursive 

doubling. 
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Fig. 5.3. EREW PRAM data broadcasting without redundant 

copying. 
 
 EREW PRAM algorithm for broadcasting by Processor i 
 Processor i write the data value into B[0] 
 s := 1 
 while s < p Processor j, 0 ≤ j < min(s, p – s), do 
  Copy B[j] into B[j + s]  
  s := 2s 
 endwhile 
 Processor j, 0 ≤ j < p, read the data value in B[j] 

 

 EREW PRAM algorithm for all-to-all broadcasting 
 Processor j, 0 ≤ j < p, write own data value into B[j] 
 for k = 1 to p – 1 Processor j, 0 ≤ j < p, do 
  Read the data value in B[(j + k) mod p] 
 endfor 

 
Both of the preceding algorithms are time-optimal (shared 
memory is the only communication mechanism and each 
processor can read but one value per cycle) 
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In the following naive sorting algorithm, processor j 
determines the rank R[j] of its data element S[j] by 
examining all the other data elements; it then writes S[j] in 
element R[j] of the output (sorted) vector 

 
 Naive EREW PRAM sorting algorithm  
 (using all-to-all broadcasting) 
 Processor j, 0 ≤ j < p, write 0 into R[j]  
 for k = 1 to p – 1 Processor j, 0 ≤ j < p, do 
  l := (j + k) mod p 
  if S[l] < S[j] or S[l] = S[j] and l < j 
  then R[j] := R[j] + 1 
  endif 
 endfor 
 Processor j, 0 ≤ j < p, write S[j] into S[R[j]] 

 
This O(p)-time algorithm is far from being optimal 
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5.3 Semigroup or Fan-in Computation 

This computation is trivial for a CRCW PRAM of the 
reduction variety if the reduction operator happens to be ⊗ 
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Fig. 5.4. Semigroup computation in EREW PRAM. 

 
 EREW PRAM semigroup computation algorithm 
 Processor j, 0 ≤ j < p, copy X[j] into S[j] 
 s := 1 
 while s < p Processor j, 0 ≤ j < p – s, do 
  S[j + s] := S[j] ⊗ S[j + s] 
  s := 2s 
 endwhile 
 Broadcast S[p – 1] to all processors 

 
Time-optimal algorithm (CRCW can do better: prob. 5.16) 

Speed-up  =  p/log2p 

Efficiency  =  Speed-up/p  =  1/log2p   

Utilization = 
 W(p)
pT(p)  ≅ 

(p–1)+(p–2)+(p–4)+ ... +(p–p/2)
p log2p

  ≅ 1 – 1/log2p 
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Semigroup computation with each processor holding n/p 
data elements: 

 Each processor combine its sublist     n/p steps 

 Do semigroup computation on results log2p steps 
 

Speedup(n, p)  =   
n

n/p + 2 log2p
   =  

p
1 + (2p log2p)/n  

Efficiency(n, p)  =  Speedup/p  =  
1

1 + (2p log2p)/n  

 

For p = Θ(n), the speedup of Θ(n/log n) is sublinear  

The efficiency in this case is Θ(n/log n)/Θ(n) = Θ(1/log n)  

 
Limit the number of processors to p = O(n/log n): 

 Speedup(n, p)  =  n/O(log n)  =  Ω(n/log n)  =  Ω(p) 

 Efficiency(n, p) = Θ(1)  
 
Using fewer processors than tasks  =  parallel slack 

Higher degree  
of parallelism 
near the leaves

Lower degree  
of parallelism 
near the root

 
Fig. 5.5. Intuitive justification of why parallel slack helps 

improve the efficiency. 
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Inner product of two n-vectors, storing the result in s 

 Base addresses B′ and B″,  

auxiliary vector of length p with base address B 

 for j = 0 to n/p – 1 processor i do 
  if jp + i < n then  

load M[B′ + jp + i]  
multiply by M[B″ + jp + i] 
add to M[B + i] 

  endif 
  find sum or the p-vector, store the result in s 
 endfor 

 

T(n, p) = O(n/p + log p) 

 

Matrix-by-vector multiplication U := M × V 

 Ui is the inner product of row i of M and V 

 

T(n, p) = O(n2/p + n log p)) 
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5.4 Parallel Prefix Computation  

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9

S
  0:0 
  1:1 
  2:2 
  3:3 
  4:4 
  5:5 
  6:6 
  7:7 
  8:8 
  9:9

  0:0 
  0:1 
  1:2 
  2:3 
  3:4 
  4:5 
  5:6 
  6:7 
  7:8 
  8:9

  0:0 
  0:1 
  0:2 
  0:3 
  1:4 
  2:5 
  3:6 
  4:7 
  5:8 
  6:9

  0:0 
  0:1 
  0:2 
  0:3 
  0:4 
  0:5 
  0:6 
  0:7 
  1:8 
  2:9

  0:0 
  0:1 
  0:2 
  0:3 
  0:4 
  0:5 
  0:6 
  0:7 
  0:8 
  0:9

 
Fig. 5.6. Parallel prefix computation in EREW PRAM via 

recursive doubling. 
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Two other solutions, based on divide and conquer 

⊗ ⊗ ⊗ ⊗ ⊗ 

 

⊗ ⊗ ⊗ ⊗ 

x 0 x 1 x 2 x 3 x n-1 x n-2 

0:0 
0:1 

0:2 
0:3 

0:n-2 
0:n-1 

Parallel prefix 
computation 
of size n/2 

 
Fig. 5.7 Parallel prefix computation using a divide-and-conquer 

scheme.  
 
 Assume n = p 

T(p) = T(p/2) + 2 = 2 log2p 
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x 0 x 1 x 2 x 3 x n-1 x n-2 

0:0 
0:1 

0:2 
0:3 

0:n-2 
0:n-1 

 

 
Parallel prefix  
computation on n/2 
odd-indexed inputs 

Parallel prefix  
computation on n/2 
even-indexed inputs 

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ 

 
Fig. 5.8. Another divide-and-conquer scheme for parallel prefix 

computation.  
 
 Assume n = p 

 T(p) = T(p/2) + 1  =  log2p     Requires commutativity 
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5.5 Ranking the Elements of a Linked List 

C F A E B D
Rank:   5           4           3          2           1           0

info  next
head

Terminal element

(or distance from terminal)

Distance from head:
1           2           3          4           5           6

 
Fig. 5.9. Example linked list and the ranks of its elements. 

 

A

B

C

D

E

F

4

3

5

3

1

0

info next rank

0

1

2

3

4

5

head

 
Fig. 5.10. PRAM data structures representing a linked list and 

the ranking results. 

 
List-ranking appears to be hopelessly sequential  

However, we can in fact use a recursive doubling scheme 
to determine the rank of each element in optimal time  

There exist other problems that seem unparallizable 

This is why intuition can be misleading when it comes to 
determining which computation is or is not efficiently 
parallelizable (i.e., it is or is not in NC) 
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1 1 1 1 1 0

2 2 2 2 1 0

4 4 3 2 1 0

5 4 3 2 1 0

 
Fig. 5.11. Element ranks initially and after each of the three 

iterations. 
 

 PRAM list ranking algorithm (via pointer jumping) 
 Processor j, 0 ≤ j < p, do  {initialize the partial ranks} 
  if next[j] = j  
  then rank[j] := 0  
  else  rank[j] := 1  
  endif 
 while rank[next[head]] ≠ 0 Processor j, 0 ≤ j < p, do 
  rank[j] := rank[j] + rank[next[j]] 
  next[j] := next[next[j]] 
 endwhile 

 
Which PRAM submodel is implicit in this algorithm? 
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5.6 Matrix Multiplication 

For m × m matrices, C = A × B means:      cij   =   ∑
k=0

m–1

 aik bkj  

 Sequential matrix multiplication algorithm 
 for i = 0 to m – 1 do 
  for j = 0 to m – 1 do 
   t := 0 
    for k = 0 to m – 1 do 
      t := t + aikbkj 
    endfor 
    cij := t 
  endfor 
 endfor                 

=×
i

j

ij

 
Fig. 5.12. PRAM matrix multiplication; p = m2 processors. 

 
 PRAM matrix multiplication algorithm using m2 processors 
 Processor (i, j), 0 ≤ i, j < m, do 
 begin 
  t := 0 
  for k = 0 to m – 1 do 
   t := t + aikbkj 
  endfor 
  cij := t 
 end 
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=×
i

j

ij

 
 PRAM matrix multiplication algorithm using m processors 
 for j = 0 to m – 1 Processor i, 0 ≤ i < m, do 
  t := 0 
  for k = 0 to m – 1 do 
   t := t + aikbkj 
  endfor 
  cij := t 
 endfor      

 
Both of the preceding algorithms are efficient and provide 
linear speedup 

Using fewer than m processors: each processor computes 
m/p rows of C     

=×
i

j

ij m / p 
rows

 
 
This solution inefficient for NUMA parallel architectures 

Each element of B is fetched m/p times 

For each such access, only two arith ops are performed 
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Block matrix multiplication 
1 2 ¦p

1

2

¦p

One processor  
computes these  
elements of C  
that it holds in  
local memory

q

q=m/¦p

 
Fig. 5.13. Partitioning the matrices for block matrix 

multiplication. 
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=×
i

j

ij
BlockBlock- 

band

Block-band

 
 
Each multiply-add computation on q × q blocks needs  

 2q2 = 2m2/p memory accesses to read the blocks  

 2q3 arithmetic operations 

So, q arithmetic operations are done per memory access  

We assume that processor (i, j) has local memory to hold  

 Block (i, j) of the result matrix C (q2 elements)  

 One block-row of B; say row kq + c of block (k, j) of B  

 (Elements of A can be brought in one at a time)  

For example, as element in row iq + a of column kq + c in 
block (i, k) of A is brought in, it is multiplied in turn by the 
locally stored q elements of B, and the results added to the 
appropriate q elements of C  
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iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + b jq + q - 1 

kq + c 

kq + c 

iq + q - 1 

iq + a 

iq + 1 

iq  

jq  jq + 1 jq + b jq + q - 1 

Multiply 

Add 
Elements of 
block (i, j)  
in matrix C 

Elements of 
block (k, j) 
in matrix B 

Element of 
block (i, k) 
in matrix A 

jq + 1 

 
Fig. 5.14. How Processor (i, j) operates on an element of A and 

one block-row of B to update one block-row of C. 

 
On the Cm* NUMA-type shared-memory multiprocessor, 
this block algorithm exhibited good, but sublinear, speedup 

 p = 16, speed-up = 5 in multiplying 24 × 24 matrices; 

 improved to 9 (11) for 36 × 36 (48 × 48) matrices 

The improved locality of block matrix multiplication can 
also improve the running time on a uniprocessor, or 
distributed shared-memory multiprocessor with caches 

 Reason: higher cache hit rates. 
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6 More Shared-Memory Algorithms 

Back to TOC 

Chapter Goals 
● Develop PRAM algorithms for more 

complex problems 
 (background on corresponding sequential 

algorithms also presented) 
● Discuss some practical implementation 

issues such as data distribution  
 
Chapter Contents 
● 6.1. Sequential Rank-Based Selection 
● 6.2. A Parallel Selection Algorithm 
● 6.3. A Selection-Based Sorting Algorithm 
● 6.4. Alternative Sorting Algorithms 
● 6.5. Convex Hull of a 2D Point Set 
● 6.6. Some Implementation Aspects 
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6.1 Sequential Rank-Based Selection 

Selection: Find the (a) kth smallest among n elements 

Naive solution through sorting, O(n log n) time  

Linear-time sequential algorithm can be developed 

 
 

Median 

m = the median   
of the medians:  
< n/4 elements  
> n/4 elements 

L 

E 

G 

< m 

= m 

> m 

k < |L| 

k > |L| + |E| 

q 

n/q m n 
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 Sequential rank-based selection algorithm select(S, k) 
 1. if |S| < q            {q is a small constant} 
  then sort S and return the kth smallest element of S 
  else divide S into |S|/q subsequences of size q 
   Sort each subsequence and find its median 
   Let the |S|/q medians form the sequence T 
  endif 
 2. m = select(T, |T|/2)  
     {find the median m of the |S|/q medians} 
 3. Create 3 subsequences 
  L: Elements of S that are < m 
  E: Elements of S that are = m 
  G: Elements of S that are > m 
 4. if |L| ≥ k 
  then return select(L, k) 
  else if |L| + |E| ≥ k 
   then return m 
   else return select(G, k – |L| – |E|) 
  endif 

Analysis: 

 T(n) = T(n/q) + T(3n/4) + cn 

 Let q = 5; we guess the solution to be T(n) = dn   

 dn = dn / 5 + 3dn / 4 + cn       ⇒     d = 20c 
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Examples for sequential selection  

  from an input list of size n = 25 using q = 5 

  ←−−−−−−−−−−− n/q sublists of q elements −−−−−−−−−−−−→ 
S   6 4 5 6 7  1 5 3 8 2  1 0 3 4 5  6 2 1 7 1  4 5 4 9 5  
  ---------  ---------  ---------  ---------  --------- 
T         6        3          3        2          5     
m                             3                             
  1 2 1 0 2 1 1   3 3   6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5 
  -------------   ---   ------------------------------- 
          L          E                   G 

        | L | = 7            | E | = 2     | G | = 16 
 
To find the 5th smallest element in S, select the 5th 
smallest element in L  

  S   1 2 1 0 2  1 1   
      ---------  --- 
  T       1        1     
  m                1                             
      0   1 1 1 1   2 2 
      -   -------   --- 
      L      E       G                      Answer: 1 

 
The 9th smallest element of S is 3   

 
The 13th smallest element of S is found by selecting the 
4th smallest element in G    

  S   6 4 5 6 7  5 8 4 5 6  7 4 5 4 9  5   
      ---------  ---------  ---------  - 
  T         6          5        5      5     
  m                    5                             
      4 4 4 4   5 5 5 5 5   6 6 7 8 6 7 9 
      -------   ---------   ------------- 
         L          E             G           Answer: 4 
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6.2 A Parallel Selection Algorithm 

 Parallel rank-based selection algorithm  PRAMselect(S, k, p) 
 1. if |S| < 4            
  then sort S and return the kth smallest element of S 
  else broadcast |S| to all p processors 
   divide S into p subsequences S(j) of size |S|/p    
   Processor j, 0 ≤ j < p, compute Tj := select(S(j), |S(j)|/2)   
  endif 
 2. m = PRAMselect(T, |T|/2, p) {median of the medians} 
 3. Broadcast m to all processors and create 3 subsequences 
  L: Elements of S that are < m 
  E: Elements of S that are = m 
  G: Elements of S that are > m 
 4. if |L| ≥ k 
  then return PRAMselect(L, k, p) 
  else if |L| + |E| ≥ k 
   then return m 
   else return PRAMselect(G, k – |L| – |E|, p) 
  endif 

Analysis: Let p = n1–x, with x > 0 a known constant 

 e.g., x = 1/2  ⇒  p = n   

 T(n, p)  =  T(n1–x, p) + T(3n/4, p) + cnx   =  O(nx ) 

 Speed-up(n, p)  =  Θ(n)/O(nx)  =  Ω(n1–x)  =  Ω(p)  

 Efficiency = Ω(1) 

What if x = 0, i.e., we use p = n processors for an n-input 
selection problem? 
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6.3 A Selection-Based Sorting Algorithm  

.  .  .m m m m

n/k elements n/k n/k n/k

–
� +

�

1 2 3 k–1 +∞ −∞ 

 
Fig. 6.1. Partitioning of the sorted list for selection-based 

sorting. 

 
 Parallel selection-based sort PRAMselectionsort(S, p) 
 1. if |S| < k then return quicksort(S)            
 2. for i = 1 to k – 1 do   
   mj := PRAMselect(S, i|S|/k, p)  
   {for notational convenience, let m0 := –∞ ;  mk := +∞} 
  endfor 
 3. for i = 0 to k  – 1 do   
   make the sublist T(i) from elements of S in (mi, mi+1) 
  endfor 
 4. for i = 1 to k /2 do in parallel   
   PRAMselectionsort(T(i), 2p/k) 
   {p/(k/2) processors used for each  
    of the k/2 subproblems} 
  endfor 
 5. for i = k/2 + 1 to k  do in parallel   
   PRAMselectionsort(T(i), 2p/k) 
  endfor 
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Analysis: p = n1–x, with x > 0 a known constant, k = 21/x    

 T(n, p)  =  2T(n/k, 2p/k) + cnx  =  O(nx log n) 

Why can’t all k subproblems be solved in step 4 at once? 

 Speedup(n, p) = Ω(n logn)/O(nxlogn) = Ω(n1–x) = Ω(p) 

 Efficiency  =  Speedup / p  =  Ω(1) 

 Work(n, p) = pT(n, p) = Θ(n1–x) O(nxlogn) = O(n logn)   

Our asymptotic analysis is valid for x > 0 but not for x = 0;  

i.e., PRAMselectionsort does not allow us to sort p keys  

  in optimal O(log p) time 

 

Example: 

  S:  6 4 5 6 7 1 5 3 8 2 1 0 3 4 5 6 2 1 7 0 4 5 4 9 5  

Threshold values: 

                  m0 = –∞ 

  n/ k = 25/4 ≅  6     m1 = PRAMselect( S,  6, 5) = 2  

 2n/ k = 50/4 ≅ 13      m2 = PRAMselect( S, 13, 5) = 4  

 3n/ k = 75/4 ≅ 19     m3 = PRAMselect( S, 19, 5) = 6  

                   m4 = + ∞ 

                 |             |           |  
  T:  -  -  -  -  -  2| -  -  -  -  -  -  4| -  -  -  -  -  6| -  -  -  -  -  -  
                 |             |           |  

                 |             |           |  
  T:  0 0 1 1 1 2|2 3 3 4 4 4 4|5 5 5 5 5 6|6 6 7 7 8 9  
                 |             |           |  
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6.4 Alternative Sorting Algorithms  

Sorting via random sampling 

Given a large list S of inputs, a random sample of the 
elements can be used to find k comparison thresholds  

In fact, it is easier if we pick k = p, so that each of the 
resulting subproblems is handled by a single processor.  

Assume p << n  : 

 
 Parallel randomized sort PRAMrandomsort(S, p) 

 1. Processor j, 0 ≤ j < p, pick |S|/p2 random samples  

  of its |S|/p elements and store them in its  

  corresponding section of a list T of length |S|/p   

 2. Processor 0 sort the list T     

  {the comparison threshold mi is  

   the (i |S| / p2)th element of T} 

 3. Processor j, 0 ≤ j < p, store its elements falling  

  in (mi , mi+1) into T(i) 

 4. Processor j, 0 ≤ j < p, sort the sublist T(i)    
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Parallel radixsort 

In binary version of radixsort, we examine every bit of the   
k-bit keys in turn, starting from the LSB  

In Step i, bit i is examined, 0 ≤ i < k  

Records are stably sorted by the value of the ith key bit  

Example (keys are followed by their binary representations 
in parentheses): 

  Input Sort by Sort by Sort by 
  list LSB middle bit MSB 
  –––––– –––––– –––––– –––––– 
  5 (101) 4 (100) 4 (100) 1 (001) 
  7 (111) 2 (010) 5 (101) 2 (010) 
  3 (011) 2 (010) 1 (001) 2 (010) 
  1 (001) 5 (101) 2 (010) 3 (011) 
  4 (100) 7 (111) 2 (010) 4 (100) 
  2 (010) 3 (011) 7 (111) 5 (101) 
  7 (111) 1 (001) 3 (011) 7 (111) 
  2 (010) 7 (111) 7 (111) 7 (111) 

Performing the required data movements 

  Input Compl. Diminished  Prefix sums Shifted 
  list of Bit 0   prefix sums   Bit 0   plus 2 list 
  –––––– –––––– –––––– –––––– –––––– –––––– 
  5 (101) 0   – 1 1   + 2 = 3 4 (100) 
  7 (111) 0   – 1 2   + 2 = 4 2 (010) 
  3 (011) 0   – 1 3   + 2 = 5 2 (010) 
  1 (001) 0   – 1 4   + 2 = 6 5 (101) 
  4 (100) 1 0 0    – 7 (111) 
  2 (010) 1 1 0    – 3 (011) 
  7 (111) 0   – 1 5   + 2 = 7 1 (001) 
  2 (010) 1 2 0    – 7 (111) 

The running time consists mainly of the time to perform 2k 
parallel prefix computations: O(log p) for k constant  
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6.5 Convex Hull of a 2D Point Set 

x
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y
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Fig. 6.2. Defining the convex hull problem. 

 

Best sequential algorithm for p points: Ω(p log p) steps 

x’ 

y’ 

All points 
fall on this 
side of line 

Angle 

0 

1 

7 

11 

15 

 
Fig. 6.3. Illustrating the properties of the convex hull. 
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 Parallel convex hull algorithm PRAMconvexhull(S, p) 
 1. Sort point set by x coordinates           
 2. Divide sorted list into p  subsets Q(i) of size p , 0 ≤ i < p  
 3. Find convex hull of each subset Q(i) using p  processors 

4. Merge p  convex hulls CH(Q(i)) into overall hull CH(Q)  

   

x

y

x

y

CH(Q   )(0)
Q(0) Q(1) Q(2) Q(3)

 
Fig. 6.4. Multiway divide and conquer for the convex hull 

problem. 
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Tangent lines 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(a) No point of CH(Q(i)) is on CH(Q) 

CH(Q   ) (j) 

CH(Q   ) (i) 

CH(Q   ) (k) 

(b) Points of CH(Q(i)) from A to B are on CH(Q) 

A B 

 
Fig. 6.5. Finding points in a partial hull that belong to the 

combined hull. 
 
 

Analysis: 

 T(p, p) = T(p1/2, p1/2) + c log p  ≅ 2c log p  

The initial sorting time is also O(log p) 
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6.6 Some Implementation Aspects 

EREW-PRAM: Any p locations accessible by p processors 

Realistic: p locations must be in different memory modules 

0,0 
1,0 
2,0 
3,0 
4,0 
5,0 

Row 1 
0,1 
1,1 
2,1 
3,1 
4,1 
5,1 
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1,2 
2,2 
3,2 
4,2 
5,2 

0,3 
1,3 
2,3 
3,3 
4,3 
5,3 

0,4 
1,4 
2,4 
3,4 
4,4 
5,4 

0,5 
1,5 
2,5 
3,5 
4,5 
5,5 

Module    0    1    2    3    4    5 

Column 2 

 
Fig. 6.6. Matrix storage in column-major order to allow 

concurrent accesses to rows. 
 

0,0 
1,5 
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4,2 
5,1 

Row 1 
0,1 
1,0 
2,5 
3,4 
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5,2 

0,2 
1,1 
2,0 
3,5 
4,4 
5,3 

0,3 
1,2 
2,1 
3,0 
4,5 
5,4 

0,4 
1,3 
2,2 
3,1 
4,0 
5,5 

0,5 
1,4 
2,3 
3,2 
4,1 
5,0 

Module    0    1    2    3    4    5 

Column 2 

 
Fig. 6.7. Skewed matrix storage for conflict-free accesses to 

rows and columns. 
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 0 
 1 
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23 
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Vector 
indices 

A    is viewed as vector element i + jm ij 
 

Fig. 6.8. A 6 ××  6 matrix viewed, in column-major order, as a 36-
element vector. 

 

The vector in Fig. 6.8 may be accessed in some or all of 
the following ways 

Column: k, k+1, k+2, k+3, k+4, k+5  Stride = 1 

Row:   k, k+m, k+2m, k+3m, k+4m, k+5m Stride = m 

Diagonal: k, k+m+1, k+2(m+1), k+3(m+1),  
         k+4(m+1), k+5(m+1) Stride = m+1 

Antidiagonal: k, k+m–1, k+2(m–1), k+3(m–1),  

                 k+4(m–1), k+5(m–1) Stride = m–1 
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Linear skewing scheme:  

 stores the kth vector element in bank a + kb mod B  

The address within the bank is irrelevant to conflict-free 
parallel access   

In fact, the constant a above is also irrelevant and can be 
safely ignored  

So we can limit our attention to linear skewing schemes 
that assign Vk to memory module Mkb mod B   

With a linear skewing scheme, the vector elements k, k+s, 
k+2s, ... , k+(B–1)s will be assigned to different memory 
modules iff sb is relatively prime with respect to the 
number B of memory banks.  



