
Optimal-Depth Circuits for Prefix Computation and Addition

C h i - H s i a n g Yeh
Dept . o f Elec t r ica l & C o m p u t e r Eng inee r ing

Q u e e n ' s U n i v e r s i t y
Kings ton , O N K 7 L 3N6, C a n a d a

E.A. Varvar igos , and B. Pa rhami

Dept . o f E lec t r ica l & C o m p u t e r E ng ine e r i ng
U n i v e r s i t y o f Ca l i fo rn ia

Santa Barbara , C A 9 3 1 0 6 - 9 5 6 0 , U S A

Abstract

Addition and prefix computation are among the most fun-
damental problems in arithmetic and algebraic computa-
tion. In this paper, we present efficient circuits for perform-
ing prefix computation and addition with small depth and
size and flexible fan-in (i.e., the maximum fan-in can be se-
lected as a small constant or a larger constant/nonconstant
number). In particular, we show that any prefix operation of
n inputs can be computed using a circuit of fan-in k, depth
logkn + o(logkn) + O(1), gate complexity O(n), and edge

d - I

complexity O(n log* *"" * n), for any constant integer d. We
show that the sum of two n-bit numbers can be found using
an AND-OR circuit of fan-in k, depth logkn + o(logkn) +

d - I

O(1), and edge complexity O(n(log** ""*n)2), for any
constant integer d. In particular, the depths of our circuits
for prefix computation and addition are optimal within a fac-
torof l + o(1), for any fan-in k = n °(l).

1 Introduct ion

The delay required to perform addition is crucial to the
performance of many computationally intensive applica-
tions. Prefix computation is also an important problem that
appears often in arithmetic and algebraic computations [5].
There have been a very large number of papers investigat-
ing fast and/or cost-effective solutions to these problems
[1, 2, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17]. In this paper, we
propose efficient circuits to perform prefix computation and
addition. Our constructions provide efficient tradeoffs be-
tween fan-in, depth, and edge complexity, and have depths
that are considerably smaller than those in [10, 11].

The depth of a circuit is defined as the length of the
longest path from any input to any output node of the cir-
cuit, while the fan-in of a circuit is defined as the largest
fan-in among all the gates contained in it. The edge com-
plexity and the gate complexity of a circuit are defined as

the number of edges and the number of gates in the circuit,
respectively. In this paper, we show that any prefix (as-
sociative) operation of n inputs can be performed using a
circuit of depth log k n + o(log k n) + O(1), gate complexity

d - I

O(n), edge complexity O(n log* *"" * n) +, and fan-in k, for
any constant integer d, assuming that a gate to perform the
operation is available. The depth of this circuit is optimal
within a factor of 1 -t- o(1) when logkn is not a constant.
The problem of computing all prefixes of n inputs, given
any associative operator, has been considered [1% where a
circuit of depth 21ogkn + o(logkn) + O(1), edge complex-
ity O(nlog* n), and fan-in k was proposed. Our result im-
proves the depth of the circuit given in [10] by a factor of
2 asymptotically and further reduces the edge complexity
when d > 2.

We also show that the sum of two n-bit numbers can
be found using an AND-OR circuit of depth logkn +

d - I

o(log k n) -I- O(1), edge complexity O(n(log* *" " * n)2), and
fan-in k, for any constant integer d. The depth of our circuit
for addition is optimal within a factor of 1 + o(1) when log k n
is not a constant. In [10], it was shown that addition can
be performed using an AND-OR circuit of depth 41ogkn +
o(log k n) + O(1), edge complexity O(n(log* n)2), and fan-in
k. Our result improves the depth of the circuit by a factor of
4 asymptotically and also has smaller edge complexity for
d > 2. The resulting addition circuits can be used as build-
ing blocks for efficient multiplication circuits. In particu-
lar, they lead to a unit-weight threshold circuit [3, 10, 17] to
compute the product of two n-bit integers, which has depth
approximately equal to 3 log k n + 1.44 log 2 d, edge complex-
ity O(n2+l/diog(d+ 1)), and fan-in k [17].

d d - I d - I

tlog~ * ' " * n = min{l > Ol log~ '* ' " * . . - l o g ~ * ' " * n < 1}, d > 1. See

7
Section 2 for the definitions of log n and log n.

1349

2 Prefix Computation

We let o be an arbitrary associative binary operator; that
is, (a o b) o c = a o (b o c). In the prefix computation problem
we want to compute the partial "products" zi = xi ox2 ox3 o
• .. o xi for all 1 < i < n. In what follows, we will assume
that the functional gate for computing the binary function o
is available, and we will obtain a depth-optimal circuit that
has linear gate complexity and almost linear edge complex-
ity.

