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Abstract 

The input and output of an on-line computation involving 
redundant numbers must generally be compatible with 
standard nonredundant formats. When rounding of a result 
is required in the last computation step, the process can be 
combined with on-the-fly conversion of the redundant 
output into nonredundant form and thus introduces no 
extra delay. However, if multiple on-line operations are to 
be performed before obtaining a final result, the preceding 
method would be inapplicable to the intermediate results. 
We present a solution scheme where rounding (subtraction 
of ulp, no action, addition of ulp) is represented by an 
additional digit attached to the number, thus obviating the 
need for modifying any of the previously produced digits. 
This added digit forms a second least-significant digit 
(LSD), leading to the designation "double-LSD numbers" 
for the resulting representation. We show that on-line 
arithmetic with double-LSD numbers is only slightly more 
complex than with ordinary signed-digit numbers. 

Keywords: ASIC design, digit-pipelined arithmetic, 
double-LSD representation, DSP hardware, MSD-f'u'st 
computation, on-line algorithm, redundant number system. 

1. Introduction 

On-line arithmetic with signed-digit and other redundant 
number formats [Parh90] is an attractive alternative to 
conventional representations in some signal processing 
applications [Irwi87], [Erce88]. Because input and output 
must generally be compatible with standard nonredundant 
formats, practical systems incorporate binary-to-redundant 
and redundant-to-binary converters at the input and output 
interfaces. The former converter is often trivial and the 
latter one can be designed to derive the nonredundant form 
of the result on the fly, thus avoiding carry propagation 
altogether [Erce87]. Typically, on-line computations leave 
a residual which must be used to round the final result in a 
manner compatible with the rounding method in use (e.g., 
IEr:.E floating-point standard requirements). A naive 
implementation will introduce additional delay for 
rounding, but again it is possible to incorporate the 
required modifications for rounding in the on-the-fly 
conversion process [Erce92], thus avoiding extra delay at 
the expense of some added circuitry. 

The process outlined above works fine for rounding a final 
result which must be converted to nonredundant form. 
However, if multiple on-line operations are required 
before obtaining a final result, the preceding method 
cannot be applied to the rounding of intermediate results 
which are not converted to nonredundant format. In a 
digit-parallel system, the addition or subtraction of ulp 
(unit in least-significant position) needed to effect 
rounding, is easily done by a carry-free addition step. 
However, because this increment/decrement operation 
may affect many of the result digits, it is unsuitable for 
digit-serial on-line mode of computation in which most 
higher-order digits have already been produced and passed 
on to subsequent function units. 

In this paper, we present a solution scheme in which the 
rounding operation (subtract ulp, no action, add ulp) is 
represented by an additional digit attached to the number, 
thus obviating the need for modifying any previously 
produced digit. This added digit essentially forms a second 
least-significant digit (LSD), leading to the designation 
"double-LSD numbers" for the resulting representation. 
This is the signed-digit counterpart of double-LSB format, 
previously proposed by this author for standard binary 
numbers with signed-magnitude or two's-complement 
representation [Parh98]. For the proposed double-LSD 
format to be useful, we must show that on-line arithmetic 
operations can be performed on such numbers with 
reasonable efficiency; i.e., little added overhead compared 
to ordinary (non)redundant numbers. 

The bulk of this paper assumes binary signed-digit (BSD) 
numbers with radix • = 2 and digit set {-1, 0, 1}. 
Notationally, we represent a double-LSD BSD number by 
using -1- for the digit value -1 and following the original 
LSD with a backslash and the second LSD. For example, 
0.1401\1 is one possible representation for the binary 
fraction x = 0.0110 (I[2 - 1/4 + 0/8 + 1/16 + 1/16, where 
the final 1/16 term is the contribution of the second LSD). 
In Section 2, we offer a brief overview of the rounding 
problem. Section 3 is devoted to algorithms for fixed-point 
arithmetic on double-LSD BSD numbers, with needed 
modifications for floating-point arithmetic following in 
Section 4. Extensions to other radices and digit sets appear 
in Section 5. Section 6 contains our conclusions. 
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2. Rounding  and D o u b l e - L S D  N u m b e r s  3. Fixed-Point  Fractional  A r i t h m e t i c  