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 107 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

To allow access from each processor to every memory 
bank, we need a permutation network 

Even with a full permutation network (complex, expensive), 
full PRAM functionality is not realized 

Practical processor-to-memory network cannot realize all 
permutations (they are blocking) 

0        1        2        3
log  p Columns of 2-by-2 Switchesp Processors p Memory Banks

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
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0000 
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13 
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Fig. 6.9. Example of a multistage memory access network. 
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7 Sorting and Selection Networks 

Back to TOC 

Chapter Goals 
● Become familiar with the circuit-level 

models of parallel processing  
● Architecture ⇒ algorithm (studied so far) 
 Problem ⇒ develop a suitable architecture  
 (three more application-specific examples 

to come in Chapter 8)  
● Introduce useful design tools and study 

trade-off issues via a familiar problem  
 
Chapter Contents 
● 7.1. What Is a Sorting Network? 
● 7.2. Figures of Merit for Sorting Networks 
● 7.3. Design of Sorting Networks 
● 7.4. Batcher Sorting Networks 
● 7.5. Other Classes of Sorting Networks 
● 7.6. Selection Networks 
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7.1 What Is a Sorting Network? 

x
x
x

x

. 

. 

.

. 

. 

.

n-sorter

0

1

2

n–1

y
y
y

y

0

1

2

n–1

The outputs are a 
permutation of the 
inputs satisfying 
y Š y Š ... Š y 
(non-descending) 

0 1 n–1≤ ≤ ≤ 

 
Fig. 7.1. An n-input sorting network or an n-sorter. 

 

2-sorter

input min0

input 1 max

in out

in out

Block Diagram Alternate Representations

in out

in out

 
Fig. 7.2. Block diagram and four different schematic 

representations for a 2-sorter. 
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Fig. 7.3. Parallel and bit-serial hardware realizations of a 2-

sorter. 
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Fig. 7.4. Block diagram and schematic representation of a 4-

sorter. 

 

How to verify that the circuit of Fig. 7.4 is a valid 4-sorter?  

The answer is easy in this case 

After the first two circuit levels, the top line carries the 
smallest and the bottom line the largest of the four values  

The final 2-sorter orders the middle two values  

More generally, we need to verify the correctness of an n-
sorter through formal proofs or by time-consuming 
exhaustive testing. Neither approach is attractive. 

The zero-one principle: A comparison-based sorter is valid 
iff it correctly sorts all 0/1 sequences.  

6-sorter

1 
3 
6* 
5* 
8 
9

3 
6 
9 
1 
8 
5 

Invalid

0 
1 
1 
0 
1 
0

0 
0 
1 
0 
1 
1
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7.2 Figures of Merit for Sorting Networks 

a. Cost: number of 2-sorters used in the design 

b. Delay: number of 2-sorters on the critical path 

c. Cost × Delay 

n = 9, 25 modules, 9 levels
n = 10, 29 modules, 9 levels

n = 12, 39 modules, 9 levels

n = 16, 60 modules, 10 levels  
Fig. 7.5. Some low-cost sorting networks. 
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n = 6, 12 modules, 5 levels

n = 9, 25 modules, 8 levels
n = 10, 31 modules, 7 levels

n = 12, 40 modules, 8 levels

n = 16, 61 modules, 9 levels
 

Fig. 7.6. Some fast sorting networks. 
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7.3 Design o f Sorting Networks 

Rotate 
by 90 
degrees

Rotate by 
90 degrees 
to see the 
odd-even 
exchange 
patterns  

 
Fig. 7.7. Brick-wall 6-sorter based on odd –even transposition. 

C(n) = C(n – 1) + n – 1  =  (n – 1) + (n – 2) + . . . + 2 + 1  =  n(n – 1)/2 

D(n ) = D(n – 1) + 2 = 2 + 2 + . . . + 2 + 1  =  2(n – 2) + 1  =  2n – 3 
Cost × Delay = n(n – 1)(2n – 3)/2 = Θ(n3) 
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Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

 
Fig. 7.8. Sorting n etwork based on insertion sort or selection 

sort. 
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7.4 Batcher Sorting Networks 
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Fig. 7.9.  Batcher’s even–odd merging n etwork for 4 + 7 inpu ts. 

 

x0 ≤ x1 ≤ . . . ≤ xm–1 (k  0s)  y0 ≤ y1 ≤ . . . ≤ ym'–1 (k'  0s) 

Merge x0, x2, ... and y0, y2, ... to get v0, v1, ... keven = k/2+k'/2 0s 

Merge x1, x3, ... and y1, y3, ... to get w0, w1, ... kodd = k/2+k'/2  0s 

Compare-exchange the pairs of elements  w0:v1, w1:v2, w2:v3, . . .  

Case a: keven = kodd   The sequence v0 w0 v1 w1 v2 w2 ...  already sorted    

Case b: keven = kodd+1 The sequence v0 w0 v1 w1 v2 w2 ...  already sorted    

Case c: keven = kodd+2   

 v    0   0   0   0   0   0   0   0   1   1   1      1 
 w     0   0   0   0   0   0   1   1   1   1   1 
           Out  of order 
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Batcher’s (m, m) even-odd merger, when m is a power of 
2, is characterized by the following recurrences:   

C(m) =  2C(m/2) + m – 1  
 = (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .   
 = m log2m + 1 

D(m) = D(m/2) + 1  

 =  log2 m + 1 

Cost × Delay = Θ(m log2 m) 

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

 
Fig. 7.10. The recursive structure of Batcher’s even–odd merge 

sorting n etwork. 
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4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger  

Fig. 7.11. Batcher’s even-odd merge sorting n etwork for eight 
inpu ts. 

 

Batcher sorting networks based on the even-odd merge 
technique are characterized by the following recurrences:   

C(n)  =  2C(n/2) + (n/2)(log2(n/2)) + 1   

 ≅  n(log2n )2/ 2  

D(n)  =  D(n/2) + log2(n/2) + 1  

 = D(n/2) + log2n   

 =  log2n (log2n + 1)/2 

Cost × Delay = Θ(n log4n) 
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Bitonic sorters 

Bitonic sequence: “rises then falls”, “falls then rises”, or is obtained from 
the first two categories through cyclic shifts or rotations. Examples include: 

1  3  3  4  6  6  6  2  2  1  0  0      Rises, then falls 

8  7  7  6  6  6  5  4  6  8  8  9      Falls, then rises 

8  9  8  7  7  6  6  6  5  4  6  8     The previous sequence, right-rotated by 2 

n/2-sorter

n/2-sorter

n-input bitonic- 
sequence sorter

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

Bitonic 
sequence

. 
  . 
     .

. 
  . 
     .

 
Fig. 7.12. The recursive structure of Batcher’s biton ic sorting 

network. 
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Shift right half of 
data to left half 
(superimpose the 
two halves) 

In each position, 
keep the smaller 
value of each pair 
and ship the larger 
value to the right  

Each half is a bitonic  
sequence that can be 
sorted independently 

0 1 2 n–1 

0 1 2 n–1 

.   .   . 

.   .   . 

Bitonic 
sequence 

Shifted 
right half 

n/2 

n/2 

.   .   . 

.   .   .  
Fig. 14.2. Sorting a biton ic sequence on a linear array. 

 

8-input bitonic- 
sequence sorter

4-input bitonic- 
sequence sorters

2-input 
sorters  

Fig. 7.13. Batcher’s biton ic sorting n etwork for eight inpu ts. 
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7.5 Other Classes of Sorting Networks 

Periodic balanced sorting networks 

 
Fig. 7.14. Periodic balanced sorting network for eight inputs. 

 

Desirable properties: 

a. Regular and modular (easier VLSI layout). 

b. Slower, but more economical, implementations are 
possible by reusing the blocks 

c. Using an extra block provides tolerance to some faults 
(missed exchanges) 

d. Using 2 extra blocks provides tolerance to any single 
fault (a missed or incorrect exchange) 

e. Multiple passes through a faulty network can lead to 
correct sorting (graceful degradation) 

f. Single-block design can be made fault-tolerant by 
adding an extra stage to the block 
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Shearsort-based sorting networks 

Offer some of the same advantages enumerated for 
periodic balanced sorting networks 

0 1 2 3

4567

Snake-like 
row sorts

Column 
sorts

0 
1 
2 
3 
4 
5 
6 
7

Snake-like 
row sorts

Corresponding 
2-D mesh

 
Fig. 7.15.  Design of an 8-sorter based on shearsort on 2××4 mesh. 
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7

0 1

3 2

54

7 6

Corresponding 
2-D mesh

Left 
column 
sort

Right 
column 
sort

Snake-like row sort

Left 
column 
sort

Right 
column 
sort

Snake-like row sort  
Fig. 7.16.  Design of an 8-sorter based on shearsort on 4××2 mesh. 
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7.6 Selection Networks 

Any sorting network can be used as a selection network, 
but a selection network (yielding the kth smallest or largest 
input value) is in general simpler and faster 

One way to get a selection network is by pruning a sorting 
network 

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

3rd smallest element 

Can remove 
this block if 
smallest three 
inputs needed 

Can remove 
these four 
comparators 

 
Deriving an (8, 3)-selector from Batcher’s even-odd merge 8-sorter. 

 

Direct design is likely to lead to more efficient networks, 
but unfortunately we know even less about selection 
networks than we do about sorting networks. 
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One can define three selection problems: 

I. Select the k smallest values; present in sorted order 
II. Select kth smallest value 
III.  Select the k smallest values; present in any order 

Circuit and time complexity: (I) hardest, (III) easiest  
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[2,6]
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Fig. 7.17. A type III (8, 4)-selector. 

 
Classifier: a selection network that can divide a set of n 
values into n/2 largest and n/2 smallest values 

The selection network of Fig. 7.17 is an 8-input classifier  

Generalizing from Fig. 7.17, an n-input classifier can be 
built from two (n/2)-sorters followed by n/2 comparators  

An n-classifier and two n/2-sorters can form an n-sorter. 
For such a sorting network: 

T(n) = 2T(n/2) + 1 = n – 1 

C(n) = 4C(n/2) + n/2 = n(n – 1)/2  
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Left half Right half  
Figure for Problem 7.7.  
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 Figure for Problem 7.9.  
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 Figure for Problem 7.11. 
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8 Other Circuit-Level Examples 

Back to TOC 

Chapter Goals 
● Study three application areas: dictionary 

operations, parallel prefix, DFT 
● Develop circuit-level parallel architectures 

for solving these problems:  
 ● Tree machine 
 ● Parallel prefix networks 
 ● FFT circuits  
 
Chapter Contents 
● 8.1. Searching and Dictionary Operations 
● 8.2. A Tree-Structured Dictionary Machine 
● 8.3. Parallel Prefix Computation 
● 8.4. Parallel Prefix Networks 
● 8.5. The Discrete Fourier Transform 
● 8.6. Parallel Architectures for FFT 
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8.1 Searching and Dictionary Operations 

Parallel (p + 1)-ary search:  

  logp+1(n + 1) = log2(n + 1)/log2(p + 1) steps 

P0

P1

0 
1 
2 

25

8

17

P0

P1P0P1

Example: 
 
n = 26 
 
p = 2

Step  
2

Step 
1

Step 
0  

 

This algorithm is optimal: no comparison-based search 
algorithm can be faster  

 Speed-up  ≅ log2(p + 1) 

A single search in a sorted list cannot be significantly 
speeded up by parallel processing, but all hope is not lost 

 Dynamic data sets (sorting implies large overhead) 

 Batch searching (finding multiple keys at once) 
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Basic dictionary operations: record keys x0, x1, . . . , xn–1   

search(y) Find record with key y and return its data 

insert(y, z) Augment list with a record: key = y, data = z 

delete(y)  Remove record with key y, return data 

 

Some or all of the following ops might also be of interest: 

findmin Find record with smallest key; return data 

findmax Find record with largest key; return data 

findmed Find record with median key; return data 

findbest(y) Find record with key “nearest” to y 

findnext(y) Find record whose key would appear 
immediately after y if ordered 

findprev(y) Find record whose key would appear 
immediately before y if ordered 

extractmin  Remove record(s) with min key; return data? 

extractmax Remove record(s) with max key; return data? 

extractmed Remove the record(s) with median key value;  
return data? 

The operations “findmin” and “extractmin” (or “findmax” 
and “extractmax”) are priority queue operations  
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8.2 A Tree-Structured Dictionary Machine 

x

Input Root

Output Root

"Circle" 
  Tree

"Triangle" 
    Tree

0 x1 x2 x4x3 x5 x6 x7

 
Fig. 8.1. A tree-structured dictionary machine. 

 
 

Combining function of the triangular nodes is as follows: 

search(y) Pass OR of “yes” signals, with data from 
“yes” side, or from either side if both “yes”  

findmin Pass smaller of two key values, with data 
(findmax is similar; findmed not supported) 

findbest(y) Pass the larger of two match-degree 
indicators, with the corresponding record 

findnext(y) Leaf nodes generate a “larger” flag bit; 
findmin is performed among all larger values 
(findprev is similar) 
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*

Input Root

Output Root

* ** *

insert(y,z)

0 1

0 0 1 0 0 0 1 1

0 2

1 2
0

 
Fig. 8.2. Tree machine storing five records and containing three 

free slots. 
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Fig. 8.3. Systolic data structure for minimum, maximum, and 

median finding. 

 
 

[5, 87] [87, 176]
Insert  2 
Insert  20 
Insert  127 
Insert  195

Extractmin 
Extractmed 
Extractmax19 or 20 

items 20 items

1765
87

 
Update/access examples for the systolic data structure of Fig. 8.3. 
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8.3 Parallel Prefix Computation  

⊗ 
x i 

s i 
x i 

s i 

Latches Four-stage pipeline Function unit 
 

Fig. 8.4. Prefix computation using a latched or pipelined 
function unit. 

 
 

Example: Prefix sums 

x0  x1  x2   . . .  xi 

x0  x0 + x1 x0 + x1 + x2 . . .  x0 + x1 + . . . + xi 

s0  s1  s2   . . .  si 

 

a[i]

x[i – 12]
Delay

Delays

a[i–1]

a[i–6] ³ a[i–7]

a[i–4] ³ a[i–5]

a[i–8] ³ a[i–9] ³ a[i–10] ³ a[i–11]

si–12

xi

Delay

Delays

xi–1

⊗xi–4 xi–5

xi–6 xi–7⊗

xi–8 xi–9 xi–10 xi–11⊗⊗⊗
Function unit 

⊗computing

 
Fig. 8.5. High-throughput prefix computation using a pipelined 

function unit. 
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8.4 Parallel Prefix Networks 

. . .

Prefix Sum n/2

xn–1 xn–2 x3 x2 x1 x0. . .

sn–1 sn–2 s3 s2 s1 s0

++

+

+

+

 
Fig. 8.6. Prefix sum network buil t of one n/2-inpu t networks and 

n – 1 adders. 
 

 T(n) = T(n/2) + 2 = 2 log2n – 1  

 C(n) = C(n/2) + n – 1 = 2n – 2 – log2n  

 

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

 
Fig. 8.7. Prefix sum network buil t of two n/2-inpu t networks and 

n/2 adders. 
 

 T(n) = T(n/2) + 1 = log2n  

 C(n) = 2C(n/2) + n/2 = (n/2) log2n 
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Fig. 8.9. Kogg e–Stone parallel prefix graph for n = 16. 
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Fig. 8.10. A hybrid Brent–Kung /Kogg e–Stone parallel prefix 

graph for 16 inpu ts. 

 

Brent-Kung: ≅ 2n cost, 2 log2n – 2 delay 

Kogge-Stone: ≅ n log2n cost, log2n delay 

Hybrid: intermediate in cost and delay 
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Linear-cost, log2n-delay parallel prefix networks 

Define a type-x parallel prefix network as one that: 

 Produces the leftmost output in log2(n) time 

 Yields all other outputs with at most x additional delay 

Recursive construction of the fastest possible parallel 
prefix networks (type-0) 

. . . . . .

. . . . . .

Prefix Sum n/2 Prefix Sum n/2

. . .

xn–1 xn/2 xn/2–1 x0

sn–1 sn/2

sn/2–1 s0+ +

Type-0 Type-1

Type-0
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8.5 The Discrete Fourier Transform 

 yi  = �n–1
j=0  ωn

ijxj 

The DFT is expressed in matrix form as y = Fnx  









y0
y1
:
:

yn–1

   =  









1 1 1 ... 1

1 ωn ωn2 ... ωnn–1

: : : ... :
1 ωnn–1 ωn2(n–1) ... ωn(n–1)2

  









x0
x1
:
:

xn–1

     

ωn:nth primitive root of unity; ωn
n = 1, ωn

j 
���

IR �
�

≤ j < n   

Examples:  ω4 = i  = –1 , ω3 = –1/2 + i 3 /2    

Inverse DFT, for recovering x, given y, is essentially the 
same computation as DFT: 

 xi  = 
1
n   �n–1

j=0  ωn
–ijyj            

Can do DFT by any matrix-vector multiplication algorithm 

However, the special structure of Fn can be exploited to 
devise a much faster divide-and-conquer algorithm:  

the fast Fourier transform (FFT) 
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DFT Applications 
Spectral analysis 

DFT

Received tone

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209 
  Hz

1477  
  Hz

1336  
  Hz

1633  
  Hz

697 Hz

770 Hz

852 Hz

941 Hz

Tone frequency assignments 
     for touch-tone dialing

Frequency spectrum of received tone
 

Signal smoothing or filtering 

DFT

Low-pass filter

Inverse DFT

Input signal with noise

Recovered smooth signal
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Fast Fourier Transform (FFT) 

Partition the DFT sum into odd- and even-indexed terms 

 yi  =  �n–1
j=0  ωn

ijxj   =  �  
j even (2r) ωn

ijxj  + �  
j odd (2r+1) ωn

ijxj  

      =  �n/2–1
r=0  ωn/2

irx2r  + ωn �n/2–1
r=0  ωn/2

irx2r+1 

The identity ωn/2 = ωn
2 has been used in the derivation 

The two terms in the last expression are n/2-point DFTs 

 u = Fn/2 









x0
x2
:
:

xn–2

        v = Fn/2 









x1
x3
:
:

xn–1

  

Then: 

  ui + ωn
ivi             0 ≤ i < n/2 

 yi =  
  ui–n/2+ωn

ivi–n/2   n/2≤i<n (or  yi+n/2 = ui + ωn
i+n/2vi) 

Hence:n-point FFT = two n/2-point FFTs + n multiply-adds  

Sequential complexity of FFT:T(n) = 2T(n/2) + n = n log2n 

Unit of time = latency of one multiply-add operation   

If the n/2-point subproblems are solved in parallel and the 
n multiply-add operations are also concurrent, with their 
inputs supplied instantly, the parallel time complexity is: 

 T(n) = T(n/2) + 1 =  log2n 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 138 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

8.6 Parallel Architectures for FFT 
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y6
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y5
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x3

x4

x5

x6

 
Fig. 8.11. Butterfly network for an 8-point FFT. 
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Fig. 8.12. FFT network variant and its shared-hardware 

realization. 
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Computation scheme of 16-point FFT. 
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Fig. 8.13. Linear array of log2n cells for n-point FFT computation. 
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Part III Mesh-Based Architectures 

Back to TOC 

Part Goals 
● Study 2D mesh & torus networks in depth 
 ●  of great practical significance 
 ●  used in recent parallel machines 
 ●  regular with short wires -- scalable 
● Briefly review other mesh(like) networks 
 ●  higher-dimensional meshes/tori 
 ●  variants and derivative architectures 
 
Part Contents 
● Chapter 9: Sorting on a 2D Mesh or Torus 
● Chapter 10: Routing on a 2D Mesh or Torus 
● Chapter 11: Numerical 2D Mesh Algorithms 
● Chapter 12: Mesh-Related Architectures 
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9 Sorting on a 2D Mesh or Torus 

Back to TOC 

Chapter Goals 
● Introduce the mesh model (processors, 

links, communication) 
● Develop 2D mesh sorting algorithms 
● Learn about mesh strengths/weaknesses in 

communication-intensive problems 
 
Chapter Contents 
● 9.1. Mesh-Connected Computers 
● 9.2. The Shearsort Algorithm 
● 9.3. Variants of Simple Shearsort 
● 9.4. Recursive Sorting Algorithms 
● 9.5. A Nontrivial Lower Bound 
● 9.6. Achieving the Lower Bound 
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9.1 Mesh-Connected Computers 

Row wrap-around link for torus
 

Fig. 9.1. Two-dimensional mesh-connected computer. 

 

We focus on 2D mesh (>2D in Chapter 12) 

NEWS or four-neighbor mesh (others in Chapter 12) 

Square ( p  × p ) or rectangular (r × p/r) mesh 

MIMD, SPMD, or SIMD mesh 

All-port versus single-port communication 

Weak SIMD model: all communications in same direction 

Diameter-based and bisection-based lower bounds 
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Fig. 9.2. A 5 ××  5 torus folded along its columns. Folding this 

diagram along the rows will produce a layout with only 
short links. 

 

 0   1   2   3 
 
 4   5   6   7 
 
 8   9  10  11 
 
12  13  14  15 

a. Row-major 

 0   1   2   3 
 
 7   6   5   4 
 
 8   9  10  11 
 
15  14  13  12 

b. Snakelike row-major 

 0   1   4   5 
 
 2   3   6   7 
 
 8   9  12  13 
 
10  11  14  15 

c. Shuffled row-major 

 1   2   5   6 
 
 0   3   4   7 
 
15  12  11   8 
 
14  13  10   9 

d. Proximity order 

  ---     --- 
 |   |   |   | 
      --- 
             | 
      -- 
 |   |   |   | 
  --      -- 

 
Fig. 9.3. Some linear indexing schemes for the processors in a 

2D mesh. 
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Interprocessor communication 

 

R1
R2

R3
R4

R5

R5

R5

R5

R5
R2

R3
R4

R1

R5

R5

R6
R6

R7

R7

R8

R8

 
Fig. 9.4. Reading data from NEWS neighbors via virtual local 

registers. 

 

a. MIMD all-port b. MIMD Single-port 

c. SIMD single-port d. Weak SIMD  
 Some communication modes. 
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9.2 The Shearsort Algorithm 

then 
sort the 
columns 
(top-to- 
bottom)

Sort the 
rows 
(snake- 
like)

repeat   log  r   times

endrepeat 
Sort the rows

Snakelike Row-Major

 . . .. 
. 
.

. 

. 

.

. 

. 

.

(depending on the desired final sorted order)
or

 2

Shearsort algorihm for a 2D mesh with r rows

 
Fig. 9.5. Description of the shearsort algorithm on an r-row 2D 

mesh. 

 

 Tshearsort = log2r (p/r + r) + p/r    

On a square p  × p  mesh, Tshearsort = p (log2p + 1)  
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Proof of correctness of shearsort via the 0-1 principle 

Assume that in doing the column sorts, we first sort pairs 
of elements in the column and then sort the entire column 

0 0 0         1 1 
1 1 1         0 0

0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1 
1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 
1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 1

0 0 1 1 1 0 0 0 
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1

Row 2i  
Row 2i + 1

Case (a):   
More 0s

Case (b):   
More 1s

Case (c):   
Equal # 
0s & 1s

⇒

⇒

⇒

Bubbles up in the 
next column sort

Sinks down in the 
next column sort

 
Fig. 9.6. A pair of dirty rows create at least one clean row in 

each shearsort iteration. 

 

Dirty Dirty
x dirty 
rows

At most  x/2  
dirty rows

0

1

0

1

⇒
 

 
Fig. 9.7. The number of dirty rows halves with each shearsort 

iteration. 
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1 12 21 4 

15 20 13 2 

5 9 18 7 

22 3 14 17 

1 4 12 21 

20 15 13 2 

5 7 9 18 

22 17 14 3 

1 4 9 2 

5 7 12 3 

20 15 13 18 

22 17 14 21 

1 2 4 9 

12 7 5 3 

13 15 18 20 

22 21 17 14 

1 2 4 3 

12 7 5 9 

13 15 17 14 

22 21 18 20 

1 2 3 4 

12 9 7 5 

13 14 15 17 

22 21 20 18 

1 2 3 4 

5 7 9 12 

13 14 15 17 

18 20 21 22 

After first row sort 
(snakelike) 

After second row sort 
(snakelike) 

After final row sort 
(snakelike) 

Column sort Column sort (left to right) 

Initial arrangement 
of keys in the mesh 

 
Fig. 9.8. Example of shearsort on a 4 ××  4 mesh. 
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9.3 Variants of Simple Shearsort 

Sorting 0s & 1s on a linear array: odd-even transposition 
steps can be limited to the number of dirty elements  

Example: sorting 000001011111 requires at most 2 steps  

Thus, we can replace complete column sorts of shearsort 
with successively fewer odd-even transposition steps  

      Topt shearsort = (p/r)(log2r + 1) + r + r/2 + . . . + 2  

  = (p/r)(log2r + 1) + 2r – 2   

[r = p : p(12 log2p + 3)  – 2] 
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 1  12  21   4 
 
15  20  13   2 
 
 5   9  18   7 
 
22   3  14  17

 1   6  12  25 
 
31  20  15   2  
 
 5   8  11  19 
 
28  23  17   3

Keys

Row 
sort

 1   6  11   2 
 
 5   9  15  13  
 
28  20  17  19 
 
31  24  21  26

The final row sort (snake-like or row-major) is not shown.