Before we describe the results, it is useful to introduce
some notation. For n > 1, we let

logan = min{l > 0l~og2--.log2n < 1}.
Y
1

That is, log~ n is the minimum number of terms (levels)
2

in the iterated exponential 22.. required to make it sat-
2

isfy 22... > n, and is a function that grows very slowly
with n. For example, the values that log~ takes at n =
1,2,4,16,65536, and 265536 are 0, 1,2,3,4, and 5, respec-
tively. We also define

log~* n = min{/> 0llog~.. . logan < 1},

1

and, more generally,

d d - I d - I

log~ * ' " * n = min{/> 01!og ~ * " "* .-. log~' * ' " * , n < 1},

T

for any integer d > 1. Clearly, log~* n grows even slower
with n than log~ n, and for the values of n that we expect in
applications, log~* n is a very small number.

Theorem 2.1 The prefixes xi, Xl ox2, Xl ox2 ox3 Xl o
x2 o x3 o . . . o xn can be computed using a circuit o f depth
log s n + o(log k n) + O(1), gate complexity O(n), edge com-

d - I

plexity O(nlog* * ' " * n), and fan-in k, for any constant in-
teger d.

Proof: The proof will use induction on d. We first present
the prefix circuit for the case d = 1. We can assume, with-
out loss of generality, that n is a power of 2. We partition
the inputs xl ,x2,x3,.. . , Xn into two groups of size n/2, then
divide each such group into two groups of size n/4 , and so
on, until we obtain groups of size 1. Clearly, there are 2n - 2
groups overall and log 2 n different group sizes.

The product of the elements in each of the 2n - 2 groups
can be computed using a circuit of depth [log s ~], gate
complexity O(n), edge complexity O(nlogn) , and fan-in k.

Given the preceding circuit, the product Pi = xl ox2 o--. oxi
for any integer i E [l,n] can be obtained by computing the
product of at most log 2 n groups of different sizes. As a re-
suit, the products Pi = xl ox2 o . . . oxi, i = 1,2,3, . . . ,n, can
be obtained using another circuit of depth [log s log 2 n], gate
complexity O(n), and edge complexity O(n logn). Thus, the
partial products Xl, Xl ox2, Xl ox2 ox3 Xl ox2 o - . - OXn
can be simultaneously computed using a circuit of depth
log k n + o(log k n) + O(1), gate complexity O(n), edge com-
plexity O(nlogn) , and fan-in k.

For the inductive step, we assume that the prefix of n
inputs can be computed using a circuit of depth logkn +
o(log k n) + O(1), gate complexity O(n), edge complexity

d - I

O(nlog* * ' " * n), and fan-in k, for some integer d >__ 1. We
will show that the prefix computation can be performed us-
ing a circuit of depth logkn + o(logkn) + O(1), gate com-

d

plexity O(n), edge complexity O(nlog* * " " * n), and fan-
in k. We partition the inputs xl,x2,x3,. . . ,xn into consecu-

d - I

tive groups of size log~ * " " * n, and then divide each group
d - I d - I

into consecutive groups of size log~ * " " * log~ * " " * n, and
so on, until we obtain groups of size 1. Clearly, there are

d

log~ * " " * n different group sizes and fewer than 2n groups.
To compute the product of the elements in each of the

d - I

groups, we use a circuit of depth [log k log~ * " ' * n], gate
d

complexity O(n), and edge complexity O(n log* * " ' * n). If
a group has been divided into subgroups with partial prod-
ucts Pl ,P2 ,P3 , . . . ,pt , then we compute the prefix Pi ,P l o
P2,PI °P2 °P3 , . . . ,Pl °P2 o .-. opt . We also compute the
prefixes at the top level by combining groups of the largest
size. All these prefixes can be computed using a circuit
of depth logkn 4- o(logkn) + O(1), gate complexity O(n),

