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Abstract 

Residue number system (RNS) representations that contain 
redundant moduli have been extensively studied with 
regard to their error checking properties. A second form of 
redundancy in RNS, that of redundant residues, has been 
applied in certain application contexts to gain speed and 
cost benefits. Such applications are developed in an ad hoc 
manner and there does not exist a theoretical framework 
for the latter variety of redundant RNS. We develop a 
theory of RNS representations with redundant residues and 
show how representation parameters affect the speed and 
complexity of various arithmetic operations. The theory 
parallels that of  redundant signed-digit representations in 
that at issue are choice of 'residue sets' (akin to digit sets), 
encoding of residue sets, conversions between residue sets 
with different degrees of redundancy, including none, and 
algorithms for arithmetic on redundant-residue operands. 

Keywords: Carry-free addition, Computer arithmetic, 
Modular reduction, Number system, Parallel processing, 
Redundant representation, Residue number system, VLSI. 

Guide to Notation and Terminology 

Note: The modulus index i is omitted when specifying how 
a single residue is representated and/or processed. 
For abbreviations used, see Table I and Example 1. 

[o, o) Half-open interval, upper endpoint excluded 
[°, °] Closed interval, both endpoints included 
<°),,, Residue of a value or an expression modulo m 
Pi Redundancy index of [a;, b;], def. as b i + 1 - a i- m i 
a i, b~ Endpoints of the ith, mod-m~, residue set R i = [a s b~] 
h Bit width of a standard mod-m residue = Flog2m7 
m i The ith modulus of an RNS (residue number system) 
M Dynamic range of an RNS = ~i~t0.k-~l mi 
M Dynamic range, with m i exluded; i.e., M/m~ 
n Smallest integer such that 2" = 1 mod m 
p Position sum of residues or pseudoresidues 
t Comparison threshold for modular reduction 
x i, y~ Residue modulo mi (lowercase variable) 
X, Y~ Pseudoresidue modulo m~ (uppercase variable) 

1. Introduct ion  

Using representational redundancy is an established method 
for improving the performance of arithmetic circuits. A key 
reason is that redundancy provides some tolerance to 
imprecision, so that certain decisions can be made based on 
local information or truncated versions of operands and 
partial results [Atki75]. Modern arithmetic circuits make 
extensive use of redundancy: in multipliers, multiply-add 
units, dividers, square rooters, etc. [Parh00]. 

Residue number system (RNS) representations have a long 
history that has been traced back to ancient China [Jenk93]. 
In modern times, Svoboda [Svob59] and Garner [Garn59] 
are credited with independently suggesting the usefulness 
of this method for faster arithmetic in digital computers. 
RNS uses mod-m residues in [0, m), which is the standard 
residue set, or, more generally, in [a, m + a), as is the case 
in a symmetric residue set where a = -  ( m -  1)/2 for odd m. 
Three kinds of redundancy can be envisaged in RNS: 

Extra residues (moduli) beyond those needed 
to provide a desired dynamic range. 

2. Redundant representation of conventional 
residues to render arithmetic on them faster. 

3. Redundant residues with a range exceeding 
the m values in [a, m + a) for some a. 

The first kind has been extensively studied and is relatively 
well-understood (see, e.g., [Etze80]). The extra residues 
allow cross-checking for error detection or correction using 
standard base extension methods. The second kind, though 
viable, has not been applied in practice, primarily because 
residues are often small numbers that are easily handled by 
means of conventional arithmetic circuits or table lookup. 
Our focus in this paper is redundant RNS of the third kind. 
This kind of redundancy has been used in many different, 
and seemingly unrelated, contexts and has never been 
explicitly recognized as a type of redundant representation. 
We seek to remedy this shortcoming so that results in this 
area can be related to, and benefit from, work on other 
classes of redundant representations. 
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2. Residue Number Systems 

An RNS is characterized by a set of k pairwise relatively 
prime moduli %-1 > • • • > ml > m0 and a residue set R~ for 
the ith modulus, typically chosen to be [0, mi). Clearly, at 
most one of the moduli can be even and that one is usually 
taken to be a power of 2 to simplify the associated circuitry; 
all other moduli are odd. Roughly speaking, the set of 
moduli corresponds to the choice of a radix and the residue 
set to the digit set of conventional positional number 
representations. Just as the digit set of nonredundant radix-r 
system can be chosen to be [a, r + a), a < 0, the residue set 
R i associated with m i can be selected to be [a;, m~ + a). 

Such nonredundant RNS have been extensively studied and 
used, primarily, in signal processing applications. For a 
concise treatment of residue number systems and issues in 
implementing RNS arithmetic, see Chap. 4 in [Parh00]. 
State of the art in RNS theory and applications, circa the 
mid 1980s, is provided by [Sode86]. Some application 
details, including examples of custom chip implementations 
can be found in [Jenk93]. After a slowdown in reporting of 
research results on RNS, renewed interest is evident due to 
a combination of emerging, more efficient, algorithms for 
difficult operations such as division [Hung94] and potential 
power economy of RNS arithmetic [Frek97]. In what 
follows, we review only elementary properties of RNS to 
the extent needed for understanding the role of redundancy, 
as explained in the rest of this paper. 

An RNS may have a handful of large moduli, typically 
chosen to be integers of the form 2 ~' or 2 h _+ 1, or a larger 
number of small moduli, often chosen to be primes or 
powers of primes. The former category of RNS corresponds 
to very-high-radix number representation systems, in which 
digit manipulation circuits are quite complex but there are 
fewer such circuits, while the latter are akin to moderartely 
high radices such as 16 or 64. Issues in choosing the 
moduli, and the associated cost/speed tradeoffs, are beyond 
the scope of this paper. However, we emphasize that the 
techniques discussed here are applicable to either category 
of RNS, regardless of the choice of the moduli and the use 
of signed or unsigned residues. 

The primary advantage of RNS is that addition, subtraction, 
and multiplication can be performed independently and in 
parallel on the various residues. When the residues are 
small, this results in very high speed, particularly for 
multiplication which is slow/expensive with conventional 
number representation. Figure 1 depicts two ways of 
implementing a residue adder for a modulus m. The simpler 
version (Fig. l a), which is often described in the literature, 
adds two h-bit residues, x and y, to form their sum u + 2~'c. 
If either c or the carry-out d of the addition u + 2 j' - m is 1 
(the latter implying, for c = 0, that x + y > m), then the 
output is v = x + y - m instead of x + y. The somewhat 
faster implementation in Fig. l b forms v directly through a 
carry-save addition and an ordinary addition. 

x h.~ 2h-m 
h.~ h/ / 

v 
Adder/ 0 

d v o 
• ~. ..... Add;r .... 

i ........ V 

S = ( ! +  Y)m 
(a) Cascade 

x h.~ 2h-m 

\ v /  c Adder 0 
h/ /  x y 

u ] CarryCSAsum ] 
e 

. . . . . . . . . . .  

. . . . . . . . .  ;Mux 

S = ( ! +  Y) m 
(b) Parallel 

Fig. 1. Two mod-m residue adders. 

A residue multiplier is somewhat more complex, but still 
considerably simpler and faster than an ordinary binary 
multiplier. A bit-at-a-time implementation would use a 
modular adder to derive the h-bit mod-m product in h 
cycles. It is also possible to use an h x h combinational 
(tree or array) multiplier, followed by a mod-m reduction 
circuit for the 2h-bit product. Alternatively, modular 
reduction can be fused with combining of partial products 
for speed/economy, particularly if one takes advantage of 
the fact that some bit patterns are unused [Pali01 ]. 

Here, we say nothing about implementation of difficult 
RNS operations such as sign test, overflow detection, 
magnitude comparison, or general division [Parh00]. The 
methods to be discussed do not cure such difficulties but 
are meant as mechanisms for making the already efficient 
RNS operations even simpler and more efficient. To the 
extent that the difficult operations use the simpler ones as 
building blocks, the added efficiency benefits those as well. 

3. Redundant Residues or Pseudoresidues 

Consider a modulus m satisfying 2 ~'-I < m < 2 h. Conventional 
binary residues associated with this modulus are h-bit 
unsigned numbers in the range [0, m); we refer to these as 
single-range unsigned (SRU) residues. Similarly, single- 
range signed (SRS) residues have a symmetric or almost 
symmetric range [-Lm/2J, rm/27 ), depending on whether m 
is odd or even. In both of these cases, the residues are 
nonredundant in the sense that each mod-m equivalence 
class has a single representative in the residue set. 

In a manner similar to the use of digit sets with more than r 
values for radix-r positional representations, we can 
envisage the use of more than m values in a residue set. 
Using multiple representatives from some or all mod-m 
equivalence classes does not cause any problem in 
arithmetic because all operations are modulo m. 
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We refer to residues from redundant sets as pseudoresidues 
and to the resulting RNS as redundant-residue RNS. This is 
to distinguish our systems from redundant-modulus RNS in 
which extra moduli, beyond the minimum set required for 
providing a desired dynamic range, are employed for the 
sake of error detection and/or correction. 

Table I shows the nonredundant SRU and SRS residue sets 
along with several examples of redundant residue sets. The 
redundancy index associated with a modulus m having 
pseudoresidues in [a, b], or [a, b + 1), is defined as: 

p = b +  1 - a - m  

The two single-width redundant residue sets use the entire 
range of values offered by an h-bit representation as valid 
pseudoresidues, in unsigned (SWU) or 2's-complement 
signed (SWS) format. Doublerange pseudoresidues can 
assume twice as many values as a nonredundant residue, 
again in unsigned (DRU) or signed (DRS) form. A useful 
encoding of DRU is the carry-save format in which the 
pseudoresidue is the sum of two h-bit unsigned numbers 
that are separately represented. Squared- or quadratic-range 
unsigned (QRU) residues are capable of holding the 
product of two SRU residues and have thus been used in 
inner-product computations of the type found in digital 
filters. Doublewidth unsigned residues can be used in lieu 
of QRU for implementation simplicity. End-around residue 
sets allow an overflow of weight 2" to be reinserted at the 
least-significant position, given the property 2" = l mod m. 
For example, mod-9 residues can be accumulated by using 
6-bit pseudoresidues with end-around carry (26= 1 mod 9). 

Table I. Some choices for mod-m residue set. 

Single-range unsigned [0, m) 0 

SRS Single-range signed [-Lm/2J, [m/2q ) 0 
SWU Single-width unsigned [0, 2 h) 2 h- m 

[ 2 h-1 2 ~-l) 2"- SWS Single-width signed - , m 

DRU Doublerange unsigned [0, 2m) m 

DRUcs DRU, carry-save variant [0, 2 m -  2] m -  1 

DRS Doublerange signed [-m, m) m 
,i 

QRU Squared-range unsigned [0, (m - l )2] m2_3m+2 

DWU Doublewidth unsigned [0, 2 2h) 2 2h- m 

EAU End-around unsigned [0, 2") 2"-  m 

Such redundant residue sets have been used in an ad hoc 
fashion as tools for speeding up or simplifying circuit 
designs [Bhar981, [Burg98], [Ibra941, [Koc98], [Parh96], 
[Pies94], [Pour97]. They are not explicitly recognized as 
redundant residues and, thus, have not enjoyed a uniform 
treatment. Our contribution is to derive a general theory of 
redundant-residue RNS representations that allows us to 
obtain such implementation strategies as special cases, thus 
facilitiating design tradeoffs and fostering the portability of 
techniques and results among different application contexts. 

4. A d d i t i o n  w i t h  P s e u d o r e s i d u e s  

Two kinds of 2-operand addition involving pseudoresidues 
might be envisaged: 

Pseudoresidue + Residue ---> Pseudoresidue 

Pseudoresidue + Pseudoresidue --> Pseudoresidue 

The first kind is akin to carry-save addition in that it might 
be used to accumulate the sum of a set of numbers 
(represented with ordinary residues) while taking advantage 
of speed/ease of arithmetic with pseudoresidues; the second 
kind is of the same flavor as adding redundant operands in 
(generalized) signed-digit arithmetic. We will take ordinary 
residues to lie in [0, m); similar results can be developed for 
symmetric or arbitrary nonredundant residue sets. 

Symbolically, we write the first type of modulo-m addition 
as the following combination of residue sets: 

[a, a + m + p) + [0, m) ---> [a, a + m + 9) 

Because the sum on the left lies in [a, a + 2m + 9 -  1), the 
addition process requires that the raw sum be reduced by m 
whenever it is greater than a + m + 9 - 1 (or _> a + m + 9). 
In fact, the comparison threshold t_,,, for determining if the 
position sum p should be reduced by m via testing p _>? t ..... 
can lie anywhere in [a + m, a + m + p]. Whenever this 
range includes a power of 2, the comparison can be 
simplified by choosing it as t,,,. Here are some examples: 

DRU + SRU ---> DRU, t_,,, = 2 h 

DRUcs + SRU --> DRUcs, t_,,, = 2 ~' 

SWS + SRU --> SWS, t_ m = 2 h-1 

SWU + SRU ---> SWU, t_ m = 2 h 

The adder hardware for the last example above is depicted 
in Fig. 2a, where the subtraction of m is performed by 
discarding the carry c and adding c(2 h - m); this latter term 
is formed by fanning out the signal c into all positions 
where 2 ~'- m has ls. A faster version of this adder can be 
developed in a manner similar to Fig. 1 b. 

x y x y 

':iii, + 1  

Adder / 0 

r:,,~-- -- 0 0 

(X@+y) h+l. ~ ~'~i.,, ................................... 
s = s = (-" ~ y'm 

m 

or (X + y~m + m or + m or +2m 

(a) SWU + SRU ~ SWU (b) S+WU + SRU ~ Sh~U 

Fig. 2. Pseudoresidue/residue addition. 
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More importantly, when p is large enough, the comparison 
threshold can be chosen as t_,,,- c + y for some constant c. 
If c + y is in [a + m, a + m + P] for all y, one can compare X 
to c instead of comparing p = X + y to c + y. This results in 
significant circuit simplification and speedup and leads us 
to a novel redundant-residue representation. 

Example  1: Consider (h + 1)-bit residues in [0, 2" + m), 
with p = 2 k. Because this representation requires one more 
bit than SWU, we call it single+-width unsigned (S+WU). 
Addition of such pseudoresidues to nonredundant residues 
in [0, m) is quite efficient (Fig. 2b). Per our results above, 
the comparison threshold must be in [0, 2 h + m] and thus 
can be chosen as 2 ~ + y, or 2 ~ before the addition of y. • 

The second type of mod-m addition may involve two or 
three different residue sets. For brevity, we only discuss the 
case of uniform residue sets for the operands/sum in some 
detail, providing just one example of the more general case. 
Symbolically, this type of modulo-m addition can be 
written as the following combination of residue sets: 

[ a , a  + m +  p) + [ a , a  + m + p) ~ [ a , a  + m + 9) 

The position sum on the left lies in [2a, 2a + 2m + 2 9 - 1). 
Reducing this sum mod m may require several operations 
that are best dealt with by considering various cases. 

Case 1 (a = 0): In this case, which covers a majority of 
practically useful examples listed in Table I, the position 
sum is in [0, 2m + 29 - 1) and must be reduced to lie in the 
original residue set [0, m + p). The excess magnitude over 
the maximum pseudoresidue can be as high as rn + p -  1. If 
p = 1, at most m needs to be subtracted from the position 
sum, with the comparison constant being t , -  m or m + 1. 
This may occur, e.g., for SWU with m = 2Z- 1, for which 
the comparison constant t_ m = 2" would be a natural choice. 
In this case, the redundancy is too low to allow lookahead 
in determining the subtracted value. For 1 < P < m + 1, 
which covers all but the last three examples in Table I, the 
amount to subtract is 0, m, or 2m, with comparison constant 
ranges being [m, m + p] for t_,,, and [2m, 2m + p] for t_=,,. 
Here are a couple of examples, assuming m < 3 x 2"-2: 

DRU + DRU ~ DRU, t_,,, = 2 h, t_2,,, = 3 x 2"-' 

SWU + SWU ~ SWU, t_ m = 2 h, t_2,,, = 3 × 2 h-' 

In either example, two MSBs of the position sum are used 
for deciding what value to subtract. The SWU + SWU case 
is shown in Fig. 3a. The scheme for DRU + DRU is quite 
similar to the above. Again, when P is large enough, the 
computation becomes simpler and faster. 

Example  2: Consider the (h + 1)-bit S+WU pseudoresidues 
introduced in Example 1. Addition of such numbers is quite 
efficient (Fig. 3b). The comparison thresholds t_,,, and t_=,,, 
must be in [m, 2 h + m] and [2m, 2" + 2m], respectively. 
Thus, the subtraction decision can be made based only on 
the MSBs of X and K The small box to the right of the 
multiplexor produces the "enable" and "select" signals by 
ORing and ANDing its two inputs, respectively. • 

X Y 

3x2 -, 2m4v  
2h m-( ~Adde/0 
\ o  Max ~. : - : .  ........................... I '  

[ S e, %B~h_, 
h-¢ oi~:.~ 

A d d e r /  0 

S = (X + Y~m 
or (X + Y)m + m 

(a) SWU + SWU --> SWU 

2 h+l- 2m X Y 

2h~m ~ En "~+1 '~h+l 
\o  Max ~:::!:[]:1.... US.B...., 

h+l ................................... 
S = (;+~~rn 

or +m or +2m 
(b) S+WU + S+WU ---> S+WU 

Fig. 3. Pseudoresidue/pseudoresidue addition. 

Case 2 (-m < a < 0): In this case, the position sum range 
[2a, 2a + 2m + 29 - 1) includes values that are too small and 
thus must be adjusted upward. In the following examples, 
the value m is added when the position sum is less than t÷,,,: 

DRS + DRS --> DRS, t_,,, = 2 h+l, %., = 0 

S W S  + S W S  ---) S W S ,  t_m = 2 '-1, t+,,, = - - 2  '-1 

Hardware realization of the first example above is quite 
similar to Fig. 3b, except that the mux inputs are 2" - m (0) 
and m (1), the mux "enable" signal is obtained as the 
XNOR of the MSBs (sign bits), and the "select" signal is 
tied to either sign bit; thus, when both inputs are positive 
(negative), 2 h -  m (m) is added to the position sum. 

Other eases: Cases with greater redundancy (smaller 
values of a or larger values of p) can be handled similarly. 

As an example of the second type of mod-m addition with 
nonuniform residue sets, consider 

DWU + QRU --~ DWU 

This might be useful for inner product computations that 
are of interest, for example, in digital filters libra94], 
[Parh96]. The QRU component might be the 2h-bit output 
of an h x h multiplier, with the sum accumulated in DWU 
form. When the carry-out of the addition on the left-hand 
side is 1 (worth 2="), the position sum can be reduced by 
21'm, requiring an h-bit adder. The result is guaranteed to be 
nonnegative and no greater than 22h- 1 + ( m -  1) 2 -  2"m. 
Hence, the result will be in [0, 22'). 

One can also envisage 

DWU + DWU + QRU ---> DWU + DWU 

where the notation means that a doublewidth unsigned 
pseudoresidue in carry-save form (DWU + DWU) is added 
to a QRU pseudoresidue, with the modular sum produced 
in carry-save form. The MSBs of the three inputs can be 
used to predict whether a carry-out will be produced; if so, 
then 2h(2 ' -  m) is added to the inputs in a 4-to-2 carry-save 
adder tree with no carry propagation. 
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5. P s e u d o r e s i d u e  C o n v e r s i o n s  

Converting from a source residue set [a, b] to a target set 
[a', b'] involves the addition or subtraction of suitable 
multiples of m. If the target residue set is redundant, there is 
room for error and the multiple can be chosen based on 
examining a subset of the bits in the input. Otherwise, full 
precision is required, as in all redundant to nonredundant 
conversions. Here are examples with redundant target sets: 

1. SWU ----) DRU 3. QRU ---> DRU 

2. DRUcs ---> SWU 4. DWU ---> DRU 

The first of these requires no conversion at all. The second 
conversion can be performed by using methods similar to 
those depicted in Figs. 1-3. One possibility for the last two 
conversions is to reduce the upper and lower h bits of the 
input modulo m via table lookup, with the residues then 
added to form an (h + 1)-bit value in [0, 2 m -  2] or used 
directly if DRUcs is the desired format. 

If the target residue set is nonredundant (e.g., SRU or SRS), 
then a true modular reduction is required. For low- 
redundancy source residue sets, circuits similar to that at 
the lower half of Fig. la might do. The greater the 
redundancy of the source residue set, the more difficult the 
conversion to a nonredundant residue set. For tabular 
realization, a stepwise refinement approcah might help 
keep the size of the tables in check [Parh97]. 

6. M u l t i p l i c a t i o n  w i t h  P s e u d o r e s i d u e s  

One may anticipate a need for multiplying a pseudoresidue 
by another pseudoresidue (same or different type) or by an 
ordinary residue. When table lookup methods are used, 
low-redundancy pseudoresidues create no special difficulty, 
except perhaps to make the tables somewhat larger. With 
high redundancy pseudo residues or when the moduli are 
large, circuit techniques are called for. 

As in ordinary modular multipliers, the required modular 
reduction operations can be interlaced with partial-product 
accumulation steps to keep the intermediate results from 
growing in width. Because of redundancy in intermediate 
and final values, modular reduction steps are simplified. 
Implementation details are being worked out. 

7. C o n c l u s i o n  

Unifying theories are desirable because they lead to better 
understanding of existing techniques and also pave the way 
for new developments and porting of methods from one 
application domain to another. We have sown the seeds of a 
unifying theory of redundant-residue RNS representations. 
Further work may focus on the detailed specification of 
arithmetic operations other than addition, cataloging of 
other useful instances of redundant-residue systems, and 
quantifying the speed/cost/power benefits of various forms 
of redundancy and residue-set encodings. 
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