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Abstract 

Digit-recurrence binary dividers are sped up via two 
complementary methods: keeping the partial remainder in 
carry-save form and selecting quotient digits in a radix 
higher than 2, usually in redundant form. The redundancy 
provides some tolerance to imprecision, so that the quotient 
digits can be selected based on examining truncated 
versions of the partial remainder and divisor. No closed 
form formula for the required precision in the partial 
remainder and divisor, as a function of the quotient digit 
set and the partial remainder range, is known. We establish 
upper bounds on the required precision for the partial 
remainder and divisor. The bounds are tight in the sense 
that each is only one bit over a well-known lower bound. 

Guide to Notation 

[o, °] Interval of (integer) values, inclusive at both ends 
lb/ub Lower/upper bound; used as lb(°) or ub(°) 
a Maximum magnitude of a radix-r quotient digit 
d, d T Divisor, and its truncated form 
h Partial remainder has magnitude at most hid] (h < 1) 
P, PT Shifted partial remainder (rs) and its truncated form 
q 
r 

s ,  s q) 

x 

z 

8 
e 

Quotient; fractional value with digits denoted as q_j 
Number representation radix 
Partial remainder in general, and after the jth step 
Candidate radix-r quotient digit 
Dividend; fractional value with digits denoted as z_j 
Precision required of the divisor 
Precision required of the partial remainder 

1. Introduction 

Division is the most complex, and hence slowest, of the 
four basic arithmetic operations. Thus, techniques for 
speeding up division have been extensively studied by 
researchers in computer arithmetic [Parh00], [Parh02]. 
Simple dividers are usually based on digit-recurrence 
algorithms employing repeated additions, while high- 
performance implementations tend to use multiplier-based 
convergence schemes [Flyn01]. In radix-r digit-recurrence 
division [Erce94], digits of the quotient are derived one at a 
time, from the most to the least significant. For a k-digit 
quotient, there are at least k cycles in the division process; 
one cycle for producing each radix-r quotient digit, plus 

additional cycles for initialization, possible final correction, 
and rounding. There are but two ways to speed up such an 
algorithm: reducing the number of cycles and making each 
cycle shorter. The first implies higher radix division, while 
the second leads to several techniques, including keeping 
the partial remainder in carry-save form to eliminate the 
long delay of carry-propagate addition in each cycle. 

To make the use of carry-save partial remainder possible, 
quotient digits may be chosen from a redundant set, such as 
[-2, 2] in radix 4. The redundancy provides some tolerance 
to imprecision, so that the quotient digits can be selected 
based on examining truncated versions of the divisor and 
the partial remainder [Robe58], [Atki68]. A carry-save 
partial remainder, truncated to a few bits, can be quickly 
transformed into an estimate for the partial remainder or its 
bits used directly as inputs to a PLA or ROM table that 
spews out quotient digit values. Among other issues, the 
designer of a fast digit-recurrence divider determines the 
precision with which the divisor and the partial remainder 
must be examined to deduce the value of the next quotient 
digit. This precision, stated in number of bits before and 
after the radix point, dictates the complexity of the PLA or 
the size of the ROM table yielding the quotient digit value. 
The PLA/ROM size influences not only the cost (VLSI 
area) but also the circuit speed, given that the quotient digit 
selection block is usually on the critical path. 

Many practical aspects of the quotient digit selection 
process and associated hardware implementations have 
been discussed in the literature [Zura87], [Erce94], 
[Ober97], [Flyn01]. However, no closed form formula for 
the required precision in the divisor and the partial 
remainder, as a function of the quotient digit set and the 
range of the partial remainder, is known. So the design 
process is often described as trial and error. In this paper, 
we establish tight upper bounds on the required precision 
for the divisor and the partial remainder. The bounds are 
tight in the sense that each is only one bit over a well- 
known simple lower bound, leading to the requirement for 
just four trial points during the design process: the one 
represented by the lower bounds, one (or two) more bit(s) 
of precision for d, an extra bit of precision for p. If none of 
these four points leads to a viable design, then one more bit 
of precision for both d and p is guaranteed to work. 
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2. Quotient Digit Selection 

Radix-r digit-recurrence division for the (adjusted) 
dividend z = O.z_~z_2 • • • % = s ~°~ and the normalized divisor 
d = 0. l dfl_ 3 . . .  d_~ is based on the equation 

s ~) = rs ~- ~)- q_jd 

where s ~) is the jth partial remainder and q = O.q_lq_ 2 . . .  % 

is the quotient. We assume s(°)= I z[ < h i d  I, perhaps 
ensured through preshifting of the dividend, yielding the 
adjusted dividend. The parameter h will be defined shortly. 
Additionally, we assume that the radix is a power of 2, so 
that everything is done in binary, with a radix-r digit 
corresponding to log2r bits. 

To allow the choice of q_j based on truncated versions of d 
and p~)= rs ~, we use a redundant quotient digit set [-a, a], 
with a > r/2 (usually, we have a < r -  1, but overredundant 
digit sets satisfying a > r are also of some interest and have 
been used in practice). 

Assuming d > 0, to maintain the invariant I s[ < hd 

throughout the division process, we must be able to restore 
a shifted partial remainder, having the worst-case 
magnitude rhd, to hd or less by subtracting ad  from it, thus 
leading to the requirement: 

r h d -  ad  < hd or h < a / ( r - 1 )  

Choosing h - a / ( r -  1), so as to impose the least possible 
restriction on the range of s, we can easily determine the 
boundaries of the region where x is a valid quotient digit: 

- h d  < p - xd  < hd 

This leads to the following range for p, across which x is a 
valid quotient digit value: 

( x -  h)d  < p < (x + h)d  

The ranges associated with the validity of x and x - 1 as 
quotient digit values overlap. The values of p for which 
both x and x -  1 are valid quotient digit choices satisfy: 

( x -  h)d  < p < ( x -  1 + h)d  

Figure 1 is a graphical representation of this overlap region 
which is bounded by the two straight lines p = ( x -  h)d  and 
p = (x - 1 + h)d. This representation is known as a p-d  plot. 
Within the overlap region shown in the partial p-d  plot of 
Fig. 1, the quotient digit can be chosen to be x -  1 or x. 
Thus, the boundary for choosing between x -  1 and x as 
quotient digit value can be drawn anywhere within the 
overlap region. 

P~ 

Ap "'~" 

ik (x-1 + h~~lk~Choose x 

(x~-h)d~ hOOsex-1 

Y 

d min d 

Fig. 1. Part of a p-d plot, showing an overlap 
region along with Ad and Ap. 

3. Known Lower Bounds for Precision 

If we truncate d to 8 bits after the radix point, the 
uncertainty in its value, based on the truncated form d T, will 
be less than w -  2 -~. In other words, d T < d < d T + 2 -a. 
Similarly if we truncate p to e bits after the radix point to 
get pT, we have pT < p < PT + 2-~" These two truncations, 
together define a grid or tiling on the p - d  plot, with vertical 
(horizontal) grid lines being w -  24 ( y -  2 -~) apart. 

Choice of quotient digit based on d T and PT is possible only 
if none of the rectangular w x y tiles on the p - d  plot, each 
one representing uncertainties in the values of d and p, 
intersects both boundaries of an overlap region. Put another 
way, between each pair of adjacent vertical (horizontal) 
grid lines, there must exist a horizontal (vertical) grid line 
that is totally contained in the overlap region. Defining Ad 
as the minimum horizontal separation between boundaries 
of the overlap region (Fig. 1), clearly we must have w < Ad. 
Based on the equations for the two lines bounding the 
overlap region in Fig. 1, we find 

Ad = d m i n ( 2 h  - 1) / ( x -  h) 

which assumes its smallest possible value for x -  a. Hence, 
we arrive at the following well-known lower bound (lb) for 
the precision required of d in quotient digit selection: 

a > lb(~i) -I--log2Ad] = I - - l o g 2 [ d m i n ( 2 h -  1) / ( a -  h)]] 

A similar argument yields: 

>_ lb(e) - I--log2Ap-] - [--log2[dm~n(2h - 1)]] 

Of course, in addition to the fractional bits of d and p, as 
dictated by the bounds above, integer bits of each operand 
must also be inspected. Because even in unsigned division, 
the partial remainder can go negative, the sign bit of p is 
important as well. In the case of signed division, the sign 
bit of d is also involved in the decision. 
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Fig. 2. Tiling the p-d plot and embedding 
stairs in an overlap region. 

Returning to the discussion of the number of fractional bits 
needed, we endeavor to prove that setting 8 = lb(8) + 1 and 
s = lb(s) + 1 is always sufficient for quotient digit selection, 
thus establishing the simultaneous upper bounds ub(8) = 
lb(8) + 1 and ub(s) = lb(e) + 1. Figure 2 represents an 
example. Here, based on the precision lower bounds 
provided by Ad and Ap, the coarse grid of rectangular W x 
Y tiles (solid, heavy gray lines) is built. The resulting 
precisions are clearly inadequate, as evident from the 
absence of a solid horizontal grid line spanning the overlap 
region between the vertical grid lines at d rain and d rain + W. 
Our results will show that halving the grid line spacing in 
each dimension (adding the broken grid lines in Fig. 2) 
provides adequate precision in the worst case. 

4. Upper  Bounds  for Precision 

With the background presented in the previous sections, we 
are now ready to state and prove our main result. 

Theorem 1: To select a quotient digit in [-a, a] for radix-r 
division, with r a power of 2, it is sufficient to inspect 8 bits 
of d and e bits of p after their radix points, where: 

8 - ~ - l o g 2 [ d m i n ( 2 h  - 1 ) / ( a  - h ) ]q  + 1 

E = [ ' - logz[d 'n in (2h  - 1)]7 + 1 

Proof: We need to show that if vertical grid lines are 
spaced w = 2 -8 apart, there will be at least one horizontal 
grid line that is entirely contained in the overlap region 
between two successive vertical grid lines. The proof is 
based on Fig. 3 and consists of showing that any rectangle 
that touches two consecutive vertical grid lines and the 
edges of the overlap region has a height of at least Ap/2,  

which is no less than 2 -~, the spacing between horizontal 
grid lines. We only need to prove this at the leftmost edge 
of the uppermost overlap region (defining the boundary 

between choosing a - 1 or a as the quotient digit value). 
Corresponding rectangles in other parts of the same overlap 
region or in other overlap regions are taller, as exemplified 
by the rectangle near the right end of the overlap region in 
Fig. 3. So, we want to show that u > Ap/2.  But this is a 
simple consequence of w < Ad/2,  which leads to v < Ap/2. 

P~ 
L (a- 1 +~~.~Choose a 

i ! I ' 
o s e  a - ,  

~ j  (a-'h)d\ 

d min d 

Fig. 3. Part of a p-d plot and notation used 
in the proof of Theorem 1. 

5. Determining the Required Precision 

Based on the results of Theorem 1, the following procedure 
should be used to determine the precision required of d and 
p for selecting the quotient digit. First we note that only the 
four cases shown in Table I need to be investigated. If none 
of these four cases proves viable, then the use of lb(8) + 1 
bits of precision for d and lb(s) + 1 bits of precision for p 
(per Theorem 1) is warranted. 

Table I. Cases to be tried before using the 
upper bounds of Theorem 1. 

2 lb(8)+l lb(e) 

3 lb(8) lb(e)+l 

4 lb(8)+2 lb(e) 

Begin with lower bounds 

Increase the precision of d first, 
because it is easier than p, 
which is in carry-save form 

Next, increase the precision of p 
Inspecting 2 bits of d is simpler 
than 1 bit each of d and p 
(carry-save); so try this case too 

Verification in each case is easy to mechanize. The process 
consists of checking that for all of the overlap regions, of 
which there are a in the first quadrant, and all consecutive 
pairs of vertical grid lines, of which there are  28(d max- drain), 
a horizontal grid line exists that is totally contained in the 
overlap region. Referring to Fig. 3, this means that for the 
points A and B of the rectangle associated with the overlap 
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region for x - 1 and x, and the pair of vertical grid lines at 
d rain + 2-~m and d rain + 2-~(m + 1), the coordinates 

p(A) = ( x -  1 + h)(d  rain + 2-8m) 

p(B) = ( x -  h)(d  rain + 2-~(m + 1)) 

must be such that there exists an integer multiple of 2 -~ 
between them; i.e., we must have: 

L2'p(A)J _> 2ep(B) 

So, the algorithm, presented in Fig. 4, has two nested loops, 
corresponding to varying x and m, with the inner loop 
termination condition being 2~p(B)- 2~p(A) > 1. This latter 
condition is sufficient for the existence of the required 
horizontal grid line, but is not necessary; for example, there 
exists an integer between 2.75 and 3.25, even though their 
difference is less than 1. Note that the condition is verified 
only in the first quadrant of the p-d plot, for even though 
the choice of quotient digit is not symmetric about the two 
axes, the placement of the uncertainty regions, which 
affects the required precisions, is symmetric. 

function adequate(r,a,ot~in,dmax,(~,E:) 
h := a/(r -  1) 
x:= 1 
while x < a do 

m:=0 
n := 2~( ~ax_ ~in) 
A := 2 ~ ( x -  1 + h)o t~in 
B := 2 ~ ( x -  h)(O thin + 2 -'~) 
S := 2 ~-~ ( x -  1 + h) 
T := 2 ~-~ ( x -  h) 
while m < n do 

i f A - B >  1 
then rn := n 
else if LA_I >__ B 

then m := m + 1 

/* Index of overlap region */ 
/* Check the x-1 / x overlap*/ 
/* Index of vertical grid line */ 

/* Initial value for 2 ~ p(A) */ 
/* Initial value for 2 ~ p(B) */ 
/* Step size for 2 ~ p(A) */ 
/* Step size for 2 ~ p(B) */ 
/* Btwn ruth & (m+l)th lines */ 

/* No need to check further */ 

/* Check next grid line */ 
else return false /* Precision is inadequate */ 
endif 

endif 
A = A + S  
B = B + T  

endwhile 
x:= x+ 1 

endwhile 
return true /* Precision is adequate */ 
endfunction adequate 

Fig. 4. Verifying if precisions of ~ bits for d T 
and ~ bits for PT are adequate. 

Note that for the sake of clarity, the pseudocode in Fig. 4 
has not been fully optimized. In an actual coding of the 
algorithm, the values of A, B, S, and T could be initialized 
for x = 1 outside the x while loop and then appropriately 
updated with advancing x. Updating of these values inside 
the while loop would then require only addition of 
increment values, in much the same way that updating of A 
and B in the inner m loop is now handled. 

6. C o n c l u s i o n  

In the literature on computer arithmetic, it is often 
mentioned that determining the precisions required of 
truncated forms of d and p to correctly choose the radix-r 
quotient digits from the digit set [-a, a] involves several 
iterations over the design space. In this paper, we have 
proven that the number of cases to be tried is limited to at 
most four, as listed in Table 1, given choices for r (power- 
of-2 radix) and a (defining a symmetric, redundant digit 
set). Considering that the trials are easily mechanized and 
that the choice of the radix r is quite limited by 
cost/performance requirements, the design process is not as 
cumbersome as one might have thought. 

A question for continued research is whether the number of 
cases to be tried can be further reduced. For example, one 
migth investigate if any of the cases listed in Table I can be 
ruled out based on simple analytical tests (as opposed to 
exhaustive testing). However, this is only of theoretical 
interest, as testing based on the algorithm given in Fig. 4 is 
simple enough for practical purposes. 
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