
RNS Representations with Redundant Residues

(I n v i t e d P a p e r)

Behrooz Parhami

Dept. Electrical and Computer Enginnering
University of California

Santa Barbara, CA 93106, USA
parhami @ece. ucsb. edu

Abstract

Residue number system (RNS) representations that contain
redundant moduli have been extensively studied with
regard to their error checking properties. A second form of
redundancy in RNS, that of redundant residues, has been
applied in certain application contexts to gain speed and
cost benefits. Such applications are developed in an ad hoc
manner and there does not exist a theoretical framework
for the latter variety of redundant RNS. We develop a
theory of RNS representations with redundant residues and
show how representation parameters affect the speed and
complexity of various arithmetic operations. The theory
parallels that of redundant signed-digit representations in
that at issue are choice of 'residue sets' (akin to digit sets),
encoding of residue sets, conversions between residue sets
with different degrees of redundancy, including none, and
algorithms for arithmetic on redundant-residue operands.

Keywords: Carry-free addition, Computer arithmetic,
Modular reduction, Number system, Parallel processing,
Redundant representation, Residue number system, VLSI.

Guide to Notation and Terminology

Note: The modulus index i is omitted when specifying how
a single residue is representated and/or processed.
For abbreviations used, see Table I and Example 1.

[o, o) Half-open interval, upper endpoint excluded
[°, °] Closed interval, both endpoints included
<°),,, Residue of a value or an expression modulo m
Pi Redundancy index of [a;, b;], def. as b i + 1 - a i- m i
a i, b~ Endpoints of the ith, mod-m~, residue set R i = [a s b~]
h Bit width of a standard mod-m residue = Flog2m7
m i The ith modulus of an RNS (residue number system)
M Dynamic range of an RNS = ~i~t0.k-~l mi
M Dynamic range, with m i exluded; i.e., M/m~
n Smallest integer such that 2" = 1 mod m
p Position sum of residues or pseudoresidues
t Comparison threshold for modular reduction
x i, y~ Residue modulo mi (lowercase variable)
X, Y~ Pseudoresidue modulo m~ (uppercase variable)

1. Introduct ion

Using representational redundancy is an established method
for improving the performance of arithmetic circuits. A key
reason is that redundancy provides some tolerance to
imprecision, so that certain decisions can be made based on
local information or truncated versions of operands and
partial results [Atki75]. Modern arithmetic circuits make
extensive use of redundancy: in multipliers, multiply-add
units, dividers, square rooters, etc. [Parh00].

Residue number system (RNS) representations have a long
history that has been traced back to ancient China [Jenk93].
In modern times, Svoboda [Svob59] and Garner [Garn59]
are credited with independently suggesting the usefulness
of this method for faster arithmetic in digital computers.
RNS uses mod-m residues in [0, m), which is the standard
residue set, or, more generally, in [a, m + a), as is the case
in a symmetric residue set where a = - (m - 1)/2 for odd m.
Three kinds of redundancy can be envisaged in RNS:

Extra residues (moduli) beyond those needed
to provide a desired dynamic range.

2. Redundant representation of conventional
residues to render arithmetic on them faster.

3. Redundant residues with a range exceeding
the m values in [a, m + a) for some a.

The first kind has been extensively studied and is relatively
well-understood (see, e.g., [Etze80]). The extra residues
allow cross-checking for error detection or correction using
standard base extension methods. The second kind, though
viable, has not been applied in practice, primarily because
residues are often small numbers that are easily handled by
means of conventional arithmetic circuits or table lookup.
Our focus in this paper is redundant RNS of the third kind.
This kind of redundancy has been used in many different,
and seemingly unrelated, contexts and has never been
explicitly recognized as a type of redundant representation.
We seek to remedy this shortcoming so that results in this
area can be related to, and benefit from, work on other
classes of redundant representations.

0-7803-7147-X/01/$10.00©2001 IEEE 1651

2. Residue Number Systems

An RNS is characterized by a set of k pairwise relatively
prime moduli %-1 > • • • > ml > m0 and a residue set R~ for
the ith modulus, typically chosen to be [0, mi). Clearly, at
most one of the moduli can be even and that one is usually
taken to be a power of 2 to simplify the associated circuitry;
all other moduli are odd. Roughly speaking, the set of
moduli corresponds to the choice of a radix and the residue
set to the digit set of conventional positional number
representations. Just as the digit set of nonredundant radix-r
system can be chosen to be [a, r + a), a < 0, the residue set
R i associated with m i can be selected to be [a;, m~ + a).

Such nonredundant RNS have been extensively studied and
used, primarily, in signal processing applications. For a
concise treatment of residue number systems and issues in
implementing RNS arithmetic, see Chap. 4 in [Parh00].
State of the art in RNS theory and applications, circa the
mid 1980s, is provided by [Sode86]. Some application
details, including examples of custom chip implementations
can be found in [Jenk93]. After a slowdown in reporting of
research results on RNS, renewed interest is evident due to
a combination of emerging, more efficient, algorithms for
difficult operations such as division [Hung94] and potential
power economy of RNS arithmetic [Frek97]. In what
follows, we review only elementary properties of RNS to
the extent needed for understanding the role of redundancy,
as explained in the rest of this paper.

An RNS may have a handful of large moduli, typically
chosen to be integers of the form 2 ~' or 2 h _+ 1, or a larger
number of small moduli, often chosen to be primes or
powers of primes. The former category of RNS corresponds
to very-high-radix number representation systems, in which
digit manipulation circuits are quite complex but there are
fewer such circuits, while the latter are akin to moderartely
high radices such as 16 or 64. Issues in choosing the
moduli, and the associated cost/speed tradeoffs, are beyond
the scope of this paper. However, we emphasize that the
techniques discussed here are applicable to either category
of RNS, regardless of the choice of the moduli and the use
of signed or unsigned residues.

The primary advantage of RNS is that addition, subtraction,
and multiplication can be performed independently and in
parallel on the various residues. When the residues are
small, this results in very high speed, particularly for
multiplication which is slow/expensive with conventional
number representation. Figure 1 depicts two ways of
implementing a residue adder for a modulus m. The simpler
version (Fig. l a), which is often described in the literature,
adds two h-bit residues, x and y, to form their sum u + 2~'c.
If either c or the carry-out d of the addition u + 2 j' - m is 1
(the latter implying, for c = 0, that x + y > m), then the
output is v = x + y - m instead of x + y. The somewhat
faster implementation in Fig. l b forms v directly through a
carry-save addition and an ordinary addition.

x h.~ 2h-m
h.~ h/ /

v
Adder/ 0

d v o
• ~. Add;r

i V

S = (! + Y)m
(a) Cascade

x h.~ 2h-m

\ v / c Adder 0
h/ / x y

u] CarryCSAsum]
e

.

. ;Mux

S = (! + Y) m
(b) Parallel

Fig. 1. Two mod-m residue adders.

A residue multiplier is somewhat more complex, but still
considerably simpler and faster than an ordinary binary
multiplier. A bit-at-a-time implementation would use a
modular adder to derive the h-bit mod-m product in h
cycles. It is also possible to use an h x h combinational
(tree or array) multiplier, followed by a mod-m reduction
circuit for the 2h-bit product. Alternatively, modular
reduction can be fused with combining of partial products
for speed/economy, particularly if one takes advantage of
the fact that some bit patterns are unused [Pali01].

Here, we say nothing about implementation of difficult
RNS operations such as sign test, overflow detection,
magnitude comparison, or general division [Parh00]. The
methods to be discussed do not cure such difficulties but
are meant as mechanisms for making the already efficient
RNS operations even simpler and more efficient. To the
extent that the difficult operations use the simpler ones as
building blocks, the added efficiency benefits those as well.

3. Redundant Residues or Pseudoresidues

Consider a modulus m satisfying 2 ~'-I < m < 2 h. Conventional
binary residues associated with this modulus are h-bit
unsigned numbers in the range [0, m); we refer to these as
single-range unsigned (SRU) residues. Similarly, single-
range signed (SRS) residues have a symmetric or almost
symmetric range [-Lm/2J, rm/27), depending on whether m
is odd or even. In both of these cases, the residues are
nonredundant in the sense that each mod-m equivalence
class has a single representative in the residue set.

In a manner similar to the use of digit sets with more than r
values for radix-r positional representations, we can
envisage the use of more than m values in a residue set.
Using multiple representatives from some or all mod-m
equivalence classes does not cause any problem in
arithmetic because all operations are modulo m.

1652

We refer to residues from redundant sets as pseudoresidues
and to the resulting RNS as redundant-residue RNS. This is
to distinguish our systems from redundant-modulus RNS in
which extra moduli, beyond the minimum set required for
providing a desired dynamic range, are employed for the
sake of error detection and/or correction.

Table I shows the nonredundant SRU and SRS residue sets
along with several examples of redundant residue sets. The
redundancy index associated with a modulus m having
pseudoresidues in [a, b], or [a, b + 1), is defined as:

p = b + 1 - a - m

The two single-width redundant residue sets use the entire
range of values offered by an h-bit representation as valid
pseudoresidues, in unsigned (SWU) or 2's-complement
signed (SWS) format. Doublerange pseudoresidues can
assume twice as many values as a nonredundant residue,
again in unsigned (DRU) or signed (DRS) form. A useful
encoding of DRU is the carry-save format in which the
pseudoresidue is the sum of two h-bit unsigned numbers
that are separately represented. Squared- or quadratic-range
unsigned (QRU) residues are capable of holding the
product of two SRU residues and have thus been used in
inner-product computations of the type found in digital
filters. Doublewidth unsigned residues can be used in lieu
of QRU for implementation simplicity. End-around residue
sets allow an overflow of weight 2" to be reinserted at the
least-significant position, given the property 2" = l mod m.
For example, mod-9 residues can be accumulated by using
6-bit pseudoresidues with end-around carry (26= 1 mod 9).

Table I. Some choices for mod-m residue set.

Single-range unsigned [0, m) 0

SRS Single-range signed [-Lm/2J, [m/2q) 0
SWU Single-width unsigned [0, 2 h) 2 h- m

[2 h-1 2 ~-l) 2"- SWS Single-width signed - , m

DRU Doublerange unsigned [0, 2m) m

DRUcs DRU, carry-save variant [0, 2 m - 2] m - 1

DRS Doublerange signed [-m, m) m
,i

QRU Squared-range unsigned [0, (m - l)2] m2_3m+2

DWU Doublewidth unsigned [0, 2 2h) 2 2h- m

EAU End-around unsigned [0, 2") 2"- m

Such redundant residue sets have been used in an ad hoc
fashion as tools for speeding up or simplifying circuit
designs [Bhar981, [Burg98], [Ibra941, [Koc98], [Parh96],
[Pies94], [Pour97]. They are not explicitly recognized as
redundant residues and, thus, have not enjoyed a uniform
treatment. Our contribution is to derive a general theory of
redundant-residue RNS representations that allows us to
obtain such implementation strategies as special cases, thus
facilitiating design tradeoffs and fostering the portability of
techniques and results among different application contexts.

4. A d d i t i o n w i t h P s e u d o r e s i d u e s

Two kinds of 2-operand addition involving pseudoresidues
might be envisaged:

Pseudoresidue + Residue ---> Pseudoresidue

Pseudoresidue + Pseudoresidue --> Pseudoresidue

The first kind is akin to carry-save addition in that it might
be used to accumulate the sum of a set of numbers
(represented with ordinary residues) while taking advantage
of speed/ease of arithmetic with pseudoresidues; the second
kind is of the same flavor as adding redundant operands in
(generalized) signed-digit arithmetic. We will take ordinary
residues to lie in [0, m); similar results can be developed for
symmetric or arbitrary nonredundant residue sets.

Symbolically, we write the first type of modulo-m addition
as the following combination of residue sets:

[a, a + m + p) + [0, m) ---> [a, a + m + 9)

Because the sum on the left lies in [a, a + 2m + 9 - 1), the
addition process requires that the raw sum be reduced by m
whenever it is greater than a + m + 9 - 1 (or _> a + m + 9).
In fact, the comparison threshold t_,,, for determining if the
position sum p should be reduced by m via testing p _>? t
can lie anywhere in [a + m, a + m + p]. Whenever this
range includes a power of 2, the comparison can be
simplified by choosing it as t,,,. Here are some examples:

DRU + SRU ---> DRU, t_,,, = 2 h

DRUcs + SRU --> DRUcs, t_,,, = 2 ~'

SWS + SRU --> SWS, t_ m = 2 h-1

SWU + SRU ---> SWU, t_ m = 2 h

The adder hardware for the last example above is depicted
in Fig. 2a, where the subtraction of m is performed by
discarding the carry c and adding c(2 h - m); this latter term
is formed by fanning out the signal c into all positions
where 2 ~'- m has ls. A faster version of this adder can be
developed in a manner similar to Fig. 1 b.

x y x y

':iii, + 1

Adder / 0

r:,,~-- -- 0 0

(X@+y) h+l. ~ ~'~i.,,
s = s = (-" ~ y'm

m

or (X + y~m + m or + m or +2m

(a) SWU + SRU ~ SWU (b) S+WU + SRU ~ Sh~U

Fig. 2. Pseudoresidue/residue addition.

1653

More importantly, when p is large enough, the comparison
threshold can be chosen as t_,,,- c + y for some constant c.
If c + y is in [a + m, a + m + P] for all y, one can compare X
to c instead of comparing p = X + y to c + y. This results in
significant circuit simplification and speedup and leads us
to a novel redundant-residue representation.

Example 1: Consider (h + 1)-bit residues in [0, 2" + m),
with p = 2 k. Because this representation requires one more
bit than SWU, we call it single+-width unsigned (S+WU).
Addition of such pseudoresidues to nonredundant residues
in [0, m) is quite efficient (Fig. 2b). Per our results above,
the comparison threshold must be in [0, 2 h + m] and thus
can be chosen as 2 ~ + y, or 2 ~ before the addition of y. •

The second type of mod-m addition may involve two or
three different residue sets. For brevity, we only discuss the
case of uniform residue sets for the operands/sum in some
detail, providing just one example of the more general case.
Symbolically, this type of modulo-m addition can be
written as the following combination of residue sets:

[a , a + m + p) + [a , a + m + p) ~ [a , a + m + 9)

The position sum on the left lies in [2a, 2a + 2m + 2 9 - 1).
Reducing this sum mod m may require several operations
that are best dealt with by considering various cases.

Case 1 (a = 0): In this case, which covers a majority of
practically useful examples listed in Table I, the position
sum is in [0, 2m + 29 - 1) and must be reduced to lie in the
original residue set [0, m + p). The excess magnitude over
the maximum pseudoresidue can be as high as rn + p - 1. If
p = 1, at most m needs to be subtracted from the position
sum, with the comparison constant being t , - m or m + 1.
This may occur, e.g., for SWU with m = 2Z- 1, for which
the comparison constant t_ m = 2" would be a natural choice.
In this case, the redundancy is too low to allow lookahead
in determining the subtracted value. For 1 < P < m + 1,
which covers all but the last three examples in Table I, the
amount to subtract is 0, m, or 2m, with comparison constant
ranges being [m, m + p] for t_,,, and [2m, 2m + p] for t_=,,.
Here are a couple of examples, assuming m < 3 x 2"-2:

DRU + DRU ~ DRU, t_,,, = 2 h, t_2,,, = 3 x 2"-'

SWU + SWU ~ SWU, t_ m = 2 h, t_2,,, = 3 × 2 h-'

In either example, two MSBs of the position sum are used
for deciding what value to subtract. The SWU + SWU case
is shown in Fig. 3a. The scheme for DRU + DRU is quite
similar to the above. Again, when P is large enough, the
computation becomes simpler and faster.

Example 2: Consider the (h + 1)-bit S+WU pseudoresidues
introduced in Example 1. Addition of such numbers is quite
efficient (Fig. 3b). The comparison thresholds t_,,, and t_=,,,
must be in [m, 2 h + m] and [2m, 2" + 2m], respectively.
Thus, the subtraction decision can be made based only on
the MSBs of X and K The small box to the right of the
multiplexor produces the "enable" and "select" signals by
ORing and ANDing its two inputs, respectively. •

X Y

3x2 -, 2m4v
2h m-(~Adde/0
\ o Max ~. : - : I '

[S e, %B~h_,
h-¢ oi~:.~

A d d e r / 0

S = (X + Y~m
or (X + Y)m + m

(a) SWU + SWU --> SWU

2 h+l- 2m X Y

2h~m ~ En "~+1 '~h+l
\o Max ~:::!:[]:1.... US.B....,

h+l
S = (;+~~rn

or +m or +2m
(b) S+WU + S+WU ---> S+WU

Fig. 3. Pseudoresidue/pseudoresidue addition.

Case 2 (-m < a < 0): In this case, the position sum range
[2a, 2a + 2m + 29 - 1) includes values that are too small and
thus must be adjusted upward. In the following examples,
the value m is added when the position sum is less than t÷,,,:

DRS + DRS --> DRS, t_,,, = 2 h+l, %., = 0

S W S + S W S ---) S W S , t_m = 2 '-1, t+,,, = - - 2 '-1

Hardware realization of the first example above is quite
similar to Fig. 3b, except that the mux inputs are 2" - m (0)
and m (1), the mux "enable" signal is obtained as the
XNOR of the MSBs (sign bits), and the "select" signal is
tied to either sign bit; thus, when both inputs are positive
(negative), 2 h - m (m) is added to the position sum.

Other eases: Cases with greater redundancy (smaller
values of a or larger values of p) can be handled similarly.

As an example of the second type of mod-m addition with
nonuniform residue sets, consider

DWU + QRU --~ DWU

This might be useful for inner product computations that
are of interest, for example, in digital filters libra94],
[Parh96]. The QRU component might be the 2h-bit output
of an h x h multiplier, with the sum accumulated in DWU
form. When the carry-out of the addition on the left-hand
side is 1 (worth 2="), the position sum can be reduced by
21'm, requiring an h-bit adder. The result is guaranteed to be
nonnegative and no greater than 22h- 1 + (m - 1) 2 - 2"m.
Hence, the result will be in [0, 22').

One can also envisage

DWU + DWU + QRU ---> DWU + DWU

where the notation means that a doublewidth unsigned
pseudoresidue in carry-save form (DWU + DWU) is added
to a QRU pseudoresidue, with the modular sum produced
in carry-save form. The MSBs of the three inputs can be
used to predict whether a carry-out will be produced; if so,
then 2h(2 ' - m) is added to the inputs in a 4-to-2 carry-save
adder tree with no carry propagation.

1654

5. P s e u d o r e s i d u e C o n v e r s i o n s

Converting from a source residue set [a, b] to a target set
[a', b'] involves the addition or subtraction of suitable
multiples of m. If the target residue set is redundant, there is
room for error and the multiple can be chosen based on
examining a subset of the bits in the input. Otherwise, full
precision is required, as in all redundant to nonredundant
conversions. Here are examples with redundant target sets:

1. SWU ----) DRU 3. QRU ---> DRU

2. DRUcs ---> SWU 4. DWU ---> DRU

The first of these requires no conversion at all. The second
conversion can be performed by using methods similar to
those depicted in Figs. 1-3. One possibility for the last two
conversions is to reduce the upper and lower h bits of the
input modulo m via table lookup, with the residues then
added to form an (h + 1)-bit value in [0, 2 m - 2] or used
directly if DRUcs is the desired format.

If the target residue set is nonredundant (e.g., SRU or SRS),
then a true modular reduction is required. For low-
redundancy source residue sets, circuits similar to that at
the lower half of Fig. la might do. The greater the
redundancy of the source residue set, the more difficult the
conversion to a nonredundant residue set. For tabular
realization, a stepwise refinement approcah might help
keep the size of the tables in check [Parh97].

6. M u l t i p l i c a t i o n w i t h P s e u d o r e s i d u e s

One may anticipate a need for multiplying a pseudoresidue
by another pseudoresidue (same or different type) or by an
ordinary residue. When table lookup methods are used,
low-redundancy pseudoresidues create no special difficulty,
except perhaps to make the tables somewhat larger. With
high redundancy pseudo residues or when the moduli are
large, circuit techniques are called for.

As in ordinary modular multipliers, the required modular
reduction operations can be interlaced with partial-product
accumulation steps to keep the intermediate results from
growing in width. Because of redundancy in intermediate
and final values, modular reduction steps are simplified.
Implementation details are being worked out.

7. C o n c l u s i o n

Unifying theories are desirable because they lead to better
understanding of existing techniques and also pave the way
for new developments and porting of methods from one
application domain to another. We have sown the seeds of a
unifying theory of redundant-residue RNS representations.
Further work may focus on the detailed specification of
arithmetic operations other than addition, cataloging of
other useful instances of redundant-residue systems, and
quantifying the speed/cost/power benefits of various forms
of redundancy and residue-set encodings.

R e f e r e n c e s

[Atld75] Atkins, D.E., "An Introduction to the Role of Redundancy in
Computer Arithmetic," IEEE Computer, Vol. 8, pp. 74-76,
June 1975.

[Bhat98] Bhardwaj, M. and B. Ljusanin, "The Renaissance- A Residue
Number System Based Vector Co-Processor for DSP
Dominated Embedded ASICs," Proc. Asilomar Conf. Signals,
Systems, and Computers, pp. 202-207, Nov. 1998.

[Burg98] Burgess, N., "Efficient RNS to Binary Conversion Using
High-Radix SRT Division," Proc. Asilomar Conf. Signals,
Systems, and Computers, pp. 1240-1243, Nov. 1998.

[Etze80] Etzel, M.H. and W.K. Jenkins, "Redundant Residue Number
Systems for Error Detection and Correction in Digital Filters,"
IEEE Trans. Acoustics, Speech, and Signal Processing,
Vol. 28, pp. 538-545, Oct. 1980.

[Frek97] Freking, W.L. and K.K. Parhi, "Low-Power FIR Digital Filters
Using Residue Arithmetic," Proc. 31" Asilomar Conf. Signals,
Systems and Computers, pp. 739-743, Nov. 1997.

[Gain59] Garner, H., "The Residue Number System," IEEE Trans.
Electronic Computers, Vol. 8, pp. 140-147, June 1959.

[Hung94] Hung, C.Y. and B. Parhami, "An Approximate Sign Detection
Method for Residue Numbers and Its Application to RNS
Division," Computers & Mathematics with Applications,
Vol. 27, pp. 23-35, 1994.

libra94] lbrahim, M.K., "Novel Digital Filter Implementations Using
Hybrid RNS-Binary Arithmetic," Signal Processing, Vol. 40,
pp. 287-294, 1994.

[Jenk93] Jenkins, W.K., "Finite Arithmetic Concepts," Chap. 9 in
Handbook for Digital Signal Processing, ed. by S.K. Mitra
and J.F. Kaiser, Wiley, 1993, pp. 611-675.

[Koc98] Koc, C.K. and C.Y. Hung, "Fast Algorithms for Modular
Reduction," IEE Proc. - Computers and Digital Techniques,
Vol. 145, No. 4, pp. 265-271, July 1998.

[Pali01] Paliouras, V., K. Karagianni, and T. Stouraitis, "A Low-
Complexity Combinatorial RNS Multiplier," IEEE Trans.
Circuits and Systems II, Vol. 48, pp. 675-683, July 2001.

[Parh94] Parhami, B. and C.Y. Hung, "Optimal Table Lookup Schemes
for VLSI Implementation of Input/Output Conversions and
Other Residue Number Operations," VLSI Signal Processing
VII (Proc. of IEEE Workshop), pp. 470-481, Oct. 1994.

[Path96] Parhami, B., "A Note on Digital Filter Implementation Using
Hybrid RNS-Binary Arithmetic," Signal Processing, Vol. 51,
pp. 65-67, 1996.

[Path97] Parhami, B., "Modular Reduction by Multi-Level Table
Lookup," Proc. 40" Midwest Syrup. Circuits and Systems,
pp. 381-384, Aug. 1997.

[Parh00] Parhami, B., Computer Arithmetic: Algorithms and Hardware
Designs, Oxford, 2000.

[Pies94] Piestrak, S.J . , "Design of Residue Generators and
Multioperand Modular Adders Using Carry-Save Adders,"
IEEE Trans. Computers, Vol. 43, pp. 68-77, Jan. 1994.

[Pour97] Pourbigharaz, F. and H.M. Yassine, "A Signed-Digit
Architecture for Residue to Binary Conversion," IEEE Trans.
Computers, Vol. 46, pp. 1146-1150, Oct. 1997.

[Sode86] Soderstrand, M.A., W.K. Jenkins, G.A. Jullien, and F.J. Taylor
(Eds.), Residue Number System Arithmetic, IEEE Press, 1986.

[Svob59] Svoboda, A., "The Numerical System of Residual Classes in
Mathematical Machines," in Information Processing (Proc.
UNESCO Conf., 1959), pp. 419-422, 1960.

1655

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

