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N-version programming (NVP) and acceptance testing (AT) are established methods for obtaining 
highly reliable results from imperfect software. In NVP, several program modules are executed 
independently and the final result is derived by voting on the module outputs. In AT (as embodied, for 
example, in the recovery-block construct), outputs of a program module are subjected to an acceptance 
test and in the event of failing the test, alternate modules are invoked, until a module produces results 
that pass the test. Various symmetric combinations of NVP and AT techniques have also been suggested. 
We have found that a more general view, allowing the insertion of ATs at arbitrary points within a 
suitably constructed multichannel computation graph can lead to higher reliability and/or greater cost-
effectiveness compared to the previously envisaged hybrid schemes such as consensus recovery blocks, 
recoverable N-version blocks, and N-self-checking programs. Accordingly, we introduce MTV graphs, 
and their simplified data-driven version called DD-MTV graphs, as component-based frameworks for 
the creation, representation, and analysis of hybrid NVP-AT schemes. MTV graphs model variations in 
fault-tolerant software architectures built of computation module (M), acceptance test (T), and voter (V) 
components. Following the definition of (DD-)MTV graphs, we present several examples of hybrid 
NVP-AT schemes, as instances of fault-tolerant software based on our component-based approach, and 
quantify the resulting reliability improvements. We show, for example, that certain, somewhat 
asymmetric, combinations of M, T, and V components lead to higher reliabilities and/or lower cost than 
previously proposed symmetric arrangements. We conclude that our component-based approach 
facilitates design space exploration for fault-tolerant software and leads to reliability improvements due 
to the double effect of architectural optimization and component refinement afforded by reuse. 

 

1 Introduction 
Applications of highly dependable computer systems are 
no longer limited to exotic space exploration and defense 
systems. A multitude of information and control systems 
in avionics, transportation, transaction processing, and 
process monitoring also rely on existence of ultrareliable 
computational resources [32], [43]. With the continually 
increasing complexity of hardware and software 
modules, and the attendant impossibility of 
implementing perfect (defect- or fault-free) components, 
the use of multi-channel computations with design 
diversity [2], [16], [17], [23], [51] has emerged as a 
practical and cost-effective approach. 

Diverse multichannel computations take advantage 
of the property that, with adequate testing, malfunctions 
caused by residual design defects are rare and occur only 
for highly unusual sets of input conditions. It is thus 
likely that malfunctions of independently constructed 
modules, based on the same initial specifications, occur 
for different input states. This design diversity approach 
has been found useful for hardware subsystems [45] and 
for data [1] as well, but its primary application area is in 
constructing highly reliable software systems based on 

one of two distinct paradigms: Voting on multiple 
versions and acceptance testing of results [13], [24]. 

Following the success of hardware and data 
replication methods in tolerating physical faults in 
computing systems, the use of N-Version Programming 
(NVP) was proposed to allow tolerance of software 
design flaws [3], [8]. In NVP, several program modules 
are executed independently and the final result is 
obtained by voting on the module results. Voting, as used 
here, covers a wide variety of techniques in terms of 
sophistication, flexibility, and computational complexity 
[15], [30], [33] and need not be implemented through 
simple matching and majority rule. Several other terms, 
such as “consensus” [3] and “adjudication” [9] have been 
used to describe the decision process that computes an 
output based on possibly inexact or incomplete results 
provided by multiple redundant modules. 

An important objection to NVP is that independence 
of design flaws in multiple versions cannot be guaranteed 
and that commonly used specification and software 
design techniques may lead to related faults in 
independently designed versions [21]. Such related faults 
may cause identical or similar errors and thus lead to an 
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incorrect voter output. However, this is a criticism of 
dependability analyses for NVP and the attendant 
quantitative claims of reliability improvement. The 
usefulness of the NVP approach has never been in doubt. 
In some contexts, diversity is more readily ensured [35]. 
Also, attempts have been made to model the effects of 
correlated failures (e.g., [12], [25], [27]). 

The technique of acceptance testing, e.g. as proposed 
in the recovery-block scheme [38], [39] is also based on 
design diversity. An acceptance test is an application-
dependent routine that either accepts a result or declares 
it incorrect/suspect. Our confidence in an “accepted” 
result being actually “correct” depends on the 
thoroughness (coverage) of the acceptance test and its 
own reliability. ATs come in many different forms; from 
simple reasonableness checks to more complex, high-
coverage validators. Assuming that the correctness of 
module result can be judged fairly accurately by applying 
an AT, alternate modules can be invoked sequentially in 
some specified order until one has produced a result 
passing the AT. This result is taken to be correct. 

The main problem with redundancy techniques that 
rely solely on AT for validating a result is the difficulty 
of designing good acceptance tests that are both simple 
and thorough. Certain computations are easily checked 
through mathematical properties that relate the outputs to 
the inputs or by way of inverse computations where they 
exist [6]. In a great majority of cases, however, the only 
sure way of checking result validity with high confidence 
is to simply recompute using algorithms and/or hardware 
with diverse designs or operational characteristics.   

Reliability evaluation for NVP and AT schemes has 
been presented in [5], [11], [23], [37], [41], [50], [52]. 
Linguistic constructs for describing adjudication and 
exception handling schemes for multi-version programs 
have been proposed in [26]. Kim et al [18], [19], [20] 
have studied architectures for, and design issues 
pertaining to, implementing a modified form of the 
recovery block scheme in a distributed environment. The 
resulting distributed recovery block (DRB) scheme uses 
concurrent execution of try blocks to allow fast forward 
recovery. Dugan and Lyu [10] discuss the relative merits 
of DRB, NVP, and NSCP (see the next paragraph). 

Several groups have tried to combine NVP and AT. 
One such attempt is consensus recovery blocks (CRB) in 
which n versions are executed and their results are 
compared [40]. If there is agreement between two or 
more versions, then their common result is assumed 
correct and used. Otherwise, the n disagreeing results are 
subjected to an AT is some prespecified order and the 
first to pass the test is taken as the correct output. 
Another case is recoverable N-version blocks (RNVB) in 
which ATs are run on module outputs and only those that 
pass are provided to the voter [14]. This approach has 
also been suggested in [5], [16] and, under the name “N 
self-checking programming” (NSCP), in [22], [24]. 
Conceptually related to the efforts above, but different in 
terms of components and implementation, is processor-
data-check method, and its graph-theoretic formulation, 
in algorithm-based fault tolerance [4], [44], [36]. 

Clearly, these are just examples of the ways in which 
NVP and AT approaches can be combined. CRB 
essentially applies NVP (with relaxed 2-out-of-n voting) 

and AT schemes sequentially and one at a time. Because 
no AT is applied in the case of, say, two agreeing results, 
there is some chance of an erroneous output being 
propagated. Furthermore, a common AT is assumed and 
design diversity is not applied to the AT. Both RNVB 
and NSCP approaches envisage applying ATs uniformly 
to all versions. This leads to an increase in complexity 
since ATs may essentially be duplicates of computational 
modules. We have found that a more general view, 
allowing the insertion of ATs at arbitrary points within a 
suitably constructed multichannel computation graph can 
lead to higher reliability and/or greater cost-effectiveness 
compared to the previously envisaged hybrid schemes 
such as consensus recovery blocks, recoverable N-
version blocks, and N-self-checking programs. 

Accordingly, we introduce MTV graphs, and their 
simplified data-driven version called DD-MTV graphs, 
as component-based frameworks for the creation, 
representation, and analysis of hybrid NVP-AT schemes. 
MTV graphs model variations in fault-tolerant software 
architectures built of computation module (M), 
acceptance test (T), and voter (V) components [34]. 
Following the definition of (DD-)MTV graphs, we 
present several examples of hybrid NVP-AT schemes, as 
instances of fault-tolerant software architectures 
developed based on our component-based approach, and 
quantify the reliability improvements they achieve. We 
show, for example, that certain, somewhat asymmetric, 
combinations of M, T, and V components can lead to 
higher reliabilities than previously proposed symmetric 
arrangements having comparable or higher complexities. 
We conclude that our component-based approach 
facilitates the exploration of the design space for fault-
tolerant software and leads to reliability improvements 
due to the double effect of architectural optimization and 
component refinement afforded by reuse. 

The rest of this paper is organized as follows. 
Section 2 contains basic definitions and assumptions as 
well as examples of a more general hybrid NVP-AT 
schemes in order to motivate the subsequent discussion. 
Sections 3 and 4 analyze NVP schemes in which 1 or k 
of the n versions, respectively, have been replaced by 
ATs. Section 5 deals with an example of more general 
combining schemes. Section 6 examines the effect of 
correlated failures. Conclusions and directions for further 
research appear in Section 7. 

2 Terminology and assumptions 
The question that we have set out to answer is how to 
combine the techniques of NVP and AT in an optimal 
way in order to achieve the best possible results. More 
specifically, our ultimate goal is to be able to combine 
diverse components (software modules, acceptance tests, 
voting algorithms) in a systematic way in order to 
maximize the correctness probability of the output with a 
given overall complexity or to achieve a desired 
correctness probability with minimal cost. 

Unfortunately, in view of difficulties in estimating 
reliability and cost parameters, except in very limited 
cases [42], these problems are currently intractable when 
posed in their full generality. So, in this initial study, we 
endeavor to obtain results for a rather limited set of more 
specific questions with several simplifying assumptions. 
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Our hope is that with further research, the domain can be 
broadened and the assumptions gradually relaxed. 

Here are our main objectives for this paper: 
1. Demonstrate that certain novel, somewhat 

asymmetric, arrangements of modules, acceptance tests, 
and voters could be more reliable than earlier proposals. 

2. Find optimality results in certain special cases; 
e.g., when the arrangement contains a single acceptance 
test or only one level of voting. 

3. Provide examples of how the models and 
techniques used to analyze the special cases can be 
extended to deal with more complicated arrangements. 

4. Generate interest in further systematic studies of 
the methodology, and tradeoff issues, for component-
based synthesis of fault-tolerant software. 

The following definitions and assumptions are 
needed in our discussions and analyses. 

2.1. Definition – MTV graph: An MTV (Module-
Test-Voter) graph is a directed acyclic graph with one 
“In”, one “Out”, and possibly one “Error” node, plus any 
number of nodes of three other types: Modules (M), 
acceptance tests (T), and voters (V). 

M: Computes a result based on its inputs and sends 
it to a T or V node or to Out. 

T: Accepts its input and forwards it or rejects it and 
activates some M or T nodes. 

V: Forwards the result of weighted plurality voting 
or activates some M or T nodes. 

The inner workings of M and T components are 
application-dependent. We make no assumption about 
these parts except that they have known, statistically 
independent reliability parameters (see 2.2-2.4). Voter 
components are more formally described in Def. 2.5. The 
nodes are connected by directed edges representing data 
transfers and controls. In diagrams, forwarding of data 
(the “P” output of an AT or the voting result from a V 
node) is represented by solid edges while activation 
controls (the “F” output of an AT or an indecisive voting 
outcome) are represented by dotted edges. ♦ 

Figures 1 and 2 contain examples of MTV graphs 
whose full meanings will become clear following the 
introduction of several more assumptions and definitions. 

2.2. Assumption – Reliability parameters of 
computation modules: Each computation module Mi 
produces a result which is correct with fixed probability 
qi and incorrect with fixed probability pi, uniformly over 
its input space. In case qi + pi < 1, the module may be 
viewed as (partially) self-checking or fail-safe, abstaining 
from producing any result with probability 1 – qi – pi. In 
the rest of this paper, we assume qi + pi = 1. ♦ 

Assumption 2.2 is controversial in that it is very 
difficult, if not impossible, to accurately estimate the 
reliability qi of a software module [7]. We justify this 
assumption by noting that any system-level reliability 
analysis must be based on the reliability parameters of 
the components used. Accurate reliability estimates will 
be available with greater ease as we gain experience with 
the design and use of multiversion software. A 
Component-based strategy is helpful in this regard 
because component reuse fosters the gathering of more 
accurate reliability and performance data. Additionally, 
when comparing various arrangements of modules and 
tests, occasionally we obtain results indicating that one 

scheme is better than another for a wide range of 
parameter values or even for all values of a certain pi. 
Hence, such comparative evaluations are less sensitive 
to, or totally independent of, the availability of accurate 
estimates for the pis. The comments above apply to 
Assumption 2.3 as well. 

2.3. Assumption – Reliability parameters of 
acceptance tests: A correct result passes an acceptance 
test Ti (outgoing edge labeled “P” is taken) with fixed 
probability q'i and fails it (outgoing edge “F” is taken) 
with fixed probability p'i, uniformly over the space of 
correct inputs. Similarly, Ti rejects an incorrect result 
with fixed probability q"i and accepts it with fixed 
probability p"i, uniformly over the space of incorrect 
inputs (note that in all definitions, qis are close to 1 
whereas pis are near 0). When q'i + p'i < 1 or q"i + p"i < 
1, the AT is viewed as (partially) self-checking or fail-
safe, abstaining from judging an input with probability 1 
– q'i – p'i for correct inputs and 1 – q"i – p"i for incorrect 
ones. Henceforth, we assume q'i + p'i = q"i + p"i = 1. ♦ 

The reason we do not start by assuming q'i = q"i is 
that ATs behave asymmetrically with respect to correct 
and incorrect inputs. An AT that is itself defect-free, 
always accepts a correct input. Thus, p'i is typically small 
and is related to the probability of a defect in the AT 
design. On the other hand, even a defect-free AT may 
accept an incorrect input due to imperfections in the 
testing algorithm (imperfect coverage). Hence, p"i lumps 
together two sources of errors: imperfect coverage and 
defective design. We typically have p"i > p'i (perhaps 
even, p"i >> p'i) for simple, low-complexity ATs. For a 
more comprehensive AT (e.g., one that duplicates the 
computation and decides by comparing the two values), 
coverage can be very high or even perfect. In such cases, 
q'i and q"i are comparable, though not necessarily equal. 

2.4. Assumption – s-independence of module and 
AT failures: Each M and each AT fails s-independently 
of other Ms and ATs, unless otherwise noted. Hence, the 
probability of k modules Mi (1 ≤ i ≤ k) coincidentally 
producing erroneous results is Πi∈[1, k] pi. ♦ 

Assumption 2.4 is perhaps our most important 
assumption and the one most likely to be criticized. So 
let us try to justify it briefly. As noted in the introduction, 
the assumption of failure independence for multiversion 
software has been scrutinized and questioned from early 
on [21]. We think that these criticisms are valid and must 
be considered very seriously when trying to compute 
absolute reliability values for multichannel computations. 
However, the problem is much less serious for the types 
of analyses presented in this paper. Here, we try to 
determine if one scheme offers reliability improvement 
over another. Intuitively, since dependent failures are 
likely to affect the reliabilities of both schemes being 
compared, we can have a higher confidence in such 
relative figures of merit than in absolute reliabilities. We 
relax this independence assumption in Section 6 in order 
to validate, in part, this intuition. More work is clearly 
needed in this direction. 

2.5. Definition – Weighted plurality voter: Given n 
input data objects x1, x2, . . . , xn, with associated 
nonnegative real votes (weights) v1, v2, . . . , vn, a V node 
computes the output object y and its vote w such that y is 
“supported by” a number of input data objects with votes 
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totalling w and no other y' is supported by inputs having 
more votes. If w ≤ (∑i∈[1, n] vi)/2, then the outcome y may 
be nonunique. In such cases, an erroneous voter output 
will be pessimistically assumed. The output weight w 
selects one of the outgoing voter edges along which y or 
an activation signal must be sent (see, e.g., Fig. 1). When 
input votes are not explicitly specified, it is assumed that 
v1 = v2 = . . . = vn = 1. Various definitions of the term 
“supported by” lead to different voting schemes such as 
exact, inexact, and approval voting (e.g., with exact 
voting, an input object xi supports y iff xi = y). These 
variations, although important, are beyond the scope of 
this paper [30], [33]. ♦ 

2.6. Assumption – Perfect voters: Voters are perfect 
and act instantaneously. This assumption is reasonable 
because voters are simpler than modules or ATs and are 
designed just once for use with many different modules 
and test types. They can be made highly reliable through 
careful design and extensive testing (much more so than 
what is reasonable for any single application or its 
associated ATs). ♦ 

Consider Fig. 1 in which 5VP and an alternative 
scheme with the same number of M/T modules, and thus 
with lower or equal complexity, are shown. T is an 
acceptance test with pass/fail (P/F) outcome. A result that 
passes T is simply forwarded to the output. When T 
rejects its input, it activates M4. The voter in Fig. 1c can 
produce one of three mutually exclusive outputs:  (1) No 
agreement, leading to activation of M4, (2) agreement 
between two inputs, leading to the application of T on the 
agreed-upon result, and (3) agreement among all three 
inputs, yielding an acceptable output. 

 

1, 2 ≥ 3 

Module 

Test 

Voter 

In 

Out 

Error 

(a) Legend (b) 5VP 

 

1  3 

(c) ALT1 

2 

F  P 

1 2 3 4 5 1 2 3 

4 

 
Fig. 1. Representations of 5VP and ALT1, an 

alternative scheme, as MTV graphs. 
 
Figure 2 shows MTV graphs corresponding to two 

other hybrid NVP-AT schemes. These schemes have 
been proposed in the literature as alternatives to 3VP, 
although both imply greater cost than 3VP. Figure 2a 
represents a 3-channel RNVB or NSCP. Each of the 
three computation channels is made self-checking 
through the insertion of an AT after the computation 
module. The V node in Fig. 2a is a weighted plurality 
voter for which each input weight is set to 0 or 1, based 
on the outcome of the associated AT. 

Figure 2b represents a 3-channel CRB. If the voter 
observes agreement between two or all three of its inputs, 
the agreed-upon result is forwarded to the output. On the 
other hand, when there is no agreement, results from the 
computation channels are successively subjected to an 
AT and the first to pass the test is forwarded to output. 

The ATs in Fig. 2b are labeled T1, T2, and T3, but they 
may all represent the same test. The advantage of this 
scheme over 3VP is that it is guaranteed to produce the 
correct result whenever 3VP would produce the correct 
result. Additionally, the added AT mechanism may 
salvage a correct result from disagreeing modules.  
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Fig. 2. MTV graphs representing two different 

3-channel hybrid NVP-AT schemes. 
 
Returning now to the initial example, the 5VP 

scheme of Fig. 1b can tolerate up to two module failures, 
but can produce an incorrect result with some triple 
failures. In fact, any worst-case analysis must assume 
that 5VP fails when there are three module failures. The 
alternative scheme shown in Fig. 1c also tolerates any 
two failures in the M/T nodes. This claim is proven by 
considering the following four cases which exhaust all 
possible double failures. 

Case 1 – Two failures in {M1, M2, M3}: T and M4 
are fault-free. If the two faulty modules produce mutually 
supportive results, then the error is caught by T and M4 is 
executed. Otherwise, M4 is executed directly. Either way, 
the correct result is produced. 

Case 2 –  Two failures in {T, M4}: M1, M2, and M3 
are fault-free and produce pairwise mutually supportive 
results. The voter outputs is the correct result. 

Case 3 –  One failure in {M1, M2, M3} and one in T: 
Because M4 is fault-free, the output is correct whether or 
not T accepts the correct result received from the voter. 

Case 4 – One failure in {M1, M2, M3} and one in M4: 
T is fault-free and accepts the voter’s majority result. 

Triple failures can lead to an incorrect output for the 
alternative scheme in a manner similar to 5VP. For 
example, if M1, M2, and M3 are faulty but produce 
incorrect pairwise mutually supportive results, an 
incorrect value will be output. Failure of M1, T, and M4 
also can lead to incorrect output. A side benefit of the 
alternative scheme of Fig. 1c is that whereas all five 
modules must run to completion in 5VP, the alternative 
scheme rarely needs to execute M4. 

Let us now analyze the two schemes of Fig. 1 with 
respect to reliability (probability of producing a correct 
result). Assuming p1 = p2 = p3 = p4 = p = 1 – q: 

Q5VP = q5 + 5q4p + 10q3p2 = q2(1 + 2p + 3p2 – 6p3) 

QALT1 = q3 + 3q2p(1 – p'p) + 3qp2q"q    

 = q2[1 + 2p + 3p2 – 3p2(p' + p")] 
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The equation for the reliability of the alternate 
configuration in Fig. 1c, QALT1, is derived as follows. The 
first term, q3, is the probability of having no fault in {M1, 
M2, M3}. The second term, 3q2p(1 – p'p), covers the 
event of having a single fault in {M1, M2, M3}, in which 
case correctness of the result is guaranteed unless T 
rejects the correct majority result and M4 is faulty. The 
third term, 3qp2q"q, corresponds to having two faults in 
{M1, M2, M3}. In this event, the worst case is the 
agreement of the two faulty modules because it leads to 
the requirement for T to reject the incorrect majority 
result (probability q") and for M4 to be fault-free 
(probability q) to obtain the correct result. If the two 
faulty modules in {M1, M2, M3} disagree with each other 
and with the correct result, then the only requirement for 
producing the correct output is for M4 to be fault-free. 

Comparing the two expressions above, we find that  
QALT1 > Q5VP iff p' + p" < 2p. In the special case of p' = 
p" = s, the alternate scheme ALT1 offers reliability 
improvement over 5VP iff s < p; i.e., the alternate 
scheme is better if the acceptance test component T is 
more reliable than each module Mi. In practice, T can 
often be made simpler, and thus more reliable, than Mi. 
This may be due to the inherent simplicity of verifying 
the result’s correctness (e.g., by means of a mathematical 
relationship or an inverse computation) or by virtue of T 
using extra information (“certification trail”) provided by 
the computation modules [46], [47], [48]. 

The examples above were intended to demonstrate 
the power of MTV graphs as representation and analysis 
tools for multichannel computations. In particular, it was 
shown that previously proposed hybrid NVP-AT 
approaches can be represented as simple MTV graphs 
and that these graphs can also represent more general 
hybrid schemes that have not been dealt with in the past 
and that can potentially offer higher reliability and/or 
lower overall complexity. Next, we define a modified 
form of MTV graphs in order to simplify the discussion 
in the remainder of this paper. 

2.7. Definition – Data-driven MTV (DD-MTV) 
graph: A DD-MTV graph is a modified MTV graph with 
no Error node and only single-output M, T, and V nodes.   

Mi: Attaches the weight wi to its output yi. 
Ti: Modifies the weight w of y to w + ai(w) or w – 

ri(w) upon acceptance/rejection. 
Vi: Produces data object y of weight w from its 

inputs, as detailed in Def. 2.5. 
The Error node is not needed because error can be 
indicated by a subset of possible weights (low values) for 
the final result. The elimination of control edges and the 
resultant graph’s uniformity simplifies the enumeration 
and analysis of various alternatives, while still retaining 
the power to accurately model most hybrid schemes. The 
weight augmentation and reduction functions, ai(w) and 
ri(w), used to adjust the weight of an accepted and 
rejected input, respectively, are nonnegative functions to 
be determined (see Assumption 2.9). ♦ 

Figure 3 depicts several examples of DD-MTV 
graphs, each having six M/T nodes. These can be viewed 
as lower-complexity alternatives to 6VP. The examples 
in Fig. 3 clearly show the wide variety of multichannel 
computational arrangements that can be modeled easily 
by DD-MTV graphs [29]. 

(a)  

 1 2 3 

1 2 3 

(b) 

 1 2 3 

4 5 

(c) 

 1 2 3 

4 

(d) 

 

1 

2 

1 2 3 4 5 

1 2 

1 

2 

 
Fig. 3. DD-MTV graphs with six M/T nodes. 
 
2.8. Assumption – Uniformity of modules and ATs: 

In the rest of this paper, modules will be assumed to have 
identical reliability, complexity, and execution-time 
parameters. Thus, the subscript i will be omitted from 
parameters such as pi, qi and the weight w = 1 is attached 
to all module outputs. Similarly, ATs will be uniformly 
treated by eliminating the subscript i from their 
respective parameters such as p'i and p"i. ATs will be 
taken to have perfect coverage and lower or equal 
complexity compared to modules, thus leading to the 
assumptions p' ≤ p and p" ≤ p. ♦ 

2.9. Assumption – Weight augmentation/reduction 
functions for ATs: Selection of appropriate weight 
augmentation and reduction functions, a(w) and r(w), can 
have important effects on the overall reliability of the 
system modeled by a particular DD-MTV graph. In this 
paper, we assume a(w) = r(w) = 1. These simple constant 
functions can be intuitively justified when ATs have 
near-perfect coverage and are of comparable complexity 
to modules, and they have worked well in practice. 
However, an extensive study of techniques for optimally 
choosing these functions is required. ♦ 

The stage is now set for a more detailed examination 
of certain classes of DD-MTV graphs and the systems 
they model. Before that, we recap the abbreviations used 
and introduce some needed notation.  

2.10. Notation and nomenclature – The following 
is a list of symbols and abbreviations used in the paper: 

AT Acceptance Test(ing) 
CRB Consensus Recovery Block (Fig. 2b) 
Cx,y Binomial coefficient = x!/[y!(x – y)!] 
DD-MTV Data-Driven MTV graph (Def. 2.7) 
M Module; node in (DD-)MTV graph 
MTV Module-Test-Voter graph (Def. 2.1) 
NSCP N-Self-Checking Program (Fig. 2a) 
nVP n-Version Program(ming); e.g., 3VP 
P Failure probability = unreliability = 1 – Q 
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Q (QX) Reliability (of system or configuration X) 
Rk,m Reliability of k-out-of-m system 
RNVB Recoverable N-Version Block (Fig. 2a) 
T Test (AT) node in (DD-)MTV graph 
V Voter node in (DD-)MTV graph  ♦ 

3 Replacing one version with an AT 
When one module in 3VP is replaced by an acceptance 
test, a recovery block scheme with one alternate is 
obtained (Fig. 4a). Note that Fig. 4a is a correct model of 
recovery block scheme as far as reliability estimation is 
concerned. The fact that M1 and M2 appear to be running 
in parallel rather than M2 following M1, and then only in 
case T rejects M1’s result, is irrelevant to the reliability 
calculation. In this section, we generalize this notion by 
analyzing the effect of replacing one module in nVP with 
an AT (Fig. 4b). Reliability expressions for 3VP and the 
alternate scheme ALT2 of Fig. 4a are as follows: 

Q3VP = q3 + 3q2p = q(1 + p – 2p2) 

QALT2 = qq' + qp'q + pq"q = q[1 + p – p(p' + p")]    

The equation for the reliability of the alternate 
configuration in Fig. 4a, QALT2, is derived as follows. The 
first term, qq', is the probability of M1 producing the 
correct result and T accepting it. The second term, qp'q, 
covers the event of M1 producing the correct result, T 
rejecting it, and M2 getting the correct result. The third 
term, pq"q, corresponds to M1 producing an incorrect 
result, T catching the error, and M2 being fault-free. 
Comparing the expressions above, we find that  QALT2 > 
Q3VP iff p' + p" < 2p. Hence the discussion preceding 
Def. 2.7 applies here as well. Figure 5 shows the 
unreliability P = 1 – Q of 3VP and ALT2 when p' = p". 

 1 2 

(a) ALT2 (b) ALT3 

 1 2 

n − 1 

.  .  . 

 
Fig. 4. Replacing one module with an 

acceptance test in 3VP and nVP. 
 
It is relatively straightforward to generalize the 

analysis above to the comparison of nVP and the 
alternative scheme ALT3 depicted in Fig. 4b. However, 
we first need some notation. Let Rk,m be the reliability of 
a homogeneous k-out-of-m system in which each module 
fails with probability p (for brevity, the parameter p is 
not explicitly shown). 

Rk,m = ∑j∈[k, m] Cm,j q
jpm–j 

where Cm,j is the binomial coefficient. Rk,m is defined to 
be  0  for k > m and  1  for k ≤ 0. We now write reliability 
equations for nVP and the ALT3 scheme of Fig. 4b as 
follows. To simplify the formulas, let h = ⎣n/2⎦. Each of 
the following expressions is written by considering the 
four possible cases with respect to the presence of faults 

in two modules or in one module and its associated AT 
and for each case figuring out how many of the 
remaining n – 2 modules must be fault-free in order to 
guarantee a correct result. 

QnVP = Rh+1,n = q2Rh–1,n–2 + 2pqRh,n–2 + p2Rh+1,n–2 

QALT3 = qq'Rh–1,n–2 + qp'Rh,n–2 + pq"Rh,n–2 + pp"Rh+1,n–2 

To compare these reliabilities, let us compute their 
difference ΔQ = QALT3 – QnVP: 

ΔQ = q(p – p')Rh–1,n–2 + [p(p – p") – q(p – p')]Rh,n–2  
  – p(p – p")Rh+1,n–2 

 = q(p – p')[Rh–1,n–2 – Rh,n–2]  
  + p(p – p")[Rh,n–2 – Rh+1,n–2] 

Because each of the two terms within the square brackets 
is positive, a sufficient condition for reliability 
improvement over nVP is immediately obtained as 
max(p', p") < p, which always holds by Assumption 2.8.  
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Fig. 5. Unreliability P = 1 – Q of 3VP and 

ALT2, assuming p' = p" = s. 
 
To continue the analysis, we note that: 

Rk–1,m – Rk,m = Cm,k–1q
k–1pm–k+1  

= m!qk–1p m–k+1/[(k – 1)!(m – k + 1)!] 

Hence, we can rewrite ΔQ = QALT3 – QnVP as: 

ΔQ = q(p – p')(n – 2)!qh–1pn–h–1/[(h – 1)!(n – h – 1)!]  
  + p(p – p")(n – 2)!qhpn–h–2/[h!(n – h – 2)!] 

 = {(n – 2)!/[h!(n – h – 1)!]} qhpn–h–1 
  × [(n – 1)p – hp' – (n – h – 1)p"] 

Therefore, the sign of ΔQ = QALT3 – QnVP depends on the 
sign of the last expression within square brackets. For n 
odd, we have h = (n – 1)/2 and ΔQ > 0 iff p' + p" < 2p. 
For n even, we have h = n/2 and ΔQ > 0 iff (n/2 – 1)(p' + 
p") + p' < (n – 1)p. In this latter case, p' is somewhat 
more important than p". As an example, for n = 6, we 
must have 3p' + 2p" < 5p if the alternate with one AT 
(Fig. 3d) is to be more reliable than 6VP. 

4 Replacing k versions with ATs 
We now consider the case where k of the n modules are 
removed (k ≤ n/2) and replaced by ATs following k of 
the remaining n – k modules. As shown in the MTV 
graph of Fig. 6a, k branches with modules M1, M2, . . . , 
Mk include acceptance tests T1, T2, . . . , Tk and n – 2k 
branches have just modules (indexed from k+1 to n–k). 
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As in Section 3, let Rk,m be the reliability of a 
homogeneous k-out-of-m system in which each module 
fails with probability p and let h = ⎣n/2⎦ for notational 
convenience. We can then write: 

QnVP = Rh+1,n = ∑i∈[h+1, n] Cn,i q
ipn–i 

QALT4 = ∑i∈[0, k]∑j∈[0, k–i]{Ck,iCk–i,j(pp")i(pq" + qp') j 

     × (qq')k–i–jRh+2i+j–2k+1,n–2k} 

The reliability expression QALT4 for the alternate 
configuration is derived as follows. Let of the k branches 
containing ATs, i have faults in both the module and in 
the AT, j have a fault in either the module or the AT but 
not both, and k – i – j be fault-free. The i branches with 
double faults all potentially produce incorrect results 
with weight 2. The j branches containing single faults 
produce results with weight 0, whether the fault is in M 
or in T. Finally, the k – i – j fault-free branches produce 
correct results with weight 2. If c of the remaining n – 2k 
modules produce correct results, the following condition 
must be met for the output to be guaranteed correct: 

 c + 2(k – i – j) > (n – 2k – c) + 2i        
⇒     c ≥ h + 2i + j – 2k + 1 

This justifies the term Rh+2i+j–2k+1,n–2k in the expression for 
QALT4. The remaining terms are the probabilities of the 
indicated number of faults raised to appropriate powers. 
For example, the probability that M is faulty but T 
catches the error or M is fault-free but T rejects its output 
is pq" + qp' = p + p' – pp' – pp". 

 

(a) ALT4 

  . . .   . . .   . . .   . . . 

  . . .   . . .   . . .   . . . 

(b) nVP 

M and T faulty 
(i channels) 

M or T faulty 
(j channels) 

M and T healthy  
(k−i−j channels) 

Both Ms in each 
of i pairs faulty 

One M in each 
of j pairs faulty 

2k − 2i − 2j 
healthy Ms 

n − 2k 
channels 

n − 2k Ms 

 
Fig. 6. Replacing k modules with ATs in nVP 

and the notation for reliability analysis. 
 
As written, the expressions for QnVP and QALT4 are 

difficult to compare without resorting to numerical 
calculation. To facilitate comparison, we rewrite the 
expression for QnVP in the following way. We divide the 
set of n modules into k module pairs plus n – 2k 
individual modules, as shown in Fig. 6b. Each of the k 

pairs can have 2, 1, or 0 faulty modules. Let i, j, and k – i 
– j be the number of such pairs, respectively. The k 
module pairs contribute incorrect results with total 
weights of up to 2i + j and correct results with total 
weights of at least 2k – 2i – j. Again, if the remaining n – 
2k modules produce c correct results and n – 2k – c 
incorrect ones, we must have c + 2k – 2i – j > (n – 2k – c) 
+ 2i + j, or c ≥ h + 2i + j – 2k + 1, to guarantee a correct 
output. The probabilities of having 2, 1, ore 0 faulty 
modules in a pair of modules are p2, 2pq, and q2, 
respectively. Thus: 

QnVP = ∑i∈[0, k]∑j∈[0, k–i]{Ck,iCk–i,j(p
2)i(2pq) j 

    × (q2)k–i–jRh+2i+j–2k+1,n–2k 

Comparing the corresponding ij terms in the expression 
for QALT4 to the above expression for QnVP provides some 
insight but no general conclusion. For example, for p' = 
p" = s, corresponding terms become identical and the two 
schemes are equivalent with respect to reliability. For p' 
= p" = s, the ij term in QALT4 divided by the ij term in 
QnVP yields the ratio: 

 (s/p)i[(p + s – 2ps)/(2pq)]j[(1 – s)/q]k–i–j 

For particular values of s and p satisfying s < p, the first 
and the second term above are always less than 1 while 
the third term is always greater than 1. Hence, the ratio 
can be less than or greater than 1 depending on the values 
of i and j and no conclusion can be drawn based on this 
term-by-term comparison. 
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Fig. 7. Unreliability P=1–Q of 5VP and ALT4 

with k = 1 or 2, assuming p' = p" = s. 
 
For n = 3, the only acceptable value for k is 1 and 

Fig. 5 depicts the corresponding changes in the 
unreliability P = 1 – Q. To note the effect of changing k, 
the expressions for QnVP and QALT4 have been evaluated 
for n = 5, with k = 1 or 2, and p = 0.1, 0.01, or 0.001, 
assuming p' = p" = s. Figure 7 depicts the resulting 
unreliabilities as functions of s.  

As expected, the unreliabilities PnVP and PALT4 are 
identical for s = p (see the crossover points in Fig. 7). 
The 5VP scheme is uniformly better for s > p. In the case 
of s < p, both alternates are uniformly better than 5VP 
and the alternate with k = 2 is better than that with k = 1. 
It is worth noting that the improvement in reliability 
achieved for s < p is smaller than the degradation 
suffered for s > p, particularly for larger k. Therefore, 
modules must be replaced with ATs only if the condition 
s < p is reasonably certain. 
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5 More general schemes 
As seen from the examples given in Fig. 3, DD-MTV 
graphs and the systems they model can be composed in 
many different ways. The systems discussed and 
analyzed in Sections 3 and 4 all involve a single level of 
voting. In this section, we discuss a system involving two 
levels of voting as an example of more general schemes. 
It is hoped that several other arrangements will be 
covered in the continuation of this research. 

Consider the MTV graph ALT5 depicted in Fig. 8 as 
an alternative to nVP. The result of k-way voting on k of 
the modules is given to T and is then combined with the 
results of n – k – 1 modules through a second-level 
weighted voter. This may be viewed as a generalized 
recovery block scheme in which the primary computation 
consists of a k-way voted block and the alternate consists 
of an (n – k – 1)-way parallel block. In an actual 
implementation, modules in the alternate block may be 
executed sequentially until sufficient votes are collected, 
given the outcome produced by the primary voting block. 
The reliability of ALT5 is: 

QALT5 = ∑i∈[0, ⎣k/2⎦]{Ck,iq
ipk–i 

       × [q"R⎣(n–i)2⎦,n–k–1 + p"R⎣(n–i)2⎦+1,n–k–1]} 

    + ∑i∈[⎣k/2⎦+1, k]{Ck,iq
ipk–i 

       × [q'R⎣(n–k–i)2⎦,n–k–1 + p'R⎣(n–k–i)2⎦+1,n–k–1]} 

The reliability expression QALT5 is derived as follows. 
Let there be i correct results among the k channels of the 
primary voting block. This event has the probability 
Ck,iq

ipk–i. Now if i ≤ ⎣k/2⎦, the plurality voting result must 
be assumed incorrect in the worst case. If T rejects this 
incorrect result (probability q"), its weight is decreased to 
i – 1 and a correct final output will be produced as long 
as at least ⎣(n – i)/2⎦ of the remaining n – k – 1 modules 
are fault-free. On the other hand, if T erroneously accepts 
the incorrect result (probability p"), thus increasing its 
weight to i + 1, then at least ⎣(n – i)/2⎦ + 1 of the 
remaining n – k – 1 modules must be fault-free for the 
final result to be guaranteed correct. Recall that Rj,m = 0 
for j > m. Similarly, if i ≥ ⎣k/2⎦ + 1, then the voter output 
is correct and has a weight of i. A similar argument 
justifies the second half of the expression for QALT5. 

To compare QALT5 to QnVP, we divide the n modules 
into three groups of k, 1, and n – k – 1 modules. If i is the 
number of fault-free modules in the first group, then: 

QnVP = ∑i∈[0, k]{Ck,iq
ipk–i 

    × [qR⎣(n–k–i)/2⎦,n–k–1 + pR⎡(n–k–i)2⎤+1,n–k–1]} 

The two terms within square brackets correspond to the 
case of the single module in the second group being 
fault-free (probability q) or faulty (probability p), 
respectively, leading to different requirements for the 
number of fault-free modules in the third group (i + 1 + c 
> n – k – 1 – c in the first case and i + c > n – k – 1 – c in 
the second, where c is the required number of fault-free 
modules in the third group). Again comparison of the 
expressions for QALT5 and QnVP leads to no general 
conclusion. For example, in the case of p' = p" = p, we 
note that of the corresponding pairs of terms in the 
expressions for QALT5 and QnVP, some are larger in QALT5 
and others are larger in QnVP. 

 1 k 

k + 1 

n - 1 

1 

2 

 .  .  . 

. . . 

 
Fig. 8. A DD-MTV graph containing two 

levels of voting (ALT5). 
 
To get a feel for the relative values of QALT5 and 

QnVP and conditions under which the alternative scheme 
offers a higher reliability than nVP, consider the special 
case depicted in Fig. 3b (n = 6, k = 3). The relevant 
reliability equations in this case are: 

Q6VP = q2(1 + 2p + 3p2 – 16p3 + 10p4) 

QALT5{n:6, k:3}= q2[1 + 2p + 3p2 – 3p3  

      – p2(1 + 2p)p' – 3p2(1 – p)p"] 

To compare these reliabilities, let us compute their 
difference ΔQ = QALT5 – Q6VP: 

ΔQ = q2p2[p(13 – 10p) – (1 + 2p)p' – 3(1 – p)p"] 
Therefore, for the alternative scheme to be better than 
6VP, we must have: 

(1 + 2p)p' + 3(1 – p)p" < p(13 – 10p) 

Observe that p" is more important than p' in that it is 
multiplied by a larger factor. In the special case of p' = p" 
= s, The condition above becomes s < p(13 – 10p)/(4 – p) 
or s < 3p + p(1 – 7p)/(4 – p). Thus, for p reasonably 
small, reliability improvement is guaranteed as long as s 
is no larger than 3p. 

One cannot draw general conclusions on the basis of 
a single example, but it is interesting to pinpoint the 
cause of the reliability improvement in this special case. 
Both 6VP and the scheme depicted in Fig. 3b produce the 
correct result when at least four M/T nodes are fault-free. 
To see this in the case of Fig. 3b, consider the following 
five cases which exhaust all possible double failures. 

Case 1 – Two failures in {M1, M2, M3}: Fault-free T 
rejects the incorrect voter output, reducing its weight 
from 2 to 1. Correct output is produced because M4 and 
M5 are both fault-free. 

Case 2 – One failure in {M1, M2, M3} and one in T: 
T rejects the correct voter output, reducing its weight 
from 2 to 1. The output would be correct even if M4 or 
M5 were faulty. 

Case 3 – One failure in {M1, M2, M3} and one in 
{M4, M5}: T accepts the correct voter output, increasing 
its weight to 3. The output is independent of M4 or M5. 

Case 4 – One failure in T and one in {M4, M5}: T 
rejects the correct voter output, reducing its weight from 
3 to 2. The fault-free module in {M4, M5} creates a 
correct majority. 

Case 5 – Two failures in {M4, M5}: T is fault-free 
and accepts the unanimous voter output, increasing its 
weight from 3 to 4. M4 and M5 cannot affect this output. 
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Cases 2 and 3 above show that some triple failures 
are also tolerated by the alternative scheme; hence the 
improved reliability. In certain instances, as in Cases 3 
and 5 above, the output of T obviates the need for 
executing M4 or M5. These cases correspond to up to one 
fault in {M1, M2, M3}, with T fault-free, and have a 
probability of q2(1 + 2p)(1 – s). 

One should note that if there were no AT between 
the two voting levels in Fig. 8, reliability would actually 
degrade compared to a single-level scheme with the same 
number of modules. The reason is that correct minority 
results in the first level are discarded whereas they may 
help establish a correct majority if combined with correct 
outputs from the remaining modules. So the AT is a key 
component in this multilevel voting configuration. 
Multilevel voting without some form of intermediate 
validation is simply not beneficial. 

6 Dealing with correlated failures 
General analysis of various hybrid redundancy schemes 
with correlated failures becomes significantly more 
complex. In this section, we present a simplified analysis 
based on a highly pessimistic view of correlated failures: 
that they affect a set of modules and ATs in the worst 
possible way, causing the modules to produce identical 
incorrect results and an AT to reject any correct result 
and to accept any incorrect result. We obtain lower 
bounds for the reliabilities of pure and hybrid schemes 
and show the bounds corresponding to certain hybrid 
schemes to be higher. However, this does not necessarily 
imply that the hybrid schemes are more reliable, because 
a > b, a' > b', and b > b' do not imply a > a'. On the other 
hand, reliability of a complex system can never be 
computed exactly and we usually settle for lower bound 
guarantees. From this viewpoint, a system for which the 
lower-bound, or guaranteed reliability level, is higher 
must be considered better. 

In what follows, we compare nVP and ALT3 
configurations (see Fig. 4b) with regard to correlated 
failures and show ALT3 to be superior. The comparison 
is based on combinatorial analysis. Admittedly, the 
application of this method would be cumbersome for 
more complicated configurations. However, our aim here 
is to validate, in part, the intuition that the possibility of 
correlated failures does not alter our earlier conclusions. 
The insight gained from this example analysis will help 
us understand why replacement of some modules with 
ATs improves the probability of obtaining a correct 
result under both statistically independent and correlated 
failure scenarios. 

Because nVP and ALT3 differ only in the use and 
placement of M1, Mn, and T, our model postulates the 
occurrence of correlated failures in c modules among 
{M2, . . . , Mn–1} and includes probability parameters 
relating to how M1, Mn, and/or T may be affected. The 
parameters β, β', σ, μ, τ, ν, ν', defined below, should be 
interpreted as “probability of event, given that c modules 
among {M2, . . . , Mn–1} contain correlated/common 
failures”. Nodes unaffected by correlated failures can 
still suffer from random failures, with corresponding 
parameters as defined in Section 2. The events associated 
with the conditional probabilities for nVP and ALT3 are: 

NVP β Both M1 and Mn are affected 
 σ Single module:  M1 or Mn is affected 
 ν Neither M1 nor Mn is affected 

ALT3 β' Both M1 and T are affected 
 μ M1 is affected but T is not 
 τ T is affected but M1 is not 
 ν' Neither M1 nor T is affected 

Clearly, we have β + 2σ + ν = β' + μ + τ + ν' = 1. Also, 
given that two modules are more similar than a module 
and an AT, the following might be considered reasonable 
assumptions: 

τ ≤ σ ≤ μ and β' ≤ β ≤ σ ≤ ν ≤ ν' 

These inequalities are essentially the crux of our 
comparative evaluation, in much the same way that the 
assumption p' + p" < 2p was essential in proving 
improvements with independent failures. One last item of 
notation: Because the reliability of a k-out-of-(n – c – 2) 
system, Rk,n–c–2, is used repeatedly in the following 
analysis, we denote it by Rk for brevity. Recall that h was 
defined as ⎣n/2⎦.  

We next derive upper bounds on the reliability 
reduction due to correlated failures in nVP and ALT3. 
The “≈” sign denotes proportionality rather than equality. 

ΔQnVP ≈ β(1 – Rh+1) + 2σ[q(1 – Rh) + p(1 – Rh+1)]  

     + ν[q2(1 – Rh–1) + 2pq(1 – Rh) + p2(1 – Rh+1)] 

    = 1 – [(β+2σp+νp2)Rh+1 + 2q(σ+νp)Rh + νq2Rh–1] 

ΔQALT3 ≈ β'(1 – Rh+1) + μ[q"(1–Rh) + p"(1–Rh+1)]  

    + τ[q(1–Rh) + p(1–Rh+1)] + ν'[qq'(1 – Rh–1)  

  + p'q(1 – Rh) + pq"(1 – Rh) + pp"(1 – Rh+1)] 

    = 1 – [(β' + μp" + τp + ν'pp")Rh+1  

   + (μq"+τq+ν'p'q+ν'pq")Rh + ν'qq'Rh–1] 

ΔQnVP–ΔQALT3 ≈ (β'–β+μp"+τp–2σp+ν'pp"–νp2)Rh+1  

   + (μq"+τq–2σq+ν'p'q+ν'pq"Rh–2νpq)Rh 

    + q(ν'q'–νq)Rh–1 

To simplify the expression for ΔQnVP – ΔQALT3, note the 
following equalities: 

Rh = Rh+1 + Cn–c–2,h q
hpn–c–2–h 

Rh–1 = Rh+1 + Cn–c–2,h q hpn–c–2–h
 + Cn–c–2,h–1 qh–1pn–c–1–h   

Substituting the preceding in the expression for ΔQnVP – 
ΔQALT3, the coefficient for Rh+1 becomes 0. Dividing both 
sides by (n – c – 2)!qhpn–c–2–h/[h!(n – c – 1 – h)!], yields: 

ΔQnVP – ΔQALT3 ≈ (n–c–1–h)[q(μq"/q+τ–2σ+ν'–ν)  
+ p(ν'q"–νq)] + hp(ν'q'–νq) 

Because by our assumptions both ν'q" – νq and ν'q' – νq 
are nonnegative, a sufficient condition for the difference 
ΔQnVP – ΔQALT3 to be nonnegative is to have μq"/q + τ – 
2σ + ν' – ν  ≥ 0. 

μq"/q+τ–2σ+ν'–ν = μ(q"–q)/q + (μ+τ+ν') – (2σ+ν) 
   = μ(q"–q)/q + (1–β') – (1–β ) = μ(q"–q)/q + β – β'  

This last expression is nonnegative by our assumptions; 
hence ΔQnVP ≥ ΔQALT3 and the conclusion that correlated 
failures have a less serious effect on ALT3 than on nVP. 
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7 Conclusion 
The methodology presented in this paper unifies 
previously proposed hybrid NVP-AT schemes and leads 
to many new variants. Given the extensive literature 
available in software fault tolerance and continued rapid 
developments in the field, such unifying methodologies 
(see, e.g., [49]) are clearly in demand and must be given 
high priority by the researchers in the field and within 
our educational programs. A component-based approach 
is particularly appropriate in that it allows: 

 
 Easy exploration of the vast architectural design 

space for fault-tolerant software 
 

 Building up of trust and the emergence of 
trusted components due to reuse 

 
 Swapping of components for more reliable 

versions as they become available 
 
Continued research in this area will enhance the 

utility of the proposed general framework for the study of 
hybrid NVP-AT schemes, leading to more specific 
design techniques, performance comparisons, and 
tradeoff guidelines. Results of such extended studies will 
contribute both to fundamental understanding of voting 
and acceptance testing as “dependability enhancement” 
mechanisms [29] and to their practical application in the 
realization of ultrareliable computations from standard 
components. A number of specific problems for future 
investigation are suggested directly by the discussions in 
the preceding sections of this paper. Examples of 
promising research directions include: 

 
 Optimal weight augmentation and reduction 

policies; the a(w) and r(w) functions 
 

 Effects of unequal module complexities and/or 
reliabilities as well as imperfect voters 

 
 Effects of different voting schemes on optimal 

configurations and their reliabilities 
 

 Optimal number of modules to be replaced by 
ATs (parameter k of Fig. 6a) 

 
 Optimal partitioning of n modules for two-level 

voting (parameter k of Fig. 8) 
 

 More general multilevel voting schemes and 
their attendant design tradeoffs 

 
 Effects of combined correctness and timeliness 

requirements [28], [31] 
 

The ultimate goal is to solve the following problem:  
 
Given a set of components with associated 
values for p, p', and p", as well as other system 
cost and reliability parameters (in particular 
those characterizing correlated failures), what is 
the most cost-effective choice and arrangement 
of computation modules, ATs, and voters? 
 

As this problem is quite challenging, any approach to its 
solution will necessarily proceed through a number of 
simpler intermediate problems. For example, one might 
ask: What is an optimal arrangement of n M/T modules 
to maximize the overall reliability? 
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