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Abstract
Honeycomb (2D) and diamond (3D) networks constitute
alternatives to mesh and torus architectures for paraUel
processing. When wraparound links are zncluded in
honeycomb and diamond networks, the resulting
structures can be viewed as having been derived via a
systematic pruning scheme applied to 2D and 3D tori.
respectively. Link removal. which is performed along
a diagonal pruning direction, preserves the network's
node-symmetry and diameter, while reducing its
implementation complexity and VLSI layout area.
In this paper, we regard honeycomb and diamond
networks as subgrapfis of complete 2D and 3D tori,
respectively. and show this viewpoint to hold
important lmplications for their physical layouts.
routing schemes, and proof of topological properties.
Keywords: Cayley graph, Interconnection network,
Network topology, Pruned torus, VLSI layout.

1. Introduction

Some interconnection network topologies borrow from
nature. Mesh, honeycomb [Milu87], [Sibe97],
[Stoj97], and diamond [GiJ96], [Nguy94], for instance,
bear resemblance to atomic or molecular lattice
structures. In some adaptations, wraparound links have
been added to eliminate the boundary, making the
nodes regular in degree and the networks symmetric.
In the case of meshes, the addition of wraparound links
in each dimension results in torus networks that have
been quite popular in recent parallel machine
implementations [Ishi97], [Ober94], [pani97].

Honeycomb rectangular torus (HReT) has been
characterized as a special case of the honeycomb mesh
with wraparound links [Stoj97]. We note that HReT
can actually be derived by pruning certain links from a
2D torus. As an example, the honeycomb rectangular
torus HReT(6, 3) has been redrawn as a pruned 6 x 6
torus in Fig. 1, where dotted lines represent the pruned
links along the horizontal dimension.

One advantage in treating the honeycomb rectangular
torus as a pruned two-dimensional torus is that its
layout becomes straightforward. The long wraparound
links can be avoided and wire lengths balanced by
applying the standard technique of folding in both
horizontal and vertical directions. Then, the space left
from the removed links can be compacted to yield a
smaller layout area (see Fig. 2).

In this paper, we use a unified framework to show that
honeycomb and diamond networks with wraparound
links are related in that they are obtained through a
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pruning scheme applied to the links of two- and three-
dimensional tori, respectively. Both networks belong
to the class of Cayley graphs and, hence, are node-
symmetric. However, unlike the square tori, they
cannot be edge-symmetric. They share a similar
shortest-path routing algorithm and maintain the same
diameter as the corresponding complete tori. Extension
to higher dimensions is possible but leads to increased
complexity in analysis and implementation.

Our presentation of honeycomb and diamond networks
with wraparound links is organized as follows.
Section 2 contains Cayley graph constructions leading
to these networks. Section 3 deals with shortest-path
routing and network diameter. Average internode
distances are discussed in Section 4. Finally, Section 5
contains our conclusions.
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Fig. l. Honeycomb rectangular torus (a)
is Isomorphic to the pruned 2D torus (b).
The removed links of the pruned torus are
shown as dotted lines.
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Fig. 2. Folded layout of pruned 2D torus (a)
is more compact than its unpruned
counterpart (b). The removed links of the
pruned torus are shown as dotted lines.

2. Symmetry Properties

One way to prove that an interconnection network is
node-symmetric, thereby establishing that it enjoys the
advantages that come with this property, is to show
that it is a Cayley graph. We thus proceed to define
Cayley graphs and then prove that honeycomb and
diamond networks are Cayley graphs.

Given a (nonempty) finite group r to be used as the
node set, we identify a subset Q that generates r under
the group operation ®. The binary operator ® is
associative but not necessarily commutative. Because
we consider only graphs with no self-loops, the
identity element l does not belong to Q. In the graph,
an undirected edge connects node a to node ~ whenever
~ = a ® 0) for some 0) E Q. Lack of direction on
edges implies that the inverse of 0) is also in the
generator set Q. By the definition above, Cayley
graphs are easily seen to be node-symmetric with a
node degree equal to the cardinality of Q [Sabi58].

Let us denote a node in an 1 x k torus as (x, y), whereo ::;;x ::;;1 - 1 and 0 ::;;y ::;;k - 1. Consider a pruning
scheme where for each node (x, y), the connections to
(x + 1, y) is removed if x + y is odd and the
connection to (x - 1, y) is removed if x + y is even.
Clearly, such a pruned 1 x k torus will be regular of
degree 3 only when 1 is even. It is possible to
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construct a proof similar to that in [Kwai97] to show
that the network defined above is a Cayley graph of
cyclic groups Z/l and Z/k (modulo-l and modulo-k
integers). Here and throughout this paper, it is
understood that modulo arithmetic applies to all node-
index expressions.
Theorem 1. The honeycomb (pruned 2D torus)
network is a Cayley graph.

Proof: Consider an 1 x k torus. Take r =i[x y]T Io ::;;x ::;;1 - 1, 0 ::;;y ::;;k - I} and l = [0 0] . Define
the group operator ® as follows:

Then, it is easily verified that the generator set

Q = { [6]. [~]. [~1]}
is closed under inverse, with [1 O]T being its own
inverse and the other two generators being each other's
inverse. That the preceding Cayley graph construction
produces an 1x k honeycomb or pruned torus network
is evident from the fact that the square of the 2 x 2
matrix A used in defining ® is the identity matrix h
causing successive powers of A to alternate between A
and h. When AX+Y = A, the neighbors of [x y]T are
[x-l y]T, [x y+l]T, and [x y_l]T. Similarly, when
AX+Y = 12, the neighbors of [x yJY are [x+l y]T,
[x y+l]T, and [x y_l]T.

Note that the operator ® defined above is associative
but not commutative; a fact that is easily deduced by
noting that traversing a dimension-X link followed by
a dimension-Y link does not lead to the same
destination node as traversal of links in the reverse
order Y followed by X.•

The pruned torus network is node-symmetric by
Theorem 1, but it is not edge symmetric, even in the
case of 1= k. Fig. 3 shows an example with 1= k = 4,
where lack of edge-symmetry is obvious in view of the
fact that a dimension-X link does not belong to any
cycle of length four, whereas dimension-Y links do
form 4-cycles.

Fig. 3. A square torus pruned along the
direction x + y is not edge-symmetric.
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In an m x I x k torus, with both m and I even,
alternately removing the dimension-X and dimension-
Y links along x + y + z leads to a pruned m x I x k
torus that can similarly be proven to be a Cayley
graph of the cyclic groups Z/m, Z/l, and Z/k
(see Theorem 2, for the general nD case and its proof).
The resulting network is isomorphic to the diamond
lattice [Gil96], [Nguy94], with wraparound links added
to make it regular of degree 4.
Figure 4 depicts an example diamond lattice with
m = I = k = 4. In this pruning scheme, for each node
(x, y, z), the connections to node (x+l, y, z) and
(x, y + 1, z) are removed if x + y + z is odd and the
links to nodes (x - 1, y, z) and (x, y - 1, z) are
removed if x + y + z is even. All dimension-Z links
are kept intact. The node degree is reduced from 6 in
the case of 3D torus to 4. More generally, this type of
pruning reduces the node degree from 2n to n + 1.
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Fig. 4. A diamond lattice is isomorphic to
the pruned 3D torus when wraparound links
(shown as short line segments in the diagram
to avoid clutter) are added. The pruned 2D
torus of Fig. 3 IS a slice of this network cut
along dimension X or Y.

Based on the discussion above, generalizing
honeycomb and diamond networks to n dimensions is
straightforward. In the nD case, a kO x kl x ... x kn-l
torus, where all dimensions except possibly for kn-l
are even, is pruned along the diagonal direction
xo +XI + ... +Xn-l·
Theorem 2. The nD torus network pruned along the
diagonal direction xo + Xl + ... + Xn-l is a Cayley
graph.
Proof: Consider pruning a kO x kl x ... x kn-l
torus. Take r = ([ao, ab ... ,an_I]T I 0:.:; ai:':; ki - 1,o :.:;i :.:;n - I} and define t = [0 0 O]T as the
identity element. If node ex= [an al art-IlT is
connected to node P = [bO hI ... bn-ll by a
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generator (0 = [wO WI •.. wn_IlT E .0, their index
vectors are related by a semidirectproduct

[ :.~]=[~~~~~:::.~.]L.ai[ ~~ ]+[ ~~]
bn-l 0 0 ... 1 Wn-l an-l

and the generator set can be found to be:

Q= {[tJ[·]···,[·nm}
Note that the square of the n x n matrix A used in
defining ® is the identity matrix In, causing
successive powers of A to alternate between A and In
as Iai = ao + al + ... + an-l assumes odd and even
values. Each of the first n - 1 generators is its own
inverse and the last two generators are each other's
inverse. Because the generator set has n + 1 elements,
the node degree of the pruned network is n + 1,
whereas the original torus had node degree 2n .•

3. Diameter and Shortest-Path Routing
In addition to ease of layout alluded to in Section 1, an
advantage of treating the honeycomb network as a
pruned 2D torus is that as in torus, we can base the
routing algorithm on the offsets ~X and ~y in
dimensions X and Y. The resulting algorithm is
simpler than the one suggested in [Stoj97]. The latter
algorithm is based on mapping the network to the
Euclidean 3-space.
In the following, we consider only pruned square tori
with I = k or m = I = k, with the common side length
k even. Results for other cases can be derived
analogously. The diameter of the corresponding
unpruned 2D or 3D torus is k or 3k/2, respectively.
In what follows, we show the diameters of the pruned
versions to be the same.
Theorem 3. The diameter of the honeycomb network
(pruned k x k torus) is k.
Proof: The proof is based on constructing a shortest-
path routing scheme that never needs more than k
hops. Given the network's node-symmetry, we can
take the source node to be one of the four nodes near
the center of the network's drawing (the black node in
Fig. 5). The solid routing paths leading to the shaded
nodes of Fig. 5 are shortest paths in the corresponding
unpruned torus. The white nodes require extra hops,
but never a routing distance greater than k.

To see this, let (x, y) be the source node and (~, ~y)
the offsets to the destination node along dimensions X
and Y, respectively, where -k/2 + 1 :.:;~x, ~y :.:;k/2.
Positive and negative signs in the offsets represent the
directions. We always start the routing along
dimension X, unless the required link has been
removed; in such a case, we have to route along
dimension Y so as to gain access to the dimension-X
link in that particular direction.
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If I~yl ~ 1&1, we encounter all required dimension-X
links as we move along dimension Y; in this case, the
number 1&1 + I~yl of steps is the same as that for the
unpruned torus. For ltoyl ~ 1&1 - 1, extra steps may
have to be taken during routing. We consider two cases
for I~xl and show that in each case, the number of
steps is at most k. Without loss of generality, we
assume that x + y is even. If x + y is odd, we simply
switch the two cases.
Case 1: & > 0 (right half of white nodes in Fig. 5).
The route from (x, y) traverses dimension X first.
Since the subsequent routing along dimension Y
provides access to I~yl of the required dimension-X
links, at most 2l(& - l~yl)/2J extra steps are needed
for gaining access to the remaining ~x - I~yl
dimension-X links, going back and forth along
dimension Y. The total number of routing steps is
thus ~x + I~yl + 2l(~x - l~yl)/2J ~ 2tox ~ k.
Case 2: ~x < 0 (left half of white nodes in Fig. 5).
The route from (x, y) traverses dimension Y first.
Since I~yl - 1 of the required dimension-X links
become accessible as we route along dimension Y, at
most 2l(-& -I~yl + 1)!2J additional steps are needed.
The total number of routing steps is thus -& + ltoyl
+ 2L(-& - I~yl + 1)/2J ~ -2~x + 1 ~ k - 1. •

Fig. 5. Shortest paths from a given source in
a noneycomb network (pruned 16 x 16 torus).

Nodes that are diametrically opposite to a given node
(x, y) in a pruned torus can be easily found. From the
conditions I~yl ~ ltoxl and 1&1 + I~yl = k, we find the
node (x + k/2, Y + k/2) which is the only diametrically
opposite node in the unpruned k x k torus. Case 1 in
the proof of Theorem 3 implies that all nodes
(x + k/2, y + i), with i even when k/2 is even or i odd
when k/2 is odd, are also diametrically opposite to
node (x, y). From the larger number of diametral paths
in the pruned torus, it is intuitively obvious that the
average internode distance increases as a result of
pruning (see Section 4).
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Routing on the pruned k x k x k torus can mimic that
of the pruned k x k torus. Let the offsets to the
destination node be (~x, ~y, ~z), where -k/2 + 1 ~
~x, ~y, ~z ~ k/2. We start by comparing I~xl to
I~yl. If I~xl ~ I~yl, we follow the routing on the
pruned k x k torus in dimensions X and Z, while
traversing dimension-Y links when they become
accessible. Otherwise, we follow the routing on the
pruned k x k torus in dimensions Y and Z, while
traversing dimension-X links whenever possible. Based
on the analysis in the proof of Theorem 1, the number
max(l~xl, I~yl) of extra steps does not lead to an
increase in diameter. Hence, the diameter remains 3k/2.

4. Average Internode Distance
Based on the shortest-path routing algorithm described
as part of the proof of Theorem 1, we can derive the
average internode distance of the pruned k x k torus.

··············kI2-1····· ..··········:
2

2

Fig. 6. Distribution of extra steps in a
honeycomb network (pruned k x k torus).

Theorem 4: The average internode distance of the
honeycomb network (pruned k x k torus) is 7k/12 -
k-1/3.
Proof: The average internode distance is obtained by
summing the extra steps from a given node to all other
nodes, adding the result to the sum k3/2 of distances in
an unpruned torus, and dividing by the number k2 of
nodes (we could divide by k2 - 1, but we opt for a
simpler expression). The distribution of extra steps is
depicted in Fig. 6. Because the extra steps for the right
and left halves of nodes are equal, we total the extra
steps for the nodes in one half and then double the
result. Recall that the number of extra steps is always
an even number. If k/2 is even, we have one node
requiring k/2 extra steps, eight nodes requiring k/2 - 2
extra steps, 16 nodes needing k/2 - 4 extra steps, and
so on. Thus, the total number of extra steps in this
case can be written as:

[
~k/4-1. . ]

E = 2 k/2 + L.Ji=l 8l(k/2 - 2l) = k3/12 - k/3
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If k/2 is odd, we have four node requiring k/2 - 1 extra
steps, 12 nodes needing k/2 - 3 extra steps, and so on.
Thus, the total number of extra steps in this case is:

'\' (k-2)/4
E = 2["-t=1 4(2i -1)(k/2-2i + 1)] = k3/12-k/3

In either case, the average internode distance of the
pruned k x k torus is

(E + k3/2)/k2 = 7k/12 - k-1/3 '" O.58k
compared to the slightly lower average distance of
(k3/2)/k2 = O.5k for the unpruned k x k torus .•
Thus far, we have been unable to find a closed-form
expression for the average internode distance of the
pruned k x k x k torus. Curve fitting on the results of
numerical simulation, with 4 ~ k ~ 64 (Fig. 7) leads
to a slope of 31k/36 '" O.86k, compared to O.75k for
the unpruned k x k x k torus.
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Fig. 7. Diameter and average internode
distance for pruned 2D and 3D tori of side k.

5. Conclusion
We have presented a unified formulation of the
honeycomb and diamond networks with wraparound
links as pruned 2D and 3D tori. Previous studies,
focusing on several parameters, such as diameter and
node degree, have drawn the conclusion that these
networks are attractive alternatives to complete tori.
The obvious increase in routing complexity has not
been dealt with.

In this paper, we have rectified what we view as
misconceptions regarding routing and symmetry of
these networks. It is often the case that the proof of
one network topology being isomorphic to another
leads to better understanding of their properties.
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Consolidation of algorithmic methods independently
developed for the two networks is also beneficial in
terms of simplification and efficiency improvement.
Our results serve to unify honeycomb and diamond
networks with each other and with other forms of
pruned tori. This unification has already simplified the
layout and routing problems for such networks and
may lead to other advantages as well.

That pruning of networks can lead to configurations
with simpler 2D layouts and easier packaging, as in
the two examples of this paper, is not surprising.
It turns out that such pruned architectures may also
outperform their unpruned counterparts when the costs
are normalized by making the channels of the pruned
versions correspondingly wider [Kwai99), This puts
pruned networks in a unique position within the sea of
interconnection networks [Parh99]. Developers of
tomorrow's massively parallel microchips and systems
should consider such pruned networks as candidates for
both on- and off-chip connectivity [parhOO].
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