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Abstrac t  

Configurable digital systems offer flexibility that leads to 
cost reduction, performance tuning, and fault tolerance. 
While one can use FPGA-based methods to synthesize 
configurable arithmetic structures, this approach results in 
limited functionality and~or excessive complexity, given 
that off-the-shelf FPGAs are endowed with only bit-level 
computational capabilities. Using serial arithmetic cells 
can increase the ratio of resources devoted to computation 
(arithmetic, logic) versus communication (wiring), thereby 
improving per-chip performance or cost-effectiveness. 
When combined with pipelining, even the absolute latency 
can be improved. We argue that a controlled-precision 
digit-serial additive multiplier constitutes an ideal building 
block for configurable arithmetic arrays and detail our 
solutions for control of functionality, selection of precision, 
and reduction of  power dissipation within such an array. 

Keywords: Bit-serial arithmetic, digit-pipelined arithmetic, 
FPGA-Iike arrays, DSP hardware, on-line algorithm, 
pipelining, programmable logic, redundant number system. 

I. Introduction 

A great deal of interest exists in the design of configurable 
digital systems [Vi1198]. Confignrability is desirable for: 

• Cost reductitm via mass production and ~ design time 

• Performance tuning via customization or dynamic adaptation 

• Fault tolerance via detection and avoidance of bsd elements 

Most implementations of configurable digital systems rely 
on off-the-shelf FPGA technology in view of ready 
availability of such hardware components along with 
associated design tools [Mang97], [Vi1198], [Rath99]. 
However, the bit-level computational capabilities of FPGAs 
makes the synthesis of arithmetic-intensive functions quite 
complex. Even though some of the performance lost in 
fitting the computation to a general-purpose structure is 
regained by using clever algorithms or customized w~ d  
widths [Klot96], [Luo00], [Shir95], [Tiou99], performance 
does remain far below that of custom hardware. 

Case studies indicate that even small, short-word digital 
filters, for example, use up hundreds of logic blocks in an 
FPGA [Do98]; such designs utilize neither the full flexible 
functionality of the logic blocks nor the extensive 
interconnect resources that link these blocks. Most often, 
the FPGA resources are configured into regular arrays of 
full-adders. The flip side of this coin is that systems with 
"chunky" function units (ALUs, multipliers, etc.) are more 
rigid and it is hard to decide what functionalities to include 
in the chunky units [Mang97]. At the extreme, logic blocks 
might  be replaced by "processors"; but then, even more 
speed is sacrificed to gain the added flexibility. 

In this paper, we propose and evaluate particular types of 
ceils that can be used in FPGA-Iike structures to facilitate 
the synthesis of arithmetic-intensive computations. Our 
thesis is that such structures are limited by their I/O pins 
and intercell connectivity. The cells themselves can be 
made quite complex, even with present-day technology 
(transistors are cheap; pins and wires are expensive). Such 
complex cells need not lead to performance degradation or 
excessive power dissipation when only very simple 
functionalities are required, provided that the unused 
sections of a cell do not form part of the critical signal path 
and are not clocked in idle mode. 

Our scheme involves digit-serial arithmetic in radix 2, 
using either two's-complement encoding or redundant 
representation with the digit set {-1, 0, 1 }, or in radix 4. 
Extension to higher radices is possible but not treated here. 
Digit-serial arithmetic is slower when a single arithmetic 
operation is considered, but can become competitive, or 
even offer speed advantages, when: 

• Cascaded operations are pipelined with some overlap 

• Simplicity of digit-level operation allows faster clocking 

• Savings in wiring and pins lead to more eompard circuits 

• Two or more operations can be merged (e.g., vw + xy) 

Pipelining and overlap are particularly effective with 
redundant representation and MSD-first processing, to the 
extent that significant speedup can result in computations 
involving ~ d e d  operadons [Erce84], [Erce88]. 
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2. C o n f l g u r a b l e  A d d i t i v e  M u l t i p l i e r s  

An additive multiplier, computing wx + y, is an imtxalant 
building block for general-purpose and custom hardware 
aimed at signal processing applications. The multiply-add 
(also known as multiply-accumulate, or inner-product step) 
operation performed by such a unit can be used in 
synthesizing larger multipliers as well as circuits for 
computations such as FIR filtering, matrix multiplication, 
and discrete Fourier transform. It is thus natural to consider 
an additive multiply module (AMM) as the basic cell of a 
configurable arithmetic array. 

A radix-2 bit-serial AMM needs only four data UO 
terminals, thus utilizing interconnects quite efficiently. 
Because we will also consider the use of binray signed-digit 
(BSD) arithmetic with 2-bit digit encodings and wish to 
compare the binary/BSD results, we base a second binary 
design on an additive double-multiply module (ADMM) 
that yields the result s = u v  + w x  + y .  Figure 1 shows the 
high-level structure of a binary ADMM. Such an ADMM 
has roughly the same number of r/O connections and 
storage elements (flip-flops) as a radix-2 AMM based on 
BSD numbers or a radix-4 AMM. 
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Fig. 1. Structure of an LSB-flrst bit-serial additive 
double-multiply module, computing s = m ,  + w x  + y .  

The principles of operation and detailed design of the 
ADMM shown in Fig. 1 can be found elsewhere [Hayn96]. 
Briefly, the five inputs enter bit-serially, LSB first. The four 
multiplicative inputs, namely u, v, w, and x, are broadcast 
to all cells. A token is passed from right to left on 
successive clock ticks, marking the cell that must store the 
incoming bits of the multiplicative inputs. After the ida 
clock tick, i bits of these operanda are stored in the cells. 
The accumulated partial product, kept in double-carry-save 
form (set of three binary numbers) is combined with the 
four new terms resulting from the incoming bits using a set 
of (7; 3)-cotmters, one in each cell. 

We designate the preceding module type as ADMM2, 
where the 2 at the end conveys the number representation 
radix. An AMM2 module can be similarly defined. In fact, 
the design of such a module that computes s = wx + y is 
identical to the bit-serial multiplier in [Ienn94], with the 
additive input y, instead of 0, connected to c=. 

We also consider two other module types that are of 
comparable pin and storage complexities to ADMM2 when 
Ol:~anda have the same number of digits: these are 
AMM2.+., using BSD input in MSD-first order, and AMM4, 
based on radix-4 input. AMM4 is very similar to ADMM2, 
with the four new texms added to the residual formed 
differently. The design of AMM2+ is substantially the same 
as an on-line BSD multiplier ([Path00], p. 424), with one 
digit of the additive operand accommodated in each cycle 
in a way that adds neither gate levels nor complexity to the 
digit slices of the nonadditive version. 

Table I. Main characteristics of our arithmetic cells 

Cell type Input First Data Gate Latency 
format input pins levels add; AM 

AMM2 Binary LSB 4 13 1; k 
ADMM2 Binary LSB 6 15 1; k 
AMM4 Radix 4 LSD 8 15 1; k/2 
AMM2+ BSD MSD 8 14 2; 3 

We make the ADMM design of Fig. 1 confignrable by 
dividing it into blocks or cells, each dealing with h-bit 
operanda. A k x k ADMM will then need a set of~k/h] such 
blocks in a linear arrangement (Fig. 2). For concreteness, 
we will take h = 8 digits in our discussions, although other 
values are quite feasible. Ignoring the possibility of 
overflow, an 8-digit ADMM produces a 16-digit result. 
Because data is simply a stream of digits, one can use the 
full 16-digit result in subsequent operations or drop the 
lower half of the result to keep the word width at 8 digits. 
The same point applies to wider additive multipliers built 
of a number of AMM or ADMM cells. 
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Fig. 2. An FPGA-Iike array of ADMMs or AMMs. 
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The same partitioning scheme can be applied to the three 
AMM designs listed in Table I. With AMM2Y. cells, 
mechanisms for conversion to/from standard binary will 
also be needed. Assuming the use of the (n, p) encoding for 
BSD digits, whereby digit values -1, 0, and 1 are 
represented as (1, 0), (0, 0), and (0, 1), respectively, 
conversion from binary to BSD becomes trivial; a bit b is 
encoded as (0, b), with the sign bit of a 2's-complement 
number encoded as (b, 0). 

Conversion from BSD to binary, though more complicated, 
is also straightforward and can be done on the fly [Erce87]. 
Because some form of I/O or boundary cell must be 
provided in any case, the conversion hardware, consisting 
of two registers and controlled transfers between them, does 
not lead to undue complexity. With reference to Table I, the 
resulting C2+.T./2 cells require 3 pins, 4 gate levels, and a 
latency of k cycles. Merging of C2+_T/2 and AMM2+ cells is 
quite feasible. The latter cells already contain more than 
enough storage space for to the two registers needed. 
Whether or not the resulting uniformity and flexibility 
outweighs the drawbacks of more complex, and slightly 
slower cells, remains to be established. 

3. Data.Driven Control Scheme 

The cells described in Section 2 must be programmable in 
two distinct but complementary ways. First, the cell 
function must be dynamically alterable. Possible functions 
include additive multiplication with prestored coefficient(s) 
w (and u), AM with variable coefficient(s) as input(s), and 
simple addition. Simple multiplication is the same as AM 
with the additive input y set to 0. Note that simple addition 
cannot be said to be equivalent to AM with one 
multiplicative input set to 0, because the latencies are 
different for the two operations (see Table I). 

Many arithmetic-intensive computations of interest in 
signal processing can be formulated as dependence graphs 
with AM nodes, augmented with simple nodes that 
basically transfer or redirect (change the flow direction of) 
the input data [Kwai99]. Before showing how our additive 
multiply cells can be modified to handle such operations, 
let us point to the second aspect of programmability to 
accommodate varying word widths. In practice, word width 
changes are much less frequent than coefficient value 
adjustments, so this type of adaptation is best handled at 
configuration set-up (compile) time. 

Figure 3 depicts the computation of y, = ]~ i~,,txiwj, subject 

to 0 < i, j < N - 1. Each of the black nodes in Fig. 3 
represents an AM operation. Also shown is the projection 
of the dependence graph onto a three-node linear array 

with its two data streams x and y. Practical use this linear 
array for performing the convolution algorithm, requires 
that four operations be performed [Guse92]: 

• Loading the weighting coefficients into the nodes 

• Delivering data to nodes doing the first operation 

• Performing inner-product (additive multiply) steps 

• Draining data from nodes doing the last operation 

Figure 4 shows an augmented dependence graph in which 
the three auxiliary operations (besides inner-product steps) 
are also shown. At the left end of Fig. 4, the weighting 
coefficients are delivered through the input links of data 
stream y, flowing to the shaded nodes; the store operation 
is simply a change in the direction of data flow, from 
diagonal to horizontal, for the coefficients. 

Besides storing the coefficients, we need to deliver data 
elements to nodes that operate on them first. For example, 
computing Y0 involves only one inner-product step that 
occurs within a node at the bottom of dependence graph. 
The white nodes in the middle of Fig. 4 forward data 
elements to nodes where the first computation is to occur. 
Likewise, some of the results (3'3 and Y4) are produced at 
nodes that have no direct access to the output link of data 
stream y. Such results must be drained out, via the hatched 
nodes at the right end of Fig. 4. 
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Fig. 3. Dependence graph for convolution algorithm 
and Its projection to yield a three-node linear array.  
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Fig. 4. Dependence graph for convolution algorithm 
with data loading and result drainage also Included. 
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Note that in Fig. 4, nodes of the same type are vertically 
aligned, so that a two-bit tag attached to the elements of 
data stream x suffices to instruct the nodes as to which of 
the four functions (actually two functions, and one control 
bit, after merging compatible nodes) they should perform. 
The foregoing is an example of a data-driven control 
methodology that we have successfully applied to the 
design of several application-specific digital systems (see, 
e.g., [Kwai96], [Kwai97], [Parh99]). 

For the arithmetic arrays under discussion here, we take the 
simple case where the cell only performs the multiply-add 
operation and use a single control tag bits for each input 
data digit. This "FD" tag signifies that an input is the first 
incoming digit of an operand (LSD or MSD, depending on 
the computation mode). Operant length is stored in the cell 
control logic at configuration set-up time, so timing of the 
last digit is automatically deduced. 

Cell operation is determined by the coincidence of FD tags. 
Basically, the FD tag of the additive input y triggers the 
computation, while the FD tags of other operands specify 
change of value for those operands. For example, the 
AMM2+ cell will perform the functions shown in Table II 
depending on the FD tags of w and x. Each time a new 
value of w or x is provided, it is stored in the cell; so, 
loading of coefficients does not require additional control. 
The cell continues to use the previously supplied values, if 
required, until new values are provided. The increment 
operation (line 1 of Table II) can be used for delaying y by 
one AM operation if we set c = d = 0. 

Table II. Cell function for AMM2~ based on FD tags 

FD of w FD of x Function Comment 
0 0 y + cd Increment y 
0 1 y + cx Use saved w 
1 0 y + wd Use saved x 
1 1 ~, + wx AM operation 

4.  C o m p a r i s o n s  a n d  T r a d e o f f s  

As a simple example, we consider the implementation of 
the convolution algorithm (Fig. 3) with N = 4, using the 
cell types of Table I. We assume a word width of 16 bits, 
leading to k = 8 for the radix-4 implementation and k = 16 
for the three radix-2 options. In all but the ADMM2 case, 
seven cells will be cascaded vertically (see Fig. 5). In all but 
the radix-4 case which requires no horizontal cascading, 
two cells are connected horizontally (Fig. 5). However, 
where cells are used to delay y, a single cell will suffice, 
even though the control circuit of that cell acts as if it is 
performing a 16-bit AM. 
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Fig. $. Cascading structure of the four solutions. 

Table III shows key parameters of the implementations. 
The latency in the last column is determined by multiplying 
the number of vertically cascaded cells by the AM/ADM 
latency and adding in the serial I/O time. For AMM2+, the 
BSD-to-binary conversion time of k cycles is also included. 
The external I/O pin count includes FD control tag bits. 
Note that in Fig. 3, equitemporal lines extend diagonally in 
SW-NE direction; thus, the y values must be delayed in 
their downward vertical movement. The cell count includes 
both those used for computation and the ones that merely 
delay results to achieve proper timing (Fig. 5). 

Table HI. Convolution performed using various cells 

Number C2+_/2 External Latency 
Cell type of cells cells I/O pins (clocks) 
AMM2 11 - 5 128 
ADMM2 7 - 5 80 
AMM4 7 - 8 64 
AMM2± 11 2 8 53 

Examination of Table III reveals some interesting tradeoffs. 
Note that the clock rate is assumed to be the same for all 
four designs. This is not unreasonable, given the fairly 
small differences in gate levels within cells, per Table I, 
and the fact that the differences turn even less significant 
once latching overhead and safety margin for clock skew 
and gate delay variations are factored in. Cell complexities, 
however, are not the same and must be considered in 
evaluating the cost-effectiveness of these solutions. 

It is worth mentioning that both k and N are quite small in 
our example; AMM2+ will show its advantage for larger k 
and/or N. Despite its simpler cells, AMM2 appears to be 
the least competitive solution. The middle two solutions, 
namely those based on ADMM2 and AMM4, are quite 
close and must be compared in greater detail before one can 
be chosen over the other. Compared to soiutions based on 
standard FPGAs, the number of cells has been reduced by 
some two orders of magnitude and much less wiring is 
required. The number of clock cycles is greater here, but 
the clock can be considerably faster. These latter aspects 
will be quantified in our future work. 
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5. Conclusion 

Configurable arrays, of the types proposed in this paper, 
can be used for cost-effective implementation of arithmetic- 
intensive applications. The down side of configurability is 
the potential for reduced performance and greater power 
dissipation, stemming from programmable elements 
inserted along the critical path and greater circuit 
complexity. Power dissipation can be mitigated by selective 
disabling of cells or cell functionalities this is easily 
accomplished, given our data-driven control scheme. 
Similarly, fault detection and tolerance capabilities can be 
readily introduced [Kwai97]. Other avenues for future 
research include detailed comparison of our approach with 
alternative methods, such as [Owen87], [Fisk88], [Hube90], 
for configurable arithmetic systems. Figure 6 relates our 
approach to other methods of arithmetic synthesis, 
including special-purpose processors and dynamically 
programmable gate arrays (DPGAs). 
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