
 Informatica 25 (2001) 533–543 533

Approach to component-based synthesis of fault-tolerant software

Behrooz Parhami
University of California, Santa Barbara, CA 93106, USA
Phone: +1 805 893 3211, Fax: +1 805 893 3262
parhami@ece.ucsb.edu

Keywords: components, design diversity, fault tolerance, multichannel computation, multiversion software, software
reliability, safety, software reuse, weighted voting.

Received: June 6, 2001

N-version programming (NVP) and acceptance testing (AT) are established methods for obtaining
highly reliable results from imperfect software. In NVP, several program modules are executed
independently and the final result is derived by voting on the module outputs. In AT (as embodied, for
example, in the recovery-block construct), outputs of a program module are subjected to an acceptance
test and in the event of failing the test, alternate modules are invoked, until a module produces results
that pass the test. Various symmetric combinations of NVP and AT techniques have also been suggested.
We have found that a more general view, allowing the insertion of ATs at arbitrary points within a
suitably constructed multichannel computation graph can lead to higher reliability and/or greater cost-
effectiveness compared to the previously envisaged hybrid schemes such as consensus recovery blocks,
recoverable N-version blocks, and N-self-checking programs. Accordingly, we introduce MTV graphs,
and their simplified data-driven version called DD-MTV graphs, as component-based frameworks for
the creation, representation, and analysis of hybrid NVP-AT schemes. MTV graphs model variations in
fault-tolerant software architectures built of computation module (M), acceptance test (T), and voter (V)
components. Following the definition of (DD-)MTV graphs, we present several examples of hybrid
NVP-AT schemes, as instances of fault-tolerant software based on our component-based approach, and
quantify the resulting reliability improvements. We show, for example, that certain, somewhat
asymmetric, combinations of M, T, and V components lead to higher reliabilities and/or lower cost than
previously proposed symmetric arrangements. We conclude that our component-based approach
facilitates design space exploration for fault-tolerant software and leads to reliability improvements due
to the double effect of architectural optimization and component refinement afforded by reuse.

1 Introduction
Applications of highly dependable computer systems are
no longer limited to exotic space exploration and defense
systems. A multitude of information and control systems
in avionics, transportation, transaction processing, and
process monitoring also rely on existence of ultrareliable
computational resources [32], [43]. With the continually
increasing complexity of hardware and software
modules, and the attendant impossibility of
implementing perfect (defect- or fault-free) components,
the use of multi-channel computations with design
diversity [2], [16], [17], [23], [51] has emerged as a
practical and cost-effective approach.

Diverse multichannel computations take advantage
of the property that, with adequate testing, malfunctions
caused by residual design defects are rare and occur only
for highly unusual sets of input conditions. It is thus
likely that malfunctions of independently constructed
modules, based on the same initial specifications, occur
for different input states. This design diversity approach
has been found useful for hardware subsystems [45] and
for data [1] as well, but its primary application area is in
constructing highly reliable software systems based on

one of two distinct paradigms: Voting on multiple
versions and acceptance testing of results [13], [24].

Following the success of hardware and data
replication methods in tolerating physical faults in
computing systems, the use of N-Version Programming
(NVP) was proposed to allow tolerance of software
design flaws [3], [8]. In NVP, several program modules
are executed independently and the final result is
obtained by voting on the module results. Voting, as used
here, covers a wide variety of techniques in terms of
sophistication, flexibility, and computational complexity
[15], [30], [33] and need not be implemented through
simple matching and majority rule. Several other terms,
such as “consensus” [3] and “adjudication” [9] have been
used to describe the decision process that computes an
output based on possibly inexact or incomplete results
provided by multiple redundant modules.

An important objection to NVP is that independence
of design flaws in multiple versions cannot be guaranteed
and that commonly used specification and software
design techniques may lead to related faults in
independently designed versions [21]. Such related faults
may cause identical or similar errors and thus lead to an

534 Informatica 25 (2001) 533–543 B. Parhami

incorrect voter output. However, this is a criticism of
dependability analyses for NVP and the attendant
quantitative claims of reliability improvement. The
usefulness of the NVP approach has never been in doubt.
In some contexts, diversity is more readily ensured [35].
Also, attempts have been made to model the effects of
correlated failures (e.g., [12], [25], [27]).

The technique of acceptance testing, e.g. as proposed
in the recovery-block scheme [38], [39] is also based on
design diversity. An acceptance test is an application-
dependent routine that either accepts a result or declares
it incorrect/suspect. Our confidence in an “accepted”
result being actually “correct” depends on the
thoroughness (coverage) of the acceptance test and its
own reliability. ATs come in many different forms; from
simple reasonableness checks to more complex, high-
coverage validators. Assuming that the correctness of
module result can be judged fairly accurately by applying
an AT, alternate modules can be invoked sequentially in
some specified order until one has produced a result
passing the AT. This result is taken to be correct.

The main problem with redundancy techniques that
rely solely on AT for validating a result is the difficulty
of designing good acceptance tests that are both simple
and thorough. Certain computations are easily checked
through mathematical properties that relate the outputs to
the inputs or by way of inverse computations where they
exist [6]. In a great majority of cases, however, the only
sure way of checking result validity with high confidence
is to simply recompute using algorithms and/or hardware
with diverse designs or operational characteristics.

Reliability evaluation for NVP and AT schemes has
been presented in [5], [11], [23], [37], [41], [50], [52].
Linguistic constructs for describing adjudication and
exception handling schemes for multi-version programs
have been proposed in [26]. Kim et al [18], [19], [20]
have studied architectures for, and design issues
pertaining to, implementing a modified form of the
recovery block scheme in a distributed environment. The
resulting distributed recovery block (DRB) scheme uses
concurrent execution of try blocks to allow fast forward
recovery. Dugan and Lyu [10] discuss the relative merits
of DRB, NVP, and NSCP (see the next paragraph).

Several groups have tried to combine NVP and AT.
One such attempt is consensus recovery blocks (CRB) in
which n versions are executed and their results are
compared [40]. If there is agreement between two or
more versions, then their common result is assumed
correct and used. Otherwise, the n disagreeing results are
subjected to an AT is some prespecified order and the
first to pass the test is taken as the correct output.
Another case is recoverable N-version blocks (RNVB) in
which ATs are run on module outputs and only those that
pass are provided to the voter [14]. This approach has
also been suggested in [5], [16] and, under the name “N
self-checking programming” (NSCP), in [22], [24].
Conceptually related to the efforts above, but different in
terms of components and implementation, is processor-
data-check method, and its graph-theoretic formulation,
in algorithm-based fault tolerance [4], [44], [36].

Clearly, these are just examples of the ways in which
NVP and AT approaches can be combined. CRB
essentially applies NVP (with relaxed 2-out-of-n voting)

and AT schemes sequentially and one at a time. Because
no AT is applied in the case of, say, two agreeing results,
there is some chance of an erroneous output being
propagated. Furthermore, a common AT is assumed and
design diversity is not applied to the AT. Both RNVB
and NSCP approaches envisage applying ATs uniformly
to all versions. This leads to an increase in complexity
since ATs may essentially be duplicates of computational
modules. We have found that a more general view,
allowing the insertion of ATs at arbitrary points within a
suitably constructed multichannel computation graph can
lead to higher reliability and/or greater cost-effectiveness
compared to the previously envisaged hybrid schemes
such as consensus recovery blocks, recoverable N-
version blocks, and N-self-checking programs.

Accordingly, we introduce MTV graphs, and their
simplified data-driven version called DD-MTV graphs,
as component-based frameworks for the creation,
representation, and analysis of hybrid NVP-AT schemes.
MTV graphs model variations in fault-tolerant software
architectures built of computation module (M),
acceptance test (T), and voter (V) components [34].
Following the definition of (DD-)MTV graphs, we
present several examples of hybrid NVP-AT schemes, as
instances of fault-tolerant software architectures
developed based on our component-based approach, and
quantify the reliability improvements they achieve. We
show, for example, that certain, somewhat asymmetric,
combinations of M, T, and V components can lead to
higher reliabilities than previously proposed symmetric
arrangements having comparable or higher complexities.
We conclude that our component-based approach
facilitates the exploration of the design space for fault-
tolerant software and leads to reliability improvements
due to the double effect of architectural optimization and
component refinement afforded by reuse.

The rest of this paper is organized as follows.
Section 2 contains basic definitions and assumptions as
well as examples of a more general hybrid NVP-AT
schemes in order to motivate the subsequent discussion.
Sections 3 and 4 analyze NVP schemes in which 1 or k
of the n versions, respectively, have been replaced by
ATs. Section 5 deals with an example of more general
combining schemes. Section 6 examines the effect of
correlated failures. Conclusions and directions for further
research appear in Section 7.

2 Terminology and assumptions
The question that we have set out to answer is how to
combine the techniques of NVP and AT in an optimal
way in order to achieve the best possible results. More
specifically, our ultimate goal is to be able to combine
diverse components (software modules, acceptance tests,
voting algorithms) in a systematic way in order to
maximize the correctness probability of the output with a
given overall complexity or to achieve a desired
correctness probability with minimal cost.

Unfortunately, in view of difficulties in estimating
reliability and cost parameters, except in very limited
cases [42], these problems are currently intractable when
posed in their full generality. So, in this initial study, we
endeavor to obtain results for a rather limited set of more
specific questions with several simplifying assumptions.

Component Based Fault-Tolerant Software Informatica 25 (2001) 533–543 535

Our hope is that with further research, the domain can be
broadened and the assumptions gradually relaxed.

Here are our main objectives for this paper:
1. Demonstrate that certain novel, somewhat

asymmetric, arrangements of modules, acceptance tests,
and voters could be more reliable than earlier proposals.

2. Find optimality results in certain special cases;
e.g., when the arrangement contains a single acceptance
test or only one level of voting.

3. Provide examples of how the models and
techniques used to analyze the special cases can be
extended to deal with more complicated arrangements.

4. Generate interest in further systematic studies of
the methodology, and tradeoff issues, for component-
based synthesis of fault-tolerant software.

The following definitions and assumptions are
needed in our discussions and analyses.

2.1. Definition – MTV graph: An MTV (Module-
Test-Voter) graph is a directed acyclic graph with one
“In”, one “Out”, and possibly one “Error” node, plus any
number of nodes of three other types: Modules (M),
acceptance tests (T), and voters (V).

M: Computes a result based on its inputs and sends
it to a T or V node or to Out.

T: Accepts its input and forwards it or rejects it and
activates some M or T nodes.

V: Forwards the result of weighted plurality voting
or activates some M or T nodes.

The inner workings of M and T components are
application-dependent. We make no assumption about
these parts except that they have known, statistically
independent reliability parameters (see 2.2-2.4). Voter
components are more formally described in Def. 2.5. The
nodes are connected by directed edges representing data
transfers and controls. In diagrams, forwarding of data
(the “P” output of an AT or the voting result from a V
node) is represented by solid edges while activation
controls (the “F” output of an AT or an indecisive voting
outcome) are represented by dotted edges. ♦

Figures 1 and 2 contain examples of MTV graphs
whose full meanings will become clear following the
introduction of several more assumptions and definitions.

2.2. Assumption – Reliability parameters of
computation modules: Each computation module Mi
produces a result which is correct with fixed probability
qi and incorrect with fixed probability pi, uniformly over
its input space. In case qi + pi < 1, the module may be
viewed as (partially) self-checking or fail-safe, abstaining
from producing any result with probability 1 – qi – pi. In
the rest of this paper, we assume qi + pi = 1. ♦

Assumption 2.2 is controversial in that it is very
difficult, if not impossible, to accurately estimate the
reliability qi of a software module [7]. We justify this
assumption by noting that any system-level reliability
analysis must be based on the reliability parameters of
the components used. Accurate reliability estimates will
be available with greater ease as we gain experience with
the design and use of multiversion software. A
Component-based strategy is helpful in this regard
because component reuse fosters the gathering of more
accurate reliability and performance data. Additionally,
when comparing various arrangements of modules and
tests, occasionally we obtain results indicating that one

scheme is better than another for a wide range of
parameter values or even for all values of a certain pi.
Hence, such comparative evaluations are less sensitive
to, or totally independent of, the availability of accurate
estimates for the pis. The comments above apply to
Assumption 2.3 as well.

2.3. Assumption – Reliability parameters of
acceptance tests: A correct result passes an acceptance
test Ti (outgoing edge labeled “P” is taken) with fixed
probability q'i and fails it (outgoing edge “F” is taken)
with fixed probability p'i, uniformly over the space of
correct inputs. Similarly, Ti rejects an incorrect result
with fixed probability q"i and accepts it with fixed
probability p"i, uniformly over the space of incorrect
inputs (note that in all definitions, qis are close to 1
whereas pis are near 0). When q'i + p'i < 1 or q"i + p"i <
1, the AT is viewed as (partially) self-checking or fail-
safe, abstaining from judging an input with probability 1
– q'i – p'i for correct inputs and 1 – q"i – p"i for incorrect
ones. Henceforth, we assume q'i + p'i = q"i + p"i = 1. ♦

The reason we do not start by assuming q'i = q"i is
that ATs behave asymmetrically with respect to correct
and incorrect inputs. An AT that is itself defect-free,
always accepts a correct input. Thus, p'i is typically small
and is related to the probability of a defect in the AT
design. On the other hand, even a defect-free AT may
accept an incorrect input due to imperfections in the
testing algorithm (imperfect coverage). Hence, p"i lumps
together two sources of errors: imperfect coverage and
defective design. We typically have p"i > p'i (perhaps
even, p"i >> p'i) for simple, low-complexity ATs. For a
more comprehensive AT (e.g., one that duplicates the
computation and decides by comparing the two values),
coverage can be very high or even perfect. In such cases,
q'i and q"i are comparable, though not necessarily equal.

2.4. Assumption – s-independence of module and
AT failures: Each M and each AT fails s-independently
of other Ms and ATs, unless otherwise noted. Hence, the
probability of k modules Mi (1 ≤ i ≤ k) coincidentally
producing erroneous results is Πi∈[1, k] pi. ♦

Assumption 2.4 is perhaps our most important
assumption and the one most likely to be criticized. So
let us try to justify it briefly. As noted in the introduction,
the assumption of failure independence for multiversion
software has been scrutinized and questioned from early
on [21]. We think that these criticisms are valid and must
be considered very seriously when trying to compute
absolute reliability values for multichannel computations.
However, the problem is much less serious for the types
of analyses presented in this paper. Here, we try to
determine if one scheme offers reliability improvement
over another. Intuitively, since dependent failures are
likely to affect the reliabilities of both schemes being
compared, we can have a higher confidence in such
relative figures of merit than in absolute reliabilities. We
relax this independence assumption in Section 6 in order
to validate, in part, this intuition. More work is clearly
needed in this direction.

2.5. Definition – Weighted plurality voter: Given n
input data objects x1, x2, . . . , xn, with associated
nonnegative real votes (weights) v1, v2, . . . , vn, a V node
computes the output object y and its vote w such that y is
“supported by” a number of input data objects with votes

536 Informatica 25 (2001) 533–543 B. Parhami

totalling w and no other y' is supported by inputs having
more votes. If w ≤ (∑i∈[1, n] vi)/2, then the outcome y may
be nonunique. In such cases, an erroneous voter output
will be pessimistically assumed. The output weight w
selects one of the outgoing voter edges along which y or
an activation signal must be sent (see, e.g., Fig. 1). When
input votes are not explicitly specified, it is assumed that
v1 = v2 = . . . = vn = 1. Various definitions of the term
“supported by” lead to different voting schemes such as
exact, inexact, and approval voting (e.g., with exact
voting, an input object xi supports y iff xi = y). These
variations, although important, are beyond the scope of
this paper [30], [33]. ♦

2.6. Assumption – Perfect voters: Voters are perfect
and act instantaneously. This assumption is reasonable
because voters are simpler than modules or ATs and are
designed just once for use with many different modules
and test types. They can be made highly reliable through
careful design and extensive testing (much more so than
what is reasonable for any single application or its
associated ATs). ♦

Consider Fig. 1 in which 5VP and an alternative
scheme with the same number of M/T modules, and thus
with lower or equal complexity, are shown. T is an
acceptance test with pass/fail (P/F) outcome. A result that
passes T is simply forwarded to the output. When T
rejects its input, it activates M4. The voter in Fig. 1c can
produce one of three mutually exclusive outputs: (1) No
agreement, leading to activation of M4, (2) agreement
between two inputs, leading to the application of T on the
agreed-upon result, and (3) agreement among all three
inputs, yielding an acceptable output.

1, 2 ≥ 3

Module

Test

Voter

In

Out

Error

(a) Legend (b) 5VP

1 3

(c) ALT1

2

F P

1 2 3 4 5 1 2 3

4

Fig. 1. Representations of 5VP and ALT1, an

alternative scheme, as MTV graphs.

Figure 2 shows MTV graphs corresponding to two

other hybrid NVP-AT schemes. These schemes have
been proposed in the literature as alternatives to 3VP,
although both imply greater cost than 3VP. Figure 2a
represents a 3-channel RNVB or NSCP. Each of the
three computation channels is made self-checking
through the insertion of an AT after the computation
module. The V node in Fig. 2a is a weighted plurality
voter for which each input weight is set to 0 or 1, based
on the outcome of the associated AT.

Figure 2b represents a 3-channel CRB. If the voter
observes agreement between two or all three of its inputs,
the agreed-upon result is forwarded to the output. On the
other hand, when there is no agreement, results from the
computation channels are successively subjected to an
AT and the first to pass the test is forwarded to output.

The ATs in Fig. 2b are labeled T1, T2, and T3, but they
may all represent the same test. The advantage of this
scheme over 3VP is that it is guaranteed to produce the
correct result whenever 3VP would produce the correct
result. Additionally, the added AT mechanism may
salvage a correct result from disagreeing modules.

 1

 3

(a) RNVB / NSCP

2

F P

 1 2 3

1 2 3

(b) CRB

 1 2 3

1

2

3

F

F

F F F

 P P

 P

 P

 P ≤∑v/2 >∑v/2

Fig. 2. MTV graphs representing two different

3-channel hybrid NVP-AT schemes.

Returning now to the initial example, the 5VP

scheme of Fig. 1b can tolerate up to two module failures,
but can produce an incorrect result with some triple
failures. In fact, any worst-case analysis must assume
that 5VP fails when there are three module failures. The
alternative scheme shown in Fig. 1c also tolerates any
two failures in the M/T nodes. This claim is proven by
considering the following four cases which exhaust all
possible double failures.

Case 1 – Two failures in {M1, M2, M3}: T and M4
are fault-free. If the two faulty modules produce mutually
supportive results, then the error is caught by T and M4 is
executed. Otherwise, M4 is executed directly. Either way,
the correct result is produced.

Case 2 – Two failures in {T, M4}: M1, M2, and M3
are fault-free and produce pairwise mutually supportive
results. The voter outputs is the correct result.

Case 3 – One failure in {M1, M2, M3} and one in T:
Because M4 is fault-free, the output is correct whether or
not T accepts the correct result received from the voter.

Case 4 – One failure in {M1, M2, M3} and one in M4:
T is fault-free and accepts the voter’s majority result.

Triple failures can lead to an incorrect output for the
alternative scheme in a manner similar to 5VP. For
example, if M1, M2, and M3 are faulty but produce
incorrect pairwise mutually supportive results, an
incorrect value will be output. Failure of M1, T, and M4
also can lead to incorrect output. A side benefit of the
alternative scheme of Fig. 1c is that whereas all five
modules must run to completion in 5VP, the alternative
scheme rarely needs to execute M4.

Let us now analyze the two schemes of Fig. 1 with
respect to reliability (probability of producing a correct
result). Assuming p1 = p2 = p3 = p4 = p = 1 – q:

Q5VP = q5 + 5q4p + 10q3p2 = q2(1 + 2p + 3p2 – 6p3)

QALT1 = q3 + 3q2p(1 – p'p) + 3qp2q"q

 = q2[1 + 2p + 3p2 – 3p2(p' + p")]

Component Based Fault-Tolerant Software Informatica 25 (2001) 533–543 537

The equation for the reliability of the alternate
configuration in Fig. 1c, QALT1, is derived as follows. The
first term, q3, is the probability of having no fault in {M1,
M2, M3}. The second term, 3q2p(1 – p'p), covers the
event of having a single fault in {M1, M2, M3}, in which
case correctness of the result is guaranteed unless T
rejects the correct majority result and M4 is faulty. The
third term, 3qp2q"q, corresponds to having two faults in
{M1, M2, M3}. In this event, the worst case is the
agreement of the two faulty modules because it leads to
the requirement for T to reject the incorrect majority
result (probability q") and for M4 to be fault-free
(probability q) to obtain the correct result. If the two
faulty modules in {M1, M2, M3} disagree with each other
and with the correct result, then the only requirement for
producing the correct output is for M4 to be fault-free.

Comparing the two expressions above, we find that
QALT1 > Q5VP iff p' + p" < 2p. In the special case of p' =
p" = s, the alternate scheme ALT1 offers reliability
improvement over 5VP iff s < p; i.e., the alternate
scheme is better if the acceptance test component T is
more reliable than each module Mi. In practice, T can
often be made simpler, and thus more reliable, than Mi.
This may be due to the inherent simplicity of verifying
the result’s correctness (e.g., by means of a mathematical
relationship or an inverse computation) or by virtue of T
using extra information (“certification trail”) provided by
the computation modules [46], [47], [48].

The examples above were intended to demonstrate
the power of MTV graphs as representation and analysis
tools for multichannel computations. In particular, it was
shown that previously proposed hybrid NVP-AT
approaches can be represented as simple MTV graphs
and that these graphs can also represent more general
hybrid schemes that have not been dealt with in the past
and that can potentially offer higher reliability and/or
lower overall complexity. Next, we define a modified
form of MTV graphs in order to simplify the discussion
in the remainder of this paper.

2.7. Definition – Data-driven MTV (DD-MTV)
graph: A DD-MTV graph is a modified MTV graph with
no Error node and only single-output M, T, and V nodes.

Mi: Attaches the weight wi to its output yi.
Ti: Modifies the weight w of y to w + ai(w) or w –

ri(w) upon acceptance/rejection.
Vi: Produces data object y of weight w from its

inputs, as detailed in Def. 2.5.
The Error node is not needed because error can be
indicated by a subset of possible weights (low values) for
the final result. The elimination of control edges and the
resultant graph’s uniformity simplifies the enumeration
and analysis of various alternatives, while still retaining
the power to accurately model most hybrid schemes. The
weight augmentation and reduction functions, ai(w) and
ri(w), used to adjust the weight of an accepted and
rejected input, respectively, are nonnegative functions to
be determined (see Assumption 2.9). ♦

Figure 3 depicts several examples of DD-MTV
graphs, each having six M/T nodes. These can be viewed
as lower-complexity alternatives to 6VP. The examples
in Fig. 3 clearly show the wide variety of multichannel
computational arrangements that can be modeled easily
by DD-MTV graphs [29].

(a)

 1 2 3

1 2 3

(b)

 1 2 3

4 5

(c)

 1 2 3

4

(d)

1

2

1 2 3 4 5

1 2

1

2

Fig. 3. DD-MTV graphs with six M/T nodes.

2.8. Assumption – Uniformity of modules and ATs:

In the rest of this paper, modules will be assumed to have
identical reliability, complexity, and execution-time
parameters. Thus, the subscript i will be omitted from
parameters such as pi, qi and the weight w = 1 is attached
to all module outputs. Similarly, ATs will be uniformly
treated by eliminating the subscript i from their
respective parameters such as p'i and p"i. ATs will be
taken to have perfect coverage and lower or equal
complexity compared to modules, thus leading to the
assumptions p' ≤ p and p" ≤ p. ♦

2.9. Assumption – Weight augmentation/reduction
functions for ATs: Selection of appropriate weight
augmentation and reduction functions, a(w) and r(w), can
have important effects on the overall reliability of the
system modeled by a particular DD-MTV graph. In this
paper, we assume a(w) = r(w) = 1. These simple constant
functions can be intuitively justified when ATs have
near-perfect coverage and are of comparable complexity
to modules, and they have worked well in practice.
However, an extensive study of techniques for optimally
choosing these functions is required. ♦

The stage is now set for a more detailed examination
of certain classes of DD-MTV graphs and the systems
they model. Before that, we recap the abbreviations used
and introduce some needed notation.

2.10. Notation and nomenclature – The following
is a list of symbols and abbreviations used in the paper:

AT Acceptance Test(ing)
CRB Consensus Recovery Block (Fig. 2b)
Cx,y Binomial coefficient = x!/[y!(x – y)!]
DD-MTV Data-Driven MTV graph (Def. 2.7)
M Module; node in (DD-)MTV graph
MTV Module-Test-Voter graph (Def. 2.1)
NSCP N-Self-Checking Program (Fig. 2a)
nVP n-Version Program(ming); e.g., 3VP
P Failure probability = unreliability = 1 – Q

538 Informatica 25 (2001) 533–543 B. Parhami

Q (QX) Reliability (of system or configuration X)
Rk,m Reliability of k-out-of-m system
RNVB Recoverable N-Version Block (Fig. 2a)
T Test (AT) node in (DD-)MTV graph
V Voter node in (DD-)MTV graph ♦

3 Replacing one version with an AT
When one module in 3VP is replaced by an acceptance
test, a recovery block scheme with one alternate is
obtained (Fig. 4a). Note that Fig. 4a is a correct model of
recovery block scheme as far as reliability estimation is
concerned. The fact that M1 and M2 appear to be running
in parallel rather than M2 following M1, and then only in
case T rejects M1’s result, is irrelevant to the reliability
calculation. In this section, we generalize this notion by
analyzing the effect of replacing one module in nVP with
an AT (Fig. 4b). Reliability expressions for 3VP and the
alternate scheme ALT2 of Fig. 4a are as follows:

Q3VP = q3 + 3q2p = q(1 + p – 2p2)

QALT2 = qq' + qp'q + pq"q = q[1 + p – p(p' + p")]

The equation for the reliability of the alternate
configuration in Fig. 4a, QALT2, is derived as follows. The
first term, qq', is the probability of M1 producing the
correct result and T accepting it. The second term, qp'q,
covers the event of M1 producing the correct result, T
rejecting it, and M2 getting the correct result. The third
term, pq"q, corresponds to M1 producing an incorrect
result, T catching the error, and M2 being fault-free.
Comparing the expressions above, we find that QALT2 >
Q3VP iff p' + p" < 2p. Hence the discussion preceding
Def. 2.7 applies here as well. Figure 5 shows the
unreliability P = 1 – Q of 3VP and ALT2 when p' = p".

 1 2

(a) ALT2 (b) ALT3

 1 2

n − 1

. . .

Fig. 4. Replacing one module with an

acceptance test in 3VP and nVP.

It is relatively straightforward to generalize the

analysis above to the comparison of nVP and the
alternative scheme ALT3 depicted in Fig. 4b. However,
we first need some notation. Let Rk,m be the reliability of
a homogeneous k-out-of-m system in which each module
fails with probability p (for brevity, the parameter p is
not explicitly shown).

Rk,m = ∑j∈[k, m] Cm,j q
jpm–j

where Cm,j is the binomial coefficient. Rk,m is defined to
be 0 for k > m and 1 for k ≤ 0. We now write reliability
equations for nVP and the ALT3 scheme of Fig. 4b as
follows. To simplify the formulas, let h = ⎣n/2⎦. Each of
the following expressions is written by considering the
four possible cases with respect to the presence of faults

in two modules or in one module and its associated AT
and for each case figuring out how many of the
remaining n – 2 modules must be fault-free in order to
guarantee a correct result.

QnVP = Rh+1,n = q2Rh–1,n–2 + 2pqRh,n–2 + p2Rh+1,n–2

QALT3 = qq'Rh–1,n–2 + qp'Rh,n–2 + pq"Rh,n–2 + pp"Rh+1,n–2

To compare these reliabilities, let us compute their
difference ΔQ = QALT3 – QnVP:

ΔQ = q(p – p')Rh–1,n–2 + [p(p – p") – q(p – p')]Rh,n–2
 – p(p – p")Rh+1,n–2

 = q(p – p')[Rh–1,n–2 – Rh,n–2]
 + p(p – p")[Rh,n–2 – Rh+1,n–2]

Because each of the two terms within the square brackets
is positive, a sufficient condition for reliability
improvement over nVP is immediately obtained as
max(p', p") < p, which always holds by Assumption 2.8.

10

10

10

10

10

−10

−8

−6

−4

−2

10 10 10 10 −1 −3 −4 −2

P
 =

 1
 −

 Q

1

1

s

p = 0.001

p = 0.01

p = 0.1

3VP

ALT3

Fig. 5. Unreliability P = 1 – Q of 3VP and

ALT2, assuming p' = p" = s.

To continue the analysis, we note that:

Rk–1,m – Rk,m = Cm,k–1q
k–1pm–k+1

= m!qk–1p m–k+1/[(k – 1)!(m – k + 1)!]

Hence, we can rewrite ΔQ = QALT3 – QnVP as:

ΔQ = q(p – p')(n – 2)!qh–1pn–h–1/[(h – 1)!(n – h – 1)!]
 + p(p – p")(n – 2)!qhpn–h–2/[h!(n – h – 2)!]

 = {(n – 2)!/[h!(n – h – 1)!]} qhpn–h–1
 × [(n – 1)p – hp' – (n – h – 1)p"]

Therefore, the sign of ΔQ = QALT3 – QnVP depends on the
sign of the last expression within square brackets. For n
odd, we have h = (n – 1)/2 and ΔQ > 0 iff p' + p" < 2p.
For n even, we have h = n/2 and ΔQ > 0 iff (n/2 – 1)(p' +
p") + p' < (n – 1)p. In this latter case, p' is somewhat
more important than p". As an example, for n = 6, we
must have 3p' + 2p" < 5p if the alternate with one AT
(Fig. 3d) is to be more reliable than 6VP.

4 Replacing k versions with ATs
We now consider the case where k of the n modules are
removed (k ≤ n/2) and replaced by ATs following k of
the remaining n – k modules. As shown in the MTV
graph of Fig. 6a, k branches with modules M1, M2, . . . ,
Mk include acceptance tests T1, T2, . . . , Tk and n – 2k
branches have just modules (indexed from k+1 to n–k).

Component Based Fault-Tolerant Software Informatica 25 (2001) 533–543 539

As in Section 3, let Rk,m be the reliability of a
homogeneous k-out-of-m system in which each module
fails with probability p and let h = ⎣n/2⎦ for notational
convenience. We can then write:

QnVP = Rh+1,n = ∑i∈[h+1, n] Cn,i q
ipn–i

QALT4 = ∑i∈[0, k]∑j∈[0, k–i]{Ck,iCk–i,j(pp")i(pq" + qp') j

 × (qq')k–i–jRh+2i+j–2k+1,n–2k}

The reliability expression QALT4 for the alternate
configuration is derived as follows. Let of the k branches
containing ATs, i have faults in both the module and in
the AT, j have a fault in either the module or the AT but
not both, and k – i – j be fault-free. The i branches with
double faults all potentially produce incorrect results
with weight 2. The j branches containing single faults
produce results with weight 0, whether the fault is in M
or in T. Finally, the k – i – j fault-free branches produce
correct results with weight 2. If c of the remaining n – 2k
modules produce correct results, the following condition
must be met for the output to be guaranteed correct:

 c + 2(k – i – j) > (n – 2k – c) + 2i
⇒ c ≥ h + 2i + j – 2k + 1

This justifies the term Rh+2i+j–2k+1,n–2k in the expression for
QALT4. The remaining terms are the probabilities of the
indicated number of faults raised to appropriate powers.
For example, the probability that M is faulty but T
catches the error or M is fault-free but T rejects its output
is pq" + qp' = p + p' – pp' – pp".

(a) ALT4

(b) nVP

M and T faulty
(i channels)

M or T faulty
(j channels)

M and T healthy
(k−i−j channels)

Both Ms in each
of i pairs faulty

One M in each
of j pairs faulty

2k − 2i − 2j
healthy Ms

n − 2k
channels

n − 2k Ms

Fig. 6. Replacing k modules with ATs in nVP

and the notation for reliability analysis.

As written, the expressions for QnVP and QALT4 are

difficult to compare without resorting to numerical
calculation. To facilitate comparison, we rewrite the
expression for QnVP in the following way. We divide the
set of n modules into k module pairs plus n – 2k
individual modules, as shown in Fig. 6b. Each of the k

pairs can have 2, 1, or 0 faulty modules. Let i, j, and k – i
– j be the number of such pairs, respectively. The k
module pairs contribute incorrect results with total
weights of up to 2i + j and correct results with total
weights of at least 2k – 2i – j. Again, if the remaining n –
2k modules produce c correct results and n – 2k – c
incorrect ones, we must have c + 2k – 2i – j > (n – 2k – c)
+ 2i + j, or c ≥ h + 2i + j – 2k + 1, to guarantee a correct
output. The probabilities of having 2, 1, ore 0 faulty
modules in a pair of modules are p2, 2pq, and q2,
respectively. Thus:

QnVP = ∑i∈[0, k]∑j∈[0, k–i]{Ck,iCk–i,j(p
2)i(2pq) j

 × (q2)k–i–jRh+2i+j–2k+1,n–2k

Comparing the corresponding ij terms in the expression
for QALT4 to the above expression for QnVP provides some
insight but no general conclusion. For example, for p' =
p" = s, corresponding terms become identical and the two
schemes are equivalent with respect to reliability. For p'
= p" = s, the ij term in QALT4 divided by the ij term in
QnVP yields the ratio:

 (s/p)i[(p + s – 2ps)/(2pq)]j[(1 – s)/q]k–i–j

For particular values of s and p satisfying s < p, the first
and the second term above are always less than 1 while
the third term is always greater than 1. Hence, the ratio
can be less than or greater than 1 depending on the values
of i and j and no conclusion can be drawn based on this
term-by-term comparison.

10

10

10

10

10

−10

−8

−6

−4

−2

10 10 10 10 −1 −3 −4 −2

P
 =

 1
 −

 Q

1

1

s

p = 0.001

p = 0.01

p = 0.1

5VP
ALT3

k = 2 k = 1

Fig. 7. Unreliability P=1–Q of 5VP and ALT4

with k = 1 or 2, assuming p' = p" = s.

For n = 3, the only acceptable value for k is 1 and

Fig. 5 depicts the corresponding changes in the
unreliability P = 1 – Q. To note the effect of changing k,
the expressions for QnVP and QALT4 have been evaluated
for n = 5, with k = 1 or 2, and p = 0.1, 0.01, or 0.001,
assuming p' = p" = s. Figure 7 depicts the resulting
unreliabilities as functions of s.

As expected, the unreliabilities PnVP and PALT4 are
identical for s = p (see the crossover points in Fig. 7).
The 5VP scheme is uniformly better for s > p. In the case
of s < p, both alternates are uniformly better than 5VP
and the alternate with k = 2 is better than that with k = 1.
It is worth noting that the improvement in reliability
achieved for s < p is smaller than the degradation
suffered for s > p, particularly for larger k. Therefore,
modules must be replaced with ATs only if the condition
s < p is reasonably certain.

540 Informatica 25 (2001) 533–543 B. Parhami

5 More general schemes
As seen from the examples given in Fig. 3, DD-MTV
graphs and the systems they model can be composed in
many different ways. The systems discussed and
analyzed in Sections 3 and 4 all involve a single level of
voting. In this section, we discuss a system involving two
levels of voting as an example of more general schemes.
It is hoped that several other arrangements will be
covered in the continuation of this research.

Consider the MTV graph ALT5 depicted in Fig. 8 as
an alternative to nVP. The result of k-way voting on k of
the modules is given to T and is then combined with the
results of n – k – 1 modules through a second-level
weighted voter. This may be viewed as a generalized
recovery block scheme in which the primary computation
consists of a k-way voted block and the alternate consists
of an (n – k – 1)-way parallel block. In an actual
implementation, modules in the alternate block may be
executed sequentially until sufficient votes are collected,
given the outcome produced by the primary voting block.
The reliability of ALT5 is:

QALT5 = ∑i∈[0, ⎣k/2⎦]{Ck,iq
ipk–i

 × [q"R⎣(n–i)2⎦,n–k–1 + p"R⎣(n–i)2⎦+1,n–k–1]}

 + ∑i∈[⎣k/2⎦+1, k]{Ck,iq
ipk–i

 × [q'R⎣(n–k–i)2⎦,n–k–1 + p'R⎣(n–k–i)2⎦+1,n–k–1]}

The reliability expression QALT5 is derived as follows.
Let there be i correct results among the k channels of the
primary voting block. This event has the probability
Ck,iq

ipk–i. Now if i ≤ ⎣k/2⎦, the plurality voting result must
be assumed incorrect in the worst case. If T rejects this
incorrect result (probability q"), its weight is decreased to
i – 1 and a correct final output will be produced as long
as at least ⎣(n – i)/2⎦ of the remaining n – k – 1 modules
are fault-free. On the other hand, if T erroneously accepts
the incorrect result (probability p"), thus increasing its
weight to i + 1, then at least ⎣(n – i)/2⎦ + 1 of the
remaining n – k – 1 modules must be fault-free for the
final result to be guaranteed correct. Recall that Rj,m = 0
for j > m. Similarly, if i ≥ ⎣k/2⎦ + 1, then the voter output
is correct and has a weight of i. A similar argument
justifies the second half of the expression for QALT5.

To compare QALT5 to QnVP, we divide the n modules
into three groups of k, 1, and n – k – 1 modules. If i is the
number of fault-free modules in the first group, then:

QnVP = ∑i∈[0, k]{Ck,iq
ipk–i

 × [qR⎣(n–k–i)/2⎦,n–k–1 + pR⎡(n–k–i)2⎤+1,n–k–1]}

The two terms within square brackets correspond to the
case of the single module in the second group being
fault-free (probability q) or faulty (probability p),
respectively, leading to different requirements for the
number of fault-free modules in the third group (i + 1 + c
> n – k – 1 – c in the first case and i + c > n – k – 1 – c in
the second, where c is the required number of fault-free
modules in the third group). Again comparison of the
expressions for QALT5 and QnVP leads to no general
conclusion. For example, in the case of p' = p" = p, we
note that of the corresponding pairs of terms in the
expressions for QALT5 and QnVP, some are larger in QALT5
and others are larger in QnVP.

 1 k

k + 1

n - 1

1

2

 . . .

. . .

Fig. 8. A DD-MTV graph containing two

levels of voting (ALT5).

To get a feel for the relative values of QALT5 and

QnVP and conditions under which the alternative scheme
offers a higher reliability than nVP, consider the special
case depicted in Fig. 3b (n = 6, k = 3). The relevant
reliability equations in this case are:

Q6VP = q2(1 + 2p + 3p2 – 16p3 + 10p4)

QALT5{n:6, k:3}= q2[1 + 2p + 3p2 – 3p3

 – p2(1 + 2p)p' – 3p2(1 – p)p"]

To compare these reliabilities, let us compute their
difference ΔQ = QALT5 – Q6VP:

ΔQ = q2p2[p(13 – 10p) – (1 + 2p)p' – 3(1 – p)p"]
Therefore, for the alternative scheme to be better than
6VP, we must have:

(1 + 2p)p' + 3(1 – p)p" < p(13 – 10p)

Observe that p" is more important than p' in that it is
multiplied by a larger factor. In the special case of p' = p"
= s, The condition above becomes s < p(13 – 10p)/(4 – p)
or s < 3p + p(1 – 7p)/(4 – p). Thus, for p reasonably
small, reliability improvement is guaranteed as long as s
is no larger than 3p.

One cannot draw general conclusions on the basis of
a single example, but it is interesting to pinpoint the
cause of the reliability improvement in this special case.
Both 6VP and the scheme depicted in Fig. 3b produce the
correct result when at least four M/T nodes are fault-free.
To see this in the case of Fig. 3b, consider the following
five cases which exhaust all possible double failures.

Case 1 – Two failures in {M1, M2, M3}: Fault-free T
rejects the incorrect voter output, reducing its weight
from 2 to 1. Correct output is produced because M4 and
M5 are both fault-free.

Case 2 – One failure in {M1, M2, M3} and one in T:
T rejects the correct voter output, reducing its weight
from 2 to 1. The output would be correct even if M4 or
M5 were faulty.

Case 3 – One failure in {M1, M2, M3} and one in
{M4, M5}: T accepts the correct voter output, increasing
its weight to 3. The output is independent of M4 or M5.

Case 4 – One failure in T and one in {M4, M5}: T
rejects the correct voter output, reducing its weight from
3 to 2. The fault-free module in {M4, M5} creates a
correct majority.

Case 5 – Two failures in {M4, M5}: T is fault-free
and accepts the unanimous voter output, increasing its
weight from 3 to 4. M4 and M5 cannot affect this output.

Component Based Fault-Tolerant Software Informatica 25 (2001) 533–543 541

Cases 2 and 3 above show that some triple failures
are also tolerated by the alternative scheme; hence the
improved reliability. In certain instances, as in Cases 3
and 5 above, the output of T obviates the need for
executing M4 or M5. These cases correspond to up to one
fault in {M1, M2, M3}, with T fault-free, and have a
probability of q2(1 + 2p)(1 – s).

One should note that if there were no AT between
the two voting levels in Fig. 8, reliability would actually
degrade compared to a single-level scheme with the same
number of modules. The reason is that correct minority
results in the first level are discarded whereas they may
help establish a correct majority if combined with correct
outputs from the remaining modules. So the AT is a key
component in this multilevel voting configuration.
Multilevel voting without some form of intermediate
validation is simply not beneficial.

6 Dealing with correlated failures
General analysis of various hybrid redundancy schemes
with correlated failures becomes significantly more
complex. In this section, we present a simplified analysis
based on a highly pessimistic view of correlated failures:
that they affect a set of modules and ATs in the worst
possible way, causing the modules to produce identical
incorrect results and an AT to reject any correct result
and to accept any incorrect result. We obtain lower
bounds for the reliabilities of pure and hybrid schemes
and show the bounds corresponding to certain hybrid
schemes to be higher. However, this does not necessarily
imply that the hybrid schemes are more reliable, because
a > b, a' > b', and b > b' do not imply a > a'. On the other
hand, reliability of a complex system can never be
computed exactly and we usually settle for lower bound
guarantees. From this viewpoint, a system for which the
lower-bound, or guaranteed reliability level, is higher
must be considered better.

In what follows, we compare nVP and ALT3
configurations (see Fig. 4b) with regard to correlated
failures and show ALT3 to be superior. The comparison
is based on combinatorial analysis. Admittedly, the
application of this method would be cumbersome for
more complicated configurations. However, our aim here
is to validate, in part, the intuition that the possibility of
correlated failures does not alter our earlier conclusions.
The insight gained from this example analysis will help
us understand why replacement of some modules with
ATs improves the probability of obtaining a correct
result under both statistically independent and correlated
failure scenarios.

Because nVP and ALT3 differ only in the use and
placement of M1, Mn, and T, our model postulates the
occurrence of correlated failures in c modules among
{M2, . . . , Mn–1} and includes probability parameters
relating to how M1, Mn, and/or T may be affected. The
parameters β, β', σ, μ, τ, ν, ν', defined below, should be
interpreted as “probability of event, given that c modules
among {M2, . . . , Mn–1} contain correlated/common
failures”. Nodes unaffected by correlated failures can
still suffer from random failures, with corresponding
parameters as defined in Section 2. The events associated
with the conditional probabilities for nVP and ALT3 are:

NVP β Both M1 and Mn are affected
 σ Single module: M1 or Mn is affected
 ν Neither M1 nor Mn is affected

ALT3 β' Both M1 and T are affected
 μ M1 is affected but T is not
 τ T is affected but M1 is not
 ν' Neither M1 nor T is affected

Clearly, we have β + 2σ + ν = β' + μ + τ + ν' = 1. Also,
given that two modules are more similar than a module
and an AT, the following might be considered reasonable
assumptions:

τ ≤ σ ≤ μ and β' ≤ β ≤ σ ≤ ν ≤ ν'

These inequalities are essentially the crux of our
comparative evaluation, in much the same way that the
assumption p' + p" < 2p was essential in proving
improvements with independent failures. One last item of
notation: Because the reliability of a k-out-of-(n – c – 2)
system, Rk,n–c–2, is used repeatedly in the following
analysis, we denote it by Rk for brevity. Recall that h was
defined as ⎣n/2⎦.

We next derive upper bounds on the reliability
reduction due to correlated failures in nVP and ALT3.
The “≈” sign denotes proportionality rather than equality.

ΔQnVP ≈ β(1 – Rh+1) + 2σ[q(1 – Rh) + p(1 – Rh+1)]

 + ν[q2(1 – Rh–1) + 2pq(1 – Rh) + p2(1 – Rh+1)]

 = 1 – [(β+2σp+νp2)Rh+1 + 2q(σ+νp)Rh + νq2Rh–1]

ΔQALT3 ≈ β'(1 – Rh+1) + μ[q"(1–Rh) + p"(1–Rh+1)]

 + τ[q(1–Rh) + p(1–Rh+1)] + ν'[qq'(1 – Rh–1)

 + p'q(1 – Rh) + pq"(1 – Rh) + pp"(1 – Rh+1)]

 = 1 – [(β' + μp" + τp + ν'pp")Rh+1

 + (μq"+τq+ν'p'q+ν'pq")Rh + ν'qq'Rh–1]

ΔQnVP–ΔQALT3 ≈ (β'–β+μp"+τp–2σp+ν'pp"–νp2)Rh+1

 + (μq"+τq–2σq+ν'p'q+ν'pq"Rh–2νpq)Rh

 + q(ν'q'–νq)Rh–1

To simplify the expression for ΔQnVP – ΔQALT3, note the
following equalities:

Rh = Rh+1 + Cn–c–2,h q
hpn–c–2–h

Rh–1 = Rh+1 + Cn–c–2,h q hpn–c–2–h
 + Cn–c–2,h–1 qh–1pn–c–1–h

Substituting the preceding in the expression for ΔQnVP –
ΔQALT3, the coefficient for Rh+1 becomes 0. Dividing both
sides by (n – c – 2)!qhpn–c–2–h/[h!(n – c – 1 – h)!], yields:

ΔQnVP – ΔQALT3 ≈ (n–c–1–h)[q(μq"/q+τ–2σ+ν'–ν)
+ p(ν'q"–νq)] + hp(ν'q'–νq)

Because by our assumptions both ν'q" – νq and ν'q' – νq
are nonnegative, a sufficient condition for the difference
ΔQnVP – ΔQALT3 to be nonnegative is to have μq"/q + τ –
2σ + ν' – ν ≥ 0.

μq"/q+τ–2σ+ν'–ν = μ(q"–q)/q + (μ+τ+ν') – (2σ+ν)
 = μ(q"–q)/q + (1–β') – (1–β) = μ(q"–q)/q + β – β'

This last expression is nonnegative by our assumptions;
hence ΔQnVP ≥ ΔQALT3 and the conclusion that correlated
failures have a less serious effect on ALT3 than on nVP.

542 Informatica 25 (2001) 533–543 B. Parhami

7 Conclusion
The methodology presented in this paper unifies
previously proposed hybrid NVP-AT schemes and leads
to many new variants. Given the extensive literature
available in software fault tolerance and continued rapid
developments in the field, such unifying methodologies
(see, e.g., [49]) are clearly in demand and must be given
high priority by the researchers in the field and within
our educational programs. A component-based approach
is particularly appropriate in that it allows:

 Easy exploration of the vast architectural design

space for fault-tolerant software

 Building up of trust and the emergence of
trusted components due to reuse

 Swapping of components for more reliable

versions as they become available

Continued research in this area will enhance the

utility of the proposed general framework for the study of
hybrid NVP-AT schemes, leading to more specific
design techniques, performance comparisons, and
tradeoff guidelines. Results of such extended studies will
contribute both to fundamental understanding of voting
and acceptance testing as “dependability enhancement”
mechanisms [29] and to their practical application in the
realization of ultrareliable computations from standard
components. A number of specific problems for future
investigation are suggested directly by the discussions in
the preceding sections of this paper. Examples of
promising research directions include:

 Optimal weight augmentation and reduction

policies; the a(w) and r(w) functions

 Effects of unequal module complexities and/or
reliabilities as well as imperfect voters

 Effects of different voting schemes on optimal

configurations and their reliabilities

 Optimal number of modules to be replaced by
ATs (parameter k of Fig. 6a)

 Optimal partitioning of n modules for two-level

voting (parameter k of Fig. 8)

 More general multilevel voting schemes and
their attendant design tradeoffs

 Effects of combined correctness and timeliness

requirements [28], [31]

The ultimate goal is to solve the following problem:

Given a set of components with associated
values for p, p', and p", as well as other system
cost and reliability parameters (in particular
those characterizing correlated failures), what is
the most cost-effective choice and arrangement
of computation modules, ATs, and voters?

As this problem is quite challenging, any approach to its
solution will necessarily proceed through a number of
simpler intermediate problems. For example, one might
ask: What is an optimal arrangement of n M/T modules
to maximize the overall reliability?

8 References
[1] Ammann P.E. & Knight J.C. (1988) Data Diversity:

An Approach to Software Fault Tolerance. IEEE
Trans. Computers, Vol. 37, pp. 418-425.

[2] Avizienis A. & Kelly J.P.J. (1984) Fault Tolerance
by Design Diversity: Concepts and Experiments.
IEEE Computer, Vol. 17, No. 8, pp. 67-80.

[3] Avizienis A. (1985) The N-Version Approach to
Fault-Tolerant Software. IEEE Trans. Software
Engineering, Vol. 11, pp. 1491-1501.

[4] Banerjee P. & Abraham J.A. (1986) Bounds on
Algorithm-Based Fault Tolerance in Multiple-
Processor Systems. IEEE Trans. Computers, Vol. 35,
pp. 296-306.

[5] Belli F. & Jedrzejowicz P. (1990) Fault-Tolerant
Programs and Their Reliability. IEEE Trans.
Reliability, Vol. 39, pp. 184-192.

[6] Blum M. & Wasserman H. (1996) Reflections on the
Pentium Division Bug. IEEE Trans. Computers, Vol.
45, pp. 385-393, 1996.

[7] Butler R.W. & Finelli G.B. (1993) The Infeasibility
of Quantifying the Reliability of Life-Critical Real-
Time Software. IEEE Trans. Software Engineering,
Vol. 19, pp. 3-12.

[8] Chen L. & Avizienis A. (1978) N-Version
Programming: A Fault Tolerance Approach to
Reliability of Software Operation. Proc. Int’l Symp.
Fault-Tolerant Computing, pp. 3-9.

[9] Di Giandomenico F. & Strigini L. (1990)
Adjudicators for Diverse-Redundant Components.
Proc. Symp. Reliable Distributed Systems, pp. 114-
123.

[10] Dugan J.B. & Lyu M.R. (1994) System-Level
Reliability and Sensitivity Analyses for Three Fault-
Tolerant System Architectures. Proc. Int’l Working
Conf. on Dependable Computing for Critical
Applications, pp. 295-307.

[11] Dugan J.B. & Lyu M.R. (1994) System Reliability
Analysis of an N-Version Programming Application.
IEEE Trans. Reliability, Vol. 43, pp. 513-519.

[12] Eckhardt D.E. & Lee L.D. (1985) A Theoretical
Basis for the Analysis of Multiversion Software
Subject to Coincident Errors. IEEE Trans. Software
Engineering, Vol. 11, pp. 1511-1517.

[13] Eckhardt D.E. et al (1991) An Experimental
Evaluation of Software Redundancy as a Strategy for
Improving Reliability. IEEE Trans. Software
Engineering, Vol. 17, pp. 692-702.

[14] Gantenbein R.E., Shin S.Y. & Cowles J.R. (1991)
Evaluation of Combined Approaches to Distributed
Software-Based Fault Tolerance. Proc. Pacific Rim
Symp. Fault-Tolerant Systems, pp. 70-75.

[15] Gersting, J.L., Nist R.L., Roberts D.B. & Van
Valkenburg R.L. (1991) A Comparison of Voting
Algorithms for N-Version Programming. Proc.
Hawaii Int'l Conf. System Sciences, pp. 253-262.

[16] Kelly J., McVittie T. & Yamamoto W. (1991)
Implementing Design Diversity to Achieve Fault
Tolerance. IEEE Software, Vol. 8, pp. 61-71, July.

[17] Kersken M. & Saglietti F., Eds. (1992), Software
Fault Tolerance: Achievement and Assessment
Strategies, Springer.

Component Based Fault-Tolerant Software Informatica 25 (2001) 533–543 543

[18] Kim K.H. & Welch H.O. (1989) Distributed
Execution of Recovery Blocks: An Approach to
Uniform Treatment of Hardware and Software Faults
in Real-Time Applications. IEEE Trans. Computers,
Vol. 38, pp. 626-636.

[19] Kim K.H. & Kavianpour A. (1993) A Distributed
Recovery Block Approach to Fault-Tolerant
Execution of Application Tasks on Hypercubes.
IEEE Trans. Parallel & Distributed Systems, Vol. 4,
pp. 104-111.

[20] Kim K.H. (1994) Distributed Execution of Recovery
Blocks: An Approach to Uniform Treatment of
Hardware and Software Faults. Proc. Conf.
Distributed Computing Systems, pp. 526-532.

[21] Knight J.C. & Leveson N.G. (1986) An
Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming. IEEE
Trans. Software Engineering, Vol. 12, pp. 96-109.

[22] Laprie J.-C., Arlat J., Beounes C., Kanoun K. &
Hourtolle C. (1987) Hardware- and Software-Fault-
Tolerance: Definition and Analysis of Architectural
Solutions. Proc. Int’l Symp. Fault-Tolerant
Computing, pp. 116-121.

[23] Laprie J.-C., Arlat J., Beounes C. & Kanoun K.
(1990) Definition and Analysis of Hardware- and
Software-Fault-Tolerant Architectures. IEEE
Computer, Vol. 23, No. 7, pp. 39-51.

[24] Leveson N.G., Cha S.S., Knight J.C. & Shimeall T.J.
(1990) The Use of Self Checks and Voting in
Software Error Detection: An Empirical Study. IEEE
Trans. Software Engineering, Vol. 16, pp. 432-443.

[25] Littlewood B. & Miller D.R. (1989) Conceptual
Modeling of Coincident Failures in Multiversion
Software. IEEE Trans. Software Engineering, Vol.
15, pp. 1596-1614.

[26] Liu C. (1992) A General Framework for Software
Fault Tolerance. Proc. Workshop Fault-Tolerant
Parallel & Distributed Systems, pp. 84-91.

[27] Nicola V.F. & Goyal A. (1990) Modeling of
Correlated Failures and Community Error Recovery
in Multiversion Software. IEEE Trans. Software
Engineering, Vol. 16, pp. 350-359.

[28] Parhami B. (1990) A Unified Approach to
Correctness and Timeliness Requirements for
Ultrareliable Concurrent Systems. Proc. Int’l
Parallel Processing Symp., pp. 733-747.

[29] Parhami B. (1991) A Data-Driven Dependability
Assurance Scheme with Applications to Data and
Design Diversity. in Dependable Computing for
Critical Applications, Ed. by A. Avizienis and J.C.
Laprie, Springer, pp. 257-282.

[30] Parhami B. (1992) Optimal Algorithms for Exact,
Inexact, and Approval Voting. Proc. Int’l Symp.
Fault-Tolerant Computing, pp. 404-411.

[31] Parhami B. & Hung C.Y. (1993) Scheduling of
Replicated Tasks to Meet Correctness Requirements
and Deadlines. Proc. Hawaii Int’l Conf. System
Sciences, pp. 506-515.

[32] Parhami B. (1994) A Multi-Level View of
Dependable Computing. Computers and Electrical
Engineering, Vol. 20, pp. 347-368.

[33] Parhami B. (1994) Voting Algorithms. IEEE Trans.
Reliability, Vol. 43, pp. 617-629.

[34] Parhami B. (1996) Design of Reliable Software via
General Combination of N-Version Programming
and Acceptance Testing. Proc. Int’l Symp. Software
Reliability Engineering, pp. 104-109.

[35] Partridge D. (1997) The Case for Inductive
Programming. IEEE Computer, Vol. 30, No. 1, pp.
36-41.

[36] Prata P. & Silva J.G. (1999) Algorithm Based Fault
Tolerance Versus Result-Checking for Matrix
Computations. Proc. Int’l Symp. Fault-Tolerant
Computing, pp. 4-11.

[37] Pucci G. (1990) On the Modeling and Testing of
Recovery Block Structures. Proc. Int’l Symp. Fault-
Tolerant Computing, pp. 356-363.

[38] Randell B. (1975) System Structure for Software
Fault Tolerance. IEEE Trans. Software Engineering,
Vol. 1, pp. 220-232.

[39] Randell B. (1987) Design Fault Tolerance. In The
Evolution of Fault-Tolerant Computing, Ed. by A.
Avizienis, H. Kopetz, and J.-C. Laprie, Springer, pp.
251-270.

[40] Scott K., Gault J.W. & McAllister D.F. (1983) The
Consensus Recovery Block. Proc. Total System
Reliability Symp., pp. 74-85.

[41] Scott K., Gault J.W. & McAllister D.F. (1987) Fault-
Tolerant Software Reliability. IEEE Trans. Software
Engineering, Vol. 13, pp. 582-592.

[42] Scott R.K. & McAllister D.F. (1996) Cost Modeling
of N-Version Fault-Tolerant Software Systems for
Large N. IEEE Trans. Reliability, Vol. 45, pp. 297-
302.

[43] Siewiorek D.P. & Swarz R.S. (1992) Reliable
Computer Systems: Design and Evaluation, Digital.

[44] Sitaraman R.K. & Jha N.K. (1993) Optimal Design
of Checks for Error Detection and Location in Fault-
Tolerant Multiprocessor Systems. IEEE Trans.
Computers, Vol. 42, pp. 780-793.

[45] Sklaroff J.R. (1976) Redundancy Management
Techniques for Space Shuttle Computers. IBM J.
Research & Development, Vol. 20, pp. 20-28.

[46] Sullivan G.F. & Masson G.M. (1990) Using
Certification Trails to Achieve Software Fault
Tolerance. Proc. Int’l Symp. Fault-Tolerant
Computing, pp. 423-431.

[47] Sullivan G.F. & Masson G.M. (1991) Certification
Trails for Data Structures. Proc. Int’l Symp. Fault-
Tolerant Computing, pp. 240-247.

[48] Sullivan G.F., Wilson D.S. & Masson G.M. (1995)
Certification of Computational Results. IEEE Trans.
Computers, Vol. 44, pp. 833-847.

[49] Suzuki M., Katayama T. & Schlichting R.D. (1994)
Implementing Fault Tolerance with an Attribute and
Functional Based Model. Proc. Int’l Symp. Fault-
Tolerant Computing, pp. 244-253.

[50] Tai A.T., Meyer J.F. & Avizienis A. (1993)
Performability Enhancement of Fault-Tolerant
Software. IEEE Trans. Reliability, Vol. 42, pp. 227-
237.

[51] Voges U., Ed. (1988) Software Diversity in
Computerized Control Systems, Springer.

[52] Xu J. & Randell B. (1997) Software Fault Tolerance:
t/(n–1)-Variant Programming. IEEE Trans.
Reliability, Vol. 46, pp. 60-68.