 6  26  25  10 
 
31  32  16  30 
 
11  19  27   8 
 
28  23  29  24

 4  10  21  26 
 
32  30  16  13 
 
 7   9  18  27 
 
29  24  22  14

 4   8  12   3 
 
 7  10  16  14 
 
29  23  18  25 
 
32  30  22  27

 1   3   6  11 
 
15  13   9   5  
 
17  19  23  28 
 
31  27  24  21

 2   4   8  12 
 
16  14  10   7 
 
18  20  25  29 
 
32  30  26  22

 1   3   6   5 
 
15  13   9  11  
 
17  19  23  21 
 
31  27  25  28

 2   4   8   7 
 
16  14  10  12 
 
18  20  24  22 
 
32  30  26  29

Row 
sort

Column 
sort

Column 
sort

x      
   y

Two keys held 
by one processor

 
Fig. 9.9. Example of shearsort on a 4 ××  4 mesh with two keys 

stored per processor. 
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9.4 Recursive Sorting Algorithms 

 . . .

. 

. 

.

1.  Sort quadrants 2.  Sort rows

3.  Sort columns 4.  Apply 4¦p steps of odd-even   
  transposition along the snake

. 

. 

.

1. Sort quadrants 2. Sort rows 

3. Sort columns 4. Apply 4√p steps of  
odd-even transposition 
along the overall snake  

Fig. 9.10. Graphical depiction of the first recursive algorithm for 
sorting on a 2D mesh based on four-way divide and 
conquer. 

 

 T( p )  =  T( p /2) + 5.5 p    ≅  11 p       
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0

1

Dirty

x rows

x' rows

0
0

00

1
1

11

a

a'

b

b'

c

c'

d

d'

Numbers of clean rows in 
each of the four quadrants 

 p – x – x' 
rows

State of the array 
after Phase 3  

Fig. 9.11. The proof of the first recursive sorting algorithm for 2D 
meshes. 

 

 x ≥ b + c + (a – b)/2 + (d – c)/2 

A similar inequality for x' leads to: 

     x + x' ≥  b + c + (a – b)/2 + (d – c)/2  
     + a' + d' + (b' – a')/2 + (c' – d')/2 

  ≥  b + c + a' + d' + (a – b)/2 + (d – c)/2  

     + (b' – a')/2 + (c' – d')/2 – 4 × 1/2 

  =  (a + a')/2 + (b + b')/2 + (c + c')/2 + (d + d')/2 – 2   

  ≥  p  – 4 

The number of dirty rows after Phase 3: p  – x – x'  ≤ 4  

Thus, at most 4 p   of the p elements are out of order 
along the overall snake 
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Another recursive sorting algorithm 
 

1.  Sort quadrants 2.  Shuffle row elements

3.  Sort double columns 
 in snake-like order

4.  Apply 2¦p steps of 
 odd-even transposition 
 along the overall snake

. 

. 

.

. . .

0  1  2  3 

Distribute 
these ¦p/2 
columns  
evenly

1. Sort quadrants 
 
 

2. Shuffle row elements 
 
 

3. Sort double columns 
in snakelike order 
 
 

4. Apply 2√p steps of  
odd-even transposition 
along the overall snake 
 
 

Distribute 
these √p/2 
columns 
evenly 
 
 

0    1  
 
 

 2    3  
 
 

 
Fig. 9.12. Graphical depiction of the second recursive algorithm 

for sorting on a 2D mesh based on four-way divide and 
conquer. 

 

 T( p )  =  T( p /2) + 4.5 p    ≅  9 p       
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0
0

0
0

0 0 0

0 0 0

1 1 1

≤ 2√p elements  
 
 
 

Numbers of 0s in two different  
double-columns differ by ≤ 2 
 
 
 

Numbers of clean 0 rows 
in the four quadrants  
 
 
 

 
Fig. 9.13. The proof of the second recursive sorting algorithm for 

2D meshes. 
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9.5 A Nontrivial Lower Bound  

We now have a 9 p -time mesh sorting algorithm 

Two questions of interest: 

1. Raise the 2 p  – 2 diameter-based lower bound? 

 Yes, for snakelike sort, the bound 3 p  – o( p )  
 can be derived 

2. Design an algorithm with better time than 9 p ? 
 Yes, the Schnorr-Shamir sorting algorithm  

 requires 3 p  + o( p ) steps 

2p 1/4 

2p 1/4 

2p 
items 

1/2 

Shortest path from the 
upper left triangle to the 
opposite corner in hops: 

2p 1/4 − 2p 1/2 2 − x[t]:  
Value held  
in this corner  
after t steps 

p 1/2 

p 1/2 

 
Fig. 9.14. The proof of the 3 p  – o( p ) lower bound for sorting 

in snakelike row-major order. 
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36  35  34  33  32  31  30  29  28 
 
37  38  39  40  41  42  43  44  45 
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19  20  21  22  23  24  25  26  27 
 
36  35  34  33  32  31  30  29  28 
 
37  38  39  40  41  42  43  44  45 
 
54  53  52  51  50  49  48  47  46 
 
55  56  57  58  59  60  61  62  63

 
Fig. 9.15. Illustrating the effect of fewer or more 0s in the shaded 

area. 
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9.6 Achieving the Lower Bound 

   . 
.  .  . 
   .

p3/8

p3/8

Vertical slice

Horizontal 
slice

Block

p     Blocks1/8

.  .  .

. 

. 

.

. 

. 

.

.  .  .

p1/2

Proc's

 
Fig. 9.16. Notation for the asymptotically optimal sorting 

algorithm. 

 
Schnorr-Shamir algorithm for snakelike sorting on a 2D mesh 
1.  Sort all blocks in snakelike order, independently & in parallel 
2. Permute the columns such that the columns of each vertical 

slice are evenly distributed among all vertical slices 
3. Sort each block in snakelike order 
4.  Sort the columns independently from top to bottom  

5. Sort Blocks 0&1, 2&3, . . . of all vertical slices together in 
snakelike order; i.e., sort within 2p3/8 × p3/8 submeshes 

6. Sort Blocks 1&2, 3&4, . . . of all vertical slices together in 
snake-like order; again done within 2p3/8 × p3/8 submeshes 

7. Sort the rows independently in snakelike order 
8. Apply 2p3/8 steps of odd-even transposition to the snake  
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10 Routing on a 2-D Mesh or Torus 

Back to TOC 

Chapter Goals 
● Learn how to route multiple data items to 

their respective destinations  
 (in PRAM routing is nonexistent and in the 

circuit model it is hardwired) 
● Become familiar with issues in packet 

routing and wormhole routing  
 
Chapter Contents 
● 10.1. Types of Data Routing Operations 
● 10.2. Useful Elementary Operations 
● 10.3. Data Routing on a 2D Array 
● 10.4. Greedy Routing Algorithms 
● 10.5. Other Classes of Routing Algorithms 
● 10.6. Wormhole Routing 
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10.1 Types of Data Routing Operations 

One-to-one communication (point-to-point messages) 
a b

c

d e f
g h

a

b

cd

e

f

g

h

Packet sources Packet destinations Routing paths

0 2
3

4

01

2

3

3210

01

2

2

10

1

2

3
4

0

1

2

0

10
1

 
Collective communication (per the MPI standard)   

a. One to many: broadcast, multicast, scatter 

b. Many to one: combine, fan-in, gather 

c. Many to many: many-to-many m-cast, all-to-all b-cast, 
scatter-gather (gossiping), total exchange 

Some special data routing operations 
a. Data compaction or packing 

a b
c

d e f
g h

a b c

d e f
g h

 
Fig. 10.1. Example of data compaction or packing. 

 
b. Random-access write (RAW): Emulating one memory 

write step of a PRAM with p processors 

c. Random-access read (RAR): Emulating one memory 
read step of a PRAM with p processors 
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10.2 Useful Elementary Operations  

Row or column rotation 

Sorting records by a key field 

Semigroup computation 

Horizontal combining 
        ¦p/2 steps

Vertical combining 
        ¦p/2 steps- -Horizontal combining 

≅ √p/2 steps 
 

Vertical combining 
≅ √p/2 steps 

  
Fig. 10.2. Recursive semigroup computation in a 2D mesh. 

 

Parallel prefix computation 

Quadrant Prefixes Horizontal Combining 
   (includes reversal)    

Vertical Combining 
      

 
Fig. 10.3. Recursive parallel prefix computation in a 2D mesh. 
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Routing within a row or column 
Processor number

(data, destination)

Left-moving
Right-moving

(d,2) (b,5) (a,0)

0 1 2 3 4 5

(e,4) (c,1)

                  (a,–2)                     (c,–4) 
(d,+2)   (b,+4)            (e,+1)             
 
 
                  (a,–2)                     (c,–4) 
         (d,+1)   (b,+3)            (e,0)                 Right 
 
         (a,–1)                     (c,–3)                Left 
         (d,+1)   (b,+3)                            
 
         (a,–1)                     (c,–3)               
                  (d,0)    (b,+2)                         Right 
 
(a,0)                      (c,–2)                         Left   
                           (b,+2)                        
 
                           (c,–2)                          
                                    (b,+1)                Right 
 
                  (c,–1)                                  Left   
                                    (b,+1) 
    
                                              (b,0)       Right 
 
          (c,0)                                           Left                     
  

Fig. 10.4. Example of routing multiple packets on a linear array. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 162 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

10.3 Data Routing on a 2D Array 

Exclusive random-access write on a 2D mesh: MeshRAW 
 
1. Sort packets in column-major order by destination 

column number; break ties by destination row number 
 
2. Shift packets to the right, so that each item is in the 

correct column. There will be no conflict since at most 
one element in each row is headed for a given column   

 
3. Route the packets within each column   

0

1

2

3

0 1 2 3

0,2 1,0 3,2 0,0

2,3 1,3

3,0 1,1 3,1

1,2 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

0

1

2

3

0 1 2 3

0,21,0

3,20,0

2,3

1,3

3,0 1,2

3,1

1,1 2,2

Initial state After column-major-order After row routing

0

1

2

3

0 1 2 3

0,2

1,0

3,2

0,0

2,3

1,3

3,0

1,2

3,1

1,1

2,2

After column routing
sorting by dest'n column

 
Fig. 10.5. Example of random-access write on a 2D mesh. 

 
Not a shortest-path routing algorithm  

 e.g., packet headed to (3, 1) first goes to (0, 1) 

But fairly efficient 

   T =  3p1/2 + o(p1/2)   {snakelike sorting}  

  +  p1/2     {column reversal} 

  +  2p1/2 – 2    {row & column routing}  

  =  6p1/2 + o(p1/2) 

Or  11p1/2 + o(p1/2)  with unidirectional communication 
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10.4 Greedy Routing Algorithms 

Greedy: pick a move that causes the most progress 
toward the destination in each step 

Example greedy algorithm: dimension-order (e-cube) 

0

1

2

3

0 1 2 3

2,1 2,0 1,1

2,2 1,0

0,0 0,1

0

1

2

3

0 1 2 3

1,00,0

2,0

2,2

0,1

2,1
1,1 0

1

2

3

0 1 2 3

1,0
0,1

0,0

2,1
2,0

1,1

2,2

Initial state     After 1 step After 2 steps

0

1

2

3

1,0

0,10,0

2,12,0

1,1

2,2

After 3 steps

0 1 2 3

 
Fig. 10.6. Greedy row-first routing on a 2D mesh. 

 

 T  =  2p1/2 – 2 {but requires large buffers} 

Row i

Column j

Node (i,j)

 
Fig. 10.7. Demonstrating the worst-case buffer requirement with 

row-first routing. 
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Routing algorithms thus far 

 Slow 6p1/2, but with no conflict (no additional buffer) 
 Fast 2p1/2, but with large node buffers 

An algorithm that allows trading off time for buffer space 

p   /q

B B B B

Row i

Column j

j
j j
j

j
j

j

j

1/2

p   /q1/2

q–10 1 2

 
Fig. 10.8. Illustrating the structure of the intermediate routing 

algorithm. 
 

 
   T   = 4p1/2/q + o(p1/2/q) {column-major block sort} 

  + 2p1/2 – 2   {route} 

  =  (2 + 4/q)p1/2 + o(p1/2/q) 

Buffer space per node 

 rk = number of packets in Bk headed for column j 

 �
q–1
k=0  

rk
p1/2/q  < �

q–1
k=0(1 +  

rk
p1/2/q)  ≤ q + (q/p1/2)�q–1

k=0 rk ≤ 2q 
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10.5 Other Classes of Routing Algorithms 

Row-first greedy routing has very good average-case 
performance, even if the node buffer size is restricted 

Idea: Convert any routing problem to 2 random instances 
by picking a random intermediate node for each message 

Using combining for concurrent writes: 

Destination 
processor for 5 
write requests

W

W

W

W W1 2

3

4

5

W1,2

W3,4,5

 
Fig. 10.9. Combining of write requests headed for the same 

destination. 
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Terminology for routing problems or algorithms 

 Static: packets to be routed all available at t = 0 

 Dynamic: packets “born” in course of computation 

 Off-line: routes precomputed, stored in tables 

 On-line: routing decisions made on the fly 

 Oblivious: path depends only on source & dest’n 

 Adaptive: path may vary by link and node conditions 

 Deflection: any received packet leaves immediately,  
  even if this means misrouting (via detour  
  path); also known as hot-potato routing 
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10.6 Wormhole Routing 

A

B

C

D

Packet 1

Packet 2
Deadlock!

 
Fig. 10.10. Worms and deadlock in wormhole routing. 

 
Any routing algorithm can be used to choose the path 
taken by the worm, but practical choices limited by the 
need for a quick decision 

Example: row-first routing, with 2-byte header for row & 
column displacements 

 
Buffer Block

Drop Deflect

 
Fig. 10.11. Various ways of dealing with conflicts in wormhole 

routing. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 168 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

The deadlock problem in wormhole routing 

 

Deadlock!  
Two strategies for dealing with deadlocks:   

 (1)  Avoidance   (2)  Detection and recovery 

Checking for deadlock potential via link dependence 
graph; existence of cycles may lead to deadlock  
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1 3

45

6 8
9
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2 7

11 13
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1
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4

5 6 7 8 9
1 
0

11

12

13

14

   Unrestricted routing 
(following shortest path)

1

2

3

4

5 6 7 8 9 1 
0

11

12

13

14

   E-cube routing 
      (row-first)

3-by-3 mesh with its links numbered

21

22

23

24

1 
5

1 
6

1 
8

1 
9

1 
7

2 
0

21

22

23

24

1 
5

1 
6

1 
8

1 
9

1 
7

2 
0

 
Fig. 10.12. Use of dependence graph to check for the possibility 

of deadlock. 
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Using virtual channels 

Several virtual channels time-share one physical channel 

Virtual channels serviced in round-robin fashion 

Eastbound 
messages

Westbound 
messages

 
Fig. 10.13. Use of virtual channels for avoiding deadlocks. 

 

 

 

1 4

5 632

[1, 3]

[0, 0]

[2, 2]

[0, 1]
[3, 3]

[0, 1]

[3, 6] [2, 2] [4, 6] [0, 3]

[4, 6] [2, 3]

[4, 6]

[0, 1]

[6, 6]

[0, 2]
[5, 5]

[4, 4]

 [6, 6] [3, 5]

0

 
Figure for Problem 10.14.   
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11 Numerical 2D Mesh Algorithms 

Back to TOC 

Chapter Goals 
● Deal with a sample of numerical and 

seminumerical algorithms for meshes  
● Introduce additional techniques for the 

design of mesh algorithms  
 
Chapter Contents 
● 11.1. Matrix Multiplication 
● 11.2. Triangular System of Equations 
● 11.3. Tridiagonal System of Equations 
● 11.4. Arbitrary System of Linear Equations 
● 11.5. Graph Algorithms 
● 11.6. Image-Processing Algorithms 
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11.1 Matrix Multiplication  

Matrix-vector multiplication yi  =  �
m–1
j=0  aijxj       

 -- 

 

a 33 

 --  -- 

a 22 

a 23 

 -- 

a 13 

 -- 

a 12 

 -- 

a 02 

 -- 

   Col 0 of A 

 -- 
a 00 

a 01 

x 3 x 2 x 1 x 0 

y 3 

a 20 
a 10 

a 03 

 -- 
 -- 
 -- 

 -- 

 -- 

P P P P 

a 11 

y 2 
y 1 

y 0 

a 21 a 30 

a 31 

a 32 

 -- 
 --  -- 

 -- 

 -- 

   Row 0 of A  

0 1 2 3 

 
Fig. 11.1. Matrix–vector multiplication on a linear array. 

 

a    a    a    a   
 
a    a    a    a   
 
a    a    a    a   
 
a    a    a    a   

 00   01   02   03 
  
 10   11   12   13 
  
 20   21   22   23 
  
 30   31   32   33  

x 
 
x 
 
x 
 
x

0 
 
1 
 
2 
 
3

y 
 
y 
 
y 
 
y

0 
 
1 
 
2 
 
3

× =

Delay

 
With p = m processors, T = 2m – 1 = 2p – 1 
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Matrix-matrix multiplication  Cij  =  �
m–1
k=0  aik bkj       

 
 

c 03 
 

c 13 
 

c 23 
 

c 33 
 

 
 

c 02 
 

c 12 
 

c 22 
 

c 32 
 

 
 

c 01 
 

c 11 
 

c 21 
 

c 31 
 

b 00 
 

 -- 
 

 -- 
 

a 
 

33 
 

a 
 

22 
 

a 
 

23 
 a 

 
13 
 a 

 
12 
 a 

 
02 
 

   Col 0 of A 
 

 -- 
 a 

 
00 
 

a 
 

01 
 

a 
 

20 
 a 

 
10 
 

a 
 

03 
 

 -- 
 

 -- 
  -- 
 

 -- 
 

a 
 

11 
 

a 
 

21 
 

a 
 

30 
 

a 
 

31 
 

a 
 

32 
 

   Row 0 of A  
 

b 10 
 

b 20 
 

b 30 
 

 
 

c 00 
 

c 10 
 

c 20 
 

c 30 
 

 -- 
 

 -- 
 

 -- 
 

 -- 
 

 -- 
 

b 01 
 

b 11 
 

b 21 
 

b 31 
 

b 02 
 

b 12 
 

b 22 
 

b 32 
 

b 03 
 

b 13 
 

b 23 
 

b 33 
 

   Col 0 of B 
 

 
Fig. 11.2. Matrix–matrix multiplication on a 2D mesh. 

 

With p = m2 processors, T = 3m – 2 = 3 p  – 2 

 

a 33 

a 22 

a 23 
a 13 

a 12 

a 02 

   Col 0 of A 

a 00 

a 01 

x 3 x 2 

y 3 

a 20 
a 10 

a 03 

a 11 

y 2 y 1 y 0 

a 21 a 30 

a 31 

a 32 

   Row 0 of A  

x 1 x 0 

 
Fig. 11.3. Matrix-vector multiplication on a ring. 

 
With p = m processors, T = m  = p  
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a    a    a    a  03   12   21   30  
b    b    b    b  30   20   10   00  

a    a    a    a  02   11   20   33  
b    b    b    b  21   11   01   31  

a    a    a    a  01   10   23   32  
b    b    b    b  12   02   32   22  

a    a    a    a  00   13   22   31  
b    b    b    b  03   33   23   13  

 
Fig. 11.4. Matrix-matrix multiplication on a torus. 

 

With p = m2 processors, T = m = p   

For m > p  , use block matrix multiplication 

 communication can be overlapped with computation 
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11.2 Triangular System of Equations 

0 

0 
a ij 

a ij 

i ≥ j 

i ≤ j 

 
Fig. 11.5. Lower/upper triangular square matrix; if aii = 0 for all i, 

then it is strictly lower/upper triangular. 

 

a00x0                            = b0 
a10x0   + a11x1                    = b1 
a20x0   + a21x1   + a22x2             = b2 
      .      .      .  
 
am–1,0 x0 + am–1,1 x1 +  ...  + am–1, m–1xm–1 = bm–1 

 

Forward substitution (lower triangular) 

Back substitution (upper triangular) 
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-- -- -- 
-- -- 

a 

 

11 

 -- 
a 10  -- 

a 20  -- 

a 22 
a 21  --  -- 

a 31  -- 

a 
a 32  -- 

   Col 0 of A 

 -- 
a 00  -- 

x 3 x 2 x 1 x 0 

 -- 
a 30 

 -- 
 -- 

b 2 b 3 
b 0 b 1 

/ ×− ×− ×− 

33 

-- 

-- 

-- 

x 3 

x 2 

x 1 

x 0 

 Outputs 

Placeholders   
for values to 
be computed 

x -1 x -2 

 
Fig. 11.6. Solving a triangular system of linear equations on a 

linear array. 

 

1 
1 

1 
1 

1 

0 

a ij 
i ≥ j 0 

0 

× = . 
  . 
    . 

A I X = 

0 

a ij 
i ≥ j 

× 

A 

= 

0 

1 

0 

0 

. 

. 

. 

. 

. 

. 

−1 

A multiplied by ith column 
of X yields ith column of 
the identity matrix I 
(solve m such triangular 
systems to invert A) 

 
Fig. 11.7. Inverting a triangular matrix by solving triangular 

systems of linear equations. 
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a 11 

 -- 
a 10  -- 

a 20  -- 

a 22 
a 21  --  -- 

a 31  -- 

a 
a 32  -- 

   Col 0 of A 
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 -- 
a 30 

 -- 
 -- 

-- -- -- 
-- -- 

 x 30 x 20 x 10 x 00 

t 20 t 30 
t 00 t 10 

/× ×− ×− ×− 

33 

-- -- -- 
-- -- 

 x 31 x 21 x 11 x 01 

t 21 t 31 
t 01 t 11 ×− ×− ×− 

-- -- -- 
-- -- 

 x 32 x 22 x 12 x 02 

t 22 t 32 
t 02 t 12 ×− ×− ×− 

-- -- -- 
-- -- 

 x 33 x 23 x 13 x 03 

t 23 t 33 t 03 t 13 

× 

× 

× ×− ×− ×− 

-- 

-- 

-- 

-- 

-- 

-- 

-- -- 

1/a ii 

 
Fig. 11.8. Inverting a lower triangular matrix on a 2D mesh. 
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11.3 Tridiagonal System of Linear Equations 

2 

1 

0 

m−1 

x 2 

x 1 

x 0 d 0 
d 1 

d 2 

d 

l 1 
l 2 

l 
d 

m−1 m−1 

0 

0 
. 
     . 
          . 

. 
     . 
          . 

x m−1 

m−2 

. 

. 

. 

× 
 
 

b 
b 
b 

b 

. 

. 

. 

= 
 
 

2 u 
1 u 

0 u 

m−2 u 

.

.

.
m−1 u 

l 0 

. 
     . 
          . 

l m−2 

 
Fig. 11.9. A tridiagonal system of linear equations. 

 
 l0 x–1      +     d0 x0       +    u0 x1 =     b0 
 l1 x0   +     d1 x1       +    u1 x2   =     b1 
 l2 x1        +     d2 x2       +    u2 x3    =     b2 
    .     .     . 
 lm–1xm–2 + dm–1 xm–1  +  um–1 xm  =   bm–1 
 
Tridiagonal, pentadiagonal, matrices arise in the solution 
of differential equations using finite difference methods 
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Odd-even reduction: the ith equation can be rewritten as: 

 xi   =  (1/di) (bi – li xi–1 – ui xii+1) 

Take the xi equations for odd i and plug into even-indexed 
equations (the ones with even subscripts for l, d, u, b)  

We get for each even i (0 
�

i < m) an equation of the form: 

– 
li–1li
di–1

  xi–2 + (di – 
liui–1
di–1

  – 
uili+1
di+1

 )xi – 
uiui+1
di+1

  xi+2 = bi – 
libi–1
di–1

   – 
uibi+1
di+1

  

Each new equation needs 6 multiplies, 6 divides, 4 adds 
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x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

x14 x12 x10 x8 x6 x4 x2 x0

x12 x8 x4 x0

x8 x0

x0

*

 * Find x  in terms of x  and x  from Eqn. 1;    
   substitute in Eqns. 0 and 2.

1 0 2

 
Fig. 11.10. The structure of odd-even reduction for solving a 

tridiagonal system of equations. 
 