d

and edge complexity O(n log* * " " * n) by the inductive hy-
pothesis. It can be seen that a product x l x2 . . . x i for any in-
teger i E [1,n] can be obtained by computing the product

d

of at most log* * ' " * n products from these obtained pre-
fixes. As a result, the partial products Pi = Xl o x2 o . . . o xi,
i = 1,2,3, . . . ,n can be computed using another circuit of

d

depth [log s log~ * " " * n], gate complexity O(n), and edge
d

complexity O (n l o g * * ' " * n). This shows that all partial
products can be computed using a circuit of depth log s n +
o(logkn) + 0 (1) , gate complexity O(n), edge complexity

1350

d

O(nlog* * " " * n), and fan-in k, which completes the induc-
tion. []

In [10], it was shown that prefix computation can be per-
formed using a circuit of depth 2 log k n + o(log k n) + O(1),
edge complexity O(n log* n), and fan-in k. Theorem 2.1 im-
proves the depth of the circuit by a factor of 2 asymptoti-
cally, and further reduces the edge complexity (when d is
a constant larger than 2). Since a trivial lower bound on
the depth required to compute a function with n inputs is
log k n, where k is the maximum fan-in of a gate in the cir-
cuit, the depth of our prefix circuit is optimal within a factor
of 1 + o(1) from the lower bound, provided that log k n is not
a constant.

3 A N D - O R Circuits for Add i t i on

The addition of two operands is the most frequently en-
countered operation in computer arithmetic units, and the
speed at which it can be executed is crucial to the perfor-
mance of almost all computing systems. In what follows, we
use the techniques developed in Section 2 for prefix compu-
tation to obtain an addition circuit that has almost linear edge
complexity and is depth-optimal within a factor of 1 + o(1)
when log k n is not a constant.

Theorem 3.1 The sum of two n-bit integers can be com-
puted using an AND-OR circuit of depth log k n + o(log k n) +

d-I

O(1), edge complexity O(n(log* * " " * n)2), and fan-in k,
for any constant integer d.

Proof: LetX = (Xn_l,...,xo)2 and Y = (Yn-I,.-.,Yo)2 be
the two n-bit numbers to be added. We will first present the
addition circuit for the base case d = 2, and then use induc-
tion on d to obtain the result for the general case.

The addition of the two numbers is done in 6 phases:

• Phase 1: In this phase, we com-
pute the carry-propagate and carry-generate for each
pair of the input bits xi and Yi. This is in turn done in
two parallel steps:

- Phase 1 a: For i = 0, 1,2,..., n - 1, we compute the
carry-propagate pi : xi + Yi using one layer of OR
gates.

- Phase lb: F o r / = 0, 1,2, ...,n - 1, we compute the
carry-generate gi : xiYi using one layer of AND
gates in parallel with Phase la.

• Phase 2: In this phase, we compute the level-2 group-
carry-propagate and group-carry-generate for each of

1351

the level-2 groups, which are defined as follows. We
partition the carry-propagates Po,Pl ,P2, . . . , Pn-I and
the carry-generates go, g l, g2, . . . , gn- 1 into consecutive
level-2 groups of size log 2 n, and then partition the el-
ements in each of the groups into consecutive level-2
groups of size log 2 log 2 n, and repeat this procedure un-
til we obtain groups of size 1. Clearly, there are log~ n
different level-2 group sizes and fewer than 2n level-2
groups.

- P h a s e 2 a : We compute level-2 group-carry-
propagate Pi+h-l:i for each level-2 group with el-
ements Pi+h- 1, P i+h-2 , . . . , Pi+ 1, Pi according to

i+h-- 1

P i + h - l : i : A Pl = P i + h - I A p i + h - 2 A ' " A p i •
l=i

- Phase 2b: We compute level-
2 group-carry-generate Gi+h_l: i for each level-2
group with elements Pi+h- 1, P i + h - 2 , . . . , Pi+ 1, Pi,
and gi+h- 1, g i+h-2 , . . . , gi+ 1, gi according to

i+h- 1 I" i+h- 1

G i + h - l : i : V { g J A PtJ
j=t \ l= j+ l]

using a prefix circuit (Theorem 2.1 with d = 2).

Phase 3: We compute the level- 1
group-carry-propagate and group-carry-generate for
each of the level-1 groups, which are defined as fol-
lows. We partition all the level-2 groups of size log 2 n
into two level-1 groups of size ~ (that is, each of

n level-2 groups of these level-1 groups contains

size log 2 n), and then divide each of the level-1 group
into two level-I groups of size ~ , and continue this
procedure until we obtain level-1 groups of size 1. If a
level-2 group is divided into u level-2 subgroups dur-
ing Phase 2, we also partition these subgroups into two
level- 1 groups of size u/2, then divide each of the level-
1 groups into two level- 1 groups of size u/4, and repeat
this procedure until we obtain level-1 groups of size 1.

- Phase 3a: We compute the level-I group-carry-
propagate of a level- 1 group according to

Pih+t-l:il = eih+l_l:ih APih-l: ih_ 1 A ' " Aei2-1: i I ,

where Pih+l-l:ih, Pih- l : ih_l , ' " ,Pi3-1: i2 ,e i2-1: i l
are the level-2 group-carry-propagates of the
level-2 groups contained in it.

- Phase 3b: We compute the level-1 group-carry-
generate for each of the level-1 groups using a
prefix circuit (Theorem 2.1 with d = 2), whose
inputs are level-2 group-carry-propagates and
group-carry-generates of the level-2 groups con-
tained in the level-1 group.

• Phase 4: We compute the l eve l -

2 s e c t i o n - c a r r y - p r o p a g a t e and s e c t i o n - c a r r y - g e n e r a t e

for the sections starting from each of the level-2 groups
and ending at the rightmost level-2 group (within the
same level-1 group). This is done in two parallel steps:

Phase 4a: If a level-2 group is divided into u
level-2 subgroups during Phase 2, then we deter-
mine whether the s e c t i o n i, i = 1,2, 3, ..., u, which
contains the i th, (i + 1) th, (i q- 2) th U t h level-

2 subgroups, can propagate a carry. This can be
done by an AND gate when k > log 2 u (or a tree
of AND gates otherwise), whose inputs are the
log 2 u level-1 group-carry-propagates. These re-
sults are called level-2 section-carry-propagates.

Phase 4b: For i = 1,2,3, n • ", Jo~ n, we determine
whether there is a carry generated and propa-
gated to the leftmost bit of the i th leftmost level-
2 group of size log 2 n. This can be done by us-
ing a prefix circuit (Theorem 2.1 with d = 2),
whose inputs are log 2 (lo~2n) level- 1 group-carry-

propagates and log2(lo~) level-1 group-carry-
generates. If a level-2 group is divided into u
level-2 subgroups during Phase 2, we also deter-
mine whether there is a carry generated within
the former level-2 group and propagated to the
leftmost bit of the i th level-2 subgroup for i =
1,2, 3, ..., u. The results are called level-2 section-
carry-generates.

• Phase 5: We determine each of the carry bits ci,

i = 0, 1 ,2 , . . . ,n , using a prefix circuit, whose inputs
are log~ n level-2 section-carry-propagates and log[n
level-2 section-carry-generates.

• Phase 6: Each of the output bits zi , i = 0 ,1 ,2 , . . . ,n, can
be computed by

Zi : Ci (]) Xi ~) Yi : (Ci A (x i Q Yi)) ~/ (Ci A (X i (~) Yi))"

The edge complexity of the circuit is dominated by the
computation of the group-carry-generates in Phases 2b and
3b, the section-carry-generates in Phase 4b, and the carry
bits in Phase 5, which require a total of O(n(log* n) 2) edges.
The depth of the circuit is dominated by the computation
of the group-carry-propagates and the group-carry-generate

n (Phase 3), which re- for the level-1 groups of size

quires a circuit of depth log k n 4- o(log k n) + O(1).
The preceding addition circuit can be extended to the

general case d > 2 by using a technique similar to that used
in the prefix computation circuit of Theorem 2.1. In partic-
ular, for the case d = 3, we partition the carry-propagates
PO,Pl ,P2 , . . . , P n - 1 and the carry-generates g o , g l ,g2 , . . . ,

g n - t into consecutive l e v e l - 3 g r o u p s of size logan, and
then divide each group into consecutive groups of size
log~ logan, and continue this procedure until we obtain
groups of size 1. We then compute l e v e l - 3 g r o u p - c a r r y -

p r o p a g a t e s and g r o u p - c a r r y - g e n e r a t e s . In turn, we partition
all the level-3 groups of size log~ n into level-2 groups of
size l o g 2 (~) and then divide each of the level-2 group

~2
into level-2 groups of size log 2 log 2 (~) , and continue this

procedure until we obtain groups of size 1.

If a level-3 group is divided into u level-3 subgroups,
we also partition these subgroups into level-2 groups of
size log 2 u, divide each of them into level-2 groups of
size log 2 log 2 u, and continue this procedure until we ob-
tain groups of size 1. We then compute the level-2 group-
carry-propagates and group-carry-generates. Similar to the
base case d = 2, we also compute level-1 group-carry-
propagates, level-1 group-carry-generates, level-2 section-
carry-propagates, and level-2 section-carry-generates. We
then compute l e v e l - 3 s e c t i o n - c a r r y - p r o p a g a t e s and s e c t i o n -

c a r r y - g e n e r a t e s , whose definitions are similar to their level-
2 counterparts. In particular, the level-3 section-carry-
generates are computed using a prefix circuit (Theorem 2.1
with d = 3). Finally, we compute the carry bits using a pre-
fix circuit, whose inputs are log~*n level-3 section-carry-
propagates and log~*n level-3 section-carry-generates, to
obtain the output bits.

The previous constructions can be easily generalized
to the case d > 4. We simply insert d - 2 phases be-
fore Phase 2 of the base case d = 2 for the computation
of the group-carry-propagates and group-carry-generates of
levels i, i = d , d - 1 , d - 2, . . . ,3 . We also insert d - 2
phases after Phase 4 of the base case for the computation
of the section-carry-propagates and section-carry-generates
of levels i, i = 3 ,4 ,5 , . . . ,d. We use prefix circuits (The-
orem 2.1 with parameter d) for the computation of group-
carry-propagates and section-carry-generates. The edge
complexity of the entire circuit is dominated by these pre-
fix subcircuits, which collectively have edge complexity

d - I

O(n(log* * " " * n)2). The depth of the circuit is still domi-
nated by the computation of the group-carry-propagates and
the group-carry-generate for level-I groups that have the
largest size (Phase 3 of the base case), which requires a cir-
cuit of depth log k n 4- o(log k n).

The simple case d = 1 can be easily obtained by remov-
ing Phases 2 and 4 of the addition circuit for d = 2, and mod-
ifying Phases 3 and 5 of that circuit. The details are omitted.
[]

In [10], it was shown that addition can be performed us-
ing an AND-OR circuit of depth 4 log k n + o(log k n) + O(1),
edge complexity O(n(log* n)2), and fan-in k. Our result im-
proves the depth of the circuit by a factor of 4 asymptoti-

1352

cally and further reduces the edge complexity. Moreover,
the depth of our addition circuit is optimal within a factor
of I + o(1) from the trivial lower bound log k 2n when log k n
is not a constant.

4 Conclusion

In this paper, we have proposed several circuits to per-
form prefix computation and addition. Our constructions
provide effective tradeoffs among edge complexity, circuit
depth, and maximum fan-in through the flexibility provided
in the choice of the parameters k (fan-in) and d (levels of hi-
erarchy). Our circuits appear to be considerably more depth-
efficient than the best previous circuits, assuming similar
edge complexity and fan-in (or, alternatively, considerably
more cost-effective for similar circuit depth). Moreover, the
depths of all the circuits presented in this paper are optimal
within a small constant factor with any fan-in restriction.

Even though asymptotic complexity results, particularly
those based on circuit elements with nonconstant fan-in,
may appear to have little bearing on the design of practical
circuits with currently available technology, there are am-
ple reasons for continued research in this area. A primary
reason is to develop a better understanding of computational
problems, methods for their solution, and tradeoffs between
various cost/performance parameters. Such an understand-
ing paves the way for the application of methods used to
solve one class of problems in other, seemingly different,
contexts. A second important reason is to establish funda-
mental limits on the time and hardware resources needed
for performing certain computations. Bounds of this nature
are useful, not only because they guide our quest for more
cost-effective solutions, but also due to their influence in
motivating research on alternative computational paradigms
to circumvent the assumptions or constraints that led to the
bounds. Additionally, problem sizes of practical interest
continually expand with rising computational power and
growing user expectations, thus narrowing the gap between
practical and asymptotic analyses. Twenty years ago, re-
search contemplating million-processor systems or billion-
transistor chips seemed far removed from reality. Now, they
are merely ambitious development projects.

R e f e r e n c e s

[1] N. Alon and J. Bruck, "Explicit constructions of depth-
2 majority circuits for comparison and addition," SlAM
J. Disc. Math., pp. 1-8, 1994.

[2] P. Beame, E. Brisson, and R. Ladner, "The complexity
of computing symmetric functions using threshold cir-
cuits," Theoretical Comput. Sci., pp. 253-265, 1992.

[3] J. Bruck, "Computing with networks of threshold ele-
ments," Ph.D. dissertation, Dept. Electrical Engineer-
ing, Stanford Univ., 1989.

[4] I. Koren, Computer Arithmetic Algorithms, Prentice
Hail, Englewood Cliffs, New Jersey, 1993.

[5] R.E. Ladner, and M.J. Fischer, "Parallel prefix com-
putation," J. ACM, Vol. 27, No. 4, pp. 831-838, Oct.
1980.

[6] I. Parberry, Circuit Complexity and Neural Networks,
Cambridge, Mass., MIT Press, 1994.

[71 B. Parhami, "Carry-free addition of recoded binary
signed-digit numbers," IEEE Trans. Computers, Vol.
37, no. 11, Nov. 1988, pp. 1470-1467.

[8] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford University Press, 2000.

[9] N. Pippenger, "The complexity of computations by
networks," IBM J. Res. Develop., Vol. 31, No. 2, pp.
235-243, Mar. 1987.

[10] K.Y. Siu, V.P. Roychowdhury, and T. Kailath, Discrete
Neural Computation, A Theoretical Foundation, Pren-
tice Hall, New Jersey, 1995.

[11] K.Y. Siu, V.P. Roychowdhury, andT. Kailath, "Toward
massively parallel design of multipliers," J. Parallel
Distributed Computing, No. 24, pp. 86-93, Jan. 1995.

[12] E.E. Swartzlander, Jr., Computer Arithmetic, Vol. I/II,
IEEE Computer Society Press, Los Alamitos, CA,
1990.

[13] S. Vassilladis, S. Contofana, and K. Bertels, "2-1 ad-
dition and related arithmetic operations with thresh-
old logic," IEEE Trans. Computers, Vol. 45, no. 9, pp.
1062-1067, Sep. 1996.

[14] C.-H. Yeh and B. Parhami, "Efficient pipelined multi-
operand adders with high throughput and low latency:
designs and applications," Proc. Asilomar Conf. Sig-
nals, Systems, and Computers, pp. 894-898, 1996.

[15] C.-H. Yeh and E. A. Varvarigos, "New efficient ma-
jority circuits for the computation of some basic arith-
metic functions," J. Comput. Information, pp. 114-
136, 1996.

[16] C.-H. Yeh and E. A. Varvarigos, "Depth-efficient
threshold circuits for multiplication and symmetric
function computation," Proc. lnt'l Computing and
Combinatorics Conf., LNCS, pp. 231-240, 1996.

[17] C.-H. Yeh, E. A. Varvarigos, B. Parhami, and H. Lee,
"Optimal-depth threshold circuits for multiplication
and related problems," Proc. 33th Asilomar Conf. Sig-
nals, Systems, and Computers, Vol. 2, Oct. 1999, pp.
1331-1335.

1353

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:

