
Precision Requirements for Quotient Digit Selection in High-Radix Division

Behrooz Parhami
Dept. Electrical and Computer Enginnering

University of California
Santa Barbara, CA 93106 USA

parhami @ece.ucsb.edu

Abstract

Digit-recurrence binary dividers are sped up via two
complementary methods: keeping the partial remainder in
carry-save form and selecting quotient digits in a radix
higher than 2, usually in redundant form. The redundancy
provides some tolerance to imprecision, so that the quotient
digits can be selected based on examining truncated
versions of the partial remainder and divisor. No closed
form formula for the required precision in the partial
remainder and divisor, as a function of the quotient digit
set and the partial remainder range, is known. We establish
upper bounds on the required precision for the partial
remainder and divisor. The bounds are tight in the sense
that each is only one bit over a well-known lower bound.

Guide to Notation

[o, °] Interval of (integer) values, inclusive at both ends
lb/ub Lower/upper bound; used as lb(°) or ub(°)
a Maximum magnitude of a radix-r quotient digit
d, d T Divisor, and its truncated form
h Partial remainder has magnitude at most hid] (h < 1)
P, PT Shifted partial remainder (rs) and its truncated form
q
r

s , s q)

x

z

8
e

Quotient; fractional value with digits denoted as q_j
Number representation radix
Partial remainder in general, and after the jth step
Candidate radix-r quotient digit
Dividend; fractional value with digits denoted as z_j
Precision required of the divisor
Precision required of the partial remainder

1. Introduction

Division is the most complex, and hence slowest, of the
four basic arithmetic operations. Thus, techniques for
speeding up division have been extensively studied by
researchers in computer arithmetic [Parh00], [Parh02].
Simple dividers are usually based on digit-recurrence
algorithms employing repeated additions, while high-
performance implementations tend to use multiplier-based
convergence schemes [Flyn01]. In radix-r digit-recurrence
division [Erce94], digits of the quotient are derived one at a
time, from the most to the least significant. For a k-digit
quotient, there are at least k cycles in the division process;
one cycle for producing each radix-r quotient digit, plus

additional cycles for initialization, possible final correction,
and rounding. There are but two ways to speed up such an
algorithm: reducing the number of cycles and making each
cycle shorter. The first implies higher radix division, while
the second leads to several techniques, including keeping
the partial remainder in carry-save form to eliminate the
long delay of carry-propagate addition in each cycle.

To make the use of carry-save partial remainder possible,
quotient digits may be chosen from a redundant set, such as
[-2, 2] in radix 4. The redundancy provides some tolerance
to imprecision, so that the quotient digits can be selected
based on examining truncated versions of the divisor and
the partial remainder [Robe58], [Atki68]. A carry-save
partial remainder, truncated to a few bits, can be quickly
transformed into an estimate for the partial remainder or its
bits used directly as inputs to a PLA or ROM table that
spews out quotient digit values. Among other issues, the
designer of a fast digit-recurrence divider determines the
precision with which the divisor and the partial remainder
must be examined to deduce the value of the next quotient
digit. This precision, stated in number of bits before and
after the radix point, dictates the complexity of the PLA or
the size of the ROM table yielding the quotient digit value.
The PLA/ROM size influences not only the cost (VLSI
area) but also the circuit speed, given that the quotient digit
selection block is usually on the critical path.

Many practical aspects of the quotient digit selection
process and associated hardware implementations have
been discussed in the literature [Zura87], [Erce94],
[Ober97], [Flyn01]. However, no closed form formula for
the required precision in the divisor and the partial
remainder, as a function of the quotient digit set and the
range of the partial remainder, is known. So the design
process is often described as trial and error. In this paper,
we establish tight upper bounds on the required precision
for the divisor and the partial remainder. The bounds are
tight in the sense that each is only one bit over a well-
known simple lower bound, leading to the requirement for
just four trial points during the design process: the one
represented by the lower bounds, one (or two) more bit(s)
of precision for d, an extra bit of precision for p. If none of
these four points leads to a viable design, then one more bit
of precision for both d and p is guaranteed to work.

0-7803-7147-X/01/$10.00©2001 IEEE 1670

2. Quotient Digit Selection

Radix-r digit-recurrence division for the (adjusted)
dividend z = O.z_~z_2 • • • % = s ~°~ and the normalized divisor
d = 0. l dfl_ 3 . . . d_~ is based on the equation

s ~) = rs ~- ~)- q_jd

where s ~) is the jth partial remainder and q = O.q_lq_ 2 . . . %

is the quotient. We assume s(°)= I z[< h i d I, perhaps
ensured through preshifting of the dividend, yielding the
adjusted dividend. The parameter h will be defined shortly.
Additionally, we assume that the radix is a power of 2, so
that everything is done in binary, with a radix-r digit
corresponding to log2r bits.

To allow the choice of q_j based on truncated versions of d
and p~)= rs ~, we use a redundant quotient digit set [-a, a],
with a > r/2 (usually, we have a < r - 1, but overredundant
digit sets satisfying a > r are also of some interest and have
been used in practice).

Assuming d > 0, to maintain the invariant I s[< hd

throughout the division process, we must be able to restore
a shifted partial remainder, having the worst-case
magnitude rhd, to hd or less by subtracting ad from it, thus
leading to the requirement:

r h d - ad < hd or h < a / (r - 1)

Choosing h - a / (r - 1), so as to impose the least possible
restriction on the range of s, we can easily determine the
boundaries of the region where x is a valid quotient digit:

- h d < p - xd < hd

This leads to the following range for p, across which x is a
valid quotient digit value:

(x - h)d < p < (x + h)d

The ranges associated with the validity of x and x - 1 as
quotient digit values overlap. The values of p for which
both x and x - 1 are valid quotient digit choices satisfy:

(x - h)d < p < (x - 1 + h)d

Figure 1 is a graphical representation of this overlap region
which is bounded by the two straight lines p = (x - h)d and
p = (x - 1 + h)d. This representation is known as a p-d plot.
Within the overlap region shown in the partial p-d plot of
Fig. 1, the quotient digit can be chosen to be x - 1 or x.
Thus, the boundary for choosing between x - 1 and x as
quotient digit value can be drawn anywhere within the
overlap region.

P~

Ap "'~"

ik (x-1 + h~~lk~Choose x

(x~-h)d~ hOOsex-1

Y

d min d

Fig. 1. Part of a p-d plot, showing an overlap
region along with Ad and Ap.

3. Known Lower Bounds for Precision

If we truncate d to 8 bits after the radix point, the
uncertainty in its value, based on the truncated form d T, will
be less than w - 2 -~. In other words, d T < d < d T + 2 -a.
Similarly if we truncate p to e bits after the radix point to
get pT, we have pT < p < PT + 2-~" These two truncations,
together define a grid or tiling on the p - d plot, with vertical
(horizontal) grid lines being w - 24 (y - 2 -~) apart.

Choice of quotient digit based on d T and PT is possible only
if none of the rectangular w x y tiles on the p - d plot, each
one representing uncertainties in the values of d and p,
intersects both boundaries of an overlap region. Put another
way, between each pair of adjacent vertical (horizontal)
grid lines, there must exist a horizontal (vertical) grid line
that is totally contained in the overlap region. Defining Ad
as the minimum horizontal separation between boundaries
of the overlap region (Fig. 1), clearly we must have w < Ad.
Based on the equations for the two lines bounding the
overlap region in Fig. 1, we find

Ad = d m i n (2 h - 1) / (x - h)

which assumes its smallest possible value for x - a. Hence,
we arrive at the following well-known lower bound (lb) for
the precision required of d in quotient digit selection:

a > lb(~i) -I--log2Ad] = I - - l o g 2 [d m i n (2 h - 1) / (a - h)]]

A similar argument yields:

>_ lb(e) - I--log2Ap-] - [--log2[dm~n(2h - 1)]]

Of course, in addition to the fractional bits of d and p, as
dictated by the bounds above, integer bits of each operand
must also be inspected. Because even in unsigned division,
the partial remainder can go negative, the sign bit of p is
important as well. In the case of signed division, the sign
bit of d is also involved in the decision.

1671

P~

....~.
Ap
..-~.

Ad ,..-f

d rain

w____a~ (I-- ----Y:. Above stairs,
W ~ _ ~ : ~ choose x

. !i Below s airs,
choose x - 1

. . ,
! ii .~

Y

d

Fig. 2. Tiling the p-d plot and embedding
stairs in an overlap region.

Returning to the discussion of the number of fractional bits
needed, we endeavor to prove that setting 8 = lb(8) + 1 and
s = lb(s) + 1 is always sufficient for quotient digit selection,
thus establishing the simultaneous upper bounds ub(8) =
lb(8) + 1 and ub(s) = lb(e) + 1. Figure 2 represents an
example. Here, based on the precision lower bounds
provided by Ad and Ap, the coarse grid of rectangular W x
Y tiles (solid, heavy gray lines) is built. The resulting
precisions are clearly inadequate, as evident from the
absence of a solid horizontal grid line spanning the overlap
region between the vertical grid lines at d rain and d rain + W.
Our results will show that halving the grid line spacing in
each dimension (adding the broken grid lines in Fig. 2)
provides adequate precision in the worst case.

4. Upper Bounds for Precision

With the background presented in the previous sections, we
are now ready to state and prove our main result.

Theorem 1: To select a quotient digit in [-a, a] for radix-r
division, with r a power of 2, it is sufficient to inspect 8 bits
of d and e bits of p after their radix points, where:

8 - ~ - l o g 2 [d m i n (2 h - 1) / (a - h)]q + 1

E = [' - logz[d 'n in (2h - 1)]7 + 1

Proof: We need to show that if vertical grid lines are
spaced w = 2 -8 apart, there will be at least one horizontal
grid line that is entirely contained in the overlap region
between two successive vertical grid lines. The proof is
based on Fig. 3 and consists of showing that any rectangle
that touches two consecutive vertical grid lines and the
edges of the overlap region has a height of at least Ap/2,

which is no less than 2 -~, the spacing between horizontal
grid lines. We only need to prove this at the leftmost edge
of the uppermost overlap region (defining the boundary

between choosing a - 1 or a as the quotient digit value).
Corresponding rectangles in other parts of the same overlap
region or in other overlap regions are taller, as exemplified
by the rectangle near the right end of the overlap region in
Fig. 3. So, we want to show that u > Ap/2. But this is a
simple consequence of w < Ad/2, which leads to v < Ap/2.

P~
L (a- 1 +~~.~Choose a

i ! I '
o s e a - ,

~ j (a-'h)d\

d min d

Fig. 3. Part of a p-d plot and notation used
in the proof of Theorem 1.

5. Determining the Required Precision

Based on the results of Theorem 1, the following procedure
should be used to determine the precision required of d and
p for selecting the quotient digit. First we note that only the
four cases shown in Table I need to be investigated. If none
of these four cases proves viable, then the use of lb(8) + 1
bits of precision for d and lb(s) + 1 bits of precision for p
(per Theorem 1) is warranted.

Table I. Cases to be tried before using the
upper bounds of Theorem 1.

2 lb(8)+l lb(e)

3 lb(8) lb(e)+l

4 lb(8)+2 lb(e)

Begin with lower bounds

Increase the precision of d first,
because it is easier than p,
which is in carry-save form

Next, increase the precision of p
Inspecting 2 bits of d is simpler
than 1 bit each of d and p
(carry-save); so try this case too

Verification in each case is easy to mechanize. The process
consists of checking that for all of the overlap regions, of
which there are a in the first quadrant, and all consecutive
pairs of vertical grid lines, of which there are 28(d max- drain),
a horizontal grid line exists that is totally contained in the
overlap region. Referring to Fig. 3, this means that for the
points A and B of the rectangle associated with the overlap

1672

region for x - 1 and x, and the pair of vertical grid lines at
d rain + 2-~m and d rain + 2-~(m + 1), the coordinates

p(A) = (x - 1 + h)(d rain + 2-8m)

p(B) = (x - h)(d rain + 2-~(m + 1))

must be such that there exists an integer multiple of 2 -~
between them; i.e., we must have:

L2'p(A)J _> 2ep(B)

So, the algorithm, presented in Fig. 4, has two nested loops,
corresponding to varying x and m, with the inner loop
termination condition being 2~p(B)- 2~p(A) > 1. This latter
condition is sufficient for the existence of the required
horizontal grid line, but is not necessary; for example, there
exists an integer between 2.75 and 3.25, even though their
difference is less than 1. Note that the condition is verified
only in the first quadrant of the p-d plot, for even though
the choice of quotient digit is not symmetric about the two
axes, the placement of the uncertainty regions, which
affects the required precisions, is symmetric.

function adequate(r,a,ot~in,dmax,(~,E:)
h := a/(r - 1)
x:= 1
while x < a do

m:=0
n := 2~(~ax_ ~in)
A := 2 ~ (x - 1 + h)o t~in
B := 2 ~ (x - h)(O thin + 2 -'~)
S := 2 ~-~ (x - 1 + h)
T := 2 ~-~ (x - h)
while m < n do

i f A - B > 1
then rn := n
else if LA_I >__ B

then m := m + 1

/* Index of overlap region */
/* Check the x-1 / x overlap*/
/* Index of vertical grid line */

/* Initial value for 2 ~ p(A) */
/* Initial value for 2 ~ p(B) */
/* Step size for 2 ~ p(A) */
/* Step size for 2 ~ p(B) */
/* Btwn ruth & (m+l)th lines */

/* No need to check further */

/* Check next grid line */
else return false /* Precision is inadequate */
endif

endif
A = A + S
B = B + T

endwhile
x:= x+ 1

endwhile
return true /* Precision is adequate */
endfunction adequate

Fig. 4. Verifying if precisions of ~ bits for d T
and ~ bits for PT are adequate.

Note that for the sake of clarity, the pseudocode in Fig. 4
has not been fully optimized. In an actual coding of the
algorithm, the values of A, B, S, and T could be initialized
for x = 1 outside the x while loop and then appropriately
updated with advancing x. Updating of these values inside
the while loop would then require only addition of
increment values, in much the same way that updating of A
and B in the inner m loop is now handled.

6. C o n c l u s i o n

In the literature on computer arithmetic, it is often
mentioned that determining the precisions required of
truncated forms of d and p to correctly choose the radix-r
quotient digits from the digit set [-a, a] involves several
iterations over the design space. In this paper, we have
proven that the number of cases to be tried is limited to at
most four, as listed in Table 1, given choices for r (power-
of-2 radix) and a (defining a symmetric, redundant digit
set). Considering that the trials are easily mechanized and
that the choice of the radix r is quite limited by
cost/performance requirements, the design process is not as
cumbersome as one might have thought.

A question for continued research is whether the number of
cases to be tried can be further reduced. For example, one
migth investigate if any of the cases listed in Table I can be
ruled out based on simple analytical tests (as opposed to
exhaustive testing). However, this is only of theoretical
interest, as testing based on the algorithm given in Fig. 4 is
simple enough for practical purposes.

R e f e r e n c e s

[Atki68] Atkins, D.E., "Higher Radix Division Using Estimates of the
Divisor and Partial Remainders," IEEE Trans. Computers,
Vol. 17, No. 10, pp. 925-934, 1968.

[Erce94] Ercegovac, M.D. and T. Lang, Division and Square Root:
Digit-Recurrence Algorithms and Implementations, Kluwer
Academic, 1994.

[Flyn01] Flynn, M.J. and S.F. Oberman, Advanced Computer
Arithmetic Design, Wiley, 2001.

[Ober97] Oberman, S.F. and M.J. Flynn, "Division Algorithms and
Implementations," IEEE Trans. Computers, Vol. 46, No. 8, pp.
833-854, Aug. 1997.

[Parh00] Parhami, B., Computer Arithmetic: Algorithms and Hardware
Designs, Oxford, 2000.

[Parh02] Parhami, B., "Number Rerpesentation and Computer
Arithmetic," in Encyclopedia of Information Systems,
Academic Press, to appear in 2002.

[Robe58] Robertson, J.E., "A New Class of Digital Division Methods,"
IRE Trans. Electronic Computers, Vol. 7, No. 3, pp. 218-222,
Sep. 1958.

[Zura87] Zurawski, J.H.P. and J.B. Gosling, "Design of a High-Speed
Square Root, Multiply, and Divide Unit," IEEE Trans.
Computers, Vol. 36, No. 1, pp. 13-23, 1987.

1673

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

