
On Producing Exactly Rounded Results in Digit-Serial on-Line Arithmetic

Behrooz Parhami

Department of Electrical and Computer Engineering
U n i v e r s i t y o f C a l i f o r n i a

Santa Barbara, CA 93106-9560, USA
E-mail: parhami@ece.ucsb.edu

Abstract

The input and output of an on-line computation involving
redundant numbers must generally be compatible with
standard nonredundant formats. When rounding of a result
is required in the last computation step, the process can be
combined with on-the-fly conversion of the redundant
output into nonredundant form and thus introduces no
extra delay. However, if multiple on-line operations are to
be performed before obtaining a final result, the preceding
method would be inapplicable to the intermediate results.
We present a solution scheme where rounding (subtraction
of ulp, no action, addition of ulp) is represented by an
additional digit attached to the number, thus obviating the
need for modifying any of the previously produced digits.
This added digit forms a second least-significant digit
(LSD), leading to the designation "double-LSD numbers"
for the resulting representation. We show that on-line
arithmetic with double-LSD numbers is only slightly more
complex than with ordinary signed-digit numbers.

Keywords: ASIC design, digit-pipelined arithmetic,
double-LSD representation, DSP hardware, MSD-f'u'st
computation, on-line algorithm, redundant number system.

1. Introduction

On-line arithmetic with signed-digit and other redundant
number formats [Parh90] is an attractive alternative to
conventional representations in some signal processing
applications [Irwi87], [Erce88]. Because input and output
must generally be compatible with standard nonredundant
formats, practical systems incorporate binary-to-redundant
and redundant-to-binary converters at the input and output
interfaces. The former converter is often trivial and the
latter one can be designed to derive the nonredundant form
of the result on the fly, thus avoiding carry propagation
altogether [Erce87]. Typically, on-line computations leave
a residual which must be used to round the final result in a
manner compatible with the rounding method in use (e.g.,
IEr:.E floating-point standard requirements). A naive
implementation will introduce additional delay for
rounding, but again it is possible to incorporate the
required modifications for rounding in the on-the-fly
conversion process [Erce92], thus avoiding extra delay at
the expense of some added circuitry.

The process outlined above works fine for rounding a final
result which must be converted to nonredundant form.
However, if multiple on-line operations are required
before obtaining a final result, the preceding method
cannot be applied to the rounding of intermediate results
which are not converted to nonredundant format. In a
digit-parallel system, the addition or subtraction of ulp
(unit in least-significant position) needed to effect
rounding, is easily done by a carry-free addition step.
However, because this increment/decrement operation
may affect many of the result digits, it is unsuitable for
digit-serial on-line mode of computation in which most
higher-order digits have already been produced and passed
on to subsequent function units.

In this paper, we present a solution scheme in which the
rounding operation (subtract ulp, no action, add ulp) is
represented by an additional digit attached to the number,
thus obviating the need for modifying any previously
produced digit. This added digit essentially forms a second
least-significant digit (LSD), leading to the designation
"double-LSD numbers" for the resulting representation.
This is the signed-digit counterpart of double-LSB format,
previously proposed by this author for standard binary
numbers with signed-magnitude or two's-complement
representation [Parh98]. For the proposed double-LSD
format to be useful, we must show that on-line arithmetic
operations can be performed on such numbers with
reasonable efficiency; i.e., little added overhead compared
to ordinary (non)redundant numbers.

The bulk of this paper assumes binary signed-digit (BSD)
numbers with radix • = 2 and digit set {-1, 0, 1}.
Notationally, we represent a double-LSD BSD number by
using -1- for the digit value -1 and following the original
LSD with a backslash and the second LSD. For example,
0.1401\1 is one possible representation for the binary
fraction x = 0.0110 (I[2 - 1/4 + 0/8 + 1/16 + 1/16, where
the final 1/16 term is the contribution of the second LSD).
In Section 2, we offer a brief overview of the rounding
problem. Section 3 is devoted to algorithms for fixed-point
arithmetic on double-LSD BSD numbers, with needed
modifications for floating-point arithmetic following in
Section 4. Extensions to other radices and digit sets appear
in Section 5. Section 6 contains our conclusions.

889

2. Rounding and D o u b l e - L S D N u m b e r s 3. Fixed-Point Fractional A r i t h m e t i c

Consider BSD fractions of the form x = . x_tx_ ~ . . . x ~ A n y
two consecutive numbers representable in this k-digit
fixed-point format differ by u/p, which in this case is 2"*.
The process of converting a more precise number, given as
input or produced in some computation step, to the
foregoing format is called "rounding". In the simplest
rounding scheme, known as truncation or chopping, extra
digits beyond the kth position are d~pped, thus leading to
a maximum error of about one ulp. When used with
ordinary binary numbers, the average error introduced by
chopping is also of some concern; but this is not an issue
with BSD numbers, given the symmetric digit set.

Commonly used rounding methods, on the other hand,
often limit the maximum error to u lp l2 (which is the best
possible) and have a near-zero average error due to
positive and negative errors canceling each other out in the
long run. Again, average error is not an issue for BSD
numbers. To achieve the maximum error goal of u lp /2
(rounding to a nearest representable value) the dropping of
extra digits may have to be accompanied by an adjustment
in the amount of ulp to the rest of the number;, adding ulp

when the dropped part of the number is > u lp /2 subtracting
ulp when it is < - u l p l 2 , with special rules applying to the
case of exact equality with +ulp/2 . Note that the negative
values just mentioned do not arise in standard binary but
must be considered in BSD arithmetic.

Besides round-to-nearest methods discussed in the
preceding paragraph, we sometimes need directional
rounding schemes which guarantee the error to be in a
desired direction. Both upward- and downward-directed
rounding necessarily have a maximum error of about one
ulp. Again, the required adjustment to the first k digits
may involve adding or subtracting u/p. Rounding numbers
so as to satisfy the strict requirements of a given rounding
scheme is known as exact or proper rounding.

For BSD representation, the aforementioned adjustments
may be in either direction, leading to the requirement for
adding +_ulp to the fast k digits. This addition, which is
quite simple and fast in digit-parallel BSD arithmetic,
would be impossible with MSD-f'trst digit-pipelined
operation, in view of more significant digits already
having been passed on to, and used by, the next
computational element. The double-LSD representation
provides just the mechanism needed to solve this problem.
When the decision is made as to how the first k digits must
be adjusted for proper rounding (subtract u/p, no change,
or add ulp) , this adjustment is tacked on to the result as a
second LSD, which is itself a digit in {-1, 0, 1 }. The rest
of this paper, then deals with how arithmetic is to be
performed on o p e r a n d s that possess two LSDs due to the
rounding of intermediate results.

We first discuss arithmetic operations on two double-LSD
BSD numbers x = . x_,x_~ . . . x_~\ a a n d y = . y_~y_a . . . y_~\ b,

where a and b represent the second LSDs. The following
mathematical result provides insight into the double-LSD
BSD number format and leads to simple modified circuits
for arithmetic on such numbers in some cases.

T h e o r e m I : Given the double-LSD BSD representation of
x a s . x tx_ ~ . . . x_~\ a, we can represent x by the infinite
string of digits x = . x _ , x _ : . . , x_~ a a a where the BSD
digit a is repeated ad infinitum.

3.1. Addition and Subtraction

Digit-serial MSD-first addition/subtraction is performed
with no modification other than allowing one more cycle
to process the extra LSDs. This is easily justified based on
Theorem 1. Consider x + y as an example, where:

x = .1-1-01\1 = .1-1-01 1111 1111 . . .
y = .01-1.OM = .01tO 1111 1111 . . .

In the cycles when the last two digits z_~_,) and z_~ of the
sum are produced, x and y must be extended to the right
with their second LSDs, rather than with 0s. The same is
done in the extra cycle for producing c, the second LSD of
the sum. Note that from this point on, any additional cycle
would generate the same sum digit; this is consistent with
the interpretation offered by Theorem 1.

For completeness, we mold double-LSD BSD add/subtract
into a recurrence on the scaled residual W ~° [Erce88].
Setting W ~*~ = z, = 0, we have the main recurrence:

W ~'~ = 2W ~'u + x~ + y_~ - 4z_~,_~ g o V ~ - 4z ~_=)

With W ~'-u in [-2, 2], V c° evaluates to an integer in [-6, 6];
for V ~° in [--6, -2] , [-2, 2], [2, 6], the sum digit z_~,_2) may be
set to -1 , 0, 1, respectively. Overlaps between the
selection intervals can be used for hardware optimization.
Sum digit production begins with z0, which forms the
transfer-out of our fractional addition. If overflow is not to
occur, we must be able to set z, = 0, implying that V ~ must
be in [-2, 2]. After z ~_2~ has been produced, I~ ~ should not
be left-shifted in the next cycle, because the extra LSDs
are of the same weight as the just-processed LSDs. But for
the sake of uniformity, we might continue with

_ _ - - ~ V (~ ' t) V¢ ~ ') = 2W ~ + 2a + 2b 4z_~_l~ ~ '~ - 4z_~j_,~
W ~1"2~ = 2W ~'t~ - 4z_~ ~= V ~ - 4z ,
W ~1.3~ = 2W ~j'2~ - 8c ~ V ~'3~ - 8c

where V ~'''~ (V ~.2~, V ~'~') is in [-8, 8] and divisible by 2 (4,
8, respectively); this allows the residual to be zeroed out.

890

3 . 2 . M u l t i p l i c a t i o n

Before discussing how the extra LSDs might be taken into
consideration, a review of on-line BSD multiplication z =
x x y is in order. A scaled residual is used to select the
product digits with three cycles of delay relative to the
inputs. Assuming that x c~ and y0~, both in [0, 1), represent
the magnitudes of inputs x and y up to their - i th digits, the
main recurrence, with W ~ = za = z, = z, = 0, is:

W ~0 = [2W °-'~ + x_~yt°+ y.~x c~-~] _ 8z_o.~, ~'= V ¢~ _ 8z_t~_~

The real-valued residual W °~ is in [--6 - 2 "~, 6 + 2-q. Proper
choice of z_o_,, allows us to maintain this condition for all i,
given the fact that W ~, incorporating 2W ~'~ along with
terms of maximum magnitudes 1 - 2" and 1 - 2 -~-t~, will be
confined to [-14 - 2 ' , 14 + 2~. Once we have z_~_,, at
hand, leaving the residual P¢~ in [-6 - 2 -~, 6 + 2~ , the last
three digits of the product are obtained via the same
recurrence, with new x and y digits set to 0. The final
residual W ¢=~ will hold the rounding information. This
information can be used by producing a "round digit" z_~,t,
in an extra cycle and basin~the rounding action on this
extra digit and the sign of W ~ ~ (a type of "sticky digit").

z~±t , V¢ ~ Action
.

-1 negative Subtract u/p
-1 zero Apply midway rule
-1 positive None

0 don't cam None
1 negative None
1 zero Apply midway rule
1 positive Add s ip

It might appear that extending x and y with their second
LSDs, as was done for addition, would allow us to
multiply double-LSD BSD numbers with the same
recurrence used for BSD multiplication. Unfortunately,
this is not possible if properly rounded results are to be
obtained. The following example shows why. Assume that

x = 2 -= + 2 -c~-' and y = 2 -~

are k-digit BSD fractions and let x" = x + 2 -~, x- = x - 2 -~,
y÷ = y + 2 a, and y- = y - 2-~; these are, in effect, x and y
with a second LSD of 1 or -1, respectively. We have:

z = x x y = 2 -4 + 2 "tin'

z ' = x ' x y - = x x y - 3 x2- '"
z " = x - x y ' = x x y + 2-'"

We note that z has a round digit of 1, as do z ' and z". The
latter two numbers must be rounded in opposite directions,
but the required information for this action won't become
available until much later;, furthermore, the residual must
be kept with double the normal precision.

A direct algorithm, similar to that used for addition can be
applied here. The algorithm proceeds as in normal BSD
multiplication until z_ch.~, has been produced, yielding the
residual W ~. The extra LSDs, to be examined next, have
the same weight as the regular LSDs just processed. Thus,
the residual is not left-shifted (or, alternatively, other
terms of V ~') in square brackets are left-shifted), yielding:

W~t~ = [2W ~ + 2ayeS+ 2bx c* + 2-~'ab] _ 8z_cj_ ~

Four more iterations, with a and b digits set to 0 in the
preceding equation, produce the final digits z~_t) and z~,
the round digits z_~,.t) and z_~m), and the final residual V¢ ~ ' .
The reason one round digit is inadequate can be explained
as follows. Beginning with W ~=x,, the scaled residuals have
a wider range of about (-8, 8), which is double the range
that we would have had with no extra LSD. Producing an
additional round digit z_~k+2, ensures that the final (true)
residual will not exceed ulp/2.

Intuitively, the reason that the preceding algorithm
succeeds where our first attempt failed is that the
contributions of the second LSDs to the product is taken
into account at once rather then in pieces. Thus, a true
final residual is at hand that allows us to round the result
properly in every case. Rounding rules are as follows:

. _

-3 don't care Subtract ulp
-2 negative Subtract ulp
-2 zero Apply midway rule
-2 positive None

-1, 0, 1 don't care None
2 negative None
2 zero Apply midway rule
2 positive Add ulp
3 don't care Add ulp

In the following 4-digit multiplication example, the true,
rather than the scaled or left-shifted, residual is shown to
make the process more intuitive and thus clearer.

• 1401\1
x . 10-1-1M-

.01

.01-1.0

.01t4-

.014-~

.01J,-0

.0040

.0040

.0000

.0000

.0000

.0000

residual at the end of cycle 1, W~'~f2
add terms in cycle 2 to get Wa~/4

10 add terms in cycle 3
10 pCt~ = .0 no adjustment, W~/8
14-1-1 add terms in cycle 4
1t41 pta~ = .01 adjust residual, Wt"/16
1t4)0 add terms in cycle 5
14-t-1 p_~' = .01t- adjust residual, W~/32
144-1 P_cs~ "- .01~0 no adjustment, ~ / 6 4
0441 ;~e -- .0144) 1 adjust residual, W'"/128
004-1 - .01-t0 lt. final residual, W~/256

In cycle 8 above, the second LSD of 0 is attached to the
product in accordance with the rounding rules.

891

I

3.3. Division and Square-Rooting

In on-line BSD division, yielding z = x / y, the residual
corresponds to x - y x z; so, not surprisingly, the algorithm
resembles that of the multiplication x = y x z, with x < y,
W ~*~ = x, z~ = z a = z, = z, = 0, and the main recurrence:

W ~° = [2V¢ ~m + x_~ -y_J~-~] - 16z_~y ¢')

Assuming x < y, to avoid overflow in fractional division,
the real-valued residual W t° is in (-161y¢°1 + 2, 161y°~l - 2).
Proper choice of z_(,) allows us to maintain this condition,
given that V ~"'), composed of 2W (~'u and two terms of
magnitude 1 or less, is bounded in (-321y°~1 + 2, 321yt°l - 2)
and the last term on the right-hand side of the recurrence
can bring the residual back to within the original range.
After z_c~) has been produced, leaving the residual W (~ in
[-161yl + 2, 161yl - 2], the last four digits of the quotient z
are obtained via the same recurrence, with x and y digits
set to 0. The residual W ~) holds the rounding information.
As in multiplication, the rounding action is based on the
round digit z~,,, and the sign of the f inal residual W °*~.

A direct algorithm, similar to that used for multiplication,
is applicable in the case of double-LSD BSD numbers. It
proceeds as in normal BSD division until z_(~ has been
produced, yielding the residual W ~. The extra LSDs, to be
examined next, have the same weight as the regular LSDs
just processed. Thus, the residual is not left-shifted (or the
other terms of V °m in brackets are left-shifted), leading to:

W ~ ' ' = [2W ~ + 2 a - 2bz c~] - 16z..cj_,)y °)

Five more iterations, with a and b digits set to 0 in the
preceding equation, produce the last digits z_a_at, z_o_,), z_,,
round digits z.~m), z_~m v and final residual W (~ . Beginning
with W °m, the scaled residuals have a somewhat wider
range of about (-161yl, 161yl). Producing an additional
round digit z.~.:~ ensures that the true final residual will not
exceed ulp/2. Other details are quite similar to those of
multiplication and thus omitted for brevity.

Computing the square root z of the BSD number x is based
on I~ *~ = zl = z, = 0, and the main recurrence:

W ('~ = [2W ~'`) + x ~ - 4z_o.2,(2z ~'~ + z~,_=)2 "c~)

Justification for the on-line delay being equal to two
cycles is given in [Erce78]. The second LSD, if present,
can be accommodated in a manner similar to division.

Note that unlike on-line addition and multiplication, that
can be applied to any pair of operands, both division and
square-rooting require scaled operands to work properly.
As a result, on-line algorithms for the latter two operations
are unsuitable for fixed-point computation.

4. F loat ing-Po int Ari thmet ic

On-line floating-point arithmetic is complicated by two
factors: normalization (which is particularly challenging
for radix 2) and rounding. The first of these is indeed
serious, as it undermines the basic property of small,
constant delay in producing result streams. We have no
remedy for this problem [Wata81]. However, we show
how the preceding arithmetic algorithms can be adapted to
rounding of intermediate results. Without such rounding,
fioating-point computations may fail to produce valid
outputs, even if many guard digits are kept [Parh00].

For our analyses, we assume that BSD significands are
(pseudo)normalized to have magnitudes in [2-', 1), p being
a small constant. We then aim for producing enough
precision in the result to allow normalizing the significand
magnitude to within [2 -q, 1), q < p, if desired.

4.1. Addition and Subtraction

In ordinary binary floating-point addition, the operand
with the smaller exponent is right-shifted for alignment.
The part of the operand that is shifted to the right of the
least-significant position is summarized in two guard bits
and a sticky bit in order to allow proper rounding in case
of a normalizing left shift. To apply the same scheme to
double-LSD BSD significands, two issues must be
resolved: how to right-shift such numbers and how many
extra digits will suffice.

Right-shifting can be done either by physically shifting the
extra LSD along with the normal LSD or by using the
interpretation of Theorem 1. To derive the number of extra
digits needed, we first focus on BSD significands with no
extra LSD. The following result applies in this case.

Theorem 2: In adding or subtracting two BSD significands,
each pseudonormalized to [2 ~', 1), production of p - q + 1
guard digits, one round digit, and a sticky digit is
necessary and sufficient for retaining enough information
to produce a properly rounded result in [2", 1).

The extra LSD causes the residual range to grow to [-3, 3]
immediately after we have processed the second LSD of
the unshifted operand. This necessitates the use of one
more round digit. Thus, only one additional operation
cycle is needed as a result of the extra LSDs.

4.2. Multiplication

Because fixed-point multiplication of double-LSD BSD
numbers needs two round digits (per Section 3.2) and the
magnitude of our resultant significand is in [T ~', 1),
production of 2p - q + 2 extra digits is necessary and
sufficient for floating-point multiplication with rounding.

8 9 2

Rather than performing the multiplication as usual and
then worrying about normalization, it is possible to defer
the production of result digits at the outset as long as both
operand digits are Os or can be recoded as 0s (e.g., 1
followed by -1). In this way, at least one operand will
have a magnitude in (1/4, 1). With an h-cycle deferment,
the exponent must be decremented by 2h and a maximum
of p - q + 4 extra digits will be required. This latter
approach would be advantageous for p > 2.

4.3. Division and Square-Rooting

Division of pseudonormalized significands can produce a
quotient in (2-', 2'). As the division algorithm presented in
Section 3.3 assumed x < y, and z < 1, production of the
quotient digits may have to be delayed by up to p cycles at
the outset to ensure x < y. The exponent must of course be
updated to accommodate this delay. Once output digits
begin to emerge, at most two extra digits need to be
produced to effect proper rounding.

To apply the square-rooting algorithm of [Erce78], which
assumes the radicand x to be in [1/4, 1/2), up to p/2 - 1
cycles of delays may be required at the outset. Then, only
two extra digits need to be produced.

5. Other Radices and Digit Sets

Our discussion in the previous sections assumed the use of
radix-2 BSD numbers. Extension of the results to higher
radices is straightforward as long as the digit set used
includes both 1 and -1 and is maximally redundant. Note
that redundant representations with unsigned digits are
specifically excluded [Parh90]. The rounding increment or
decrement can be incorporated in the extra LSD as before.
As long as the extra LSD is always restricted to [-1, I],
the required changes will be minor. For example the new
form of Theorem 1 will dictate that a number having -1, 0,
or 1 as its second LSD be infinitely extended with ---(r - 1),
0, or • - 1 digits, respectively.

Use of higher radices reduces the on-line delays of
addition/subtraction, multiplication, division, and square-
rooting from 2, 3, 4, and 2 cycles to 1, 2, 3, and 1,
respectively [Erce88]. Beyond this, however, going to a
higher radix neither complicates, nor simplifies, the
algorithms and their guard digit requirements. The use of
minimal- or low-redundancy digit sets may necessitate
separate analysis and algorithm development (for example,
radix 4 numbers with digits in [-2, 2]). On the other hand,
on-line algorithms with overredundant digits, of the type
produced when several intermediate results are taken as
one operand without any reduction applied [Erce99],
should be able to handle the extra LSDs with a slight
increase in the number of guard digits.

6. Conclusion

We have argued that results of on-line computations based
on MSD-first redundant arithmetic can be exactly rounded
by incorporating the increment or decrement contribution
of the rounding decision as an extra LSD. We showed how
numbers with the second LSD attached can be directly
subjected to on-line processing in both fixed-point and
floating-point formats.

Whereas proper rounding is usually not an issue in signal
processing applications which have constituted the main
driving force behind the development of on-line arithmetic
algorithms, there have been suggestions that on-line
arithmetic be used in implementing massively parallel
supercomputers, particularly those using optoelectronic
computing elements or interconnects (see, e.g., [Fey00]).
In such an application context, due attention must be paid
to proper rounding of computation results.

[Erce781

[ErceS?]

[Er~SS]

[Erc¢921

[E r ~ i

[F~yOOl

[Irwi87]

[OkloSZ)

[ParhgO]

[Parh9S]

[Parh00]

[Wst=81l

[Wataglai

References

Ercegovac, M.D., "An On-Line Square Rooting Algorithm,"
Proc. Syrup. Computer Arithssuetic, Oct. 1978, pp. 183-189.
Ercegovac, M.D. and T. Lang, "On-the-Fly Conversion of
Redundant into Conventional Representations," IEEE Trans.
Computers, Vol. 36, pp. 895-897, July 1987.
Ercegovac, M.D. and T. Lang, "On-Line Arithmetic: A
Design Methodology and Applications," VLS! Signal
Processing II! (1%oc. ~ Workshop), 1988, pp. 252-263.
Ercegovac, M.D. and T. I_amg, "On-the-Fly Rounding," IEEE
Trans. Computers, Vol. 41,pp. 1497-1503, Dec. 1992.

Ercegovac, M.D. and T. Lang, "On-Line Scheme for
Normalizing a 3-D Vector," Proc. Asilomar Con[Signals,
Systems, and Computers, 1999, pp. 1460-1464.
Fey, D. and M. Degenkolb, "Digit Pipelined Arithmetic for
3D Massively Parallel Optoelectronic Circuits," J.
Supercomputing, VoL 16, pp. 177-196, 2000.
Irwin, MJ. and R.M. Owens, "Digit-Pipelined Arithmetic as
Illustrated by the Paste-Up System: A Tutorial," IEEE
Computer, VoL 20, pp. 61-73, Apr. 1987.
Oklobdzija, V.G. and M.D. Ercegova¢, =An On-Line Square
Root Algorithm," IEEE Trans. Computers, Vol. 3 I, pp. 70-75,
Jan. 1982.

Parhami, B., "Generalized Signed-Digit Number Systems: A
Unifying Fnunework for Redundant Number Represent=-
tion=," IEEE Trans. Computers, Voi. 39, pp. 89-98, Jan. 1990.
Paduuni, B. and $. Johansson, "A Number Representation
Scheme with Carry-Free Rounding for Floating-Point Signal
Processing Applications,'* Proc. lnt'l Conf. Signal & Image
Processia&, Oct. 1998, pp. 90-92.

Parhami, B., Computer Arithmetic: Algorit&~s and Hardware
Designs, Oxford, New York, 2000.
Wstanuki, O. and M.D. Ercegovac, "Floating-Point on-Line
Arithmetic: Algorithms," Proc. Syrup. Computer Arithn~tic,
May 1981, pp. 81-86.
Waumuki, O. and M.D. Ercegovac, "Floating-Point on-Line
Arithmetic: Error Analysis," Proc. Syrup. Computer
Arithmetic, May 1981, pp. 87-91.

8 9 3

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:

