
Configurable Arithmetic Arrays with Data-Driven Control

Behrooz Parhami
Department of Electrical and Computer Engineering

U n i v e r s i t y o f C a l i f o r n i a
Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu

Abstrac t

Configurable digital systems offer flexibility that leads to
cost reduction, performance tuning, and fault tolerance.
While one can use FPGA-based methods to synthesize
configurable arithmetic structures, this approach results in
limited functionality and~or excessive complexity, given
that off-the-shelf FPGAs are endowed with only bit-level
computational capabilities. Using serial arithmetic cells
can increase the ratio of resources devoted to computation
(arithmetic, logic) versus communication (wiring), thereby
improving per-chip performance or cost-effectiveness.
When combined with pipelining, even the absolute latency
can be improved. We argue that a controlled-precision
digit-serial additive multiplier constitutes an ideal building
block for configurable arithmetic arrays and detail our
solutions for control of functionality, selection of precision,
and reduction of power dissipation within such an array.

Keywords: Bit-serial arithmetic, digit-pipelined arithmetic,
FPGA-Iike arrays, DSP hardware, on-line algorithm,
pipelining, programmable logic, redundant number system.

I. Introduction

A great deal of interest exists in the design of configurable
digital systems [Vi1198]. Confignrability is desirable for:

• Cost reductitm via mass production and ~ design time

• Performance tuning via customization or dynamic adaptation

• Fault tolerance via detection and avoidance of bsd elements

Most implementations of configurable digital systems rely
on off-the-shelf FPGA technology in view of ready
availability of such hardware components along with
associated design tools [Mang97], [Vi1198], [Rath99].
However, the bit-level computational capabilities of FPGAs
makes the synthesis of arithmetic-intensive functions quite
complex. Even though some of the performance lost in
fitting the computation to a general-purpose structure is
regained by using clever algorithms or customized w~ d
widths [Klot96], [Luo00], [Shir95], [Tiou99], performance
does remain far below that of custom hardware.

Case studies indicate that even small, short-word digital
filters, for example, use up hundreds of logic blocks in an
FPGA [Do98]; such designs utilize neither the full flexible
functionality of the logic blocks nor the extensive
interconnect resources that link these blocks. Most often,
the FPGA resources are configured into regular arrays of
full-adders. The flip side of this coin is that systems with
"chunky" function units (ALUs, multipliers, etc.) are more
rigid and it is hard to decide what functionalities to include
in the chunky units [Mang97]. At the extreme, logic blocks
might be replaced by "processors"; but then, even more
speed is sacrificed to gain the added flexibility.

In this paper, we propose and evaluate particular types of
ceils that can be used in FPGA-Iike structures to facilitate
the synthesis of arithmetic-intensive computations. Our
thesis is that such structures are limited by their I/O pins
and intercell connectivity. The cells themselves can be
made quite complex, even with present-day technology
(transistors are cheap; pins and wires are expensive). Such
complex cells need not lead to performance degradation or
excessive power dissipation when only very simple
functionalities are required, provided that the unused
sections of a cell do not form part of the critical signal path
and are not clocked in idle mode.

Our scheme involves digit-serial arithmetic in radix 2,
using either two's-complement encoding or redundant
representation with the digit set {-1, 0, 1 }, or in radix 4.
Extension to higher radices is possible but not treated here.
Digit-serial arithmetic is slower when a single arithmetic
operation is considered, but can become competitive, or
even offer speed advantages, when:

• Cascaded operations are pipelined with some overlap

• Simplicity of digit-level operation allows faster clocking

• Savings in wiring and pins lead to more eompard circuits

• Two or more operations can be merged (e.g., vw + xy)

Pipelining and overlap are particularly effective with
redundant representation and MSD-first processing, to the
extent that significant speedup can result in computations
involving ~ d e d operadons [Erce84], [Erce88].

8 9

2. C o n f l g u r a b l e A d d i t i v e M u l t i p l i e r s

An additive multiplier, computing wx + y, is an imtxalant
building block for general-purpose and custom hardware
aimed at signal processing applications. The multiply-add
(also known as multiply-accumulate, or inner-product step)
operation performed by such a unit can be used in
synthesizing larger multipliers as well as circuits for
computations such as FIR filtering, matrix multiplication,
and discrete Fourier transform. It is thus natural to consider
an additive multiply module (AMM) as the basic cell of a
configurable arithmetic array.

A radix-2 bit-serial AMM needs only four data UO
terminals, thus utilizing interconnects quite efficiently.
Because we will also consider the use of binray signed-digit
(BSD) arithmetic with 2-bit digit encodings and wish to
compare the binary/BSD results, we base a second binary
design on an additive double-multiply module (ADMM)
that yields the result s = u v + w x + y . Figure 1 shows the
high-level structure of a binary ADMM. Such an ADMM
has roughly the same number of r/O connections and
storage elements (flip-flops) as a radix-2 AMM based on
BSD numbers or a radix-4 AMM.

w l

. • oo.oo..~.oo,.oo,

l ~ - - " ° ° " ' ~ - ' - ~ ~ t o u t

~ ~ Cout
"--b' "-~ S~n

t in
Cin

Sout

... clear
U

x

,~l.. . . to k e n

Fig. 1. Structure of an LSB-flrst bit-serial additive
double-multiply module, computing s = m , + w x + y .

The principles of operation and detailed design of the
ADMM shown in Fig. 1 can be found elsewhere [Hayn96].
Briefly, the five inputs enter bit-serially, LSB first. The four
multiplicative inputs, namely u, v, w, and x, are broadcast
to all cells. A token is passed from right to left on
successive clock ticks, marking the cell that must store the
incoming bits of the multiplicative inputs. After the ida
clock tick, i bits of these operanda are stored in the cells.
The accumulated partial product, kept in double-carry-save
form (set of three binary numbers) is combined with the
four new terms resulting from the incoming bits using a set
of (7; 3)-cotmters, one in each cell.

We designate the preceding module type as ADMM2,
where the 2 at the end conveys the number representation
radix. An AMM2 module can be similarly defined. In fact,
the design of such a module that computes s = wx + y is
identical to the bit-serial multiplier in [Ienn94], with the
additive input y, instead of 0, connected to c=.

We also consider two other module types that are of
comparable pin and storage complexities to ADMM2 when
Ol:~anda have the same number of digits: these are
AMM2.+., using BSD input in MSD-first order, and AMM4,
based on radix-4 input. AMM4 is very similar to ADMM2,
with the four new texms added to the residual formed
differently. The design of AMM2+ is substantially the same
as an on-line BSD multiplier ([Path00], p. 424), with one
digit of the additive operand accommodated in each cycle
in a way that adds neither gate levels nor complexity to the
digit slices of the nonadditive version.

Table I. Main characteristics of our arithmetic cells

Cell type Input First Data Gate Latency
format input pins levels add; AM

AMM2 Binary LSB 4 13 1; k
ADMM2 Binary LSB 6 15 1; k
AMM4 Radix 4 LSD 8 15 1; k/2
AMM2+ BSD MSD 8 14 2; 3

We make the ADMM design of Fig. 1 confignrable by
dividing it into blocks or cells, each dealing with h-bit
operanda. A k x k ADMM will then need a set of~k/h] such
blocks in a linear arrangement (Fig. 2). For concreteness,
we will take h = 8 digits in our discussions, although other
values are quite feasible. Ignoring the possibility of
overflow, an 8-digit ADMM produces a 16-digit result.
Because data is simply a stream of digits, one can use the
full 16-digit result in subsequent operations or drop the
lower half of the result to keep the word width at 8 digits.
The same point applies to wider additive multipliers built
of a number of AMM or ADMM cells.

Global connections , Local connections

Oouble-widff block ~ / ADMM/AI~,MbIock
j ',

: ~-- . ; - I ~)L,] [. ~ - 7 ? -

i!2
l I L , ~_ -T '7-~2. . I i i .!. ~ I ~ ~ I " " . ~ J i ~ !.j,_,

..~ ~

. !! ! ~ • ' '.,+. .~-4-

...>., ! ~ , ~ . ~ i I .,A :..: ~..:-.i • ~ $.~...:.. i '~" ! i --L:

i

Cascaded bl ~cks

Fig. 2. An FPGA-Iike array of ADMMs or AMMs.

9 0

The same partitioning scheme can be applied to the three
AMM designs listed in Table I. With AMM2Y. cells,
mechanisms for conversion to/from standard binary will
also be needed. Assuming the use of the (n, p) encoding for
BSD digits, whereby digit values -1, 0, and 1 are
represented as (1, 0), (0, 0), and (0, 1), respectively,
conversion from binary to BSD becomes trivial; a bit b is
encoded as (0, b), with the sign bit of a 2's-complement
number encoded as (b, 0).

Conversion from BSD to binary, though more complicated,
is also straightforward and can be done on the fly [Erce87].
Because some form of I/O or boundary cell must be
provided in any case, the conversion hardware, consisting
of two registers and controlled transfers between them, does
not lead to undue complexity. With reference to Table I, the
resulting C2+.T./2 cells require 3 pins, 4 gate levels, and a
latency of k cycles. Merging of C2+_T/2 and AMM2+ cells is
quite feasible. The latter cells already contain more than
enough storage space for to the two registers needed.
Whether or not the resulting uniformity and flexibility
outweighs the drawbacks of more complex, and slightly
slower cells, remains to be established.

3. Data.Driven Control Scheme

The cells described in Section 2 must be programmable in
two distinct but complementary ways. First, the cell
function must be dynamically alterable. Possible functions
include additive multiplication with prestored coefficient(s)
w (and u), AM with variable coefficient(s) as input(s), and
simple addition. Simple multiplication is the same as AM
with the additive input y set to 0. Note that simple addition
cannot be said to be equivalent to AM with one
multiplicative input set to 0, because the latencies are
different for the two operations (see Table I).

Many arithmetic-intensive computations of interest in
signal processing can be formulated as dependence graphs
with AM nodes, augmented with simple nodes that
basically transfer or redirect (change the flow direction of)
the input data [Kwai99]. Before showing how our additive
multiply cells can be modified to handle such operations,
let us point to the second aspect of programmability to
accommodate varying word widths. In practice, word width
changes are much less frequent than coefficient value
adjustments, so this type of adaptation is best handled at
configuration set-up (compile) time.

Figure 3 depicts the computation of y, =]~ i~,,txiwj, subject

to 0 < i, j < N - 1. Each of the black nodes in Fig. 3
represents an AM operation. Also shown is the projection
of the dependence graph onto a three-node linear array

with its two data streams x and y. Practical use this linear
array for performing the convolution algorithm, requires
that four operations be performed [Guse92]:

• Loading the weighting coefficients into the nodes

• Delivering data to nodes doing the first operation

• Performing inner-product (additive multiply) steps

• Draining data from nodes doing the last operation

Figure 4 shows an augmented dependence graph in which
the three auxiliary operations (besides inner-product steps)
are also shown. At the left end of Fig. 4, the weighting
coefficients are delivered through the input links of data
stream y, flowing to the shaded nodes; the store operation
is simply a change in the direction of data flow, from
diagonal to horizontal, for the coefficients.

Besides storing the coefficients, we need to deliver data
elements to nodes that operate on them first. For example,
computing Y0 involves only one inner-product step that
occurs within a node at the bottom of dependence graph.
The white nodes in the middle of Fig. 4 forward data
elements to nodes where the first computation is to occur.
Likewise, some of the results (3'3 and Y4) are produced at
nodes that have no direct access to the output link of data
stream y. Such results must be drained out, via the hatched
nodes at the right end of Fig. 4.

XO Xl . X2

W 4

W o ~ 3

1

i [Pr°iecti°t~

P0

. _ _ I t

Fig. 3. Dependence graph for convolution algorithm
and Its projection to yield a three-node linear array.

Xo xl x2
W o W l w 2 Yo Yl Y2_LY3 ~LY4 -L Orainout

0 oliver Store Oelio or Yo Yl Y2 Y3 Y4
coefficients operandi

Fig. 4. Dependence graph for convolution algorithm
with data loading and result drainage also Included.

91

Note that in Fig. 4, nodes of the same type are vertically
aligned, so that a two-bit tag attached to the elements of
data stream x suffices to instruct the nodes as to which of
the four functions (actually two functions, and one control
bit, after merging compatible nodes) they should perform.
The foregoing is an example of a data-driven control
methodology that we have successfully applied to the
design of several application-specific digital systems (see,
e.g., [Kwai96], [Kwai97], [Parh99]).

For the arithmetic arrays under discussion here, we take the
simple case where the cell only performs the multiply-add
operation and use a single control tag bits for each input
data digit. This "FD" tag signifies that an input is the first
incoming digit of an operand (LSD or MSD, depending on
the computation mode). Operant length is stored in the cell
control logic at configuration set-up time, so timing of the
last digit is automatically deduced.

Cell operation is determined by the coincidence of FD tags.
Basically, the FD tag of the additive input y triggers the
computation, while the FD tags of other operands specify
change of value for those operands. For example, the
AMM2+ cell will perform the functions shown in Table II
depending on the FD tags of w and x. Each time a new
value of w or x is provided, it is stored in the cell; so,
loading of coefficients does not require additional control.
The cell continues to use the previously supplied values, if
required, until new values are provided. The increment
operation (line 1 of Table II) can be used for delaying y by
one AM operation if we set c = d = 0.

Table II. Cell function for AMM2~ based on FD tags

FD of w FD of x Function Comment
0 0 y + cd Increment y
0 1 y + cx Use saved w
1 0 y + wd Use saved x
1 1 ~, + wx AM operation

4. C o m p a r i s o n s a n d T r a d e o f f s

As a simple example, we consider the implementation of
the convolution algorithm (Fig. 3) with N = 4, using the
cell types of Table I. We assume a word width of 16 bits,
leading to k = 8 for the radix-4 implementation and k = 16
for the three radix-2 options. In all but the ADMM2 case,
seven cells will be cascaded vertically (see Fig. 5). In all but
the radix-4 case which requires no horizontal cascading,
two cells are connected horizontally (Fig. 5). However,
where cells are used to delay y, a single cell will suffice,
even though the control circuit of that cell acts as if it is
performing a 16-bit AM.

AMM2 ~V

D

D

D

D

l
D

AMM2+-

I
D

[3
I

E
I

Fig. $. Cascading structure of the four solutions.

Table III shows key parameters of the implementations.
The latency in the last column is determined by multiplying
the number of vertically cascaded cells by the AM/ADM
latency and adding in the serial I/O time. For AMM2+, the
BSD-to-binary conversion time of k cycles is also included.
The external I/O pin count includes FD control tag bits.
Note that in Fig. 3, equitemporal lines extend diagonally in
SW-NE direction; thus, the y values must be delayed in
their downward vertical movement. The cell count includes
both those used for computation and the ones that merely
delay results to achieve proper timing (Fig. 5).

Table HI. Convolution performed using various cells

Number C2+_/2 External Latency
Cell type of cells cells I/O pins (clocks)
AMM2 11 - 5 128
ADMM2 7 - 5 80
AMM4 7 - 8 64
AMM2± 11 2 8 53

Examination of Table III reveals some interesting tradeoffs.
Note that the clock rate is assumed to be the same for all
four designs. This is not unreasonable, given the fairly
small differences in gate levels within cells, per Table I,
and the fact that the differences turn even less significant
once latching overhead and safety margin for clock skew
and gate delay variations are factored in. Cell complexities,
however, are not the same and must be considered in
evaluating the cost-effectiveness of these solutions.

It is worth mentioning that both k and N are quite small in
our example; AMM2+ will show its advantage for larger k
and/or N. Despite its simpler cells, AMM2 appears to be
the least competitive solution. The middle two solutions,
namely those based on ADMM2 and AMM4, are quite
close and must be compared in greater detail before one can
be chosen over the other. Compared to soiutions based on
standard FPGAs, the number of cells has been reduced by
some two orders of magnitude and much less wiring is
required. The number of clock cycles is greater here, but
the clock can be considerably faster. These latter aspects
will be quantified in our future work.

9 2

5. Conclusion

Configurable arrays, of the types proposed in this paper,
can be used for cost-effective implementation of arithmetic-
intensive applications. The down side of configurability is
the potential for reduced performance and greater power
dissipation, stemming from programmable elements
inserted along the critical path and greater circuit
complexity. Power dissipation can be mitigated by selective
disabling of cells or cell functionalities this is easily
accomplished, given our data-driven control scheme.
Similarly, fault detection and tolerance capabilities can be
readily introduced [Kwai97]. Other avenues for future
research include detailed comparison of our approach with
alternative methods, such as [Owen87], [Fisk88], [Hube90],
for configurable arithmetic systems. Figure 6 relates our
approach to other methods of arithmetic synthesis,
including special-purpose processors and dynamically
programmable gate arrays (DPGAs).

1024 Instruction depth
[/ , , . , . . ; . - (

,,4PP) / GP
256 L~'~"~'~ '''~" ~ micro .i +

' F / i

e , : f - - ,

: F [
/ i ~ sP ~ i

.......... i / i

• .LFPGA i ' " , % _ ,...,..~'f.' I
¥~ 4~ 1:6 64 25"~ 10~24

Word ~dth (bits)

Fig. 6. The h a r d w a r e design space for implement ing
a r i t h m e t i c - i n t e n s i v e a p p l i c a t i o n s (af ter [l) eHo00]) .

[DeHoOO]

[Do981

[Erce841

[Erce87]

[Erce8Sl

R e f e r e n c e s

DeHon, A., "The Density Advantage of Confignrable
Computing," IEEE Computer, Vol. 33, pp. 41-49, Apr. 2000.

Do, T.-T., H. Kropp, C. Reuter, and P. Pinch "A Flexible
Implementation of High-Performance FIR Filters on Xillnx
R)GAs, '' in [Hart08], pp. 441-445.

Ercegovac, M.D., "On-Line Arithmetic: An Overview," Rea/
Timt Signal Processing VII, SPlE Proc. 495, 1984, pp. 86-93.

Ercegovac, M.D. and T. Lang, "On-the-Fly Conversion of
Re~dundant into Conventional Representations," IEEE Trans.
Computers, Vol. 36, pp. 895-897, July 1987.

Ercegovac, M.D. and T. l.amg, "On-Line Arithmetic: A
Design Methodology and Applications," VLSI Signal
Processing 111 (Proc. IFh'~ Workshop), 1988, pp. 252-263.

[Rsk88]

[Gale92]

[Hart98]

[Hayn96]

[Hube90]

[Klot96]

[Kwxi96]

[Kwai97]

[Kwai99]

[Luo00]

(Mang97]

[Mill98]

[Owen87]

[ParhgOl

[Parh00l

[Rath99]

[ShiOS]

[Tiou99]

[Vi11981

Fiske, S. and WJ. Dally, ~The Recov.fignrable Arithmetic
Processor," Proc. Iat'l Syrup. Computer ArcS~cmre, 1988,
pp. 30-36.

Gusev, M. and DJ. Evans, "VLSI Processor Array IPS Cells,"
Parallel Computing, VoL 18, pp. 997-1007, 1992.

Har~nstein, R.W. and A. KeevaUik, Field.Programmable
Logic and Applications: From FPGAs to Computing
Paradigm (Proc. 8th Int'! Workshop), Springer, 1998.
Hayrmi, S. and B. Parhami, "Arithmetic Structures for Inner-
Product and Other Computations Based on a Latency-Free Bit-
Serial Multiplier Design," Proc. 30th Asilomar Con/. Signals,
Systems, and Computers, Nov. 1996, pp. 197-201.

Huber, M., J. Teich, and L. Thiele, "Design of Configurable
Processor Arrays," Proc. lnt'l Syrup. Circuits and Systems,
Vol. 2, pp. 970-973, May 1990.
Klotchkov, I.V. and S. Pederson, "A Codesign Case Study:
Implementing Arithmetic Functions in FPGAs," Con[
Engineering of Computer-Based Systems, Jerusalem, Mar.
1996, pp. 389-395.
Kwai, D.-M. and B. Parhami, "FFT Computation with Linear
Processor Arrays Using a Data-Driven Control Scheme," J.
VLSI Signal Processing, Vol. 13, pp. 57-66, 1996.

Kwai, D.-M. and B. Parhami, "An On-Line Fault Diagnosis
Scheme for Linear Processor Arrays," Microprocessors and
Microsystems, Vol. 20, No. 7, pp. 423-428, 1997 Mar. 17.

Kwai, D.M. and B. Parhami, "High-Performance Array
Processing with Fully Pipelined Data Streams and Control
Paths" Proc. 11th lnt'l Conf. Parallel and Distributed
Computing and Systems, Nov. 1999, pp. 609-612.
Luo, 7.. and M. Martonosio "Accelerating Pipelined Integer and
Floating-Point Accumulations in Configurable Hardware with
Delayed Addition Techniques," IEEE Trans. Computers, Vol.
49, No. 3, pp. 208-218, Mar. 2000.
Mangione-Smith, W.H. et al, "Seeking Solutions in
Confignrable Computing," IEEE Computer, Vol. 30, pp. 38-43,
Dec. 1997.
Miller, N.L and S.F. Quigley, "A Novel Field Programmable
Gate Array Architecture for High Speed Arithmetic
Processing," in [Hart08], pp. 386-390.

Owens, R.M. and MJ. Irwin, "The Arithmetic Cube," IEEE
Trans. Computers, Vol. 36, No. 11, pp. 1342-1348, Nov. 1987.

Parhami, B., "Generalized Signed-Digit Number Systems: A
Unifying Framework for Redundant Number
Representations," IEEE Trans. Computers, Vol. 39, pp. 89-98,
Jan. 1990.

Parhami, B. and D.-M. Kwai, "Data-Driven Control Scheme for
Linear Arrays: Application to a Stable Imemon Sorter," IEEE
Trans. Parallel aad Distributed Systems, Vol. 10, pp. 23-28,
Jan. 1999.

Parhami, B., Computer Arithmetic: Algorithms and Hardware
Designs, Oxford, New York, 2000.
Ratha, N.K. and A.K. Jain, "Computer Vision Algorithms on
geconfigurable Logic Arrays," IEEE Trans. Parallel and
Distributed Systems, Vol. 10, No. 1, pp. 29-43, Jan. 1999.

Shirazi, N., A. Waiters, and P. Athanas, "Quantitative Analysis
of Floating-Point Arithmetic on F I~A Based Custom
Computing Machines," Proc. IEEE Syrup. FPGAs for Custom
Computing Machints, Apr. 1995.

Tiountchik, A. and E. Trichina, "FPGA Implemc~attion of
Modular Exponentiadon," Proc. IPPS/SPDP Workshop on
Recoafigurable Archilectures, Ap~. 1999, pp. 712-715.

Villasenor, J. and B. Hutchings, "The Flexibility of
Confignrable Computing," IEEE Signal Processing Magazim L
Vol. 15, No. 5, pp. 67-84, Sep. 1998.

9 3

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:

