Parallel Algorithms for Index-Permutation Graphs — _
An Extension of Cayley Graphs for Multiple Chip-Multiprocessors (MCMP)

, Chi-Hsiang Yeh
Dept. of Electrical & Computer Engineering
Queen’s University
Kingston, Ontario, K7L 3N6, Canada
yvehlee.queensu.ca

~ Abstract

The index-permutation graph (IPG) model is a natural
extension of the Cayley graph model, and super-IPGs form
an efficient class of IPGs that contain a wide variety of net-
works as subclasses. In this paper, we derive a number of
efficient algorithms and embeddings for super-IPGs, prov-
ing their versatility. We show that a multitude of important
networks can also be emulated in super-IPGs with optimal
slowdown. Also, the intercluster diameter, average inter-
cluster distance, and bisection bandwidth of suitably con-
structed super-IPGs are optimal within small constant fac-
tors. Finally, we show that when parallel computers, built as
multiple chip-multiprocessors (MCMP), are based on super-
IPGs, they can significantly outperform those based on hy-
percubes, k-ary n-cubes, and other networks in carrying out
communication-intensive tasks.

1 Introduction

Cayley graphs [3] constitute a useful tool for design-
ing and analyzing symmetric interconnection networks, and
have received considerable attention [2, 19, 27, 28]. Re-
cently we proposed index-permutation graphs (IPGs), a nat-
ural extension of Cayley graphs, to aid in the systematic de-
velopment of communication-efficient interconnection net-
works [27, 30, 34]. We focused on super-IPGs, a particu-
larly efficient subclass of IPGs that use identical copies of
a small network as their basic modules, and showed that a
variety of hierarchical networks belong to the class of super-
IPGs. In particular, hierarchical cubic networks (HCN) [15],
hierarchical folded-hypercube networks (HFN) [13], hier-
archical hypercube networks (HHN) [36], recursively con-
nected complete (RCC) networks [16], hierarchical shuffle-
exchange (HSE) networks, shuffle-exchange networks, hier-
archical swap networks (HSN) [23, 24, 30], recursive hier-
archical swap networks (RHSN) [25], cyclic networks (CN)
[26, 31], super-flip networks (SFN) [30, 34], and index-
shuffle graphs [6] are all subclasses of super-IPGs. There-

" fore, the IPG model not only provides new insight into the
design of novel communication-efficient networks, but also

0190-3918/01 $10.00 © 2001 IEEE

Behrooz Parhami
Dept. of Electrical & Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA
parhami@ece.ucsb.edu

serves as a framework that ties together a vast variety of pre-
viously proposed interconnection topologies.

A main contribution of this paper is to show that
super-IPGs significantly outperform other networks such
as hypercubes, tori, and k-ary n-cubes in carrying out
communication-intensive tasks under the proposed unit chip
capacity model, which is a reasonable model for parallel and
distributed systems built of multiple chip-multiprocessors
(MCMP). Examples of such tasks include random routing,
fast Fourier transform (FFT), sorting, total exchange, and
matrix transposition. We show that for MCMP implemen-
tations, super-IPGs lead to lower cost and/or higher perfor-
mance than competing networks. The lower cost results
from the fact that most links are confined to the same chip,
thus reducing the number of off-chip links (and thus pins)
per node. The higher performance is a direct consequence
of the fact that most transmissions are on-chip transmissions
(i.e., most of the transmissions are confined within the same
chip even for random routing with uniformly distributed
destinations) and the relative ease with which a chip can be
provided with a wide bisection bandwidth.

We also show that suitably constructed super-IPGs have
asymptotically optimal intercluster diameter, average inter-
cluster distance, and bisection bandwidth, which are impor-
tant parameters for MCMPs, within a small constant factor
from their corresponding lower bounds dictated by the in-
tercluster degree. Because the bandwidth limit does not de-
pend on the switching technique used, these advantages oc-
cur with packet switching, wormhole routing, virtual cut-
through, and so on. In {4, 12, 22], Dally and several other
researchers argued that chip-multiprocessors may become
the mainstream of computation in a couple of decades. If
such a revolution is materialized as envisioned, super-IPGs
and their variants will become viable candidates for building
parallel systems, given that in an MCMP environment, they
achieve the best (and near optimal) performance among all
the network topologies proposed in the literature thus far.

Ascend/descend algorithms {20, 21] form an important
class of algorithms that includes many computation and
communication problems as special cases. Embeddings and
emulation of popular topologies are viewed as fast and most
cost-effective ways to obtain a variety of algorithms needed

on a new network topology. Another main contribution of
this paper is to demonstrate the feasibility of developing ef-
ficient algorithms and embedding results for the entire class
of super-IPGs as a whole. In particular, we show that as-
cend/descend algorithms, including fast Fourier transform
(FFT), sorting, and matrix multiplication, can be performed
in several super-IPGs at speeds comparable to or faster than
in hypercubes under the unit link capacity model. We also
show that a variety of network topologies can be embed-
ded in super-IPGs with constant dilation and asymptoti-
cally optimal congestion (from a degree-based lower bound)
and/or emulated by super-IPGs with optimal slowdown un-
der both single-dimension and all-port communication mod-
els, assuming unit link capacity. The preceding results lead
to efficient algorithms for performing multinode broadcast
(MNB), total exchange (TE), and many other operations on
super-1PGs.

2 The index-permutation graph (IPG) model
and super-IPGs

An index-permutation graph (IPG) (27, 30, 34] is defined
by a set of generators and a seed element, where a genera-
tor is a permutation. The edges in an IPG correspond to the
action of its generators, and the vertices correspond to the el-
ements obtained by applying generators on the seed element
or a generated element.

For example, the label of the seed node in an IPG can be
represented as Y = y;y;y3y4Ysys = 123321, and the genera-
tors of the IPG can be permutations

Ty = 213456, W, = 321456, and w3 = 456123.

Then the actions of generators lead to the following 3 neigh-
bors for node Y:

Yry =n(Y) =11 (y1y2Y3Y4Y5Y6) = Y2Y1Y3Yaysys = 213321,

Yry =mp(Y) = M2 (y12y3Y4Y5Y6) = ¥3¥2Y1Yaysys = 321321,
Yr3 =m3(Y) =3 (y1¥2y3Y4Y5Y6) = YaYsye¥1y2y3 = 321123.

Repeatedly applying the 3 generators to generated nodes
will result in 36 distinct nodes for this IPG example.

We have shown in [27, 30, 34] that this simple exten-
sion is quite powerful and leads to novel and useful classes
of parallel architectures. In what follows, we will focus
on super-IPGs, IPGs that use super-generators, which are
-a special class of permutations that interchange two or sev-
eral sequences of symbols of equal-length. More precisely,
a super-IPG is a special class of IPGs where the seed label
consists of [identical groups of m symbols and the gener-
ators of the IPG can either permute the m symbols within
the leftmost group or permute the m-symbol groups with-
out changing the order of symbols within any of the groups.
‘We call each of the m-symbol groups in the label a super-
symbol. The generators that permute the symbols within
the leftmost super-symbol are called nucleus generators and
the generators that permute super-symbols are called super-
generators. For example, with the seed label 123 123, the
permutation 321 456, which permutes 123 123 to get 321

123, defines a nucleus generator, whereas the permutation
456 123, which permutes 321 123 to get 123 321, corre-
sponds to a super-generator. For each of the super-symbols,
there must exist a sequence of super-generators that can
bring it to the leftmost position. The smaller IPG whose
seed label is a super-symbol of the seed label of a super-IPG
and whose generator set consists of all the nucleus genera-
tors of the super-IPG is called the nucleus graph (or simply
nucleus) of the super-IPG. Since the nucleus determines the
nucleus generators and the seed of the super-IPG, a super-
IPG can be completely specified by its super-generators and
its nucleus. More details about super-IPG can be found in
[27, 30, 34].

In what follows we provide several examples for super-
IPGs. An [-level hierarchical swap network, HSN(1,G), is a
super-1PG that has the seed S, S| - - - S;, the generators for the

N —

!
nucleus G, and the transposition super-generators T, ,, =

(1,2)m, L= (1a3)m, T4,m = (1’4)Mv Tt n,m = (l,l)m,
where S, is the label of a (seed) node in the nucleus G and
(1,i)m represents the permutation that interchanges the first
super-symbol and the i super-symbol. The subscript m in
(i, j)m denotes the fact that super-symbols of length m at po-
sitions i and j are interchanged.

A ring-cyclic network, ring-CN(l,G), is defined by nu-
cleus G and cyclic-shift super-generators Li,, = (1 +
)mand Ry, = L_y ,, = (1 —)n, where the super-generator
L; » = (i <), changes the node label X = X X; - --X; into

Lim(X) =X 1 Xig2 - X1 X1 X0X3 -+ X;
and the generator R, ,, = (i =), changes X into
Rim(X) = Xi_ip1Ximip2 - X X1 Xo X3 -+ Xy,

A complete-CN(1,G) is a super-IPG that is specified by
super-generators Ly y, Ly 1n, -+, Ly_1 m and its nucleus G.
Another example for the design of super-IPGs is to use
Slip super-generators F, ,,, where the super-generator Fj,,
flips the first i super-symbols, i = 2,3,...,1 for an IPG with [
super-symbols in a node label. For example,

Fom(X1X2X3X4) = X0 X1 X3 X4, B3 m(X1X2X3X4) = X3 X5 X1 Xy

A super-IPG with ! flip super-generators and nucleus G is
called an I-level super-flip network SFN(1,G).

3 Parallel algorithms for super-IPGs

Embeddings and emulation between hypercubic net-
works and for new network topologies have been an inten-
sively studied research area [20]. In this section, we develop
algorithms for performing emulation and ascend/descend
computation in super-IPGs. We assume the unit link capac-
ity model in this section, where all the network links have
the same bandwidth and propagation delay. In Section 4, we
extend some of the results to the unit node capacity model
and the unit chip capacity model, the latter being particularly
suitable for parallel systems based on MCMPs.

3.1 Embeddings and parallel algorithms under
the single dimension communication model

In this subsection, we assume the single-dimension com-
munication (SDC) model [28], where the nodes are allowed
to use only links of the same dimension at any given time.
Many algorithms developed for product networks [14, 35],
such as hypercubes and k-ary n-cubes, naturally fall into this
category. Ascend/descend [21] and normal [20] algorithms
are special cases of the SDC model, which is in turn a special
case of the single-port communication model.

Many super-IPGs can emulate a hypercube of the same
size with simple and efficient algorithms when they are
based on a hypercube as the nucleus. Since each link of an
IPG node corresponds to the action of a specific generator,
the problem of emulation between IPGs (including hyper-
cubes and k-ary n-cubes) can be transformed to the problem
of emulation between their generator sets. For example, the
actions of dimension-11 links in a 16-cube, corresponding
to the generator (21,22), can be emulated by the sequences
of generators

Tr16 = (1,2)16, (5,6), T2,16 = (1,2)16 in an HCN(8,8),
Ty =(1,3)s, (5,6), T33 = (1,3)g in an HSN(4,Q4),
T2,16 = (1,2)16, (5,6), T2,i6 = (1,2)16 in an RCC(2,Q4),
RigRy 8, (5,6), L1 gLy g in aring-CN(4, Qy4),

Ryg=(—2)s, (5,6), Lyg = (¢ 2)g in a complete-CN(4, Q4),

assuming the 32-symbol seed 01 01 01---01.
Homogeneous product networks (HPNs) form a sub-
class of product networks with identical component net-
works [14]. More precisely, an HPN is the iterated Carte-
sian product of the same graph, and an HPN(p,G) de-
notes the p'* power of G; that is, HPN(p,G) = I'[;;l G=
GxGx---xG.
e —

p

It can be seen that the pk-dimensional (binary) hypercube
is the p*" power of a k-cube; the p-dimensional (generalized)
hypercube of radix M > 2 [8, 18] is the p' power of an M-
node complete graph, and the M-ary p-cube is the p*" power
of an M-node ring.

Let dg be the node degree of a dimensionizable graph G.
Each link of a node in G is given a distinct integer i € [1,dg]
as its label, and is called the dimension-i link. Then the
dimension-(i + dg(p — 1)) links of the homogeneous prod-
uct network G, X G,_; X -+ X G| with G; = G are the col-
lection of dimension-i links of its factor graphs G;.

The emulation algorithm for all super-IPGs are similar as
shown in the following theorem.

Theorem 3.1 Let t be the number of applications of the
super-generators of a super-IPG required to bring any
super-symbol of a node label to the leftmost position and
then to restore the super-symbols to the original order. Then
the super-IPG can emulate any algorithm in an HPN(l,G)
under the SDC model with a slowdown factor of t + 1, where
1 is the number of super-symbols in a node label and G is the
nucleus of the super-IPG.

Proof: Let jo=1+4(j—1mod n)and j; =1+ |(j—1)/n],
where n is the number of nucleus generators for the nu-
cleus G. Then to emulate the j** generator (or transmissions
along the dimension-j links) in an HPN(!,G), we first use
the super-generators of the super-IPG to bring the j’l" super-

symbol to the leftmost position, then apply the jg' nucleus
generator (or transmissions along the dimension- jy links of
each nucleus G), and finally use the super-generators to rear-
range the super-symbols to their original order, where jj =
14+ (j—1modn), j; =1+ |(j—1)/n}, and n is the number
of nucleus generators for the nucleus G. m}

In other words, if an algorithm require 7 communica-
tion steps in an HPN({, G) using store-and-forward packet
switching under the SDC model, then it can be emulated
in the corresponding super-IPG using T(¢ + 1) communica-
tion steps. The dilation to embed an HPN(!/, G) in the above
super-IPG is also equal to ¢ + 1 since it must be equal to or
smaller than the slowdown factor for single-dimension em-
ulation. Note that the slowdown factor for single-dimension
emulation may be larger than the dilation for embeddings
in general cases for emulation between other networks. For
several super-IPGs we have t = 2, leading to the following
corollaries.

Corollary 3.2 Any algorithm in an HPN(l,G) under the
SDC model can be emulated on an HSN(l,G), complete-
CN(1,G), or SFN(1,G) with a slowdown factor of 3, under
the SDC model.

Proof: It follows from Theorem 3.1 and the fact that the
super-generators of any of these super-IPGs can bring any
super-symbol to the leftmost position in one step and then
to restore the original order of the super-symbols in another
step. 0

Corollary 3.3 An HPN(I,G) can be embedded on an
HSN(1,G), complete-CN(l,G), or SFN(I, G) with dilation 3.

When wormhole routing or virtual cut-through is used,
the slowdown factor is actually reduced to-about 2, since the
congestion for embedding all the links of an HPN(!, G) that
belong to a certain dimension in an HSN(/, G), complete-
CN(l,G), or SEN(,G) is only 2. Similarly, when store-
and-forward packet switching is used but two neighboring
nodes transmit a nonconstant number of packets on the aver-
age during a step of the HPN algorithm, then the slowdown
factor for emulating the HPN algorithm in an HSN(/,G)
or complete-CN(/,G) is 2 + o(1), rather than 3. Note also
that if a link (especially an off-chip link) in the HSN(/,G)
or complete-CN(/, G) has bandwidth higher than that of an
HPN link by a factor of f, then the HSN or complete-CN
can in fact perform the algorithm faster than the HPN by a
factor of about f/2 when wormhole routing or virtual cut-
through is used or when packet switching is used but two
neighboring nodes transmit many packets during a step on
the average. More details will be given in Section 4.

Corollary 3.4 If a graph can be embedded in an
In-dimensional hypercube with constant dilation, then the

graph can be embedded with constant dilation in an
HCN(In/2,In/2), HFN(In/2,In/2), HSN(I,Q,), complete-
CN(l,Q.), SFN(1,Q.), RCC(r, Q) with constant r, or an r-
deep RHSN based on Q.

Proof: These super-IPGs can emulate an In-dimensional
hypercube under the SDC model with constant slowdown
from Corollary 3.3 and the result follows. O

There exist a large variety of networks that can be em-
bedded in a hypercube with constant dilation. Therefore, we
can obtain a variety of constant-dilation embeddings in the
above super-IPGs using Corollary 3.4. These results can be
easily generalized to other super-IPGs.

3.2 Ascend/descend algorithms

‘When the dimensions of the links used by an SDC algo-
rithm in an HPN are consecutive, the algorithm can be em-
ulated even more efficiently on a corresponding super-IPG,
often with a slowdown factor close to 1. In such a case, we
do not need to use super-generators to rearrange the super-
symbols to their original order for intermediate steps of the
emulated algorithm. For example, consider the emulation of
the j* and then the (j 4 1)** generators in an HPN(/, G).
Let kg = 1+ (j mod n) and k; = 1+ |j/n]. We first use
the super— generators to brmg the]1 super-symbol to the left-
most position, apply the jj % nucleus generator, and then use
the super-generators of the super-IPG to bring the k'lh super-
symbol to the leftmost position if k; # j;, apply the k{)" nu-
cleus generator, and finally use the super-generators to rear-
range the super-symbols to their original order.

Ascend/descend algorithms [20, 21] require successive
operations on data items that are separated by a distance
equal to a power of 2, and are a special case of the preced-
ing class of algorithms. Many applications, such as Fast
Fourier Transform (FFT), bitonic sort, matrix multiplica-
tion, and convolution, can be formulated using algorithms
in this general category. In what follows we present general
algorithms for performing ascend/descend computations on
a super-IPG.

Theorem 3.5 Let t, be the number of applications of the
super-generators of a super-IPG required in order for the
2nd, 3rd, 4th, ... , ' (or the I'", (1—-1)*%, ... , 2nd, Ist) super-
symbols of a node label to appear at the leftmost position
and then for the super-symbols to be restored to the original
order. Then the super-1PG can perform an ascend algorithm
(or descend algorithm, respectively) for all the log, N possi-
ble operations in ltg +t, time, where 1 is the time required
to perform an ascend algorithm (or descend algorithm, re-
spectively) in nucleus G, assuming that the size of the nu-
cleus G of the IPG is a power of 2.

Proof: Let M be the number of nodes in nucleus G. We
first perform an ascend algorithm in G, which corresponds
to the first log, M ascend operations in the super-IPG. For
i=2,3,4,...,1, webring the i super-symbol to the leftmost
position using the super-generators of the super-IPG, which
will bring nodes whose addresses are separated by M~1,

2M=1) aM-!, ..., Mi/2 into the same nucleus, and then
perform an ascend algorithm in G, which corresponds to the
((i—1)log, M+ 1) through the (ilog, M) ascend steps in
the super-IPG. Finally, we use its super-generators to restore
the order of super-symbols, which delivers the results to the
appropriate destinations. Since we need ¢, steps to rearrange
the order of super-symbols during the whole process, and we
perform an ascend algorithm in all the nuclei ! times, an as-
cend algorithm requires lt; + ¢, time in the super-IPG.

The algorithm and analysis for performing a descend al-
gorithm in the super—IPG are similar to those for the ascend
algorithm. O

CNis are particularly efficient for ascend/descend and nor-
mal hypercube algorithms. Since only one final step is re-
quired to restore the super-symbols to the original order for
performing an ascend algorithm in any CN (for several other
super-IPGs, [— 1 such rearrangements of the super-symbols
are needed), we obtam the following corollary to Theorem
3.5.

Corollary 3.6 Ascend/descend algorithms (for all the
log, N possible operations) can be performed in I(k+ 1) =
(1+ 1/k)log, N time on a CN based on a k-cube, and in
I(k+2)—2=(1+2/k)log, N —2 time on an HSN, SFN,
RCC, or RHSN based on a k-cube, where [is the number of
super-symbols in the label of a node.

Corollary 3.7 Ascend/descend algorithms (for. all
the log, N possible operations) can be performed in l(n+ 1)
communication steps and 1Y}, (m; — 1) computation steps
on a CN based on an n-dimensional generalized hypercube
with mixed-radix (my,my,...,my) and l(n+2) — 2 commu-
nication steps and 1Y, (m; — 1) computation steps on an
HSN, RCC, or RHSN based on an n-dimensional general-
ized hypercube with mixed-radix (my,my,...,m,), where |
is the number of super-symbols in the label of a node and m;
is a power of 2 for all i.

For example, when m; = 4 and n = 3, ascend/descend al-
gorithms can be performed in % log, N communication steps

on an N-node CN and in %]ogzN — 2 communication steps
on on an HSN, RCC, or RHSN. Note that these networks
can perform ascend/descend algorithms faster than hyper-
cubes (in terms of communication steps) and require smaller
node degrees at the same time. Note that if reordering of the
results is not required, then the number of communication
steps can be further reduced.

3.3 Parallel algorithms under the all-port com-
munication model

We now consider the all-port communication model,
where a node is allowed to use all its incident links for packet
transmission and reception at the same time. The packets
transmitted on different outgoing links of a node can be dif-
ferent.

The following theorem shows that suitably constructed
super-IPGs can emulate a corresponding HPN of the same
size with asymptotically optimal slowdown, given their
node degrees.

Theorem 3.8 Any algorithm in an HPN(l,G) with all-
port communication can be emulated on an HSN(I,G),
complete-CN(1,G), or SFN(1,G) with a slowdown factor of
max(2n,l + 1), where n is the number of generators for the
nucleus G.

Proof: In Theorem 3.1, we have presented the algorithm to
emulate an HPN under the SDC model. The emulation algo-
rithm with all-port communication simply performs single-
dimension emulation for all dimensions at the same time
with proper scheduling to minimize the congestion. Let S,
be the super-generator that brings the j’l" super-symbol to

the leftmost position, ijll be the inverse generator of §;
(e., S le]Tll = I), and N}, be the jg‘ nucleus generator. A
packet for a dimension-j neighbor, j > n, in the emulated
HPN will be sent through links § jl,Njo,S]Tl', where jy =
14 (j~1modn) and j; = 1+ |(j—1)/n}. There exist
several schedules for these links that guarantee the desired
slowdown factor. A possible schedule can be obtained as
follows.

We first consider the special case where [= m + 1 for

some positive integer 7.

e At time 1, each node sends the packets
for its dimension-j neighbors (in the emulated HPN),
j=1,2,3,...,n, through links N;.

e Attimet, t =1,2,3,...,n, each node sends the pack-

ets for its dimension-u;(t) neighbors, i = 2,3,4,...,1,

through links S;, where u;(t) = (i— D)n+ 1+ (i +1—

3 mod n).

e Attimet,t=sn+2,sn+3,5n+4,...,(s+1)n+ 1 for
s =0,1,2,...,r — 1, each node forwards the packets
for dimension-v;(¢) neighbors, i = sn+2,sn+3,sn+
4,...,(s+ 1)n+ 1, through links N, (), where v;(1) =
(f—1Dn+1+(i+t—~2sn~4modn).

e At time ¢, t = n+ 1,n+ 2,...72n, each node for-
wards the packets for its dimension-u;{t) neighbors,
i=2,3,4,..., n+1, through links 57!, where u;(f) =
(i—-1)n+1+4+(i+1—n—3modn). Attimetz,t =sn+
3,sn+4,sn+5,...,(s+ Dn+2fors=1,2,3,....r—
1, each node forwards the packets for dimension-u;(t)
neighbors, i = sn+2,sn+3,sn+4,...,(s+1)n+1,
through links §;!, where u;(t) = (i— D)n+ 1+ (i+t—
2sn — 5 mod n).

Figure 1a shows such a schedule for emulating a 12-
dimensional HPN on a super-IPG with / =4 and n = 3.

In what follows we extend the previous schedule to the
general case where [is not of the form / = rn+ 1. The sched-
ule for / < n can be easily obtained by removing the unused
part of the schedule for a super-IPG with | = n+ 1. Other

possible cases can be formulated by assuming that/ = rn—w

for some integers r > 2 and 0 < w < n— 2, in which case we
can modify the schedule as follows. We initially start with
the schedule for a super-IPG that has rn+ 1 super-symbols in
the label of a node. Clearly, the transmissions in the sched-
ule that correspond to the emulation of dimensions j > in
are not used by the super-IPG with [= rn — w. Therefore,
we can now perform each of the transmissions over links
Nj, originally scheduled for time ! + 1 through rn + 1 at

Generators of a| Dimension j of the HPN being emulated
super-IPgraph| 1 2 3 4 5 6 7 8 9 10 11 12
Step1 | NN NS, — — 8§, — — 5,
Step 2 N, S, — —N,S; §, - N,
Step 3 ~ N, §,8, — N, N, §,
Step 4 S - NNSI— — N s}
Step 5 st - si's! o
Step 6 5,8y . s
(a)
Generators of a Dimension j of the HPN being emulated
super-IP graph 12 345 67 8910 1112131415
Stepl . NNN;N S, - — — S5 - - — 5§, — S, —
Step 2 N.S;———Ssst—N,—Nst
Step 3 — N, S5, S, —~ N, N, S, — S, — —
Step 4 S; — — N, — 8! —~ N, s7— SN,
Step 5 SiN SIN, s'— N 8
Step 6 s, S, si s
(b)

Figure 1. Schedules for emulating HPNs on super-IPGs
under the all-port communication model. Note that a gener-
ator appears at most once in a row, and each column j > 4
consists of generators S;,,N jﬂ,S]T‘I, where jo = 14+ (j -
1 mod3) and j; = 1+ [(j—1)/3]. (a) Emulating a 12-
dimensional HPN(4,G) on an super-IPG with/ =4 andn=
3. (b) Emulating a 15-dimensional HPN(5,G) on an super-
IPG with [= 5 and n = 3. The links in the super-IPG are
fully used during steps 1 to 5, and are 93% used on the av-
erage.

time earlier than [+ 1 by rescheduling these transmissions
to the unused part of the schedule. Note that the modified
part of the schedule are for the emulation of some dimen-
sions larger than (r — 1)n? + n (that is, some of the dimen-
sions that correspond to the last [— (r— 1)n—1=n-w-1
super-symbols). We then swap generators Nj, in the mod-
ified part of the schedule with part of the schedule for the
emulation of dimensions smaller than (r— 1)n2 + n+ 1 (that
is, for some of the dimensions that correspond to the first
(r~1)n+ 1 super-symbols). Due to the previous modifica-
tions, we also have to move the schedule for some genera-
tors S;, and S;'. In particular, we will move generator 57!
in each of the 3-step single-dimension emulations one time
step after the use of Nj, generators when possible. When
I+ 1 < 2n, the schedule for some generators SJT‘1+1 can not
be moved before time 2n. As a result, the time required for
emulation under the all-port communication model is equal
tol+1ifl4+1 > 2n, and is equal to 2n otherwise. Figure 1b
shows such a schedule for emulating a 15 dimensional HPN

on a super-IPG with/ = 5 and n = 3. 0

By properly choosing parameters / and n, we can emulate
an HPN with all-port communication on these super-IPGs
with asymptotically optimal slowdown with respect to the
node degrees.

Corollary 3.9 Any algorithm in an HPN(l, G) with all-port
communication can be emulated on an HSN(1,G), complete-
CN(1,G), or SFN(l,G) with asymptotically optimal slow-
down if | = ©(n), where n is the number of generators for
the nucleus G.

Proof: It follows from Theorem 3.8 and the fact that a graph
of degree O(n) cannot emulate a graph of degree Q(n?) with
aslowdown factor smaller than O(#) under the all-port com-
munication model. O

Two basic communication tasks that arise often in appli-

cations are the multinode broadcast (MNB) and the total ex-
change (TE) [7, 17]. In the MNB each node has to broadcast
a packet to all the other nodes of the network, while in the
TE each node has to send a different (personalized) packet
to every other node of the network. Using Theorem 3.8 and
optimal algorithms for hypercubes, we can obtain asymptot-
ically optimal algorithms for several super-IPGs.

Corollary 3.10 The multinode broadcast task can be per-
formed in asymptotically optimal time © (N / \/logN) inan
HSN, complete-CN, and SFN based on a hypercube if the de-
gree of the network is © (\/logN).

Proof: When the degrees of these networks are © (v/IogN),
we have | = ©(n), where n is the dimension of the nucleus
hypercube. The completion time on the above super-IPGs
can be obtained from Theorem 3.8 and the fact that MNB
can be performed in ® (N/logN) time in a (log, N)-cube. O

Corollary 3.11 The total exchange task can be performed
in asymptotically optimal time © (Nv/IogN) in an HSN,
complete-CN, and SFN based on a hypercube if the degree
of the network is © (1/TogN).

Proof: The completion time on the abox.'e networks can be
obtained from Theorem 3.8 and the fact that TE can be per-
formed in ©(N) time in a |log, N |-cube. O

Note that by using denser graphs for the nucleus, super-
IPGs can execute total exchange in even shorter time. Also,
an algorithm obtained from emulating a TE algorithm de-
veloped for hypercubes will contain some redundant steps
that send packets back and forth along intercluster links. By
removing these steps, the number of intercluster transmis-
sions for a TE tasks can be reduced to ®(N?) in super-IPGs
which is smaller than the ©(N?logN) intercluster transmis-
sions required in hypercubes. Therefore, when each of the

nuclei or clusters is contained on the same chip and off-chip
transmissions form the performance bottleneck, super-IPGs

_ can outperform hypercubes by a factor of ©(logN) for exe-

cuting TE tasks. More details will be given in Section 4.
4 Properties of super-IPGs for MCMPs

A parallel computer is typically built from several chips
on a board, multiple boards in a card-cage and several such
card-cages interconnected together. Modules at each level
of the packaging hierarchy have their respective character-
istics in terms of the number of pins, maximum area/volume,
minimum wire width, and the number of wires per link
[5]. Since on-chip links are significantly shorter than off-
chip links and do not require the extra delay associated with
driving off-chip pins, they may be driven at a considerably
higher clock rate. Moreover, since the cost for an on-chip
connection is much smaller than that of an off-chip connec-
tion, which is limited by the number of pin-outs, the channel
width of an on-chip link can be increased, if required, with-
out significantly increasing the hardware cost.

In this section, we consider the case where several nodes
(processors, routers, and associated memory banks) of a net-
work are implemented on a single chip, or more generally, a
single module (e.g., chip, board, wafer, or multi-chip mod-
ule (MCM)), and several chips are used to build the paral-
lel architecture or a higher-level module. We refer to such
an architecture as multiple chip-multiprocessors (MCMP).
In order to compare the performance of different networks,
we propose the unit chip capacity model, where the sum of
the bandwidth of all the off-chip links of a chip is fixed.
For example, a 16-node cluster of a 12-dimensional hyper-
cube has 128 intercluster links, while a 16-node cluster of
an HSN(3, Q4) has 30 intercluster links, so an off-chip link
of the HSN(3, Q) has bandwidth about 4 times higher than
that of an off-chip link of the 12-cube when a chip can ac-
commodate 16 nodes. We assume that on-chip links can be
made fast enough so that they do not form performance bot-

tleneck.

4.1 Embeddings and parallel algorithms

As shown in Section 3, an HSN, complete-CN, or SFN
can embed corresponding homogeneous product nciworks
[14, 35], such as hypercubes or k-ary n-cubes, with di-
lation 3 and asymptotically optimal congestion (from a
degree-based lower bound). More precisely, when [/ =
O(+/TogN) = O(n), the degree of an HSN(/, 0,,), complete-
CN(1,0,), or SEN(1,0,) is ©(1/TogN) and the congestion
for embedding an nl-dimensional hypercube is ©(+/logN),
which is the smallest possible for a degree-O(+/TogN) net-
work to embed a degree-log, N network.

The intercluster degree of a network, defined as the maxi-
mum of the average-per-node intercluster links over all clus-
ters, has a bearing on its implementation cost and commu-
nication performance. The intercluster degree of a hyper-
cube is log, N — o(logN) and the intercluster degree of an
HSN(!,Q,), complete-CN(Z,Q,), or SFN({,0,) is I —1 =
©(+y/1ogN), so a ©(+/TogN) lower bound on the congestion
can also be derived based on their intercluster degrees.

Note that a nonconstant congestion for the embeddings
does not imply worse performance for these super-IPGs at
the hardware level since a network link in an HSN(Z,Q,),
complete-CN(1,Q,), or SFN({,0,) can be made consider-
- ably wider (i.e., containing more wires in parallel) than a
link in an ni-dimensional hypercube. One of the reasons
is that when a node in an HSN(/, Q,)), complete-CN(1, Q,,),
or SEN(/,Q,) has the same capacity as a node in an nl-
dimensional hypercube (i.e., assuming unit node capacity),
then a link in the super-IPG will have bandwidth higher than
that of a link in an nl-cube by a factor of ©(y/logN). An-
other reason is that if off-chip bandwidth is the limiting fac-
tor so that a node in an HSN(/, Q,,), complete-CN(I, @), or
SFN(I, @p) has the same off-chip capacity as a node in an nl-
dimensional hypercube (i.e., assuming the unit chip capacity
model), then an off-chip link in the super-IPG will also have
bandwidth higher than that of an off-chip link in an nl-cube
by a factor of ©(y/logN). Therefore, even if simple emu-
lation of hypercube algorithms is used, the performance of
HSNs will be comparable to that of hypercubes under the
all-port communication model (within a constant factor) if
they are both built as MCMPs (with unit chip capacity). This
is in contrast to the slowdown factor of ®(y/logN) under
the all-port communication model with unit link capacity.
On the other hand, when emulating normal hypercube al-
gorithms or algorithms developed for hypercubes under the
single-dimension communication model, surprisingly, the
performance of HSNs, complete-CNs, and SFNs will be bet-
ter than that of hypercubes by a factor of ©(y/logN) under
the unit chip capacity model.

When algorithms (such as random routing, FFT, sorting, '

and other ascend/descend algorithms) derived directly for
HSNs, complete-CNs, and SFNs are executed, the perfor-
mance of these super-IPGs will also be better than that of
hypercubes by a factor of ©(y/logN) in terms of the maxi-
mum achievable throughput when off-chip bandwidth is the
limiting factor. The reason is that random routing or FFT
in a hypercube requires logys N — o(logN) off-chip trans-
missions, while random routing or FFT in an HSN(/, 0,),
complete-CN(!,Q,,), or SFEN(I,Q,) only requires [— 1 =
©(y/logN) off-chip transmissions. Another way to look at
the problem is that an N-node HSN has bisection width N /4
when the nucleus graph is dense enough, and an HSN with
©(y/logN)-times wider off-chip links will have bisection
bandwidth higher than that of a hypercube by a factor of
©(+/TogN), so HSNs can execute communication-intensive
tasks, such as FFT, sorting, and total exchange with con-
siderably higher throughput when they are both built as
MCMPs. Note that when the unit link capacity model is as-
sumed, HSNs, complete-CNs, SFNs, and hypercubes have
comparable throughput for these communication-intensive
tasks (usually within a factor of 1 + 0(1) or 2+ 0(1)).

When a chip can accommodate more processors and net-
work nodes so that the number / of super-symbols is small,
the superiority of HSNs, complete-CNs, and SFNs is even
more pronounced for MCMP implementations. As an ex-
ample, when [= O(1), the throughput of an HSN, complete-
CN, or SFN for executing communication-intensive tasks
such as FFT, sorting, and total exchange will be higher than

that of a hypercube by a factor of ®(logN). More details
concerning the bisection bandwidths of super-IPGs, hyper-
cubes, and k-ary n-cubes will be given in the next subsec-
tion. Similar arguments are applicable to other super-IPGs
whose super-generators can move any super-symbol to the
first position and back to its original position using a con-
stant number of steps.

When off-chip bandwidth is the limiting factor on per-
formance, which is expected to be a typical situation for
MCMPs, the maximum throughput for executing a task in a
network is inversely proportional to the number of off-chip
transmissions, assuming that traffic is balanced among all
off-chip links. The latter is an important criterion for design-
ing efficient algorithms for MCMPs. In the following sub-
section, we calculate such parameters for random routing in
super-IPGs.

4.2 Intercluster diameter, average intercluster
distance, and bisection bandwidth

We define the intercluster distance between a pair of
nodes as the minimum number of intercluster transmissions
required for routing between them, the intercluster diam-.
eter of a network as the maximum of the intercluster dis-
tance between any pair of nodes, and the average interclus-
ter distance of a network as the average of the intercluster
distances between all pairs of nodes. The average interclus-
ter distance of a network is upper bounded by its intercluster
diameter. The proofs for the following theorems and corol-
laries are similar to those in [27, 30, 34] and are omitted in
this paper.

Theorem 4.1 Let t be the minimum number of applications
of the super-generators of a super-IPG in order for each
super-symbol to appear at the leftmost position at least once.
Then the intercluster diameter of the super-IPG is t, assum-
ing that each cluster is composed of a nucleus graph.

Corollary 4.2 Assuming that each cluster contains a nu-
cleus graph, the intercluster diameter of an N-node HSN,
RHSN, RCC, CN, directed CN [26, 27], or SFN is

I-1=logyN—-1,

where l is the number of super-symbols and M is the number
of nodes in the nucleus graph.

Theorem 4.3 Let ts be the minimum number of applications
of the super-generators.of a symmetric super-IPG [27, 30,
34] in order for each super-symbol to appear at the leftmost
position at least once and then for the super-symbols to be
arranged to any possible order. Then the intercluster diam-
eter of the symmetric super-IPG is ts, assuming that each
cluster is composed of a nucleus graph.

Note that t5 of a symmetric super-IPG is usually larger
than ¢ of Theorem 4.1 for the corresponding super-IPG.

Corollary 4.4 The intercluster diameter of a symmetric
complete-CN(1,G) is 1, the intercluster diameter of a sym-
metric HSN(I,G), a symmetric SFN(1,G), a symmetric

RCC, or a symmetric RHSN is 21 — 2, and the intercluster
diameters of a symmetric ring-CN(2,G), a symmetric ring-
CN(3,G), and a symmetric ring-CN(1,G), 1 > 4, are 2, 3,
and |1.51) — 2, respectively, assuming that each cluster is
composed of a nucleus graph.

The proofs for the following theorems are similar to those
in [27, 28, 34] for proving that macro-star networks and
super-IPGs have asymptotically optimal diameter and aver-
age distance and are omitted in this paper.

Theorem 4.5 Assuming that a cluster is composed of ex-
actly one nucleus, the intercluster diameter (or average in-
tercluster distance) of an HSN, CN, directed CN, SFN, RCC,
or RHSN, is asymptotically optimal within a factor of 1 +
o(1) from the corresponding lower bound given its inter-
cluster degree if logl = o(logM), where | is the number of
super-generators, M is the number of nodes in a nucleus.

The intercluster diameter (or average intercluster distance)
ofan HSN, CN, directed CN, SFN, RCC, or RHSN, is asymp-
totically optimal within a constant factor from the corre-
sponding lower bound given its intercluster degree if logl =
O(logM).

Theorem 4.6 The intercluster diameter (or average inter-
cluster distance) of a symmetric HSN or symmetric SFN
is asymptotically optimal within a constant factor from the
corresponding lower bound given its intercluster degree for
any combination of | and M. The intercluster diameter (or
average intercluster distance) of a symmetric CN, symmet-
ric directed CN, symmetric RCC, or symmetric RHSN, is
asymptotically optimal within a constant factor from the
corresponding lower bound given its intercluster degree if

logl = ©(logM).

A set B; of links is a bisection of a network if the removal
of B; partitions the network into two parts that differ in size
by at most one node. The bisection width W of a network is
the minimum number of links amon g all bisections B; of the
network. Let B;1,B;2,B;3,...,B;, denote the bandwidths
of links in panmon B‘ Then the bisection bandwidth Bg of
a network is given by

L;
BB = min(z B,"j)
alli j=1

for all possible bisections i of the network. If the bandwidth
of each network link is By, then the bisection bandwidth of
the network is given by Bg = Wp x By.

Bisection bandwidth of a network is usually the limit-
ing factor on the performance of communication-intensive
tasks, such as random routing, sorting, FFT, and total ex-
change. When the unit link capacity model is used, the
bisection bandwidth of a network is equal toits bisection
width; when the unit bisection capacity model is used (sim-
ilar to the one proposed by Dally in [11], which is a rea-
sonable model for single chip-multiprocessors (SCMP)), the
bisection bandwidths of networks are the same regardless
their bisection widths; however, when the unit node capacity

10

model or the unit chip capacity model is used, the bisection
bandwidth of a network needs to be computed according to
the capacity of a link and is critical to the performance of the
network. In what follows we calculate the bisection band-
width of super-IPGs, assuming that each chip holds a sin-
gle nucleus and on-chip links are made wide enough so that
the bisection bandwidth is derived without removing any
on-chip links (since the removal of any such wide on-chip
link would increase the sum considerably). We will show
that super-IPGs can have bisection bandwidth considerably
higher than hypercubes and k-ary n-cubes.

Theorem 4.7 If the traffic for random unicast routing can
be uniformly distributed among all off-chip links of a net-
work, then a lower bound on the bisection bandwidth Bg of
the network can be found by

By > 7,

where w is the average aggregate off-chip bandwidth of a
node and a is the average intercluster distance (for random
unicast routing with balanced traffic), assuming that each
chip holds a single cluster.

Note that the average intercluster distance is the average
of the distances between a node X and all the network nodes
(including node X itself), averaged over all network nodes
X. For example, the average intercluster distance of a 12-
cube is exactly 4 when a cluster has 16 nodes. The same
distance would be slightly larger than 4 when the distance
of a node to itself is excluded from the calculation.

An upper bound on bisection bandwidth can usually
be easily derived by partitioning-the chips into two equal
groups. The following corollary indicates that the lower
bound is tight, at least for some super-IPGs.

Corollary 4.8 The bisectién bandwidth of an N-node HSN
or SFN is

wNM _
4(l-1)(M-1)

wNM

Bp = 4(logy, N— 1)(M

-1y’

where w is the average aggregate off-chip bandwidth of a
node, assuming that each chip holds an M-node nucleus
graph.

Corollary 4.9 The bisection bandwidth of an N-node hy-
percube, CCC, or butterfly networks is mﬁ;ﬁj,
© (%Vﬁ) ,or® (%) respectively, where w is the av-

erage aggregate off-chip bandwidth of a node and M is the
number of nodes on a chip.

Proof: The bisection width of an N-node hypercube is N/2,
and a node has log, N — log, M off-chip links, each of which
has bandwidth ®(w/logN), so the bisection bandwidth is

o Noleg;an- The bisection width of an N-node CCC is

© %;W) , and a node only has a constant number of off-chip.

links, each of which has bandwidth ©(w), so the bisection
bandwidth is © (log N) , which is of the same order as that of
a similar-size hypercube. The bisection width of an N-node
butterfly is © (%v) . By using the partitioning that we pro-
posed in [32], the intercluster degree of a butterfly node is
only © (‘l)fg NN) Therefore, the bisection bandwidth of the

butterfly network is © (%V) , which is higher than that of
~a similar-size hypercube. 0

When M = NE, where € is a constant smaller than 1, we
have ! = logy, N = O(1). In this case, the bisection band-
widths of /-level HSNs, complete-CNs, SFNs, butterfly net-
works, and several other super-IPGs become @(wN). To the
best of our knowledge, these networks and their variants,
along with the expander graphs (e.g., the AKS sorting net-

works [1]), are the only networks that are known to have bi- -

section bandwidth ©(wN). Note that [— 1 is usually a small -

integer like 1, 2, or at most 3 so the number Q—:—Q}{M of
off-chip links per node is small. Therefore, the leading con-
stants for the bisection bandwidths of HSNs and SFNs are
the largest among these networks, achieving the best perfor-
mance for communication-intensive tasks.

The bisection bandwidths of different-size hypercubes
are the same when the same number of chips are used in
these MCMPs. The reason is that if a chip contains fewer
hypercube nodes, the off-chip bandwidth per link is in-
creased so that the bisection bandwidth remain the same.
For example, a 12-cube with 16-node chips (for a total of
256 chips) has off-chip bandwidth w/8 per link and has bi-
section width 2048 and bisection bandwidth 256w; while
a 10-cube with 4-node chips (for a total of 256 chips too)
has off-chip bandwidth w/2 per link and has bisection width
512 and bisection bandwidth 256w. As a comparison, an
HSN(3,Q4) with 16-node chips (for a total of 256 chips)
has off-chip bandwidth 8w/15 per link, has bisection width
1024 (without cutting any nucleus), and has bisection band-
width 8192w/15 > 512w, which is slightly more than dou-
ble that of a hypercube with the same number of chips.
Therefore, for communication-intensive tasks, the HSN has
the potential of offering a throughput that is double that of a
hypercube, when they are both implemented as MCMPs.

If the number of processors per chip is larger than 16,
the superiority of super-IPGs over other networks, such as
hypercubes and tori, is even more pronounced. For ex-
ample, if a chip can accommodate 256 nodes, the bisec-
tion bandwidths and thus throughput for communication-
intensive tasks of HSNs and SFNs are more than 4 times
higher than those of hypercubes, when there are 256 or 64K
chips in total. The advantages are not limited to large-scale
parallel systems, but occur in small-scale systems as well.
For example, as long as a chip has at least 4 nodes, and there
are 4, 16, 64, or more chips in the parallel systems, the bi-
section bandwidths of these super-IPGs will be higher than
that of a hypercube by at least 33%.

11

Corollary 4.10 The bisection bandwidth of an N-node vN-

ary 2-cube is WJZNQ, where w is the average aggregate off-
chip bandwidth of a node and M is the number of nodes on
a chip.

Proof: The bisection width of an N-node \/I_V_-ary 2-cube is
2v/N, and a chip with M nodes has 4/M off-chip links, each

of which has bandwidth M , so the bisection bandwidth is
wyNM [}
T

It can be seen that the bisection bandwidth of a 2-.
dimensional torus is considerably lower than that of a hy-
percube. The bisection bandwidths of k-ary n-cubes are be-
tween those of v/N-ary 2-cubes and hypercubes, and are thus
also lower than those of super-IPGs presented in this paper.

The bisection bandwidths of HSNs, complete-CNs, and
SFNs are in fact asymptotically optimal from a trivial lower
bound and the gap is usually a small constant ratio.

Corollary 4.11 The bisection bandwidth of HSNs,
complete-CNs, and SFNs are asymptotically optimal when
I = O(1), within a factor smaller than 21 — 2 from the trivial
lower bound wN /2, where | is the number of super-symbols,
assuming that all nodes belonging to each nucleus are lo-
cated on the same chip.

For example, when [= 2 (or ! = 3), the bisection band-
width of an HSN, complete-CN, or SFN is somewhat larger
than wN /4 (or wN /8, respectively) and the upper-to-lower-
bounds ratio is somewhat smaller than 2 (or 4, respectively).
Therefore, no network can outperform these super-IPGs
by more than a small constant factor for communication-
intensive tasks. In fact, no currently known network, ex-
cluding other super-IPGs, can outperform or match the per-
formance of these super-IPGs under the unit chip capacity
model. An implication of the results in this section is that
even if we use the same number of chips, each with the same
number of pins of equal bandwidth, the performance of a
resultant parallel system can be considerably increased by
simply changing the way in which these chips are intercon-
nected. Note that even though we assumed only two levels
of hierarchy for our network performance comparisons in
this section, our results and methodology can be easily ex-
tended to hierarchical parallel architectures involving more
than two levels. More details will be reported in the near fu-
ture.

In [30], we have proposed to use the product of interclus-
ter degree and diameter (referred to as ID-cost) or interclus-
ter degree and intercluster diameter (referred to as II-cost)
as a metric to compare different network topologies. In ad-
dition to bisection bandwidth, intercluster diameter, and av-
erage intercluster distance, we can also use the product of
intercluster degree and average distance or the product of in-
tercluster degree and average intercluster distance as a met-
ric to compare network topologies and to demonstrate the
superiority of super-IPGs. The details are omitted in this pa-
per.

5 Conclusions

The success of a network topology depends on its topo-
logical parameters, conformance to available or anticipated
technologies, algorithmic properties, reliability, and scala-
bility.! In [27, 30, 34], we have shown that (symmetric)
super-IPGs possess desirable topological properties and are
flexible and adaptable to various hardware constraints. In
[27, 29, 33], we have shown that several super-IPGs can
be laid out in areas smaller than that of a similar-size hy-
percube. In this paper, we showed the feasibility of de-
veloping algorithms for the entire class of super-IPGs as a
whole, and provided a variety of important algorithms and
embeddings for them, which proved their versatility. We
also proposed the unit chip capacity model, and showed that
super-IPGs can significantly outperform other networks for
communication-intensive tasks when parallel computers are
implemented as MCMPs.

References

[1] Ajtai, M., J. Komlés, and E. Szemerédi, “An O(nlogn) sort-

ing network,” Proc. ACM Symp. Theory of Computing, 1983,
. 1-9.

F;\I;(ers, S.B,, D. Harel, and B. Krishnamurthy, “The star

graph: an attractive alternative to the n-cube,” Proc. Int’l

Conf. Parallel Processing, 1987, pp. 393-400.

Akers, S.B. and B. Krishnamurthy, “A group-theoretic model

for symmetric interconnection networks,” IEEE Trans. Com-

put., Vol. 38, Apr. 1989, pp. 555-565.

Amarasinghe, S.P., J.M. Anderson, C.S. Wilson, S.-W. Liao,

R.S. French, M.W. Hall, B.R. Murphy, and M.S. Lam, “The

multiprocessor as a general-purpose processor: a software

perspective,” IEEE Micro, 16(3), Jun. 1996.

Basak D. and D.K. Panda, “Designing clustered multipro-

cessor systems under packaging and technological advance-

ments,” IEEE Trans. Parallel Distrib. Sys., vol. 7, no. 9, Sep.

1996, pp. 962-978.

Baumslag, M. and B. Obrenic, “Index-shuffle graphs,” Int’l

J. Foundations of Computer Science, vol. §, no. 3, Sep. 1997,

pp- 289-304.

Bertsekas, D.P. and J. Tsitsiklis, Parallel and Distributed

Computation: Numerical Methods, Athena Scientific, 1997.

Bhuyan, L.N. and D.P. Agrawal, “Generalized hypercube and

hyperbus structures for a computer network,” IEEE Trans.

Comput., vol. 33, no. 4, Apr. 1984, pp. 323-333.

Biggs, N., Algebraic Graph Theory, 2nd edition, Cambridge,

Cambridge University Press, 1993.

Cypher, R. and J.L.C. Sanz, “Hierarchical shuffle-exchange

and de Bruijn networks,” Proc. IEEE Symp. Parallel and Dis-

tributed Processing, 1992, pp. 491-496.)

Dally, W.]. “Performance analysis of k-ary n-cube intercon-

nection networks,” IEEE Trans. Comput., Yol. 39, no. 6, Jun.

1990, pp. 775-785.

Dally, W.J. and S. Lacy, “VLSI architecture: past, present,

and future,” Proc. Advanced Research in VLSI Conf., 1999,

pp. 232-241.

Duh D., G. Chen, and J. Fang, “Algorithms and properties

of a new two-level network with folded hypercubes as basic

modules,” IEEE Trans. Parallel Distrib. Sys., vol. 6, no. 7,

Jul. 1995, pp. 714-723.

Efe, K. and A. Fernandez, “Products of networks with log-

arithmic diameter and fixed degree,” IEEE Trans. Parallel

Distrib. Sys., vol: 6, no. 9, Sep. 1995, pp. 963-975.

Ghose, K. and R. Desai, “Hierarchical cubic networks,”

IEEE Trans. Parallel Distrib. Sys., vol. 6, no. 4, Apr. 1995,

pp. 427-435.

(2]

(3]

(4]

(3]

{6}

[71
(8]

(9]
{10]

(1]

[12]

(13]

[14]

[15]

12

[16] Hamdi, M. and R.W. Hall, “RCC-FULL.: an efficient network
for parallel computations,” J. Parallel Distrib. Comp., vol.
41, no. 2, Mar. 1997, pp. 139-155.

Johnsson, S.L. and C.-T. Ho, “Optimum broadcasting and
personalized communication in hypercubes,” IEEE Trans.
Comput., vol. 38, no. 9, Sep. 1989, pp. 1249-1268.
Lakshmivarahan, S. and S.K. Dhall, “A new hierarchy of hy-
percube interconnection schemes for parallel computers,” J.
Supercomputing, vol. 2, 1988, pp. 81-108.

Lakshmivarahan, S., J.-S. Jwo, and S.K. Dhall, “Symmetry
in interconnection networks based on Cayley graphs of per-
mutation groups: a survey,” Parallel Computing, Vol. 19, no.
4, Apr. 1993, pp. 361-407.

Leighton, ET., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.

Preparata, F.P. and J.E. Vuillemin, “The cube-connected cy-
cles: a versatile network for parallel computation,” Commu-

- nications of the ACM, vol. 24, no. 5, May 1981, pp. 300-309.

[22] Sterling, T., P. Messina, and P. Smith, Enabling Technologies

for Petaflops Computing, MIT Press., 1995.

[23] Yeh, C.-H. and B. Parhami, “Parallel algorithms on three-

level hierarchical cubic networks,” Proc. High Performance

Computing Symp., Mar. 1996, pp. 226-231.

Yeh, C.-H. and B. Parhami, “Hierarchical swapped networks:

efficient low-degree alternatives to hypercubes and general-

ized hypercubes,” Proc. Int’l Symp. Parallel Architectures,

Algorithms, and Networks, Jun. 1996, pp. 90-96.

Yeh, C.-H. and B. Parhami, “Recursive hierarchical swapped

networks: versatile interconnection architectures for highly

‘parallel systems,” Proc. IEEE Symp. Parallel and Distributed

Processing, Oct. 1996, pp. 453-460.

Yeh, C.-H. and B. Parhami, “Cyclic networks ~ a family of

versatile fixed-degree interconnection architectures,” Proc.

Int’l Parallel Processing Symp., Apr. 1997, 739-743.

Yeh, C.-H., “Efficient low-degree interconnection networks

for parallel processing: topologies, algorithms, VLSI lay-

outs, and fault tolerance,” Ph.D. dissertation, Dept. Electrical

& Computer Engineering, Univ. of California, Santa Barbara,

Mar. 1998.

Yeh, C.-H. and E.A. Varvarigos, “Macro-star networks: ef-

ficient low-degree alternatives to star graphs,” IEEE Trans.

Parallel Distrib. Sys., vol. 9, no. 10, Oct. 1998, pp. 987-1003.

Yeh, C.-H., B. Parhami, and E.A. Varvarigos, “The recur-

sive grid layout scheme for VLSI layout of hierarchical net-

works,” Proc. Merged Int’l Parallel Processing Symp. &

Symp. Parallel and Distributed Processing, Apr. 1999, pp.

441-445.

Yeh, C.-H. and B. Parhami, “The index-permutation graph

model for hierarchical interconnection networks,” Proc. In-

'l Conf. Parallel Processing, Sep. 1999, pp. 48-55.

Yeh, C.-H. and B. Parhami, “Routing and embeddings in

cyclic Petersen networks: an efficient extension of the Pe-

tersen graph,” Proc. Int’l Conf. Parallel Processing, Sep.

1999, pp. 258-265.

Yeh, C.-H., B. Parhami, E.A. Varvarigos, and H. Lee, “VLSI

layout and packaging of butterfly networks,” Proc. ACM

Symp. Parallel Algorithms and Architectures, 2000, pp. 196-

205

(17
(18]

(19]

[20]

[21]

[24]

{25)

f26]

[27]

(28]

[29]

[30]

(31]

[32)

Yeh, C.-H., E.A. Varvarigos, and B. Parhami, “Multilayer
VLSI layout for interconnection networks,” Proc. Int’l Conf.
Parallel Processing, 2000, pp. 33-40.

Yeh, C.-H. and B. Parhami, “A unified model for hierarchi-
cal networks based on an extension of Cayley graphs,” IEEE
Trans. Parallel Distrib. Sys., to appear.

Youssef, A., “Design and analysis of product networks,”
Proc. Symp. Frontiers of Massively Parallel Computation,
1995, pp. 521-528.

Yun S.-K. and K.H. Park, “Hierarchical hypercube networks
(HHN) for massively parallel computers,” J. Parallel Distrib.
Comput., vol. 37, no. 2, Sep. 1996, pp. 194-199.

[33]

[34]

[35]

[36]