Consider BSD fractions of  the form x = .  x_tx_ ~ . . .  x ~  A n y  
two consecutive numbers  representable in this k-digit 
fixed-point format differ by u/p, which in this case is 2"*. 
The process of  converting a more precise number, given as 
input or produced in some computation step, to the 
foregoing format is called "rounding". In the simplest 
rounding scheme, known as truncation or chopping, extra 
digits beyond the kth position are d~pped,  thus leading to 
a maximum error of  about one ulp.  When used with 
ordinary binary numbers, the average error introduced by 
chopping is also of  some concern; but this is not an issue 
with BSD numbers, given the symmetric digit set. 

Commonly used rounding methods, on the other hand, 
often limit the maximum error to u lp l2  (which is the best 
possible) and have a near-zero average error due to 
positive and negative errors canceling each other out in the 
long run. Again, average error is not an issue for BSD 
numbers. To achieve the maximum error goal of  u lp /2  
(rounding to a nearest representable value) the dropping of 
extra digits may have to be accompanied by an adjustment 
in the amount of  ulp  to the  rest of the number;, adding ulp  

when the dropped part of  the number is > u lp /2  subtracting 
ulp  when it is < - u l p l 2 ,  with special rules applying to the 
case of  exact equality with +ulp/2 .  Note that the negative 
values just mentioned do not arise in standard binary but 
must be considered in BSD arithmetic. 

Besides round-to-nearest methods discussed in the 
preceding paragraph, we sometimes need directional 
rounding schemes which guarantee the error to be in a 
desired direction. Both upward- and downward-directed 
rounding necessarily have a maximum error of about one 
ulp.  Again, the required adjustment to the first k digits 
may involve adding or subtracting u/p. Rounding numbers 
so as to satisfy the strict requirements of  a given rounding 
scheme is known as exact or proper rounding. 

For BSD representation, the aforementioned adjustments 
may be in either direction, leading to the requirement for 
adding +_ulp to the fast  k digits. This addition, which is 
quite simple and fast in digit-parallel BSD arithmetic, 
would be impossible with MSD-f'trst digit-pipelined 
operation, in view of  more significant digits already 
having been passed on to, and used by, the next 
computational element. The double-LSD representation 
provides just the mechanism needed to solve this problem. 
When the decision is made as to how the first k digits must 
be adjusted for proper rounding (subtract u/p, no change, 
or add ulp) ,  this adjustment is tacked on to the result as a 
second LSD, which is itself a digit in {-1, 0, 1 }. The rest 
of  this paper, then deals with how arithmetic is to be 
performed on o p e r a n d s  that possess two LSDs due to the 
rounding of intermediate results. 

We first discuss arithmetic operations on two double-LSD 
BSD numbers x = .  x_,x_~ . . . x_~\ a a n d  y = .  y_~y_a . . . y_~\ b, 

where a and b represent the second LSDs. The following 
mathematical result provides insight into the double-LSD 
BSD number format and leads to simple modified circuits 
for arithmetic on such numbers in some cases. 

T h e o r e m  I :  Given the double-LSD BSD representation of 
x a s .  x tx_ ~ . . .  x_~\ a,  we can represent x by the infinite 
string of digits x = .  x _ , x _ : . . ,  x_~ a a a . . . .  where the BSD 
digit a is repeated ad infinitum. 

3.1. Addition and Subtraction 

Digit-serial MSD-first addition/subtraction is performed 
with no modification other than allowing one more cycle 
to process the extra LSDs. This is easily justified based on 
Theorem 1. Consider x + y as an example, where: 

x =  .1-1-01\1 = .1-1-01 1111 1111 . . .  
y = .01-1.OM = .01tO 1111 1111 . . . 

In the cycles when the last two digits z_~_,) and z_~ of the 
sum are produced, x and y must be extended to the right 
with their second LSDs, rather than with 0s. The same is 
done in the extra cycle for producing c, the second LSD of 
the sum. Note that from this point on, any additional cycle 
would generate the same sum digit; this is consistent with 
the interpretation offered by Theorem 1. 

For completeness, we mold double-LSD BSD add/subtract 
into a recurrence on the scaled residual W ~° [Erce88]. 
Setting W ~*~ = z, = 0, we have the main recurrence: 

W ~'~ = 2W ~'u + x~ + y_~ - 4z_~,_~ g o V ~ - 4z ~_=) 

With W ~'-u in [-2, 2], V c° evaluates to an integer in [-6, 6]; 
for V ~° in [--6, -2] ,  [-2, 2], [2, 6], the sum digit z_~,_2) may be 
set to -1 ,  0, 1, respectively. Overlaps between the 
selection intervals can be used for hardware optimization. 
Sum digit production begins with z0, which forms the 
transfer-out of  our fractional addition. If  overflow is not to 
occur, we must be able to set z, = 0, implying that V ~ must 
be in [-2, 2]. After z ~_2~ has been produced, I~ ~ should not 
be left-shifted in the next cycle, because the extra LSDs 
are of  the same weight as the just-processed LSDs. But for 
the sake of  uniformity, we might continue with 

_ _  - -  ~ V ( ~ ' t )  V¢ ~ ' )  = 2W ~ + 2a + 2b 4z_~_l~ ~ '~ - 4z_~j_,~ 
W ~1"2~ = 2W ~'t~ - 4z_~ ~= V ~ - 4z ,  
W ~1.3~ = 2W ~j'2~ - 8c ~ V ~'3~ - 8c 

where V ~'''~ (V ~.2~, V ~'~') is in [-8, 8] and divisible by 2 (4, 
8, respectively); this allows the residual to be zeroed out. 
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3 . 2 .  M u l t i p l i c a t i o n  

Before discussing how the extra LSDs might be taken into 
consideration, a review of on-line BSD multiplication z = 
x x y is in order. A scaled residual is used to select the 
product digits with three cycles of delay relative to the 
inputs. Assuming that x c~ and y0~, both in [0, 1), represent 
the magnitudes of inputs x and y up to their - i th digits, the 
main recurrence, with W ~ = za = z, = z, = 0, is: 

W ~0 = [2W °-'~ + x_~yt°+ y.~x c~-~] _ 8z_o.~, ~'= V ¢~ _ 8z_t~_~ 

The real-valued residual W °~ is in [--6 - 2 "~, 6 + 2-q. Proper 
choice of z_o_,, allows us to maintain this condition for all i, 
given the fact that W ~, incorporating 2W ~'~ along with 
terms of maximum magnitudes 1 - 2" and 1 - 2 -~-t~, will be 
confined to [-14 - 2 ' ,  14 + 2~.  Once we have z_~_,, at 
hand, leaving the residual P¢~ in [-6 - 2 -~, 6 + 2~ ,  the last 
three digits of  the product are obtained via the same 
recurrence, with new x and y digits set to 0. The final 
residual W ¢=~ will hold the rounding information. This 
information can be used by producing a "round digit" z_~,t, 
in an extra cycle and basin~the rounding action on this 
extra digit and the sign of W ~ ~ (a type of "sticky digit"). 

z~±t , V¢ ~ Action 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-1 negative Subtract u/p 
-1 zero Apply midway rule 
-1 positive None 

0 don't  cam None 
1 negative None 
1 zero Apply midway rule 
1 positive Add s ip  

It might appear that extending x and y with their second 
LSDs, as was done for addition, would allow us to 
multiply double-LSD BSD numbers with the same 
recurrence used for BSD multiplication. Unfortunately, 
this is not possible if properly rounded results are to be 
obtained. The following example shows why. Assume that 

x = 2 -= + 2 -c~-' and y = 2 -~ 

are k-digit BSD fractions and let x" = x + 2 -~, x- = x - 2 -~, 
y÷ = y + 2 a, and y- = y - 2-~; these are, in effect, x and y 
with a second LSD of 1 or -1,  respectively. We have: 

z = x x y  = 2 -4 + 2 "tin' 

z ' = x ' x y - = x x y - 3  x2- '"  
z " = x - x y ' = x x y +  2-'" 

We note that z has a round digit of 1, as do z ' and  z". The 
latter two numbers must be rounded in opposite directions, 
but the required information for this action won't  become 
available until much later;, furthermore, the residual must 
be kept with double the normal precision. 

A direct algorithm, similar to that used for addition can be 
applied here. The algorithm proceeds as in normal BSD 
multiplication until z_ch.~, has been produced, yielding the 
residual W ~. The extra LSDs, to be examined next, have 
the same weight as the regular LSDs just processed. Thus, 
the residual is not left-shifted (or, alternatively, other 
terms of V ~') in square brackets are left-shifted), yielding: 

W~t~ = [2W ~ + 2ayeS+ 2bx c* + 2-~'ab] _ 8z_cj_ ~ 

Four more iterations, with a and b digits set to 0 in the 
preceding equation, produce the final digits z~_t) and z~, 
the round digits z_~,.t ) and z_~m ), and the final residual V¢ ~ ' .  
The reason one round digit is inadequate can be explained 
as follows. Beginning with W ~=x,, the scaled residuals have 
a wider range of about (-8, 8), which is double the range 
that we would have had with no extra LSD. Producing an 
additional round digit z_~k+2, ensures that the final (true) 
residual will not exceed ulp/2. 

Intuitively, the reason that the preceding algorithm 
succeeds where our first attempt failed is that the 
contributions of the second LSDs to the product is taken 
into account at once rather then in pieces. Thus, a true 
final residual is at hand that allows us to round the result 
properly in every case. Rounding rules are as follows: 

. . . . .  . _  . . . . . . . .  

-3  don't  care Subtract ulp 
-2  negative Subtract ulp 
-2  zero Apply midway rule 
-2  positive None 

-1, 0, 1 don't  care None 
2 negative None 
2 zero Apply midway rule 
2 positive Add ulp 
3 don't  care Add ulp 

In the following 4-digit multiplication example, the true, 
rather than the scaled or left-shifted, residual is shown to 
make the process more intuitive and thus clearer. 

• 1401\1 
x .  10-1-1M- 

.01 

.01-1.0 

.01t4- 

.014-~ 

.01J,-0 

.0040 

.0040 

.0000 

.0000 

.0000 

.0000 

residual at the end of cycle 1, W~'~f2 
add terms in cycle 2 to get Wa~/4 

10 add terms in cycle 3 
10 pCt~ = .0 no adjustment, W~/8 
14-1-1 add terms in cycle 4 
1t41 pta~ = .01 adjust residual, Wt"/16 
1t4)0 add terms in cycle 5 
14-t-1 p_~' = .01t- adjust residual, W~/32 
144-1 P_cs~ "- .01~0 no adjustment, ~ / 6 4  
0441 ;~e -- .0144) 1 adjust residual, W'"/128 
004-1 - .01-t0 lt. final residual, W~/256 

In cycle 8 above, the second LSD of 0 is attached to the 
product in accordance with the rounding rules. 
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3.3. Division and Square-Rooting 

In on-line BSD division, yielding z = x / y, the residual 
corresponds to x - y x z; so, not surprisingly, the algorithm 
resembles that of the multiplication x = y x z, with x < y, 
W ~*~ = x, z~ = z a = z, = z, = 0, and the main recurrence: 

W ~° = [2V¢ ~m + x_~ -y_J~-~] - 16z_~y  ¢') 

Assuming x < y, to avoid overflow in fractional division, 
the real-valued residual W t° is in (-161y¢°1 + 2, 161y°~l - 2). 
Proper choice of z_(,) allows us to maintain this condition, 
given that V ~"'), composed of 2W (~'u and two terms of 
magnitude 1 or less, is bounded in (-321y°~1 + 2, 321yt°l - 2) 
and the last term on the right-hand side of the recurrence 
can bring the residual back to within the original range. 
After z_c~ ) has been produced, leaving the residual W (~ in 
[-161yl + 2, 161yl - 2], the last four digits of the quotient z 
are obtained via the same recurrence, with x and y digits 
set to 0. The residual W ~ )  holds the rounding information. 
As in multiplication, the rounding action is based on the 
round digit z~,,, and the sign of  the f inal residual W °*~. 

A direct algorithm, similar to that used for multiplication, 
is applicable in the case of double-LSD BSD numbers. It 
proceeds as in normal BSD division until z_(~ has been 
produced, yielding the residual W ~. The extra LSDs, to be 
examined next, have the same weight as the regular LSDs 
just processed. Thus, the residual is not left-shifted (or the 
other terms of V °m in brackets are left-shifted), leading to: 

W ~ ' '  = [2W ~ + 2 a -  2bz c~] - 16z..cj_,)y °) 

Five more iterations, with a and b digits set to 0 in the 
preceding equation, produce the last digits z_a_at, z_o_,), z_,, 
round digits z.~m), z_~m v and final residual W (~ .  Beginning 
with W °m, the scaled residuals have a somewhat wider 
range of  about (-161yl, 161yl). Producing an additional 
round digit z.~.:~ ensures that the true final residual will not 
exceed ulp/2. Other details are quite similar to those of 
multiplication and thus omitted for brevity. 

Computing the square root z of the BSD number x is based 
on I~ *~ = zl = z, = 0, and the main recurrence: 

W ('~ = [2W ~'`) + x ~  - 4z_o.2,(2z ~'~ + z~,_=)2 "c~) 

Justification for the on-line delay being equal to two 
cycles is given in [Erce78]. The second LSD, if present, 
can be accommodated in a manner similar to division. 

Note that unlike on-line addition and multiplication, that 
can be applied to any pair of operands, both division and 
square-rooting require scaled operands to work properly. 
As a result, on-line algorithms for the latter two operations 
are unsuitable for fixed-point computation. 

4. F loat ing-Po int  Ari thmet ic  

On-line floating-point arithmetic is complicated by two 
factors: normalization (which is particularly challenging 
for radix 2) and rounding. The first of these is indeed 
serious, as it undermines the basic property of small, 
constant delay in producing result streams. We have no 
remedy for this problem [Wata81]. However, we show 
how the preceding arithmetic algorithms can be adapted to 
rounding of intermediate results. Without such rounding, 
fioating-point computations may fail to produce valid 
outputs, even if many guard digits are kept [Parh00]. 

For our analyses, we assume that BSD significands are 
(pseudo)normalized to have magnitudes in [2-', 1), p being 
a small constant. We then aim for producing enough 
precision in the result to allow normalizing the significand 
magnitude to within [2 -q, 1), q < p, if desired. 

4.1. Addition and Subtraction 

In ordinary binary floating-point addition, the operand 
with the smaller exponent is right-shifted for alignment. 
The part of the operand that is shifted to the right of the 
least-significant position is summarized in two guard bits 
and a sticky bit in order to allow proper rounding in case 
of a normalizing left shift. To apply the same scheme to 
double-LSD BSD significands, two issues must be 
resolved: how to right-shift such numbers and how many 
extra digits will suffice. 

Right-shifting can be done either by physically shifting the 
extra LSD along with the normal LSD or by using the 
interpretation of Theorem 1. To derive the number of extra 
digits needed, we first focus on BSD significands with no 
extra LSD. The following result applies in this case. 

Theorem 2: In adding or subtracting two BSD significands, 
each pseudonormalized to [2 ~', 1), production of p - q + 1 
guard digits, one round digit, and a sticky digit is 
necessary and sufficient for retaining enough information 
to produce a properly rounded result in [2", 1). 

The extra LSD causes the residual range to grow to [-3, 3] 
immediately after we have processed the second LSD of 
the unshifted operand. This necessitates the use of one 
more round digit. Thus, only one additional operation 
cycle is needed as a result of the extra LSDs. 

4.2. Multiplication 

Because fixed-point multiplication of  double-LSD BSD 
numbers needs two round digits (per Section 3.2) and the 
magnitude of our resultant significand is in [T ~', 1), 
production of 2p - q + 2 extra digits is necessary and 
sufficient for floating-point multiplication with rounding. 
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Rather than performing the multiplication as usual and 
then worrying about normalization, it is possible to defer 
the production of result digits at the outset as long as both 
operand digits are Os or can be recoded as 0s (e.g., 1 
followed by -1). In this way, at least one operand will 
have a magnitude in (1/4, 1). With an h-cycle deferment, 
the exponent must be decremented by 2h and a maximum 
of p - q + 4 extra digits will be required. This latter 
approach would be advantageous for p > 2. 

4.3. Division and Square-Rooting 

Division of pseudonormalized significands can produce a 
quotient in (2-', 2'). As the division algorithm presented in 
Section 3.3 assumed x < y, and z < 1, production of the 
quotient digits may have to be delayed by up to p cycles at 
the outset to ensure x < y. The exponent must of course be 
updated to accommodate this delay. Once output digits 
begin to emerge, at most two extra digits need to be 
produced to effect proper rounding. 

To apply the square-rooting algorithm of [Erce78], which 
assumes the radicand x to be in [1/4, 1/2), up to p/2 - 1 
cycles of delays may be required at the outset. Then, only 
two extra digits need to be produced. 

5. Other Radices and Digit Sets 

Our discussion in the previous sections assumed the use of 
radix-2 BSD numbers. Extension of the results to higher 
radices is straightforward as long as the digit set used 
includes both 1 and -1 and is maximally redundant. Note 
that redundant representations with unsigned digits are 
specifically excluded [Parh90]. The rounding increment or 
decrement can be incorporated in the extra LSD as before. 
As long as the extra LSD is always restricted to [-1, I], 
the required changes will be minor. For example the new 
form of Theorem 1 will dictate that a number having -1, 0, 
or 1 as its second LSD be infinitely extended with ---(r - 1), 
0, or • - 1 digits, respectively. 

Use of higher radices reduces the on-line delays of 
addition/subtraction, multiplication, division, and square- 
rooting from 2, 3, 4, and 2 cycles to 1, 2, 3, and 1, 
respectively [Erce88]. Beyond this, however, going to a 
higher radix neither complicates, nor simplifies, the 
algorithms and their guard digit requirements. The use of 
minimal- or low-redundancy digit sets may necessitate 
separate analysis and algorithm development (for example, 
radix 4 numbers with digits in [-2, 2]). On the other hand, 
on-line algorithms with overredundant digits, of the type 
produced when several intermediate results are taken as 
one operand without any reduction applied [Erce99], 
should be able to handle the extra LSDs with a slight 
increase in the number of guard digits. 

6. Conclusion 

We have argued that results of on-line computations based 
on MSD-first redundant arithmetic can be exactly rounded 
by incorporating the increment or decrement contribution 
of the rounding decision as an extra LSD. We showed how 
numbers with the second LSD attached can be directly 
subjected to on-line processing in both fixed-point and 
floating-point formats. 

Whereas proper rounding is usually not an issue in signal 
processing applications which have constituted the main 
driving force behind the development of on-line arithmetic 
algorithms, there have been suggestions that on-line 
arithmetic be used in implementing massively parallel 
supercomputers, particularly those using optoelectronic 
computing elements or interconnects (see, e.g., [Fey00]). 
In such an application context, due attention must be paid 
to proper rounding of computation results. 
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