Assuming unit-time arithmetic operations and p = m   

 T(m) = T(m/2) + 8 ≅ 8 log2m  

The 6 divides can be replaced with 1 reciprocation per 
equation, to find 1/dj for each odd j, plus 6 multiplies  

We have ignored interprocessor communication time. The 
analysis is thus valid only for PRAM or for an architecture 
whose topology matches the structure of Fig. 11.10.  
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x  
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x  
14 

x  
13 

x  
12 

x  
11 

x  
10 

x  
9 

x  
8 

x  
7 

x  
6 

x  
5 

x  
4 

x  
3 

x  
2 

x  
1 

x  
0 

x  14 
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x  0 

x  12 x  8 x  4 x  0 

x  8 x  0 

x  0 

 
Fig. 11.11. Binary X-tree (with dotted links) and multigrid 

architectures. 

 

Odd-even reduction on a linear array of p = m processors 

 

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
 

Communication time = 2(1 + 2 + 4 + . . . + m/2) = 2m – 2 

Sequential complexity of odd-even reduction is also O(m) 

On an m-processor 2D mesh, odd-even reduction can be 
easily organized to require Θ( m ) time 
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11.4 Arbitrary System of Linear Equations 

Gaussian elimination 

 2x0 + 4 x1 –  7 x2 = 3   2x0 + 4 x1 –  7 x2 =  7  
 3x0 + 6 x1 – 10 x2 = 4   3x0 + 6 x1 – 10 x2 =  8  
 –x0 + 3 x1 –  4 x2 = 6   –x0 + 3 x1 –  4 x2 = –1 

The extended A' matrix for these k = 2 sets of equations in 
m = 3 unknowns has m + k = 5 columns: 

 A'  =   






2 4 –7 3 7

3 6 –10 4 8
–1 3 –4 6 –1

   

Divide row 0 by 2; add –3 times row 0 to row 1 and add 1 
times row 0 to row 2: 

 A'(0)  =   






1 2 –7/2 3/2 7/2

0 0 1/2 –1/2 –5/2
0 5 –15/2 15/2 5/2

   

 A"(0)  =   






1 2 –7/2 3/2 7/2

0 5 –15/2 15/2 5/2
0 0 1/2 –1/2 –5/2

   

 A'(1)  =   






1 0 –1/2 –3/2 5/2

0 1 –3/2 3/2 1/2
0 0 1/2 –1/2 –5/2
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 A'(2)  =   






1 0 0 –2 0

0 1 0 0 –7
0 0 1 –1 –5

   

Solutions are read out from the last column of A'(2) 

Gaussian elimination on a 2D array 

 

a 10 a 01 

a 02 a 20 a 11 

a 13 

y 

a 21 

a 22 Row 0 of 
extended 
matrix A’ 

 -- a 00 
x 

z stored 
in cell 

b 1 

1/ ×− ×− ×− 

 --  -- 

 --  -- 

 -- 

b 2 

b 0 * 

* 

* 
* 

×− x 

y − xz 

Termination 
symbol 

 
Fig. 11.12. A linear array performing the first phase of Gaussian 

elimination. 
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a 10 a 01 

a 02 a 20 a 11 

a 13 

y 

a 21 

a 22 Row 0 of 
extended 
matrix A’ 

 -- a 00 
x 

z stored 
in cell 

b 1 

 1/ ×− ×− ×− 

 --  -- 

 --  -- 

 -- 

b 2 

b 0 * 

* 

* 
* 

×− x 

y − xz 

Termination 
symbol 

 1/ ×− ×− 

 1/ ×− 

x 1 

x 2 

x 0 

Outputs 

 
Fig. 11.13. Implementation of Gaussian elimination on a 2D array. 
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a 10 a 01 

a 02 a 20 a 11 

a 13 a 21 

a 22 

Row 0 of 
extended 
matrix A’ 

 -- a 00 

 0 

 1/ ×− ×− 

 -- 

 -- 

 0 

 1 * 

* 

* 
* 

 1/ ×− 

1/ 

×− 

 -- 

 -- 

 -- 

×− 

 ×− 

x 10 

x 20 

x 00 

Outputs 

×− 

 -- 

 -- 

 -- 

×− 

 ×− 

x 11 

x 21 

x 01 

×− 

 -- 

 -- 

 -- 

×− 

 ×− 

x 12 

x 22 

x 02 

 1 

 0 

 0 

* 
 0 

 1 

 0 

* 

 -- 

 -- 

 -- 

 -- 

 -- 

 -- 

 
Fig. 11.14. Matrix inversion by Gaussian elimination. 
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Jacobi relaxation 

Assuming aii 
�
� � VROY � W ��� ith equation for xi, yielding m 

equations from which new (better) approximations to the 
answers can be obtained. 

 xi
(t+1) = (1/aii)[bi – �j≠i aii xj

(t)]; xi
(0) = initial approx for xi 

On an m-processor linear array, each iteration takes O(m) 
steps. The number of iterations needed is O(log m) in 
most cases, leading to O(m log m) average time. 

A variant: Jacobi overrelaxation 

 xi
(t+1) = (1 – γ)xi

(t) + (γ/aii)[bi – �j≠i aii xj
(t)]      0 < γ � � 

For γ = 1, the method is the same as Jacobi relaxation 

For smaller γ, overrelaxation may offer better performance 
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11.5 Graph Algorithms 

0 1 2

3 4 5

0 0 0 1 0 0 
0 0 0 0 1 1 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0

A  =

0

1
2

34

0 2 2 � 2 
1 0 2 � � 
� � 0 3 � 
� � � 0 0 
1 � � � 0

W  

2
1

2

2
–3

0
1

2

= -

0 0  0 1 0 0  
0 0  0 0 1 1  
0 1  0 0 0 0  
0 0  0 0 0 0  
0 1  0 0 0 0  
0 0  0 0 0 0  

0 2  2 ∞ 2 
1 0  2 ∞ ∞ 
∞ ∞ 0 3 ∞ 
∞ ∞ ∞ 0 0 
1 ∞  ∞ ∞ 0 

− 

 
Fig. 11.15. Matrix representation of directed graphs. 

 

The transitive closure of a graph 

Graph with same node set but with an edge between two 
nodes if there is any path between them in original graph 

 A0 = I  Paths of length 0  (the identity matrix) 

 A1 = A  Paths of length 1 

Compute higher “powers” of A using matrix multiplication, 
except that AND/OR replace multiplication/addition 

 A2 = A × A Paths of length 2   

 A3 = A2 × A Paths of length 3  etc. 
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The transitive closure has the adjacency matrix A* 

 A* = A0 + A1 + A2 + ... (A*
ij = 1 iff j is reachable from i) 

To compute A*, we need only proceed up to the term An–1; 
if there exists a path from i to j, there is one of length < n  

Rather than base the derivation of A* on computing the 
various powers of the Boolean matrix A, we can use the 
following simpler algorithm: 

Phase 0 Insert the edge (i, j) into the graph if (i, 0) and 
(0, j) are in the graph 

Phase 1 Insert the edge (i, j) into the graph if (i, 1) and 
(1, j) are in the graph 

        . 
        . 
        . 

Phase k Insert the edge (i, j) into the graph if (i, k) and 
(k, j) are in the graph  

 Graph A(k) then has an edge (i, j) iff there is 
a path from i to j  that goes only through 
nodes {1, 2, . . . , k} as intermediate hops 

        . 
        . 
        . 

Phase n – 1 The graph A(n–1) is the required answer A* 
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A key question is how to proceed so that each phase takes 
O(1) time for an overall O(n) time on an n × n mesh 

The O(n) running time would be optimal due to the O(n3) 
sequential complexity of the transitive closure problem 

 

 Row 2 
 Row 1 
 Row 0

  
 Row 2 
Row 0/1

  
Row 0/2 
 Row 1

Row 2 
Row 1 
Row 0

 Row 0 
Row 1/2 
 

Row 1/0 
 Row 2 

  
 Row 1 
Row 2/0

  
Row 2/1 
 Row 0

 Row 2 
 Row 1 
 Row 0

 Row 2 
 Row 1 
 Row 0

Initially

 
Fig. 11.16. Transitive closure algorithm on a 2D mesh. 

 

Systolic retiming 
Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

 
 Example of retiming by delaying the inputs to CL and 

advancing the outputs from CL by d units [Fig. 12.8 in 
Computer Arithmetic: Algorithms and Hardware 
Designs, by Parhami, Oxford, 2000] 
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Input host 

Output host  

Cut 1 

0, 0 0, 1 0, 2 0, 3 

1, 0 1, 1 1, 2 1, 3 

2, 0 2, 1 2, 2 2, 3 

3, 0 3, 1 3, 2 3, 3 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Input host 

Output host  

0, 0 0, 1 0, 2 0, 3 

1, 0 1, 1 1, 2 1, 3 

2, 0 2, 1 2, 2 2, 3 

3, 0 3, 1 3, 2 3, 3 

7 1 1 1 

1 5 1 1 

1 1 3 1 

1 2 3 4 

1 2 3 4 

1 1 1 

1 1 1 

1 3 1 

5 1 1 

Broadcasting 
nodes 

 
Fig. 11.17. Systolic retiming to eliminate broadcasting. 

 
 
Diagram on the left represents the algorithm 

Zero-time horizontal arrows represent broadcasting by 
diagonal elements 

Goal of systolization is to eliminate zero-time transitions 

 
To systolize the preceding example: 

Add 2n – 2 = 6 units of delay to edges crossing cut 1 

Move 6 units of delay from inputs to outputs of node (0, 0) 
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11.6 Image-Processing Algorithms 

Labeling the connected components of a binary image 

1 0 C 0 C 3 

C 49 

C 47 

1 1 1 0 1 1 

0 1 1 0 1 0 1 

1 0 0 0 

0 

1 0 0 0 

1 0 1 1 0 1 1 1 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 1 

0 1 0 0 1 0 1 1 

1 0 0 0 1 0 0 1 

 
Fig. 11.18. Connected components in an 8××8 binary image. 

 

Recursive algorithm, p = n:  

T(n) = T(n/4) + O( n ) = O( n ) 
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1 0 1 1 1 0 1 1 

0 1 1 0 1 0 1 

1 0 0 0 

0 

1 0 0 0 

1 0 1 1 0 1 1 1 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 1 

0 1 0 0 1 0 1 1 

1 0 0 0 1 0 0 1 

0 0 

0 

0 

0 

3 

3 

26 26 

4 4 

4 

4 

4 

4 

4 4 4 

49 

49 49 

36 

36 

36 

47 

47 

47 47 

 
Fig. 11.19. Finding the conn ected compon ents via divide and 

conqu er. 

 

Levialdi’s algorithm 
0 1    1 1    0 is changed to 1 
1 0    1 0    if N = W = 1 
                                                  
       0 0    1 is changed to 0 
       0 1    if N = W = NW = 0 
 

 
Fig. 11.20. Transformation o r rewriting rules for Levialdi’s 

algorithm in the shrinkage phase (no o ther pixel  
changes). 
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Fig. 11.21. Example of the shrinkage phase of Levialdi’s 

compon ent labeling algorithm. 
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Latency of Levialdi’s algorithm 
 
 T(n) = 2 n  – 1 {shrinkage} + 2 n  – 1 {expansion} 
 
Component do not merge in the shrinkage phase 

Consider a 0 that is about to become a 1 

x 1 y  If any y is 1, then already connected 
1 0 y  If z is 1 then it will change to 0 unless  
y y z   at least one neighboring y is 1 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 195 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

12 Mesh-Related Architectures 

Back to TOC 

Chapter Goals 
● Study variants of simple mesh architectures 

that offer higher performance or greater 
cost-effectiveness  

● Learn about related architectures such as 
pyramids and mesh of trees  

 
Chapter Contents 
● 12.1. Three or More Dimensions 
● 12.2. Stronger and Weaker Connectivities 
● 12.3. Meshes Augmented with Nonlocal Links 
● 12.4. Meshes with Dynamic Links 
● 12.5. Pyramid and Multigrid Systems 
● 12.6. Meshes of Trees 
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12.1 Three or More Dimensions 

3D mesh:  D = 3p1/3 – 3 instead of 2p1/2 – 2 

   B = p2/3 rather than p1/2 

Example:  8 × 8 × 8 mesh D = 21, B = 64  
   22 × 23  mesh  D = 43, B = 23 

 

Circuit 
Board

Backplane

 
Fig. 12.1. 3D and 2.5D physical realizations of a 3D mesh. 
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Packaging issues for higher-dimensional meshes 

PC board 

Backplane 

Memory 

CPU 

Bus 

Connector 

(b) 3D packaging of the future (a) 2D or 2.5D packaging now common 

Stacked layers 
glued together 

Interlayer connections 
deposited on the 

outside of the stack 
Die 

 
 

4D, 5D, . . .  meshes: optical links? 

qD mesh with m processors along each dimension: p = mq 

 Node degree  d = 2q 

 Diameter   D = q(m – 1) = q (p1/q – 1) 

 Bisection width:  B = p1–1/q when m = p1/q is even 

qD torus with m processors along each dimension  

 = m-ary q-cube 
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Sorting on a 3D mesh 

A generalized form of shearsort is available 

However, the following algorithm (due to Kunde) is both 
faster and simpler. Let Processor (i, j, k) in an m × m × m 
mesh be in Row i, Column j, and Layer k  

x

y

z Layer 0

Layer 1

Layer 2

Column 0

Column 1

Column 2

Row 0 Row 1 Row 2

zyx ordering 
of processors

0 1 2
3 4 5

6 7 8
9 10

 
Sorting on 3D mesh (zyx order; reverse of node index) 

Phase 1: Sort elements on each zx plane into zx order 

Phase 2: Sort elements on each yz plane into zy order 

Phase 3: Sort elements on each xy layer into yx order  
  (odd layers in reverse order). 

Phase 4: Apply 2 steps of odd-even transposition along z 

Phase 5: Sort elements on each xy layer into yx order 

Time = 4 × (2D-sort time) + 2 steps 
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Data routing on a 3D mesh 

 Greedy zyx (layer-first, row last) routing algorithm  

 Phase 1: Sort into zyx order by destination addresses  

 Phase 2: Route along z dimension to correct xy layer 

 Phase 3: Route along y dimension to correct column 

 Phase 4: Route along x dimension to destination 
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Matrix multiplication on a 3D mesh 

Divide matrices into m1/4×m1/4 arrays of m3/4×m3/4 blocks  

 

m

m

m3/4

m
3/4

m
3/4

m3/4

m
3/4

Matrices
Processor 
   array

m      processors   9/4

 
A total of (m1/4)3 = m3/4 block multiplications are needed 

Assume the use of an m3/4×m3/4×m3/4 mesh with p = m9/4 

Each m3/4×m3/4 layer of the mesh is assigned to one of the 
m3/4×m3/4 matrix multiplications (m3/4 multiply-adds) 

The rest of the process takes time that is of lower order 

The algorithm matches both the sequential work and the 
diameter-based lower bound  
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Modeling of physical systems 

Natural mapping of a 3D physical model to a 3D mesh 

 

Low- vs. high-dimensional meshes 

A low-dimensional mesh can simulate a high-dimensional 
mesh quite efficiently 

It is thus natural to ask the following question:  

Is it more cost effective, e.g., to have 4-port processors in 
a 2D mesh architecture or 6-port processors in a 3D mesh, 
given that for the 4-port processors, fewer ports and ease 
of layout allow us to make each channel wider? 
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12.2  Stronger and Weaker Connectivities 

Fortified meshes  

0 1 2

3 4 5

6 7 8 9

10 11 12 13

14 15 16

17 18

Node i connected to i ± 1, 
i ± 7, and i ± 8 (mod 19).  

Fig. 12.2. Eight-neighbor and hexagonal (hex) meshes. 

 

Oriented meshes (can be viewed as a type of pruning) 

 
Fig. 12.3. A 4 ××  4 Manhattan street network. 
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Pruned meshes 

Same diameter as ordinary mesh, but much lower cost.  

X

Y
Z

 
Fig. 12.4. A pruned 4 ×× 4 ×× 4 torus with nodes of degree four 

[Kwai97]. 

 

Pruning and orientation can be combined 
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Another form of pruning  

 
 Honeycomb mesh or torus. 

 

NE
NW

SE
SW

NE

SE

 
Fig. 12.5. Eight-neighbor mesh with shared links and example 

data paths. 
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12.3 Meshes Augmented with Nonlocal Links 

Motivation: reduce the diameter, a weakness of meshes 

Bypass links or express channels along rows/columns 

 
Fig. 12.6. Three examples of bypass links along the rows of a 2D 

mesh. 

 

One-way street  

Freeway 
 

 Road analogy for bypass connections. 
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Using a single global bus 

. 

. 

. 

. 

. 

. 

. 

. 

. 

.   .   . 

.   .   . 

.   .   . 

 . 
     . 
         . 

p 1/3 

p 1/3 

p 1/2 

 
Fig. 12.7. Mesh with a global bus and semigroup computation on 

it. 

 

A p  × p  mesh with a single global bus can perform a 
semigroup computation O(p1/3) rather than O(p1/2) steps 
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Assume that the semigroup operation ⊗ is commutative 

Semigroup computation on 2D mesh with a global bus 

 Phase 1: Find the partial results in p1/3 × p1/3  
  submeshes in O(p1/3) steps; results stored  
  in the upper left corner of each submesh 

 Phase 2: Combine the partial results in O(p1/3) steps,  
  using a sequential algorithm in one node 
  and the global bus for data transfers   

 Phase 3: Broadcast the result to all nodes (one step) 
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Row and column buses 

. 

. 
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. 

. 
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.   .   . 

.   .   . 

.   .   . 

 . 
     . 
         . 

p 1/6 

p 1/6 

p 1/2 

A row 
slice 

A column slice 

 Column 
 bus 

Row bus 

 
Fig. 12.8. Mesh with row/column buses and semigroup 

computation on it. 
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 2D-mesh semigroup computation, row/column buses 

 Phase 1: Find the partial results in p1/6 × p1/6  
  submeshes in O(p1/6) steps 

 Phase 2: Distribute the p1/3 values left on some rows  
  among the p1/6 rows in the same slice    

 Phase 3: Combine row values in p1/6 steps (row bus) 

 Phase 4: Distribute column-0 values to p1/3 columns 

 Phase 5: Combine column values in p1/6 steps    

 Phase 6: Use column buses to distribute the p1/3  
  values on row 0 among the p1/6 rows of  
  row slice 0 in constant time 

 Phase 7: Combine row values in p1/6 steps  
 Phase 8: Broadcast the result to all nodes (2 steps) 
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12.4 Meshes with Dynamic Links 

Linear array with a separable bus  

 
Fig. 12.9. Linear array with a separable bus using 

reconfiguration switches. 

 

Semigroup computation: O(log p) steps  

 

2D mesh with separable row/column buses 

 

Reconfigurable mesh architecture 

{N}{E}{W}{S} {NS}{EW} {NEWS}

{NES}{W}{NE}{WS} {NE}{W}{S}
 

Fig. 12.10. Some processor states in a reconfigurable mesh. 
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12.5 Pyramid and Multigrid Systems 

Apex

Base

 
Fig. 12.11. Pyramid with 3 levels and 4 ××  4 base along with its 2D 

layout. 

 
Originally developed for image processing applications 

Roughly 3/4 of the processors belong to the base 

For an l-level pyramid: D = 2l – 2  d = 9 B = 2l 

Semigroup computation faster than on mesh, but not 
sorting or arbitrary routing 
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Fig. 12.12. The relationship between pyramid and 2D multigrid 

architectures. 
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12.6 Meshes of Trees 

m × m  base 

Column tree 
(one per col.) 

Row tree 
(one per row) 

 
Fig. 12.13. Mesh of trees architecture with 3 levels and a 4 ××  4 

base. 
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2D layout for mesh of trees network with a 4 ́ 4 base; root nodes are in the middle row and column 

P 0  0 M P 1 P 2 P 3 
 1 M  2 M  3 M 

 
Fig. 12.14. Alternate views of the mesh of t rees architecture with 

a 4 ××  4 base. 

 

Semigroup computation: done via row/column combining 

Parallel prefix computation: similar 

 

Routing m2 packets, one per processor on the m × m 
base: row-first routing yields an Ω(m) = Ω( p ) scheme 

In the view of Fig. 12.14, with only m packets to be routed 
from one side of the network to the other, 2 log2m steps 
are required, provided that destination nodes are distinct 
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Sorting m2 keys, one per processor on the m × m base: 
emulate shearshort  

In the view of Fig. 12.14, with only m keys to be sorted, the 
following algorithm can be used (assume that row/column 
root nodes have been merged and each holds one key) 

Sorting m keys on a mesh of trees with an m × m  base 

Phase 1:  Broadcast keys to leaves within both trees  

     (leaf i,j gets xi and xj ) 

Phase 2:  At a base node:  

   if xj>xi or xj=xi and j>i then flag := 1 else flag := 0 

Phase 3:  Add the “flag” values in column trees  

         (root i obtains the rank of xi ) 

Phase 4:  Route xi from root i to root rank[i] 
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Matrix-vector multiplication Ax = y: matrix A is stored on 
the base and vector x in the column roots, say; the result 
vector y is obtained in the row roots  

Multiplying m × m matrix by m-vector on mesh of trees 

 Phase 1:  Broadcast xj in the ith column tree  

     (leaf i,j has aij and xi ) 

 Phase 2:  At each base processor compute aij xj 

 Phase 3:  Sum over row trees  

     (row root i obtains �
m–1
i=0   aij xj = yi ) 

With pipelining, r matrix-vector pairs multiplied in 2l – 2 + r 
steps 
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Convolution of two vectors  

Assume the mesh of trees with an m × (2m – 1) base 
contains m diagonal trees in addition to the row and 
column trees, as shown in Fig. 12.15 

 Convolution of two m-vectors on a mesh of trees  
 with an m × (2m – 1) base 

 Phase 1:  Broadcast xj from the ith row root  
     to all row nodes on the base 

 Phase 2:  Broadcast ym–1–j from the diagonal root  
     to the base diagonal 

 Phase 3:  Leaf i,j, which has xi and y2m–2–i–j,  
     multiplies them to get xi y2m–2–i–j 

 Phase 4:  Sum columns to get z2m–2–j=�
m–1
i=0  xi y2m–2–i–j 

     in column root j  

Phases 1 and 2 can be overlapped  

Column tree 
(only one shown) Diagonal trees 

 

 
Fig. 12.15. Mesh of trees variant with row, column, and diagonal 

trees. 
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Minimal-weight spanning tree for an undirected graph 

A spanning tree of a connected graph is a subset of its 
edges that preserves the connectivity of all nodes in the 
graph but does not contain any cycle 

A minimal-weight spanning tree (MWST) is a subset of 
edges that has the minimum total weight among all 
spanning trees  

This is an important problem: if the graph represents a 
communication (transportation) network, MWSP tree might 
correspond to the best way to broadcast a message to all 
nodes (deliver products to the branches of a chain store 
from a central warehouse) 
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Greedy sequential MWST algorithm 

Assume weights are distinct: min-weight edge is unique  

At each step, we have a set of connected components or 
“supernodes” (initially n single-node components) 

We connect each component to its “nearest” neighbor; i.e., 
we find the min-weight edge connecting it to another  
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Fig. 12.16. Example for min-weight spanning tree algorithm. 
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If the graph’s weight matrix W is stored in the leaves of a 
mesh of trees architecture, each phase requires O(log2n) 
steps with a simple algorithm (to be shown) and O(log n) 
steps with a more sophisticated algorithm.  

The total running time is thus O(log3n) or O(log2n).  

Sequential algorithms and their time complexities: 

 Kruskal’s: O(e log e) ⇒ O(n2 log n) for dense graphs 

 Prim’s (binary heap):  O((e + n )log n) ⇒ O(n2 log n) 

 Prim’s (Fibonacci heap):  O(e + n log n) ⇒  O(n2) 

Our best parallel solution offers a speedup of O(n2/log2n); 
sublinear in the number p = O(n2) of processors       

Key part of the simple parallel version of greedy algorithm 
is showing that each phase takes O(log2n) steps.  
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The algorithm for each phase consists of two subphases: 

a. Find the min-weight edge incident to each supernode     

b. Merge the supernodes for the next phase                      

 

Example pointer 
after one jump 

A 
B 

 C 

 2 

7 

Supernode A   
is merging with 
supernode B 
and B with C 

Leader of the 
new supernode 

Remove and make 
node 2 point to itself 

 
Fig. 12.17. Finding the new supernode ID when several 

supernodes merge. 
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Part IV Low-Diameter Architectures 

Back to TOC 

Part Goals 
● Study the hypercube as an example of 

architectures with 
 ●  low (logarithmic) diameter 
 ●  wide bisection 
 ●  rich theoretical properties 
● Discuss hypercube’s realizability/scalability 

problems and present alternatives  
● Complete our view of the “sea of 

interconnection networks”   
 
Part Contents 
● Chapter 13: Hypercubes and Their Algorithms 
● Chapter 14: Sorting and Routing on Hypercubes 
● Chapter 15: Other Hypercubic Architectures 
● Chapter 16: A Sampler of Other Networks 
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13 Hypercubes and Their Algorithms 

Back to TOC 

Chapter Goals 
● Introduce the hypercube and its topological 

and algorithmic properties  
● Design simple hypercube algorithms 

(sorting & routing to follow in Chapter 14) 
● Learn about embeddings and their role in 

algorithm design and evaluation  
 
Chapter Contents 
● 13.1. Definition and Main Properties 
● 13.2. Embeddings and Their Usefulness 
● 13.3. Embedding of Arrays and Trees 
● 13.4. A Few Simple Algorithms 
● 13.5. Matrix Multiplication 
● 13.6. Inverting a Lower Triangular Matrix 
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13.1 Definition and Main Properties 
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Intermediate 
architectures: 
logarithmic or 
sublogarithmic 

diameter 

 
 
Binary tree has logarithmic diameter, but small bisection 

Hypercube has a much larger bisection 

 
Hypercube can be viewed as a mesh with the largest 
possible number of dimensions 

2 × 2 × 2 ×  . . .  × 2 
 ← log2p →  

We saw that increasing the number of dimensions made it 
harder to design and visualize algorithms for the mesh 

Oddly, at the extreme of log2p dimensions, things become 
simple again! 
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Brief history of the hypercube (binary q-cube) architecture  

 Concept developed: early 1960s [Squi63]  

 Direct (single-stage) & indirect or multistage versions  
  proposed for parallel processing: mid 1970s 
  (early proposals [Peas77], [Sull77], no hardware)  

 Caltech’s 64-node Cosmic Cube: early 1980s [Seit85] 
  elegant solution to routing (wormhole routing) 

 Several commercial machines: mid to late 1980s  
  Intel PSC, CM-2, nCUBE (Section 22.3) 

 

Terminology 

 Hypercube: generic term 

 3-cube, 4-cube, . . . , q-cube  

  when the number of dimensions is of interest 

A qD binary hypercube (q-cube) is defined recursively:  

 1-cube: 2 connected nodes, labeled 0 and 1 

 q-cube consists of two (q – 1)-cubes; 0 & 1 subcubes  

q-cube nodes labeled by preceding subcube node labels 
with 0 and 1 and connecting node 0x to node 1x  
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0 1 
00 01 

10 11 

(a) Binary 1-cube,  
built of two  
binary 0-cubes, 
labeled 0 and 1 

(b) Binary 2-cube,  
built of two  
binary 1-cubes, 
labeled 0 and 1 
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(d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1 
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Fig. 13.1. The recursive structure of binary hypercubes. 
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Number of nodes in a q-cube: p = 2q  

Bisection width:    B = p / 2 = 2q–1 

Diameter:     D = q = log2p 

Node degree:     d = q = log2p  

q neighbors of node x with binary ID xq–1xq–2 ... x2x1x0: 

xq–1xq–2 . . . x2x1x0  dimension-0 neighbor; N0(x) 

xq–1xq–2 . . . x2x1x0 dimension-1 neighbor; N1(x)     

 . . . 

xq–1xq–2 . . . x2x1x0 dimension-(q – 1) neighbor; Nq–1(x)  

Dim 0

Dim 1

Dim 2 Dim 3

0100 0101

0110

0000
1100

1101

1111
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0011

x

1011

0010

1010

x 
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Some properties of hypercubes: 

Two nodes whose labels differ in k bits (have a Hamming 
distance of k) are connected by a shortest path of length k  

Logarithmic diameter and linear bisection width are key 
reasons for the hypercube’s high performance  

Hypercube is both node- and edge-symmetric 

Logarithmic node degree hinders hypercube’s scalability  
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13.2 Embeddings and Their Usefulness 
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Fig. 13.2. Embedding a seven-node binary tree into 2D meshes 

of various sizes. 

 

   Examples of Fig. 13.2    → 3×3 2×4 2×2 

Dilation Longest path onto which any edge is mapped     1 2  1  
 (indicator of communication slowdown)     

Congestion Max number of edges mapped onto one edge 1 2  2 
 (indicator of contention during emulation) 

Load factor Max number of nodes mapped onto one node 1  1  2 
 (indicator of processing slowdown) 

Expansion  Ratio of number of nodes in the two graphs 9/7  8/7  4/7 
  (indicator of emulation cost) 
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13.3 Embedding of Arrays and Trees 

(q – 1)-cube  0

x

(q – 1)-cube  1

N (x)k

N    (x)q–1

N    (N (x)) q–1 k

 
Fig. 13.3. Hamiltonian cycle in the q-cube. 

 
 
Proof of Hamiltonicity using Gray code: 

  Assumed Gray code Assumed Gray code in reverse 
  ←−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−→ 
(q–1)-bit codes 0q–1 0q–21   . . . 10q–2 10q–2  . . . 0q–21  0q–1 
q-bit Gray code 0q 0q–11   . . . 010q–2 110q–2  . . . 10q–21  10q–1 

  ←−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−→ 
    Prefix with 0  Prefix with 1  

 

The 2m0×2m1×...×2mh–1 mesh/torus is a subgraph of q-cube  

 where q = m0 + m1 + ... + mh–1 

This is akin to the mesh/torus being embedded in q-cube 
with dilation 1, congestion 1, load factor 1, expansion 1 

The proof is based on the notion of cross-product graphs 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 231 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

Given k graphs Gi = (Vi, Ei), 1 ≤ i ≤ k, their (cross-)product 

graph G = G1 × G2 × . . . × Gk = (V, E) has: 

 node set  V = {(v1, v2, . . . , vk) | vi ∈ Vi, 1 ≤ i ≤ k} 

 edge set  E = {[(u1, u2, . . . , uk), (v1, v2, . . . , vk)] |  

   for some j, (uj, vj) ∈ Ej and for i ≠ j, ui = vi} 

× =
3-by-2 
torus

× × =

× =

0

1

2

a

b

0a

1a

2a
0b

1b

2b

 
Fig. 13.4. Examples of product graphs. 
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a. The 2m0 × 2m1 × ... × 2mh–1 torus is the product of  

 h rings of sizes 2m0, 2m1, . . . , 2mh–1 

b. The (m0 + m1 + . . . + mh–1)-cube is the product of  

 an m0-cube, an m1-cube, . . . , an mh–1-cube 

c. The 2mi-node ring is a subgraph of the mi-cube 

d. If component graphs are subgraphs of  
 other component graphs, then the product graph  
 will be a subgraph of the other product graph 
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Fig. 13.5. The 4 ××  4 mesh/torus is a subgraph of the 4-cube. 
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Embedding (2q – 1)-node complete binary tree in q-cube 

 Achieving dilation 1 is impossible 
even weight

odd weights
even weights

odd weights

even weights
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Embedding the 2q-node double-rooted complete binary 
tree in q-cube 

New Roots

x N (N (x)) 
N (N (x))

2  -node double-rooted 
complete binary tree

q Double-rooted tree 
in the (q–1)-cube 0

Double-rooted tree 
in the (q–1)-cube 1

N (x)c

N (x)b

N (x)a
b c

bc

N (N (x)) 
N (N (x))

c a

ca

 
Fig. 13.6. The 2q-node double-rooted complete binary tree is a 

subgraph of the q-cube. 
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Fig. 13.7. Embedding a 15-node complete binary tree into the 3-

cube. 
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13.4 A Few Simple Algorithms 

 Semigroup computation on the q-cube 
 Processor x, 0 ≤ x < p do t[x] := v[x]  
    {initialize “total” to own value} 
 for k = 0 to q – 1 Processor x, 0 ≤ x < p, do 
  get y :=t[Nk(x)]                                         
  set t[x] := t[x] ⊗ y 
 endfor 
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Fig. 13.8. Semigroup computation on a 3-cube. 

 

Commutativity of the operator ⊗ is implicit in this algorithm 

How to remove this assumption? 
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 Parallel prefix computation on the q-cube 
 Processor x, 0 ≤ x < p, dot[x] := u[x] := v[x]  
  {initialize subcube “total” and partial prefix to own value} 
 for k = 0 to q – 1 Processor x, 0 ≤ x < p, do 
  get y :=t[Nk(x)]                                         
  set t[x] := t[x] ⊗ y 
  if x > Nk(x) then set u[x] := y ⊗ u[x] 
 endfor 
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Fig. 13.9. Parallel prefix computation on a 3-cube. 

 

Again, commutativity of ⊗ is implicit in this algorithm 
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Fig. 13.10. A second algorithm for parallel prefix computation on 

a 3-cube. 
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 Reversing a sequence on the q-cube 
 for k = 0 to q – 1 Processor x, 0 ≤ x < p, do 
  get y := v[Nk(x)]                                         
  set v[x] := y 
 endfor 
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Fig. 13.11. Sequence reversal on a 3-cube. 
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Ascend, descend, and normal algorithms 
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13.5 Matrix Multiplication 

Multiplying m × m matrices (C = A × B) on a q-cube,  

 where m = 2q/3 and p = m3  

Processor (0,j,k) begins with Ajk & Bjk in registers RA & RB 

 and ends with element Cjk in register RC  

 Multiplying m × m matrices on a q-cube, with q = 3 log2m 
 for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do 
  if bit l of i is 1      
  then get y := RA[Nl±2q/3(x)] and z := RB[Nl±2q/3(x)] 
   set RA[x] : = y;  RB[x] := z      
  endif 
 endfor                                 
 for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do 
  if bit l of i and k are different 
  then get y := RA[Nl(x)];  set RA[x] : = y     
  endif 
 endfor                                 
 for l = q/3 – 1 downto 0 Processor x = ijk, 0 ≤ i, j, k < m, do 
  if bit l of i and j are different 
  then get y := RB[Nl±q/3(x)];  set RB[x] : = y     
  endif 
 endfor  
 Processor x, 0 ≤ x < p, do RC := RA × RB       
  {p = m3 = 2q parallel multiplications in one step} 
 for l = 0 to q/3 – 1 Processor x = ijk, 0 ≤ i, j, k < m, do 
  if bit l of i is 0  
  then get y :=RC[Nl±2q/3(x)];  set RC[x] : = RC[x] + y     
  endif 
 endfor  
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Fig. 13.12. Multiplying two 2 ××  2 matrices on a 3-cube. 

 

Running time of the preceding algorithm: O(q) = O(log p) 

 

Analysis in the case of block matrix multiplication: 

The m × m matrices are partitioned into p1/3 × p1/3 blocks  
 of size (m/p1/3) × (m/p1/3)  

Each communication step involves m2/p2/3 block elements  

Each multiplication involves 2m3/p arithmetic operations  

 Tmul(m, p)  = m2/p2/3 × O(log p) + 2m3/p  
     Communication     Computation 
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13.6 Inverting a Lower Triangular Matrix 

For  A = 




B 0

C D     we have  A–1 =  








B–1 0

–D–1CB–1 D–1   

If B and D are inverted in parallel by independent 
subcubes, the algorithm’s running time is given by: 

 

 Tinv(m) =  Tinv(m/2) + 2Tmul(m/2)  

   =  Tinv(m/2) + O(log m) = O(log2m) 
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14 Sorting and Routing on Hypercubes 

Back to TOC 

Chapter Goals 
● Present hypercube sorting algorithms, 

showing perfect fit to bitonic sorting 
● Derive hypercube routing algorithms, 

utilizing elegant recursive methods 
● Learn about inherent limitations of oblivious 

routing schemes  
 
Chapter Contents 
● 14.1. Defining the Sorting Problem 
● 14.2. Bitonic Sorting on a Hypercube 
● 14.3. Routing Problems on a Hypercube 
● 14.4. Dimension-Order Routing 
● 14.5. Broadcasting on a Hypercube 
● 14.6. Adaptive and Fault-Tolerant Routing 
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14.1. Defining the Sorting Problem 

Arrange data in order of processor ID numbers (labels) 

0

2

1

3

4

6

5

7

 

The ideal parallel sorting algorithm 

 T(p) = Θ((n log n)/p)  

We cannot achieve this optimal time for all n and p 

1-1 sorting (n = p) 

 Batcher’s bitonic sort: O(log2n) = O(log2p) time 

 Same for Batcher’s odd-even merge sort 

 O(log n)-time deterministic algorithm not known  

k-k sorting (n = pk) 

 Optimal algorithms known for n >> p  or when 

 average running time is considered (randomized) 
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Attempts and progress in hypercube sorting algorithms 

 

 

 

? log n 

One of the oldest 
parallel algorithms; 
discovered ≈1960, 
published 1968 

Practical, deterministic 

Fewer than p items 

Practical, probabilistic 

More than p items 

1960s 

1990 

≈1988 

1987 

≈1980 

log n log log n 

log n (log log n) 2 

(n log n)/p  for  n >> p 

log n   randomized 

log p log n/log(p/n), n ≤ p/4;  
 1– ε   

log  n for n = p, bitonic  2 

in particular, log p for n = p 
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(a)

(b)

Cyclic shift of (a)

Cyclic shift of (b)  
Fig. 14.1. Examples of bitonic sequences. 

 

Bitonic sequence Shifted right half 

Shift right half of data to 
left half (superimpose 
the two halves) 

In each position, keep 
the smaller of the two 
values and ship the 
larger value to the right  

Each half is a bitonic  
sequence that can be 
sorted independently  

0 1 2 n−1 

0 1 2 n−1 

n/2 

n/2  
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Shift right half of 
data to left half 
(superimpose the 
two halves) 

In each position, 
keep the smaller 
value of each pair 
and ship the larger 
value to the right  

Each half is a bitonic  
sequence that can be 
sorted independently 

0 1 2 n–1 

0 1 2 n–1 

.   .   . 

.   .   . 

Bitonic 
sequence 

Shifted 
right half 

n/2 

n/2 

.   .   . 

.   .   .  
Fig. 14.2. Sorting a bitonic sequence on a linear array. 

 

  5   9  10  15   3   7  14  12   8   1   4  13  16  11   6   2 
  ---->   <----   ---->   <----   ---->   <----   ---->   <---- 

  5   9  15  10   3   7  14  12   1   8  13   4  11  16   6   2 
         ------------>   <------------   ------------>   <------------ 

  5   9  10  15  14  12   7   3   1   4   8  13  16  11   6   2 
         ---------------------------->   <---------------------------- 

  3   5   7   9  10  12  14  15  16  13  11   8   6   4   2   1 
         ------------------------------------------------------------> 

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 

Fig. 14.3. Sorting an arbitrary sequence on a linear array through 
recursive application of bitonic sorting. 

 

 T(p) = T(p/2) + B(p)  

  = T(p/2) + 2p – 2  =  4p – 4 – 2 log2p  
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Alternate derivation for the running time of bitonic sorting 
on a linear array: 

 T(p) = B(2) + B(4) + . . . + B(p)  

  = 2 + 6 + 14 + . . . + (2p – 2)  =   4p – 4 – 2 log2p 

 
For linear array, the bitonic sorting algorithm is inferior to 
simpler odd-even transposition sort which requires only p 
compare-exchanges or 2p unidirectional communications  

However, the situation is quite different for a hypercube 
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14.2 Bitonic Sorting on a Hypercube 

Sort lower (xq–1 = 0) and upper (xq–1 = 1) subcubes  

 in opposite directions; yields a bitonic sequence 

Shifting the halves takes one compare-exchange step  

 B(q) = B(q – 1) + 1 = q 

 

 Sorting a bitonic sequence of size n on q-cube, q = log2n 
 for l = q – 1 downto 0 Processor x, 0 ≤ x < p, do 
  if xl = 0     
  then get y := v[Nl(x)]; keep min(v(x), y);  
    send max(v(x), y) to Nl(x) 
  endif 
 endfor                    

   

Bitonic sorting algorithm 

 
 T(q) = T(q – 1) + B(q) = T(q – 1) + q  

  = q(q + 1)/2  =  log2p (log2p + 1)/2 
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Fig. 14.4. Sorting a bitonic sequence of size 8 on the 3-cube. 
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14.3 Routing Problems on a Hypercube 

Types of routing algorithms 

Oblivious: path uniquely determined by node addresses 

Nonoblivious or adaptive: the path taken by a message 
may also depend on other messages in the network  

On-line: make the routing decisions on the fly as you route 

Off-line: route selections are precomputed for each 
problem of interest and stored within nodes (routing tables) 

 
Positive result for off-line routing on a p-node hypercube 

Any 1-1 routing problem with p or fewer packets can be 
solved in O(log p) steps, using an off-line algorithm 

The off-line algorithm chooses routes in a way that the 
route taken by one message does not significantly overlap 
or conflict with those of others (for each source/destination 
pair, there are many paths to choose from) 
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Negative result for oblivious routing on any network 

Theorem 14.1: Let G = (V, E) be a p-node, degree-d 
network. Any oblivious routing algorithm for routing p 
packets in G needs Ω( p   / d) worst-case time 

For a hypercube: oblivious routing requires Ω( p   / log p) 
time in the worst case (only slightly better than mesh) 

In most instances, actual routing performance is much 
closer to the log-time best case than to the worst case. 
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Proof Sketch for Theorem 14.1 

Let Pu,v  be the unique path used for routing from u to v 

There are p(p – 1) paths for routing among all node pairs 

These paths are predetermined and independent of other 
traffic within the network 

Our strategy: find k node pairs ui, vi (1 ≤ i ≤ k) such that  

 ui ≠ uj and vi ≠ vj for i ≠ j, and  

 Pui,vi all pass through the same edge e 

Because ≤ 2 packets can go through a link in one step, 
Ω(k) steps will be needed for some 1-1 routing problem 

The main part of the proof consists of showing that k can 
be as large as p  /d  

v
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14.4 Dimension-Order Routing 

Route from node 01011011   
  to node 11010110 
    ^   ^^ ^ Dimensions that differ 

Path:  01011011, 11011011, 11010011,  
  11010111, 11010110 
 

Unfolded hypercube (indirect cube, butterfly network) 
facilitates the discussion of routing algorithms 

Dimension-order routing between nodes i and j in a 
hypercube can be viewed as routing from node i in column 
0 (q) to node j in column q (0) of the butterfly  

dim 0 dim 1 dim 2

0        1        2        3

q + 1 Columns

0 
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2  Rowsq

0 
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2 
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6 
 
7

Hypercube

Unfold

Fold  
Fig. 14.5. Unfolded 3-cube or the 32-node butterfly network. 
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Self-routing in a butterfly 

From node 3 to node 6: routing tag = 011 ⊕ 110 = 101 
 (this indicates the “cross-straight-cross” path) 

From node 6 to node 1: routing tag 110 ⊕ 001 = 111 
 (this represents a “cross-cross-cross” path) 

 
 

 

dim 0 dim 1 dim 2 

0        1        2        3 
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Fig. 14.6. Example dimension-order routing paths. 

 

The butterfly network cannot route all permutations without 
node or edge conflicts; e.g., any permutation involving the 
routes (1, 7) and (0, 3) leads to a conflict 

The extent of conflicts depends on the routing problem  
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There exist “good” routing problems for which conflicts are 
non-existent or rare  

 
dim 0 dim 1 dim 2

0        1        2        3
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Fig. 14.7. Pack ing is a “ good ” routing p roblem for dimension-

order routing on the hypercube. 
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There are also “bad” routing problems that lead to 
maximum conflicts and thus the worst-case running time 
predicted by Theorem 14.1 
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Fig. 14.8. Bit-reversal permutation is a “ bad” routing p roblem for 

dimension-order routing on the hypercube. 
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Message buffer needs of dimension-order routing 

True or false: if we limit nodes to a constant number of 
message buffers, then the above bound still holds, except 
that messages are queued at several levels before 
reaching node 0  

False: queuing messages at multiple intermediate nodes 
introduces added delays that we have not accounted for, 
so that even the Θ( p ) running time is not guaranteed  

 
Bad news: if each node of the hypercube is limited to O(1) 
buffers, there exist permutation routing problems that 
require O(p) time; i.e., as bad as on a linear array! 

 
Good news: the performance is usually much better; i.e., 
log2p + o(log p) for most permutations. The average 
running time of dimension-order routing is very close to its 
best case and message buffer requirements are modest  

If we anticipate encountering (near) worst-case routing 
patterns in an application, two options are available to us:  

 Compute the routing paths off-line and store in tables  

 Use randomized routing to convert the worst-case  
  to average-case performance 

Probabilistic analyses for showing the good average-case 
performance of dimension-order routing are complicated 
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Wormhole routing on a hypercube 

A

B

C

D

Packet 1

Packet 2

 

Some of the preceding results are directly applicable here 

Any good routing problem, yielding node- and edge-
disjoint paths, will remain good for wormhole routing  

In Fig. 14.7, the four worms carrying messages A, B, C, D, 
will move with no conflict among them. Each message is 
delivered to its destination in the shortest possible time, 
regardless of the length of the worms  

dim 0 dim 1 dim 2
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For bad routing problems, on the other hand, wormhole 
routing aggravates the difficulties, given that one message 
can now tie up a number of nodes and links 

In the case of wormhole routing, one also needs to be 
concerned with deadlocks resulting from circular waiting of 
messages for one another  

Dimension-order routing is always deadlock-free  

With hot-potato or deflection routing, which is attractive for 
reducing the message buffering requirements, dimension 
orders are occasionally modified or more than one routing 
step along some dimensions may be allowed 

Deadlock considerations in this case are similar to those of 
other adaptive routing schemes (see Section 14.6) 
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14.5 Broadcasting on a Hypercube 

Simple “flooding” scheme with all-port communication 

00000  Source node 

00001, 00010, 00100, 01000, 10000 Neighbors of source 

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000 Distance-2 nodes 

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100 Distance-3 nodes 

01111, 10111, 11011, 11101, 11110 Distance-4 nodes 

11111   Distance-5 node 

 

Binomial broadcast tree with single-port communication  

0 
1 
2 
3 
4 
5 

Time00000

10000

01000 11000

00100 01100 10100 11100

00001

00010

 
Fig. 14.9. The binomial broadcast tree for a 5-cube. 
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Fig. 14.10. Three hypercube broadcasting schemes as performed 

on a 4-cube. 
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14.6 Adaptive and Fault-Tolerant Routing 

There are up to q node-disjoint and edge-disjoint shortest 
paths between any node pairs in a q-cube 

Thus, one can route messages around congested or failed 
nodes/links  

A useful notion for designing adaptive wormhole routing 
algorithms is that of virtual communication networks 
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7

Subnetwork 0 Subnetwork 1  
Fig. 14.11. Partitioning a 3-cube into subnetworks for deadlock-

free routing. 
  

Because each of the subnetworks in Fig. 14.11 is acyclic, 
any routing scheme that begins by using links in Subnet 0, 
at some point switches the routing path to Subnet 1, and 
from then on remains in Subnet 1, is deadlock-free 
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Fault diameter of q-cube is at most q + 1 with ≤ q – 1 faults 
and at most q + 2 with ≤ 2q – 3 faults [Lati93] 
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 Figure for Problem 14.15.  
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15 Other Hypercubic Architectures 

Back to TOC 

Chapter Goals 
● Learn how the binary hypercube can be 

generalized to provide cost or performance 
benefits over the original version  

● Derive algorithms for these architectures 
based on emulating a hypercube  

 
Chapter Contents 
● 15.1. Modified and Generalized Hypercubes 
● 15.2. Butterfly and Permutation Networks 
● 15.3. Plus-or-Minus-2i Network 
● 15.4. The Cube-Connected Cycles Network 
● 15.5. Shuffle and Shuffle-Exchange Networks 
● 15.6. That’s Not All Folks! 
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15.1 Modified and Generalized Hypercubes 

Twisted 3-cube
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6 7

 
Fig. 15.1. Deriving a twisted 3-cube by redirecting two links in a 

4-cycle. 
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Fig. 15.2. Deriving a folded 3-cube by adding four diametral 

links. 

 

Rotate 
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Dim-0 links removed
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Fig. 15.3. Folded 3-cube viewed as 3-cube with a redundant 

dimension. 
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A hypercube is a power or homogeneous product network 

 q-cube  = (oo)q    

 q-cube  =  qth power of K2 

Generalized hypercube = qth power of Kr  

 (node labels are radix-r numbers)  

 Example: radix-4 generalized hypercube 

 Node labels are radix-4 numbers 

 Node x is connected to y iff x and y differ in one digit  

 Each node has r – 1 dimension-k links 
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15.2 Butterfly and Permutation Networks 
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Fig. 15.4. Butterfly and wrapped butterfly networks. 
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Switching these 
two row pairs 
converts this to 
the original 
butterfly network. 
Changing the 
order of stages in 
a butterfly is thus 
equi valent to a 
relabeling of the 
rows (in this 
example, row xyz 
becomes row xzy) 

 
Fig. 15.5. Butterfly network with permuted dimensions. 
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Fat trees eliminate the bisection bottleneck of a “skinny” 
tree by making the bandwidth of links correspondingly 
higher near the root 

 
Fig. 15.6. Two representations of a fat tree. 

 

One way of realizing a fat tree 

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

Front view: 
Binary tree

Side view: 
Inverted  
binary tree

1 3 5 7

1 2 3
5 6 7

1 2 3 4 5 6 7

 
Fig. 15.7. Butterfly network redrawn as a fat tree. 
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Butterfly as a multistage interconnection network 

0        1        2        3
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Fig. 15.8. Butterfly network used to connect modules that are on 

the same side.  

 

Generalization of the butterfly network 

 High-radix or m-ary butterfly (built of m × m switches) 

 Has mq rows and q + 1 columns (q if wrapped)  
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Beneš network can route any permutation  

 (it is rearrangeable) 

0        1        2        3        4
2 log  p – 1 Columns of 2-by-2 Switches
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110 
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  7 
  

Processors Memory Banks

000 
001 
010 
011 
100 
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110 
111 

  0 
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  2 
  3 
  4 
  5 
  6 
  7 
  

2

 
Fig. 15.9. Beneš network formed from two back-to-back 

butterflies.  
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Fig. 15.10. Another example of a Beneš network.  
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15.3 Plus-or-Minus-2i Network 

±4

±1
0    1    2    3    4    5    6    7

±2
0

2

1

3

4

6

5

7

 
Fig. 15.11. Two representations of the eight-node PM2I network.  
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Fig. 15.12. Augmented data manipulator network.  
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15.4 The Cube-Connected Cycles Network 
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Fig. 15.13. A wrapped butterfly (left) converted into cube-

connected cycles.  

 
How CCC was originally defined: 
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Fig. 15.14. Alternate derivation of CCC from a hypercube.  
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Emulating normal hypercube algorithms on CCC 

Hypercube 
Dimension

q–1

3 
 
2 
 
1 
 
0

Algorithm Steps
0        1        2        3      .  .  .  

. 

. 

.

Ascend

Descend

Normal

 
 
 

2   bitsm m  bits
Cycle ID = x Proc ID = y

N    (x)

x, j–1

x, j

x, j+1

 , j–1j–1

, j

, j+1

Dim j–1

Dim j

Dim j+1
 , j–1

Cycle 
    x

 , j

N    (x)

j+1

N    (x)j+1

N (x)j

N (x)j

 
Fig. 15.15. CCC emulating a normal hypercube algorithm.  
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15.5 Shuff le and Shuff le-Exchange Networks 
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Fig. 15.16. Shuff le, exchange, and shuff le–exchange 

conn ectivities.  
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Fig. 15.17. Alternate views of an eight-nod e shuff le–exchange 

network.  
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In a 2q-node shuffle network, node x = xq–1xq–2 . . . x2x1x0  

is connected to xq–2 . . . x2x1x0xq–1 (cyclic left-shift of x) 

In the shuffle-exchange network, node x is additionally 
connected to xq–2 . . . x2x1x0xq–1 

Routing in a shuffle-exchange network  

Source               01011011 
Destination        11010110 
Positions that differ ^   ^^ ^ 
Route 01011011  Shuffle to 10110110  Exchange to  10110111  
   10110111  Shuffle to 01101111  
   01101111  Shuffle to 11011110  
   11011110  Shuffle to 10111101 
   10111101  Shuffle to 01111011  Exchange to  01111010  
   01111010  Shuffle to 11110100  Exchange to  11110101   
   11110101  Shuffle to 11101011 
   11101011  Shuffle to 11010111  Exchange to  11010110 

 

For 2q-node shuffle-exchange network:  

D = q = log2p,  d  = 4   
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With shuffle and exchange links provided separately, as 
shown in Fig. 15.18, the diameter increases to 2q – 1 and 
node degree reduces to 3 

0 1 2 3 4 5 6 7

0

3

6

2

5

1

4

7

Exchange 
(dotted)

Shuffle 
(solid)

 
Fig. 15.18. Eight-node network with separate shuffle and 

exchange links.  
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Multistage shuffle-exchange network = butterfly network 
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Fig. 15.19. Multistage shuff le–exchange network (omega network) 

is the same as butterfly network.  
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15.6 That’s Not All, Folks! 

When q is a power of 2, the 2qq-node cube-connected 
cycles network derived from the q-cube, by replacing each 
node with a q-cycle, is a subgraph of the (q + log2q)-cube  

Thus, CCC can be viewed as a pruned hypercube  

Other pruning strategies are possible, leading to 
interesting tradeoffs   
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All dimension-0 
links are kept 

Even-dimension 
links are kept in 
the even subcube 

Odd-dimension 
links are kept in 
the odd subcube 

 
Fig. 15.20. Example of a pruned hypercube. 
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Möbius cube 

Dimension-i neighbor of x = xq–1xq–2 . . . xi+1xi  . . . x1x0 is  

 xq–1xq–2 . . . 0xi  . . . x1x0    if    xi+1 = 0  

  (as in the hypercube, xi is complemented) 

 xq–1xq–2 . . . 1xi  . . .x1x0    if    xi+1 = 1  

  (xi and all the bits to its right are complemented) 

For dimension q – 1, since there is no xq ,  

 the neighbor can be defined in two ways,  

 leading to 0- and 1-Mobius cubes 

A Möbius cube has a diameter of about 1/2 and an 
average inter-node distance of about 2/3 of that of a 
hypercube 

 

0

2

1

3

4

6

5

7

6

0-Mobius cube 

0

2

1

3

7

4 5

1-Mobius cube 
 

Fig. 15.21. Two 8-nod e Möbius cubes. 
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16 A Sampler of Other Networks 

Back to TOC 

Chapter Goals 
● Study examples of composite or hybrid 

architectures  
● Study examples of hierarchical or multilevel 

architectures  
● Complete the picture of the sea of 

interconnection networks  
 
Chapter Contents 
● 16.1. Performance Parameters for Networks 
● 16.2. Star and Pancake Networks 
● 16.3. Ring-Based Networks 
● 16.4. Composite or Hybrid Networks 
● 16.5. Hierarchical (Multilevel) Networks 
● 16.6. Multistage Interconnection Networks 
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16.1 Performance Parameters for Networks 

 
The sea of direct interconnection networks (Fig. 4.8, expanded). 
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Diameter D (indicator of worst-case message latency) 

 Routing diameter D(R); based on routing algorithm R 

Average internode distance ∆ (based on shortest paths) 

 Routing average internode distance ∆(R) 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

Sum of distances 
from corner node: 
2 × 1  + 3 × 2 + 2 × 3  
+ 1 × 4 = 18 

Sum of distances 
from side node: 
3 × 1  + 3 × 2 +  
2 × 3  = 15 

Sum of distances 
from center node: 
4 × 1  + 4 × 2 = 12 Average distance:  

(4 × 18 + 4 × 15 +  
1 × 12) / (9 x 8) = 2 

 
For the node-symmetric 3 × 3 torus, the average internode 
distance is determined by considering only paths from a 
single source node: 

 ∆3×3 torus = (4 × 1 + 4 × 2) / 8 = 1.5 
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Bisection width (indicator of random communication 
capacity) 

Bisection bandwidth incorporates link capacities as well as 
their number 

P 0 P 1 P 2 

P 3 P 4 P 5 

P 6 P 7 P 8 

0 1 2 

3 4 5 

6 7 8 
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7 

An embedding of  
K   into 3 × 3 mesh 9 
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Bisection width = 4 × 5 = 20 
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Fig. 16.2. A network whose bisection width is not as large at it 

appears. 
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Why so many different interconnection networks? 

No single network provides optimal performance under all 
conditions 

Each network has its advantages and drawbacks in terms 
of cost, latency, and bandwidth 

We need to understand the interplay of these parameters 
to select suitable interconnection structures or to evaluate 
the relative merits of networks (parallel architectures) 

 

Interplay between the node degree d and diameter D  

Node degree is related to cost 

Given p nodes of known degree d, we can interconnect 
them in different ways, leading to varying diameters  

Question: What is the best way to interconnect p nodes of 
degree d to minimize the diameter of the resulting graph?  

The problem of constructing a network of minimal 
diameter, given p nodes of degree d, or alternatively, 
building the largest possible network for a given node 
degree d and diameter D, is quite difficult 

However, some useful bounds can be established that 
serve as benchmarks   
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Moore’s bound s 

A diameter-D regular digraph can have no more than 1 + d 
+ d2 + ... + dD nodes 

This yields a lower bound on the diameter of a p-node 
digraph of degree d which is known as Moore’s bound  

  p ≤ 1 + d + d2 + . . . + dD = 
dD+1 – 1

d – 1   

  D ≥ logd[p(d – 1) + 1] – 1  

A graph matching this bound is a Moore digraph 

The only possible Moore digraphs are: 

 Rings (d = 1, D = p – 1)  

 Complete graphs (d = p – 1, D = 1) 

But there are near-optimal graphs that come close 
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A similar bound can be derived for undirected graphs 

The largest undirected graph of diameter D has at most 1 
+ d + d(d – 1) + d(d – 1)2 + ... + d(d – 1)D–1 nodes 

This leads to Moore’s bound on the diameter of a p-node 
undirected graph of degree d: 

  p  ≤ 1 + d [1 + (d – 1) + (d – 1)2 + ... + (d – 1)D–1]  

    = 1 + d  
(d – 1)D – 1

d – 2   

  D  ≥  logd–1[ 
(p – 1)(d – 2)

d    + 1 ]      

For d = 2:  p ≤ 1 + 2D or D ≥ (p – 1)/2 

This diameter lower bound is achieved by ring with odd p 

 
For d = 3:  D ≥ log2[(p + 2)/3] or p ≤ 3 × 2D – 2 

D = 1 allows us to have 4 nodes (the complete graph K4) 
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The first interesting or nontrivial case is for D = 2 which 
allows at most p = 10 nodes (the Petersen graph) 

11010

01101

1001111100

00111

11001

10101

10110

0111001011

 
Fig. 16.1. The 10-node Petersen graph. 

 

For larger networks, Moore’s bound cannot be matched; 
but there exist networks that come very close to this bound 

e.g. shuffle-exchange and CCC networks, with d = 3, have 
asymptotically optimal diameters within constant factors 

For d = 4, Moore’s diameter lower bound is log2[(p + 1)/2] 

So, 2D mesh and torus networks are far from optimal in 
terms of their diameters, whereas the butterfly network is 
asymptotically optimal within a constant factor 

For a q-cube with p = 2q and d = q, Moore’s lower bound 
yields D = Ω(q/log q). So, the diameter of a q-cube is a 
factor of log q worse than the optimal  

Summary: for node degree d, Moore’s bound establishes 
the lowest possible diameter that we can hope to achieve. 
Coming within a constant factor of this bound is usually 
good enough; the smaller the constant factor, the better. 
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Layout area and longest wire 

The VLSI layout area required by an interconnection 
network is intimately related to its bisection width B 

If B wires must cross the bisection in a 2D layout and wire 
separation is to be 1 unit, then the smallest dimension of 
the VLSI chip will be at least B units 

The chip area will thus be Ω(B2) units  

 p-node 2D mesh needs O(p) area 

 p-node hypercube needs at least Ω(p2) area 

 

B wires crossing a bisection 
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The total number pd/2 of links (edges) is a very crude 
measure of network cost 

With this measure, constant-degree networks have linear 
O(p) cost and the p-node hypercube has O(p log p) cost.  

The longest wire required in VLSI layout also affects the 
network performance 

For example, any 2D layout of a p-node hypercube 
requires wires of length Ω( p/log p ) 

Because the length of the longest wire grows with system 
size, the per-node performance is bound to degrade for 
larger systems, thus implying sublinear speed-up 

Composite figures of merit -- Example: dD, the product of 
node degree and network diameter, is a good measure for 
comparing networks of the same size, since it is a rough 
indicator of the cost of unit performance (d is proportional 
to cost, 1/D represents performance) 

This measure has its limitations, particularly when applied 
to bus-based systems  

Other network parameters include robustness and fault 
tolerance 
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16.2 Star and Pancake Networks 

A qD star network, or q-star, has p = q! (q factorial) nodes  

Each node is labeled with a string x1x2 . . . xq  

 where (x1, x2, ... , xq) is a permutation of {1, 2, ... , q}  

Node x1x2 . . . xi . . . xq  is connected to xi x2 . . . x1 . . . xq  

 for each i (note that x1  and xi  are interchanged)  

The node degree of a q-star with q! nodes is q – 1 

When the ith symbol is switched with x1, the corresponding 
link is referred to as a dimension-i link  
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23413124
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3

2

4

 
Fig. 16.3. The four-dimensional star graph. 
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The diameter of a q-star is at most 2q – 3  
Justification: the following routing algorithm  

 Source node     1 5 4 3 6 2  
  Dimension-2 link to 5 1 4 3 6 2   
  Dimension-6 link to 2 1 4 3 6 5 
 Last symbol now adjusted 
  Dimension-2 link to 1 2 4 3 6 5   
  Dimension-5 link to 6 2 4 3 1 5 
 Last 2 symbols now adjusted 
  Dimension-2 link to 2 6 4 3 1 5   
  Dimension-4 link to 3 6 4 2 1 5 
 Last 3 symbols now adjusted 
  Dimension-2 link to 6 3 4 2 1 5   
  Dimension-3 link to 4 3 6 2 1 5 
 Last 4 symbols now adjusted 
  Dimension-2 link to 3 4 6 2 1 5   Destination 

D = Θ(q) and d = Θ(q); but how is q related to p? 

A q-star contains   p = q! ≅ e–qqq 2πq    processors 
 (using Stirling’s approximation) 

 ln p  ≅  –q + (q + 1/2) ln q + ln(2π)/2  =  Θ(q log q) 

  or q = Θ(log p/log log p) 

Hence,  node degree and diameter are sublogarithmic  

Star graph is asymptotically optimal to within a constant 
factor with regard to Moore’s diameter lower bound   

Routing on star graphs is simple and reasonably efficient; 
however, virtually all other algorithms are more complex 
than the corresponding algorithms on a hypercube 
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Because the node degree of a star network grows with its 
size, making it non-scalable, a degree-3 version of it, 
known as star-connected cycles (SCC) has been proposed 

The diameter of SCC is about the same as a comparably 
sized CCC network 

However, the routing algorithm for SCC is somewhat more 
complex   

1234,4
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3 2
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2
1234,3

4
1234,2

 
Fig. 16.4. The four-dimensional star-connected cycles network. 
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Like the star graph, the pancake network also has p = q! 
nodes that are labeled by the various permutations of the 
symbols {1, 2, . . . , q} 

In the q-pancake, Node x1x2 . . . xi xi+1 . . . xq is connected 

to nodes xi xi–1 . . . x2x1xi+1 . . . xq for each i (x1x2 . . . xi  is 
flipped, like a pancake) 

Routing in pancake networks is very similar to routing in 
star graphs 

Denoting the connection that results from flipping the first i 
symbols (2 ≤ i ≤ q) as the dimension-i link, we have for 
example: 

 Source node     1 5 4 3 6 2  
  Dimension-2 link to 5 1 4 3 6 2   
  Dimension-6 link to 2 6 3 4 1 5 
 Last 2 symbols now adjusted 
  Dimension-4 link to 4 3 6 2 1 5 
 Last 4 symbols now adjusted 
  Dimension-2 link to 3 4 6 2 1 5   Destination 

Generally, we need 2 flips per symbol; one flip to bring the 
symbol to the front from its current position i, and another 
one to send it to its desired position j  

Thus, the diameter of the q-pancake is 2q – 3 
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One can define the connectivities of the q! nodes labeled 
by the permutations of {1, 2, ... , q} in other ways  

In a rotator graph, node x1x2 . . . xi xi+1 . . . xq is connected 

to x2 . . . xi x1xi+1 . . . xq (obtained by a left rotation of the 

first i symbols) for each i in the range 2 ≤ i ≤ q 

The node degree of a q-rotator is q – 1, as in star and 
pancake graphs, but its diameter and average inter-node 
distance are smaller 

Except for SCC, all of the networks introduced in this 
section represent special cases of a class of networks 
known as Cayley graphs 

A Cayley graph is characterized by a set Λ of node labels 
and a set Γ of generators, each defining one neighbor of a 
node x 

The ith generator γi can be viewed as a rule for permuting 
the node label to get the label of its “dimension-i” neighbor 

For example, the star graph has q – 1 generators that 
correspond to interchanging the 1st and ith symbols in the 
node label 

Index-permutation graphs, a generalization of Cayley 
graphs in which the node labels are not restricted to 
consist of distinct symbols, can lead to other interesting 
and useful interconnection networks.  
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16.3 Ring-Based Networks 

Ring: simple, but low-performance 

Multilevel rings and chordal rings 

Message 
source

Local Ring
Remote 
Ring

S

D

Message 
destination

 
Fig. 16.5. A 64-node ring-of-rings architecture composed of eight 

8-node local rings and one second-level ring. 
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Fig. 16.6. Unidirectional ring, two chordal rings, and node 

connectivity in general. 
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Fig. 16.6. Unidirectional ring, two chordal rings, and node 

connectivity in general. 
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Chordal rings are node symmetric  

Optimal chordal rings derived as above are very similar, 
though not isomorphic, to (g+1)-dimensional tori 
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Fig. 16.7. Chordal rings redrawn to show their similarity to torus 

networks. 
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Periodically regular chordal ring  
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the same relative 
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destination  
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Fig. 16.8. Periodically regular chordal ring. 

 

A variant of the greedy routing algorithm (first route a 
packet to the head of a group) works nicely 

Chordal rings and PRC rings have bidirectional variants 
with similar properties to the unidirectional versions  
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Area-efficient VLSI layouts are known for PRC rings 
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Fig. 16.9. VLSI layout for a 64-node periodically regular chordal 

ring. 

 

Providing nil skips for some of the nodes in each group 
constitutes a mechanism for performance-cost tradeoffs 
that are identical in nature to those offered by the q-D 
CCC architecture when rings have more than q nodes  
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Fig. 16.10. A PRC ring redrawn as a butterfly- or ADM-like 

network. 
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16.4 Composite or Hybrid Networks 

Composite or hybrid networks combine the connectivity 
rules from two (or more) pure networks in order to  

 • achieve some advantages from each structure 

 • derive network sizes that are unavailable  

  with either pure architecture 

 • realize any number of performance/cost benefits   
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Network composition by Cartesian product operation 

× =
3-by-2 
torus

× × =

× =

0

1
2

a

b

0a

1a

2a
0b

1b

2b

 
Fig. 13.4. Examples of product graphs. 

 

Topological properties of product graphs 

 p  =   p′p″      d = d′ + d″      D = D′ + D″      ∆ = ∆′ + ∆″ 

Routing on product graphs: 

Given optimal/efficient/deadlock-free routing algorithms for 
G′ and G″, the following 2-phase algorithm will be 
optimal/efficient/deadlock-free for routing from u′u″ to v′v″ 
in the product graph G 

Phase 1.  Route from u′u″ to v′u″ via G′ edges  

Phase 2.  Route from v′u″ to v′v″ via G" edges  

The algorithm above may be called the “G′-first” routing 
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Broadcasting on product graphs:  

First send from v′v″  to all nodes xv″, x ∈ V′, using a 
broadcasting algorithm for G'; then broadcast from each 
node xv″ to all nodes xy, y ∈ V″, using a broadcasting 
algorithm for G″ 

Semigroup and parallel prefix computations can be 
similarly performed by using the respective algorithms for 
the component networks 

If the component graphs are Hamiltonian, then the p′ × p″ 
torus will be a subgraph of G 

 

 
Fig. 16.11. Mesh of trees compared with mesh-connected trees. 
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16.5 Hierarchical (Multilevel) Networks 

Hierarchical or multilevel interconnection networks can be 
defined in a variety of ways 

Example: hierarch. composition by recursive substitution 
 (replacing each node with a network, as in CCC) 

EW

N

S

 
Fig. 16.12. The mesh of meshes network exhibits greater 

modularity than a mesh. 

 
Motivations for designing hierarchical networks include  

 greater modularity  lower cost 
 finer scalability   better fault tolerance 
 

 
Fig. 16.13. Hierarchical or multilevel bus network. 
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16.6 Multistage Interconnection Networks 

Direct versus indirect (multistage) network 

Rearrangeable network (e.g. Beneš network) 

Self-routing MIN 

The butterfly network is a self-routing MIN, but it is not a 
permutation network 

Beneš network can realize any permutation, but is not self-
routing   

A natural question is whether there exist self-routing 
permutation networks (yes there are!) 

A full permutation can be realized via sorting of the 
destination addresses 

Any p-sorter of the type discussed in Chapter 7 can be 
viewed as a self-routing MIN capable of routing p × p 
permutations 
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Fig. 16.14. Example of sorting on a binary radix sort network. 
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The sea of indirect interconnection networks. 
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Partial List of Important MINs 

Augmented data manipu lator (ADM): aka unfolded PM2I 
(Fig. 15.12) 

Banyan: Any MIN with a unique path between any input 
and any output (e.g. butterfly) 

Baseline: Butterfly network with nodes labeled differently 

Beneš: Back-to-back butterfly networks, sharing one 
column (Figs. 15.9-10) 

Bidelta: A MIN that is a delta network in either direction  

Butterfly: aka unfolded hypercube (Figs. 6.9, 15.4-5) 

Data manipu lator: Same as ADM, but with switches in a 
column restricted to same state   

Delta: Any MIN for which the outputs of each switch have 
distinct labels (say 0 & 1 for 2 × 2 switches) and path label, 
composed of concatenating switch output labels leading 
from an input to an output depends only on the output 

Flip: Reverse of the omega network (inputs × outputs) 

Ind irect cube: Same as butterfly or omega 

Omega: Multi-stage shuffle-exchange network; isomorphic 
to butterfly (Fig. 15.19) 

Permutation : Any MIN that can realize all permutations 

Rearrangeable: Same as permutation network 

Reverse baseline: Baseline network, with the roles of 
inputs and outputs interchanged 
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 Figure for Problem 16.11.   
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Part V Some Broad Topics 

Back to TOC 

Part Goals 
● Study topics that cut across architectures 
 ●  Mapping a computation onto a machine 
 ●  Previously dealt with computation  
     and communication; what about I/O? 
 ●  Hardware faults and resultant errors 
 ●  System and software issues? 
 
Part Contents 
● Chapter 17: Emulation and Scheduling 
● Chapter 18: Data Storage, Input, and Output 
● Chapter 19: Reliable Parallel Processing 
● Chapter 20: System and Software Issues 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 314 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

17 Emulation and Scheduling 

Back to TOC 

Chapter Goals 
● Learn how to achieve algorithm portability 

via emulation  
● Study task scheduling for parallel systems, 
 including complexity aspects and bounds 
 
Chapter Contents 
● 17.1. Emulations Among Architectures 
● 17.2. Distributed shared memory 
● 17.3. The task scheduling problem 
● 17.4. A class of scheduling algorithms 
● 17.5. Some useful bounds for scheduling 
● 17.6. Load balancing and dataflow systems 
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17.1 Emulations Among Architectures 

General result 1 (emulation via graph embedding) 

 Slowdown ≤ dilation × congestion × load factor 

 The bound is tight; e.g., embedding Kp into K2  

  dilation = 1, congestion = p2/4, load = p/2  

 
General result 2 (PRAM emulating degree-d network) 

 EREW PRAM can emulate any degree-d network  

 with slowdown O(d) 

 
General result 3 (butterfly emulating degree-d network) 

 A (wrapped) butterfly can emulate any degree-d  

 network with O(d log p) slowdown 

 Butterfly is a universally efficient bounded-degree net 
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Fig. 17.1. Converting a routing step in a degree-3 network to 

three permutations or perfect matchings. 
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A set of three perfect matchings for a degree-3 bipartite graph. 
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17.2 Distributed Shared Memory 

Randomized emulation of PRAM on p-node butterfly 

Use hash function to map memory locations to modules 

 p locations → p modules, not necessarily distinct 

With high probability, at most O(log p) of the p locations 
will be in modules located in the same row 

Average slowdown = O(log p) 
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q Memory module  
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memory locations 
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router +  
processor +  
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Fig. 17.2. Butterfly distributed-memory machine emulating the 

PRAM. 
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Emulation of PRAM using (p log p)-node butterfly MIN 

Average slowdown = O(log p) 

Less efficient than Fig. 17.2, which uses a smaller butterfly 

By using only p/(log p) physical processors to emulate a      
p-processor PRAM this emulation scheme becomes quite 
efficient (memory accesses of the log p virtual processors 
assigned to each physical processor can be pipelined) 
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Fig. 17.3. Distributed-memory machine, with a butterfly 

multistage interconnection network, emulating the 
PRAM. 
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Deterministic emulation of PRAM on a network 

Both more difficult and less efficient 

Recall that a butterfly can route random permutations in 
O(log p) steps on the average but that worst-case 
communication patterns take O( p ) time  

One idea:  

 Store log2m copies of each of m memory locations 

 Time-stamp each updated value 

 A “write” is complete if majority of copies are updated 

 A “read” is satisfied when a majority of copies are 
 accessed and the one with latest time stamp is used 

 Thus, a few congested links won’t delay the operation 

Recunstruction 
algorithm 

Original data word 
and its k  pieces 

The k  pieces  
after encoding 
(approx. three  
times larger) 

 

Original data word recovered 
from k /3 encoded pieces 

Up-to-date 
pieces 

Possible read set 
of size 2k/3 

Possible update set 
of size 2k/3 

 
Fig. 17.4. Illustrating the information dispersal approach to 

PRAM emulation with lower data redundancy. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 320 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

17.3 The Task Scheduling Problem 
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p 
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Fig. 17.5. Example task system showing communications or 

dependencies. 

 

Scheduling parameters and criteria 
Running time, task creation (static/dynamic), relationships 
(priority, precedence, ...), start/end time (release, deadline) 

Types of scheduling algorithms 
Preemptive/nonpreemptive, fine/medium/coarse grain 
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17.4 A Class of Scheduling Algorithms 

List scheduling 

 Assign a priority level to each task 

 Construct a task list in priority order 

  (tag the tasks that are ready for execution)  

 Assign to an available processor the first tagged task  

  (update the list tags when tasks terminate) 

When all processors are identical, list schedulers differ 
only in their priority assignment schemes 
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A possible priority assignment scheme for list scheduling:  

Determine the depth T∞ of the task graph, which is an 
indicator of its minimum possible execution time  

Take T∞ as a goal for the total running time Tp  

Determine the latest possible time step in which each task 
can be scheduled if our goal is to be met (done by 
“layering” the nodes beginning with the output node)  

The results of layering for the task graph of Fig. 17.5 are: 

   1   2   3   4   5   6   7   8   9  10  11  12  13  Tasks in numerical order 
   1   2   3   4   6   5   6   6   6   7   7   7   8  Latest possible times (layers) 

Assign task priorities in order of the latest possible times. 
Ties broken, e.g., by giving priority to a task with a larger 
number of descendants  

For our example, this secondary criterion is of no help, but 
generally, if a task with more descendants is executed 
first, the running time will likely be improved. 

   1*  2   3   4   6   5   7   8   9  10  11  12  13   Tasks in priority order 
   1   2   3   4   5   6   6   6   6   7   7   7   8    Latest possible times 
   2   1   3   3   2   1   1   1   1   1   1   1   0   Number of descendants 
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Schedule on p = 2 processors 
   Tasks listed in priority order 

   1*  2   3   4   6   5   7   8   9  10  11  12  13    t = 1     v1 scheduled 
   2*  3   4   6   5   7   8   9  10  11  12  13       t = 2     v2 scheduled  
   3*  4   6   5   7   8   9  10  11  12  13         t = 3     v3 scheduled  
   4*  6   5*  7   8*  9  10  11  12  13         t = 4     v4, v5 scheduled 
   6*  7*  8*  9  10  11  12  13          t = 5     v6, v7 scheduled  
   8*  9* 10* 11  12  13            t = 6     v8, v9 scheduled  
  10* 11* 12* 13            t = 7     v10, v11 scheduled 
  12* 13               t = 8     v12 scheduled  
  13*               t = 9     v13 scheduled (done) 
 

Schedule on p = 3 processors 
   Tasks listed in priority order 
   1*  2   3   4   6   5   7   8   9  10  11  12  13    t = 1     v1 scheduled 
   2*  3   4   6   5   7   8   9  10  11  12  13       t = 2     v2 scheduled 
   3*  4   6   5   7   8   9  10  11  12  13         t = 3     v3 scheduled  
   4*  6   5*  7   8*  9  10  11  12  13         t = 4     v4, v5, v8 scheduled 
   6*  7*  9  10  11* 12  13          t = 5     v6, v7, v11 scheduled 
   9* 10* 12  13                 t = 6     v9, v10 scheduled 
  12* 13               t = 7     v12 scheduled  
  13*               t = 8     v13 scheduled (done) 
 

1   2   3    4   5   6   7   8   9   10  11  12  13P1

P1

P2

P3

P1

P2

1   2   3    4   6   8   10  12  13   

             5   7   9   11   

1   2   3    4   6   9   12  13   

             5   7  10   

             8  11   

1   2   3    4   5   6   7   8   9   10  11  12  13
Time Step  

Fig. 17.6. Schedules with p = 1, 2, 3 processors for an example 
task graph with unit-time tasks. 
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Scheduling with non-unit-time tasks 
x

x
x

y Output
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2
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v 1

v 3

v 5

v 2
v 4

v 6

 
Fig. 17.7. Example task system with task running times of 1, 2, 

or 3 units. 
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Fig. 17.8. Schedules with p = 1, 2, 3 processors for an example 

task graph with nonuniform running times. 
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17.5 Some Useful Bounds for Scheduling 

Brent’s scheduling theorem: 

 Tp < T∞ + T1/p              

First assume the availability of an unlimited number of 
processors; schedule each node at earliest possible time 

Let there be nt nodes scheduled at time t.  

Clearly, �t nt = T1  

With p processors, tasks scheduled for time step t can be  

executed in nt / p steps by running them p at a time. 
Thus: 

 Tp ≤ �
T�
t=1 nt / p < �

T�
t=1  (nt / p + 1)  =  T∞ + T1/p   
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Brent’s theorem offers an approximation to the speedup: 

  Speedup ≅  
T1

T� + T1/p   =  
p

1 + pT�/T1  

This can be viewed as a generalized form of Amdahl’s law  

A large value for T∞/T1 is an indication that the task has a 
great deal of sequential dependencies, which limits the 
speedup to at most T1/T∞ with any number of processors 

A small value for T∞/T1 allows us to approach the ideal 
speedup of p with p processors 

Good-news corollary 1: T∞  ≤ Tp < 2T∞  for p ≥ T1/T∞             

Good-news corollary 2: T1/p  ≤ Tp < 2T1/p   for  p ≤ T1/T∞   
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ABCs of Parallel Process ing  
in on e transparency* (parhami@ece.ucsb.edu) 

 
* Originally appeared in Computer Architecture News, Vol. 27, No. 1, p. 2, March 1999.   

 f = unparallelizable fraction of a task (sequential overhead) 
 Tx = running time of a task when executed on x processors 
 
A Amdahl’s Law (Speed-up Fo rmula) 
 Bad news: Sequential overhead will kill you, since: 

  Speed-up    =    
T1

Tp
     ≤    

1

 f + 
1 – f

p

     ≤    min (
1
f   , p) 

 Morale: For f = 0.1, e.g., the speed-up will be at best 10,         
 no matter what the number of processors (peak OPS). 

B Brent’s Scheduling Th eorem 
 Good news: Optimal scheduling is a very difficult problem,  
 but even a naive scheduling algorithm can ensure: 

  
T1

p     ≤   Tp    <   
T1

p   + T∞    =    
T1

p  (1 + 
p

T1/T �
)  

 Result: For a reasonably parallel task (with small T∞),  
 or for a suitably small number of processors (say, p < T1/T∞),  
 good speed-up and high utilization are attainable. 

C Cost-Effectiveness Adage 
 Real news: The most cost-effective parallel solution  
 to a given problem is often not the one with: 
  Highest peak OPS (communication can kill you) 
  Greatest speed-up (at what cost?) 
  Best utilization  (hardware busy doing what?) 
 Analogy: Mass transit (SIMD) might be more cost-effective  
 than using private vehicles (MIMD) even if it is slower  
 and leads to many empty seats on some trips. 
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17.6 Load Balancing and Dataflow Systems 

Task running times are not constants 

A processor may run out of things to do before other 
processors complete their assigned tasks 

Some processors may remain idle for long periods of time 
as they wait for prerequisite tasks to be executed 

In these cases, a load balancing policy may be applied 

As we learn about execution times and interdependencies 
of tasks at run time, we may switch as yet unexecuted 
tasks from an overloaded processor to a less loaded one 
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Load balancing can be initiated by a lightly loaded or by an 
overburdened node (receiver/sender-initiated) 

Unfortunately, load balancing may involve a great deal of 
overhead that reduces the potential gains 

The ultimate in automatic load-balancing is a self-
scheduling system that tries to keep all processing 
resources running at maximum efficiency 

There may be a central location to which processors refer 
for work and where they return their results 

An idle processor requests that it be assigned new work by 
sending a message to this central supervisor and in return 
receives one or more tasks to perform 

This works nicely for tasks with small contexts and/or 
relatively long running times 
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Dataflow systems 

Hardware-level implementation of self-scheduling scheme 

A dataflow computation is characterized by a dataflow 
graph (we consider only decision/loop-free graphs) 

Tokens are used to keep track of data availability  

Once tokens appear on all inputs of a node, the node is 
enabled or “fired”, resulting in tokens to be removed from 
its inputs and placed on each of its outputs 

Static dataflow: an edge can carry no more than one token 

Dynamic dataflow: multiple tagged tokens can appear on 
the edges and are “consumed” after matching their tags 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 331 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

x

x x

y Output

1

2 3

1

v 1

v 3

v 5

v 2
v 4

v 6

x

x x

y Output

1

2 3

1

v 1

v 3

v 5

v 2
v 4

v 6

 
Fig. 17.9. Example dataflow graph with token distribution at the 

outset (left) and after 2 time units (right). 
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18 Data Storage, Input, and Output 

Back to TOC 

Chapter Goals 
● Elaborate on problems of data distribution 

and caching  
● Deal with the memory/processor speed gap 

which is particularly severe in distributed-
memory systems 

● Learn about parallel I/O technology  
 
Chapter Contents 
● 18.1. Data Access Problems and Caching 
● 18.2. Cache Coherence Protocols 
● 18.3. Multithreading and Latency Hiding 
● 18.4. Parallel I/O Technology 
● 18.5. Redundant Disk Arrays 
● 18.6. Interfaces and Standards 
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18.1 Data Access Problems and Caching 

Processor-memory speed gap aggravated by parallelism 

 Global shared memory access mechanism slower 

 Distributed memory penalizes remote accesses 

Remedies  

 Data distribution -- good with static data sets 

 Data caching -- introduces coherence problems 

 Latency  tolerance (hiding) -- e.g., multithreading 
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Why data caching works 

Hit rate r = fraction of accesses satisfied by the cache 
 Ceff = Cfast + (1 – r)Cslow 

Cache parameters: size, block length (line width), 
placement policy, replacement policy, write policy 

Example: two-way set-associative cache 
Placement Option 0 Placement Option 1

. 

. 

.

Tag
State bits

--- One cache block ---Tag
State bits

--- One cache block ---

. 

. 

.

. 

. 

.

. 

. 

.

Block 
address

Word 
offset

The two candidate words 
and their tags are read out

Tag Index

Address in

Mux
0         1

Data outCache miss

=

=Com- 
 pare

Com- 
 pare

 
Fig. 18.1. Data storage and access in a two-way set-associative 

cache. 
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18.2 Cache Coherence Protocols 

0 
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Invalid 

 
Fig. 18.2. Various types of cached data blocks in a parallel 

processor with global memory and processor caches. 
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Example: a bus-based write-invalidate write-back snoopy 
cache coherence protocol 

Invalid

Exclusive Shared
(read/write) (read-only)

CPU read hit, CPU write hit

CPU 
write miss: 
Write back 
the block,  
Put write 
miss on bus

CPU read hit

CPU 
read miss:  
Put read 
miss on bus

Bus write miss for this block: 
Write back the block

Bus write miss for this block

CPU read miss: 
Put read miss on bus

CPU write miss: Put write miss on bus

CPU read miss: Write back the block, put read miss on bus

Bus read miss for this block: Write back the block

CPU write hit/miss: Put write miss on bus

 
Fig. 18.3. Finite-state control mechanism for a bus-based 

snoopy cache coherence protocol. 
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Example: state transition diagram for a directory entry in a 
directory-based cache coherence protocol 

Uncached

Exclusive Shared
(read/write) (read-only)

Write miss: Fetch data value, request invalidation, 
return data value, sharing set = {c}

Read miss: Return data value, 
sharing set = sharing set + {c}

Data write-back: 
Sharing set = { }

Read miss: Return data value, 
sharing set = {c}Write miss: Return data value, 

sharing set = {c}

Read miss: Fetch, return data value, sharing set = {c}

Write miss: Invalidate, sharing set = {c},  
return data value

Read miss: Fetch data value, return data value, 
sharing set = sharing set + {c}  

 
Fig. 18.4. States and transitions for a directory entry in a 

directory-based coherence protocol (c denotes the 
cache sending the message). 
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18.3 Multithreading and Latency hiding 

Sequential 
thread 

Thread 
computations  

Remote 
accesses 

Scheduling 
overhead 

Synchronization 
overhead 

Idle 
time 

 
Fig. 18.5. The concept of multithreaded parallel computation. 
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18.4 Parallel I/O Technology 

Track 0 
Track 1 

Track c – 1 

Sector 

Recording area 

Spindle 

Direction of 
rotation 

Platter 

Read/write head 

Actuator 

Arm 

Track 2 

 
Fig. 18.6. Moving-head magnetic disk elements.  

 

Moving-head disk access =  

 seek cylinder + rotate to sector + transfer data 

Track 0 Track 1

Track c–1

 
Fig. 18.7. Head-per-track disk concept. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 340 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

18.5 Redundant Disk Arrays 

  0   0    
Copy

Mirrored disks

  0   1   2   3 Parity

Bit- or byte-level striping 
with parity or checksum

Parity or checksum applied 
to sectors; parity disk still 
a performance bottleneck

0 1 2 3 P

4 5 6 P7

8 9 P10 11 RAID4

  1   1    
Copy RAID1

Distributed parity 
(only "small" writes 
suffer an overhead)

0 1 2 3 P

4 5 6 P 7

8 9 P 10 11 RAID5

RAID3

(RAID 2 used Hamming code 
for error correction)

(RAID 0 used multiple disks for 
higher data  rate; no redundancy)

2

0

1

2

0

1

 
Fig. 18.8. Alternative data organizations on redundant disk 

arrays. 

 

Computing sector parity for a disk write operation 

 New parity = New data ⊕ Old data ⊕ Old parity 
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18.6 Interfaces and Standards 

Scalable Coherent Interface (SCI) standard 

Processor 0 Processor 1 Processor 2 Processor 3 

Memory 

Noncoherent  
data blocks Coherent  

data block  

 Cache 0  Cache 1  Cache 2  Cache 3 

Head pointer 

 
Fig. 18.9. Two categories of data blocks and the structure of the 

sharing set in the Scalable Coherent Interface. 

 

 

High-Performance Parallel Interface (HiPPI) standard:  

 point-to-point connectivity between two devices  

  (typically a supercomputer and a peripheral)  

 0.8 or 1.6 Gb/s over a (copper) cable of 25m or less 

 uses very wide cables with clock rate of only 25 MHz 
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19 Reliable Parallel Processing 

Back to TOC 

Chapter Goals 
● Develop appreciation of reliability problems 

in parallel systems  
● Examine key methods for dealing with such 

problems at various levels, from circuit 
redundancy to robustness features for 
algorithms or applications  

 
Chapter Contents 
● 19.1. Defects, Faults, . . . , Failures 
● 19.2. Defect-Level Methods 
● 19.3. Fault-Level Methods 
● 19.4. Error-Level Methods 
● 19.5. Malfunction-Level Methods 
● 19.6. Degradation-Level Methods 
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19.1 Defects, Faults, . . . , Failures 

The multilevel model of dependable computing 

Abstraction level   Dealing with deviant 

Defect / component   atomic parts   

Fault / logic     signal values or decisions 

Error / information   data or internal states 

Malfunction / system   functional behavior 

Degradation / service   performance 

Failure / result    outputs or actions. 
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IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

MALFUNCTIONING

DEGRADED

FAILED
 

Fig. 19.1. System states and state transitions in our multilevel 
model. 
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Wall heights represent  
interlevel latencies  

Inlet valves represent  
avoidance techniques 

Drain valves represent  
tolerance techniques 

Concentric reservoirs are 
analogues of the six model 
levels (defect is innermost) 

I I I I I I 

I I I I I I 

 
Fig. 19.2. An analogy for the multilevel model of dependable 

computing. 

 

 

Fault tolerance in parallel systems 

Opportunities:  

 multiple resources of same type (built in spares) 
 load redistribution 
 graceful degradation 

Difficulties:  

 change in structure due to faults (e.g., 2D mesh)  
 bad units disturbing good ones (e.g., on a bus) 
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19.2 Defect-Level Methods 

Defects are caused in two ways (sideways and downward 
transitions into the defective state of Fig. 19.1) 

 Physical design slips leading to defective components 
 Component wear/aging or harsh operating conditions  

A dormant or ineffective defect is extremely hard to detect  

Methods for coping with defects during dormancy 

 Periodic maintenance  
 Burn-in testing    

Goal of defect tolerance methods 

 Improving the manufacturing yield 
 dynamic reconfiguration during system operation   

 

 Spare or     
Defective

P0 P1 P2 P3

Bypassed

I/O

Test

I/O

Test

  
Fig. 19.3. A linear array with a spare processor and 

reconfiguration switches. 
 

 Spare or     
Defective

Mux
P0 P1 P2 P3

  
Fig. 19.4. A linear array with a spare processor and embedded 

switching. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 347 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

Pa Pb

Pc Pd

Pa Pb

Pc Pd

Mux

  
Fig. 19.5. Two types of reconfiguration switching for 2D arrays. 

 
 

Spare 
Row

Spare Column
 

Fig. 19.6. A 5 ××  5 working array salvaged from a 6 ××  6 redundant 
mesh through reconfiguration switching. 
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Fig. 19.7. Seven faulty processors and their associated 

compensation paths. 

 

No compensation path 
exists for this faulty node

 
A set of three faults, one of which cannot be accommodated 

by the compensation-path method. 
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19.3 Fault-Level Methods 

Hardware replication 

 Duplication with comparison 

 Triplication with voting 
Coded 
inputs Decode 

    1

Decode 
    2

Compute 
     1

Compare

Mismatch 
detected

Encode

Coded 
outputs

Coded 
inputs Decode 

    1

Decode 
    2

Decode 
    3

Vote Encode

Coded 
outputs

Non-codeword 
detected

Compute 
     2

Compute 
     3

Compute 
     1

Compute 
     2

 
Fig. 19.8. Fault detection or tolerance with replication. 

 

These schemes involve high redundancy: 100 or 200% 

Lower redundancy is possible in some cases: e.g., 
periodic balanced sorters tolerate certain faults with extra 
stages 
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Fault detection and bypassing (extra-stage MIN) 

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

q  Columns
0        1        2    

q+1  Columns

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7

0        1        2        3    

 
Fig. 19.9. Regular butterfly and extra-stage butterfly networks.  
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19.4 Error-Level Methods 

Protected 
     by  
Encoding

Input

Encode

Send

Store

Send

Decode

Output

Manipulate

Unprotected 
     

 
Fig. 19.10. A common way of applying information coding 

techniques. 
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Fig. 19.10. A common way of applying information coding 

techniques. 

 

Special coding methods; e.g., arithmetic codes 

Robust data structures 
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Algorithm-based error tolerance 

 M = 






 2 1 6
 5 3 4
 3 2 7

     Mr = 






 2 1 6 1
 5 3 4 4
 3 2 7 4

     

 Mc = 







 2 1 6
 5 3 4
 3 2 7
 2 6 1

     Mf = 







 2 1 6 1
 5 3 4 4
 3 2 7 4
 2 6 1 1

  

If X, Y, and Z are matrices satisfying Z = X × Y 

 Zf = Xc × Yr  

In a full-checksum matrix, any single erroneous element 
can be corrected and any three erroneous elements can 
be detected 
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19.5 Malfunction-Level Methods 

System-level testing and diagnosis 

Start from a core and expand to the whole system 

Modules test each other and draw inferences from results 

 

The theory of malfunction diagnosis 

Given a diagnosis matrix, identify: 

 all malfunctioning units 

 at least one malfunctioning unit 

 a subset guaranteed to contain all malfunctions 

P P

P

x x 1 0 1 
x x 1 0 x 
1 1 x 0 x 
0 0 0 x 0 
1 x x 0 x

D =0 2

4

P1

P3

 
Fig. 19.11. A testing graph and the resulting diagnosis matrix. 
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Fig. 19.12. Reconfigurable 4 ××  4 mesh with one spare. 
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19.6 Degradation-Level Methods 

Fig. 19.13 depicts the performance variations in three 
types of parallel systems: 

S1: fail-hard system with performance Pmax up to the failure 
time t1 as well as after off-line repair at time t'1  

S2: fail-soft system with gradually degrading performance 
level and off-line repair at time t2  

S3: fail-soft system with on-line repair which, from the 
viewpoint of an application that requires a performance 
level of at least Pmin, postpones its failure time to t3  

 
Performance

P
max

Pmin Performance Threshold

Off-Line Repair

t t' t t' t t" t'

Time

1 1 2 2 3 2 3

S1

S 3

S 2

S  , S2    3

S 2

S 3

S 1

  
Fig. 19.13. Performance variations in three example parallel 

computers. 
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Time

Completion 
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Completion 
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Task 0
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Consistent checkpoints Inconsistent checkpoints

Checkpoints added

 
Fig. 19.14. Checkpointing, its overhead, and pitfalls. 
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Fig. 19.15. Two types of incomplete meshes, with and without 

bypass links. 
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A system fails when its degradation tolerance capacity is 
exhausted and, as a result, its performance falls below an 
acceptable threshold 

As degradations are themselves consequences of 
malfunctions, it is interesting to skip a level and relate 
system failures directly to malfunctions 

It has been noted that failures in a gracefully degrading 
system can be attributed to: 

a. Isolated malfunction of a critical subsystem 

b. Catastrophic (multiple space-domain) malfunctions 

c. Accumulation of (multiple time-domain) malfunctions  

d. Resource exhaustion causing  
inadequate performance or total shutdown 
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20 System and Software Issues 

Back to TOC 

Chapter Goals 
● Deal with some system, software, and 

application topics so that there isn’t a 
complete void in these areas 

● Review key issues and introduce 
references for further study on these topics  

 
Chapter Contents 
● 20.1. Coordination and Synchronization 
● 20.2. Parallel Programming 
● 20.3. Software Portability and Standards 
● 20.4. Parallel Operating Systems 
● 20.5. Parallel File Systems 
● 20.6. Hardware/Software Interaction 
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20.1 Coordination and Synchronization 

Process B: 
––– 
––– 
 
 
 
  
 
 
receive x 
––– 
––– 
––– 
–––

   B 
waits

Time

Process A: 
––– 
––– 
––– 
––– 
––– 
––– 
send x 
––– 
––– 
––– 
––– 
––– 
–––

t 
 
 
 
t 
 
t

1 
 
 
 
2 
 
3

A B
Schematic 
representation 
of data 
dependence

Details of 
dependence

{
Commu- 
nication 
latency

 
Fig. 20.1. Automatic synchronization in message-passing 

systems. 

 

With shared memory, synchronization is accomplished by 
accessing specially designated shared control variables 

A popular way is through atomic fetch-and-add instruction 

The fetch-and-add instruction has two parameters:  

 A shared variable x and an increment a 

If the current value of x is c, fetch-and-add(x, a) returns c 
to the process and overwrites x = c with the value c + a 

A second process executing fetch-and-add(x, b) then gets 
the now current value c + a and modifies it to c + a + b   
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Why the atomicity of fetch-and-add is important  

Consider the following timing of events if each of two 
processes were to execute fetch-and-add by  

 reading the x value from memory into an accumulator 

 adding its increment to the accumulator 

 storing the sum back into x 

The three steps of fetch-and-add for the two processes 
may be interleaved in time as follows: 

     Process A  Process B   Comments 
Time step 1   read x          A’s accumulator holds c 
Time step 2         read x    B’s accumulator holds c 
Time step 3   add a          A’s accumulator holds c + a 
Time step 4         add b    B’s accumulator holds c + b 
Time step 5   store x         x holds c + a 
Time step 6         store x   x holds c + b 

This leads to incorrect semantics, as both processes 
receive the same value c in return and the final value of x 
in memory will be c + b rather than c + a + b  

fetch-and-add(x, a)

Combining 
   Switch

fetch-and-add(x, b)

fetch-and-add(x, a+b)

c

c

c+a
aSave

 
Fig. 20.2. Combining of two fetch-and-add requests. 
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Barrier synchronization: A processor, in a designated set, 
must wait at a barrier until each of the other processors 
has arrived at the corresponding point in its computation 

Strategy 1: Reduce the synchronization overhead 

Using a single AND tree: if it is possible for a processor to 
be randomly delayed between raising it flag and checking 
the AND tree output, then some processors might cross 
the barrier and lower their flags before others have had a 
chance to examine the AND tree output 

Using two AND trees that are connected to the set and 
reset inputs of a flip-flop  

Set 
AND 
tree

fo 
fo 
fo 
 
fo

0 
1 
2 
 
p–1 S

R

Q

Reset 
AND 
tree

fe 
fe 
fe 
 
fe

0 
1 
2 
 
p–1

Barrier 
SignalFlip- 

flop

 
Fig. 20.4. Example of hardware aid for fast barrier 

synchronization [Hoar96]. 
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Once we provide a mechanism like Fig. 20.4 for barrier 
synchronization, it is only a small step to generalize it to a 
“global combine” (semigroup computation) facility 

The AND tree implements a semigroup computation using 
the binary AND operator. The generalization might involve 
doing OR and XOR logical reductions as well 

P1P0 P3P2 P1P0 P
3

P2

Time

Synchro- 
nization 
overhead

Done

Done

 
Fig. 20.3. The performance benefit of less frequent 

synchronization. 
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Strategy 2: Perform less frequent synchronization 

Bulk-synchronous parallel (BSP) mode of computation  

Synchronization of processors occurs once every L time 
steps, where L is a periodicity parameter 

A parallel computation consists of a sequence of 
supersteps 

In one superstep, each processor performs a task 
composed of local computation, message transmissions, 
and message receptions from other processors 

Data received in messages will not be used in the current 
super-step but rather beginning with the next super-step 
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20.2 Parallel Programming 

Approaches to parallel program development:   

a. Parallelizing compilers 
b. Data-parallel programming 
c. Shared-variable programming 
d. Communicating processes 
e. Functional programming 

 

Parallelizing compiler 

Each iteration of the i loop below can be assigned to a 
different processor for asynchronous execution; 
successive iterations are totally independent 

 for i = 2 to k do 
  for j = 2 to k do 
   ai,j  : = (ai,j–1 + ai,j+1)/2 

  endfor 
 endfor 

The irony in parallelizing compilers: 

Force a naturally parallel computation into sequential mold 

Apply the powers of an intelligent compiler to determine 
which of these artificially sequentialized computations can 
be performed concurrently! 
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Data-parallel programming  

The APL programming language 

 C ← A + B   array add 

 x ← +/V    reduction 

 U ← +/V × W  inner product   

 A write-only language? 

 

Fortran-90 (superset of Fortran-77) 

Extensions that include facilities for array operations 

 A = SQRT(A) + B ** 2 

 WHERE (B /= 0)  A = A / B 

When run on a distributed-memory machine, some 
Fortran-90 constructs imply interprocessor communication 

 A = S/2    assign scalar value to array  

 A(I:J) = B(J:I:–1)  assign a section of B to A 

 A(P) = B             A(P(I)) = B(I) for all I} 

 S = SUM(B)   gather operation  
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High-performance Fortran (HPF) extends Fortran-90 by  

 adding new directives and language constructs 

 imposing some restrictions for efficiency reasons 

HPF includes a number of compiler directives that assist 
the compiler in data distribution 

These directives, which do not alter the semantics of the 
program, are presented as Fortran-90 comments (begin 
with the comment symbol “!”) 

If an HPF program is presented to a Fortran-90 compiler, it 
will be compiled, and subsequently executed, correctly 

As an example, the HPF statement 

 !HPF ALIGN A(I) WITH B(I + 2) 

is a hint to the compiler that it should distribute the 
elements of arrays A and B among processors or memory 
banks such that A(I) and B(I + 2) are stored together 

If this statement is ignored, the program will still execute 
correctly, but perhaps less efficiently.   

Data-parallel extensions have also been implemented for 
other popular programming languages 

 C* language introduced in 1987 by TMC 

 pC++, based on the popular C++  
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Shared-variable programming  

Concurrent Pascal, Modula-2, Sequent C  

 

Communicating processes  

Languages: Ada, OccamLanguage-independent libraries: 
MPI standard 

 

Functional programming  

Based on reduction and evaluation of expressions 

There is no concept of storage, assignment, or branching 

Results are obtained by applying functions to arguments 

One can view a functional programming language as 
allowing only one assignment of value to each variable, 
with the assigned value maintained throughout the course 
of the computation 

Thus, computations have the property of referential 
transparency or freedom from side effects 

Due to inefficiencies inherent in the single-assignment 
approach, practical application of functional programming 
has been limited to  

 Lisp-based systems (MIT’s Multilisp)   

 Data-flow architectures (Manchester U’s SISAL)   
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20.3 Software Portability and Standards 

Portable parallel applications elusive 

Program portability requires strict adherence to design and 
specification standards that provide machine-independent 
views or logical models 

Programs are developed according to these logical models 
and are then adapted to specific hardware architectures by 
automatic tools (e.g., compilers) 

HPF is an example of a standard language that, if 
implemented correctly, should allow programs to be easily 
ported across platforms 

Two other logical models are: MPI and PVM 
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Message passing interface (MPI) standard  

Specifies a library of functions that implement the 
message-passing model of parallel computation 

Was developed by the MPI Forum, a consortium of parallel 
computer vendors and software development specialists 

As a standard, MPI provides a common high-level view of 
a message-passing environment that can be mapped to 
various physical systems 

Software implemented using MPI functions can be easily 
ported among machines that support the MPI model 

MPI includes functions for: 

Point-to-point communication  
 (Blocking and non-blocking send/receive, ...) 

Collective communication  
 (Broadcast, gather, scatter, total exchange, ...) 

Aggregate computation  
 (Barrier, reduction, and scan or parallel prefix) 

Group management   
 (Group construction, destruction, inquiry, ...) 

Communicator specification  
 (Inter-/intracommunicator construction, destruction, ...) 

Virtual topology specification  
 (Various topology definitions, ...) 
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Parallel virtual machine (PVM) 

Software platform for developing and running parallel 
applications on a set of independent, heterogeneous, 
computers that are interconnected in a variety of ways  

PVM defines a suite of user-interface primitives that 
support both the shared-memory and the message-
passing parallel programming paradigms 

These primitives provide functions similar to those of MPI 
and are embedded within a procedural host language 
(usually Fortran or C) 

A PVM support process or daemon (PVMD) runs 
independently on each host, performing message routing 
and control functions 

PVMDs perform the following functions: 

 Exchange network configuration information 
 Allocate memory to in-transit packets 
 Coordinate task execution on associated hosts 

The available pool of processors may change dynamically 

Names can be associated with groups or processes 

Group membership can change dynamically 

One process can belong to many groups 

Group-oriented functions take group names as arguments  
 e.g., broadcast and barrier synchronization  
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20.4 Parallel Operating Systems 

Classes of parallel processors:  

Back-end, front-end, stand-alone 

Back-end system: the host computer has a standard OS, 
and manages the parallel processor essentially like a 
coprocessor or I/O device 

Front-end system: similar to backend, except that the 
parallel processor handles its own data (e.g., an array 
processor doing radar signal processing) and relies on the 
host computer for certain post-processing functions, 
diagnostic testing, and interface with the users 

Stand-alone system: a special OS is included that can run 
on one, several, or all of the processors in a floating or 
distributed (master-slave or symmetric) fashion   

 Most parallel OSs are based on Unix 
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The Mach operating system 

Unix Compatibility

User 
Processes

Servers Distr. 
Shared 
 Mem.

Proc. 
Alloc.

Ext'l 
Mem.Network 

Message

User Mode

Supervisor Mode

Mach Kernel: Virtual Memory Management, 
Port/Message Management, and Scheduling

 
Fig. 20.5. Functions of the supervisor and user modes in the 

Mach operating system. 

 

To make a compact, modular kernel possible, Mach 
incorporates a small set of basic abstractions: 

a. Task: A “container” for resources like virtual 
address space and communication ports 

b. Thread: An executing program with little context; a 
task may contain many threads 

c. Port: A communication channel along with certain 
access rights 

d. Message: A basic unit of information exchange 

e. Memory object: A “handle” to part of a task’s virtual 
memory 
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Unlike Unix whose memory consists of contiguous areas, 
the virtual address space in Mach is composed of 
individual pages with separate protection and inheritance 

Messages in Mach are communicated via ports 

Messages are typed to indicate the data type they carry 
and can be communicated over a port only if the 
sending/receiving thread has the appropriate access rights  

For efficiency purposes, messages that involve a large 
amount of data do not actually carry the data; instead a 
pointer to the actual data pages is transmitted 

Copying of the data to the receiver’s pages does not occur 
until the receiver accesses the data 

So, even though a message may refer to an extensive 
data set, only the segments actually referenced by the 
receiver will ever be copied 

The Mach scheduler has some interesting features 

Each thread is assigned a time quantum upon starting its 
execution. When the time quantum expires, a context 
switch is made to a thread with highest priority, if such a 
thread is awaiting execution 

To avoid starvation of low-priority threads, priorities are 
reduced based on “age”; the more CPU time a thread 
uses, the lower its priority becomes. This policy not only 
prevents starvation, but also tends to favor interactive 
tasks over computation-intensive ones 
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20.5 Parallel File Systems 

A parallel file system efficiently maps data access requests 
by processors to high-bandwidth data transfers between 
primary and secondary memory devices 

To avoid a performance bottleneck, a parallel file system 
must itself be a highly parallel and scalable program that 
efficiently deals with many access scenarios: 

a.  Concurrent file access by independent processes 

b.  Shared access to files by cooperating processes 

c.  Access to large data sets by a single process 

User space in 
(distributed) shared memory 

User process 

Message 

High-bandwidth data transfer 

File system 
library  

Read 

Message 

DISP: READ: COPYRD: 
Cache access 

DISKRD: 
Disk access 

File system 
dispatcher 
process 

File system 
worker 
thread 

Create 
thread 

 
Fig. 20.6. Handling of a large read request by a parallel file 

system [Hell93]. 
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20.6 Hardware/Software Interaction 

A parallel application program should be executable, with 
little or no modification, on a variety of parallel hardware 
platforms that differ in architecture and scale 

Changeover from an 8-processor to 16-processor 
configuration, say, should not require modification in the 
system or application programs 

Ideally, the upgrade should be done by simply plugging in 
new processors, along with interconnects, and rebooting 

Thus, workstation clusters are ideal in that they are readily 
scalable both in time and space  

Scalability in time: introduction of faster workstations and 
interconnects leads to a corresponding increase in system 
performance with little or no redesign 

Scalability in space: computational power can be 
increased by simply plugging in more processors 

Many commercially available parallel processors are 
scalable in space within a range (say 4-256 processors) 

Scalability in time is difficult at present but may be made 
possible in future through the adoption of implementation 
and interfacing standards  
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Users are also interested in software/application scalability 
(for degradation tolerance and/or portability) 

Scaled speedup and isoefficiency are relevant here 

We use parallel processing not just to speed up the 
solution of fixed problems but also to make the solution of 
larger problems feasible with realistic turn-around times 

Speedup, with the problem size n explicitly included, is: 

 S(n, p)  =  
T(n, 1)
T(n, p)  

The total time pT(n, p) spent by the processors can be 
divided into computation time C(n, p) and overhead time  

 H(n, p) = pT(n, p) – C(n, p) 

Assuming for simplicity that we have no redundancy 

 C(n, p) = T(n, 1)   H(n, p) = pT(n, p) – T(n, 1)  

 S(n, p)  =  
p

1 + H(n, p)/T(n, 1)  

 E(n, p)  = S(n, p)/p  =  
1

1 + H(n, p)/T(n, 1)  
When the overhead per processor, H(n, p)/p, is a fixed 
fraction f of T(n, 1), speedup and efficiency become: 

 S(n, p)  =  
p

1 + pf  < 1/f    E(n, p)  =  
1

1 + pf  
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Assume that efficiency is to be kept above 1/2, but the 
arguments apply to any fixed efficiency target 

To have E(n, p) > 1/2, we need pf < 1 or 

 p  <  1/f 

That is, for a fixed problem size and under the assumption 
of the per-processor overhead being a fixed fraction of the 
single-processor running time, there is an upper limit to the 
number of processors that can be applied cost-effectively 

Going back to our initial efficiency equation, we note that 
keeping E(n, p) above 1/2 requires: 

 T(n, 1)  >  H(n, p) 

Generally, the cumulative overhead H(n, p) increases with 
both n and p, whereas T(n, 1) only depends on n  

p

T(n, 1)

H(n, p)fixed n
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For many problems, good efficiency can be achieved 
provided that we sufficiently scale up the problem size 

The amount of growth in problem size that can counteract 
the increase in machine size in order to achieve a fixed 
efficiency is referred to as the isoefficiency function n(p) 
which can be obtained from the equation: 

 T(n, 1)  =  H(n, p) 

With the above provisions, a scaled speedup of p/2 or 
more is achievable for problems of suitably large size 

Note, however, that the parallel execution time  

 T(n, p)  =  
T(n, 1) + H(n, p)

p   

grows as we scale up the problem size to obtain good 
efficiency 

Thus, there is a limit to the usefulness of scaled speedup 

In particular, when there is a fixed computation time 
available due to deadlines (as in daily or weekly weather 
forecasting), the ability to achieve very good scaled 
speedup may be irrelevant  
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Part VI Implementation Aspects 

Back to TOC 

Part Goals 
● Study real parallel machines, MIMD & SIMD 
● Learn about parallel machines that  
 ●  are of historical significance 
 ●  incorporate key ideas, influencing the 
  development of parallel processing 
 ●  are currently in production and/or use 
● Put our knowledge in historical context  
 
Part Contents 
● Chapter 21: Shared-Memory MIMD Machines  
● Chapter 22: Message-Passing MIMD Machines 
● Chapter 23: Data-Parallel SIMD Machines 
● Chapter 24: Past, Present, and Future 
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21 Shared-Memory MIMD Machines 

Back to TOC 

Chapter Goals 
● Survey topics pertaining to the practical 

implementation and performance of shared 
memory 

● Case studies of research prototypes and 
production machines that use global or 
distributed shared memory 

 
Chapter Contents 
● 21.1. Variations in Shared Memory 
● 21.2. MIN-Based BBN Butterfly 
● 21.3. Vector-Parallel Cray Y-MP 
● 21.4. Latency-Tolerant Tera MTA 
● 21.5. CC-NUMA Stanford DASH 
● 21.6. SCI-Based Sequent NUMA-Q 
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21.1 Variations in Shared Memory 

Central 
Main 
Memory

Distributed 
Main 
Memory

Single Copy of 
Modifiable Data

UMA

BBN Butterfly 
  Cray Y-MP

COMA
CC-NUMA

Tera MTA

NUMA

  Stanford DASH 
Sequent NUMA-Q

CC-UMA

Multiple Copies of 
  Modifiable Data

 
Fig. 21.1. Classification of shared-memory hardware 

architectures and example systems that will be studied 
in the rest of this chapter. 
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Fig. 21.2. Organization of the C.mmp multiprocessor. 
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Shared-memory consistency models: 

a Sequential consistency (strictest and most intuitive); 
it mandates that interleaving of reads and writes be 
the same from the viewpoint of all processors. This 
provides the illusion of a FCFS single-port memory.  

b Processor consistency (less strict); it only mandates 
that writes be observed in the same order by all 
processors. This allows reads to overtake writes, 
providing better performance due to optimizations 
afforded by out-of-order execution. 

c Weak consistency separates ordinary memory 
accesses from synchronization accesses and only 
mandates that memory become consistent on 
synchronization accesses. Synch accesses must 
wait for completion of all previous accesses, while 
ordinary read and write accesses can proceed as 
long as there is no pending synch access. 

d Release consistency is similar to weak consistency 
but recognizes two synch accesses, called “acquire” 
and “release”, with protected shared accesses 
sandwiched between them. Ordinary read/write 
accesses can proceed only when there is no 
pending acquire access from the same processor 
and a release access must wait for all reads and 
writes to be completed. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 384 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

21.2 MIN-Based BBN Butterfly 

MC 68000 
Processor

Processor Node 
   Controller

Memory Manager

EPROM

  1 MB 
Memory

  Daughter Board Connection 
for Memory Expansion (3 MB)

 Switch 
Interface

To I/O 
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Fig. 21.3. Structure of a processing node in the BBN Butterfly. 

 

4    4×

4    4×

4    4×

4    4×

Processing Node 0

Processing Node 15

4    4×

4    4×

4    4×

4    4×

 
Fig. 21.4. A small 16-node version of the multistage 

interconnection network of the BBN Butterfly. 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 385 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

21.3 Vector-Parallel Cray Y-MP 
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Fig. 21.5. Key elements of the Cray Y-MP processor. Address 
registers, address function units, instruction buffers, 
and control not shown. 
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Fig. 21.6. The processor-to-memory interconnection network of 

Cray Y-MP. 
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21.4 Latency-Tolerant Tera MTA 
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Instr. Fetch

Interconnection Network

Issue Pool

Retry Pool

 
Fig. 21.7. The instruction execution pipelines of Tera MTA. 
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21.5 CC-NUMA Stanford Dash 
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Fig. 21.8. The architecture of Stanford DASH. 
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21.6 SCI-Based Sequent NUMA-Q 

 IQ-link  

 
Fig. 21.9. The physical placement of Sequent’s quad 

compon ents on a rackmoun t baseboard (not to sca le). 
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Fig. 21.10. The architecture of Sequent NUMA-Q 2000. 
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Fig. 21.11. Block diagram of the IQ-Link board. 
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Fig. 21.12. Block diagram of IQ-Link’s interconn ect controller. 
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22 Message-Passing MIMD Machines 

Back to TOC 

Chapter Goals 
● Survey topics pertaining to the practical 

implementation and performance of 
message passing mechanisms 

● Case studies of research prototypes and 
production machines that use explicit 
message passing for communication 

 
Chapter Contents 
● 22.1. Mechanisms for Message Passing 
● 22.2. Reliable Bus-Based Tandem NonStop 
● 22.3. Hypercube-Based nCUBE3 
● 22.4. Fat-Tree-Based Connection Machine 5 
● 22.5. Omega-Network-Based IBM SP2 
● 22.6. Commodity-Based Berkeley NOW 
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22.1 Mechanisms for Message Passing 
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Fig. 22.1. The structure of a generic router. 
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Fig. 22.2. Example 4 ××  4 and 2 ××  2 switches used as building 

blocks for larger networks. 
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Fig. 22.3. Classification of message-passing hardware 

architectures and example systems that will be studied 
in this chapter. 
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22.2 Reliable Bus-Based Tandem Nonstop 
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Fig. 22.4. One section of the Tandem NonStop Cyclone system. 
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Fig. 22.5. Four four-processor sections interconnected by 

Dynabus+. 
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22.3 Hypercube-Based nCUBE3 
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Fig. 22.6. An eight-node nCUBE architecture. 
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22.4 Fat-Tree-Based Connection Machine 5 
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Fig. 22.7. The overall structure of CM-5. 
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Fig. 22.8. The components of a processing node in CM-5. 
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Fig. 22.9. The fat-tree (hyper-tree) data network of   CM-5. 
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22.5 Omega-Network Based IBM SP2 
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Fig. 22.10. The architecture of IBM SP series of systems. 
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Fig. 22.11. The network interface controller of IBM SP2. 
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Fig. 22.12. A section of the high-performance switch network of 
IBM SP2. 
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22.6 Commodity-Driven Berkeley NOW 

 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 404 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

23 Data-Parallel SIMD Machines  

Back to TOC 

Chapter Goals 
● Examining SIMD in more depth  
● Discussing SIMD’s successes and failures  
● Looking at real SIMD machines, old and 

new  
 
Chapter Contents 
● 23.1. Where Have All the SIMDs Gone? 
● 23.2. The First Supercomputer: ILLIAC IV 
● 23.3. Massively Parallel Goodyear MPP 
● 23.4. Distributed Array Processor (DAP) 
● 23.5. Hypercubic Connection Machine 2 
● 23.6. Multiconnected MasPar MP-2 



Introduction to Parallel Processing: Algorithms and Architectures Instructor’s Manual, Vol. 2, Page 405 

 Winter 2002, Plenum Press Behrooz Parhami, UC Santa Barbara 

23.1 Where Have All the SIMDs Gone? 
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Fig. 23.1. Functional view of an associative memory/processor. 
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Fig. 23.2. The architecture of Purdue PASM. 
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23.2 The First Supercomputer: ILLIAC IV 
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Fig. 23.3. The ILLIAC IV computer (the inter-processor routing 
network is only partially shown). 
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23.3 Massively Parallel Goodyear MPP 

Tape Disk Printer Terminal Network  

Host processor 
(VAX 11/780) 

Program and data management unit  

Array control Staging 
memory 

Staging 
memory 

Array unit 
 

128 × 128 
processors 

128-bit 
output 

interface 

128-bit 
input 

interface 

Status  Control 

Switches 

 
Fig. 23.4. The architecture of Goodyear MPP. 
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Fig. 23.5. The single-bit processor of MPP. 
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23.4 Distributed Array Processor (DAP) 
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Fig. 23.6. The bit-serial processor of DAP. 
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Fig. 23.7. The high-level architecture of DAP system. 
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23.5 Hypercubic Connection Machine 2 
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Fig. 23.8 The architecture of CM-2. 
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Fig. 23.9 The bit-serial ALU of CM-2. 
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23.6 Multiconnected MasPar MP-2 
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Fig. 23.10. The architecture of MasPar MP-2. 
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Fig. 23.11. The physical packaging of processor clusters and the 

3-stage global router in MasPar MP-2. 
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Fig. 23.12. Processor architecture in MasPar MP-2. 
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24 Past, Present, and Future 

Back to TOC 

Chapter Goals 
● Review the history of parallel processing  
● Discuss the current trends and debates 
● Preview emerging technologies and 

architectures  
 
Chapter Contents 
● 24.1. Milestones in Parallel Processing 
● 24.2. Current Status, Issues, and Debates 
● 24.3. TFLOPS, PFLOPS, and Beyond 
● 24.4. Processor and Memory Technologies 
● 24.5. Interconnection Technologies 
● 24.6. The Future of Parallel Processing 
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24.1 Milestones in Parallel Processing 
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24.2 Current Status, Issues, and Debates 
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24.3 TFLOPS, PFLOPS, and Beyond 
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Fig. 24.1. Milestones in the Accelerated Strategic Computing 

Initiative (ASCI) program, sponsored by the US 
Department of Energy, with extrapolation up to the 
PFLOPS level. 
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24.4 Processor and Memory Technologies 
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Fig. 24.2. Key parts of the CPU in the Intel Pentium Pro 

microprocessor. 
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24.5 Interconnection Technologies 
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Fig. 24.3. Changes in the ratio of a 1-cm wire delay to device 

switching time as the feature size is reduced. 
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Fig. 24.4. Various types of intermodule and intersystem 

connections. 
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Fig. 24.5. The three commonly used media for computer and 

network connections. 
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24.6 The Future of Parallel Processing 
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ABCs of Parallel Process ing  
in on e transparency* (parhami@ece.ucsb.edu) 

 
* Originally appeared in Computer Architecture News, Vol. 27, No. 1, p. 2, March 1999.   

 f = unparallelizable fraction of a task (sequential overhead) 
 Tx = running time of a task when executed on x processors 
 
A Amdahl’s Law (Speed-up Fo rmula) 
 Bad news: Sequential overhead will kill you, since: 

  Speed-up    =    
T1

Tp
     ≤    

1

 f + 
1 – f

p

     ≤    min (
1
f   , p) 

 Morale: For f = 0.1, e.g., the speed-up will be at best 10,         
 no matter what the number of processors (peak OPS). 

B Brent’s Scheduling Th eorem 
 Good news: Optimal scheduling is a very difficult problem,  
 but even a naive scheduling algorithm can ensure: 

  
T1

p     ≤   Tp    <   
T1

p   + T∞    =    
T1

p  (1 + 
p

T1/T �
)  

 Result: For a reasonably parallel task (with small T∞),  
 or for a suitably small number of processors (say, p < T1/T∞),  
 good speed-up and high utilization are attainable. 

C Cost-Effectiveness Adage 
 Real news: The most cost-effective parallel solution  
 to a given problem is often not the one with: 
  Highest peak OPS (communication can kill you) 
  Greatest speed-up (at what cost?) 
  Best utilization  (hardware busy doing what?) 
 Analogy: Mass transit (SIMD) might be more cost-effective  
 than using private vehicles (MIMD) even if it is slower  
 and leads to many empty seats on some trips.  


