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Abstract

We solve an open question posed by Akers and Krishna-
murthyin 1986 [1, 3] concerning VLSI layout of star graphs.
We show that the area of the optimal layout of an N-node
star graph, hierarchical cubic network (HCN), or hierarchi-
cal folded-hypercube network (HFN) is N> /16 + 0(N?) un-
der the Thompson model, or under the extended grid model
where a node occupies a rectangle of sides that may range

from n— 1 to o(\/N) for the n-star, logy N + 1 to o(v/N)

for the HCN, and log,y N + 2 to o(+/N) for the HFN. An n-
dimensional star graph thus requires less area than any pos-
sible layout of a similar-size hypercube, but more than that
of the much smaller n-cube. We also derive multilayer lay-

out for star graphs that has area % + 0(12/—22), where a

node occupies a rectangle of sides ranging from f”4;1] to
o(v/N/L) and the number L of wiring layers satisfies 2 <

L= o(v/N/n). Finally we show that the bisection width of
an N-node star graph is N [4+ o(N) and the bisection width
of an HCN or HFN is exactly N/4.

1. Introduction

Star graphs [2] are a class of Cayley graphs that possess
various desirable properties, such as vertex and edge sym-
metry, strongly hierarchical structure, maximal fault toler-
ance, as well as diameter, average distance, and node degree
that are smaller than those of similar-size hypercubes. Vari-
ous important issues, such as the development of algorithms
and embeddings, have been intensely investigated for star
graphs [6, 5, 7, 14, 21, 25], while VLSI layout (another as-
pect with important implication to the cost-performance of
interconnection networks [10, 11, 12, 19, 22, 26, 27, 29]),
has not been fully resolved for star graphs. In particular, the
following open question was posed by Akers and Krishna-
murthy [3, p. 565]: “Can the n-star graphs be laid out at least
as efficiently as the comparable n-cubes?”

This question was partially answered by Sykora and
Vrt’o [22], who provided a layout for an N-node star graph
that has an area of 4.5N2, which is within a constant fac-
tor from the 0.4N? area of a similar-size hypercube [27, 28].
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However, its leading constant is larger than that of the hyper-
cube layout area by a factor of 10.125. Moreover, the lower
bound given in [22] for the area of the star graph is smaller
than that of a similar-size hypercube [27, 28] by a factor of
348.4. Therefore, although the proofs in [22] show that the
layout area of a star graph is within a constant factor from
that of a similar-size hypercube, and the layout area of an n-
star is asymptotically larger than that of an n-cube, the fol-
lowing questions remained unanswered:

(1) Can a star graph be laid out in a smaller area than a
similar-size hypercube?

(2) Can an n-star be laid out at least as efficiently as an n-
cube for networks of practical size?

In this paper, we completely resolve the open question
posed in [1, 2, 3]. We accomplish this by providing an op-
timal layout for the star graph that has an area of N>/16 +
o(N?) under the Thompson model, a result that is 7.1 times
smaller than the layout area of a similar-size hypercube [27,
28]. Moreover, we derive a tight lower bound on the lay-
out area of star graphs and show that our obtained area is
within a factor of 1+ o(1) from this lower bound. Thus, the
area of a star graph is smaller than that of any possible lay-
out of a similar-size hypercube, but cannot be smaller than
that by a factor larger than 7.1+ o(1). Therefore, even for
networks of practical size, the area of an n!-node n-star can-
not be smaller than or comparable to that of a 2"-node n-
cube. We extend the VLSI layout model, and show that the
area of the optimal layout of a star graph is also N?/16 +
o(N?) under the extended grid model for nodes that occupy

a rectangle of sides ranging from n — 1 to o(v/N). We fur-
ther show that the area of the optimal X-Y layout of a star

graph is SLLI\éz/z 1 + 0(12’—2) under the multilayer grid model, if
a node occupies a cuboid with sectional area at least 2n — 2

for even depth & or 2n — 2 + 2,1”:12 for odd & and rectangle

sides 0(v/N/L), and the number L of wiring layers satisfies
2 <L=o(v/N/n).

An N-node hierarchical cubic network (HCN) [15] (or
hierarchical folded-hypercube network (HFN) [13]) is a 2-
level network consisting of v/N 16N _dimensional hyper-
cube (or folded-hypercube) clusters, each having a link con-
necting it to each of the other clusters. If we view each
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cluster of an HCN or HFN as a supernode, then an HCN

or HEN becomes a v/N-node complete graph. Since com-
plete graphs are the densest graphs among all networks, it
was previously considered difficult and/or expensive to lay
out networks derived from complete graphs. Based on the 2-
D layout of complete graphs, we show that HCNs and HFNs
can be laid out in N?/16 + o(N?) area under the Thompson
model or under the extended grid model where a node occu-
pies a rectangle of sides that may range from log, N+ 1 to

o(v/N) for HCNs and from log, N + 2 to o(v/N) for HFNG.
This result is smaller than the area of hypercube layouts [28]
by afactor of 7.1, thus establishing that HCNs and HFN's can
also be laid out more efficiently than hypercubes of the same
size. We then show that these layouts are optimal within a
factor of 1+ o(1) from the corresponding bisection-based
lower bounds.

The bisection width is an important topological parame-
ter for interconnection networks and is crucial to their cost
and performance [9, 18]. However, this parameter is quite
difficult to obtain for many networks. Upper bounds on the
bisection widths of HCNs without diameter links and HFNs
are available in [16], but exact values or lower bounds on
the bisection widths of these networks were not known. In
this paper we explore the relationships between VLSI lay-
out area, bisection width, and the time to perform several to-
tal exchange tasks, which lead to the derivation of bisection
widths for several interconnection networks. In particular,
we show that the bisection width of an N-node star graph is
N/4 £ o(N) and the bisection width of an HCN or HFN is
exactly N/4.

2. Upper bounds on VLSI layouts

In this section, we present optimal layouts for complete
graphs, star graphs, HCNs, and HFNs.

2.1. The Thompson and the extended grid models

In this subsection we present the Thompson model [23,
24] and introduce a variant to be referred to as the extended
grid model.

In the Thompson model, a network is viewed as a graph
whose nodes correspond to processing elements and edges
correspond to wires. The graph is then embedded in a 2-D
grid, where wires have unit width and a node of degree d oc-
cupies a square of side d. The wires can run either horizon-
tally or vertically along grid lines; they can cross each other
but cannot overlap with each other (including “bending” at
the same grid point, which is allowed in another VLSI model
called the knock-knee model). The area of alayout is the area
of the smallest upright rectangle that contains all the nodes
and wires. When there are two layers of wires, it is guaran-
teed that we can lay out the network within the area.

The extended grid model is almost the same as the
Thompson model, except that a node may occupy an area
considerably larger than d2. A reason for proposing this ex-
tension is that a node in a parallel computer may include a
large memory bank and one or several (complicated) proces-
sors, in addition to a router/switch, which may require con-
siderably more than d? unit of area, where a unit of length is
taken as the physical width for a wire. The range of actual

node sizes must be specified explicitly in the extended grid
model, which is usually taken to be between the minimum
size required to implement a node (e.g., a square of side d or
d /4, for a degree-d node in some technologies) and the max-
imum size allowed without affecting the leading constants
for area, volume, and maximum wire length.

2.2. Optimal layouts for complete graphs

In this subsection we derive the layout area for complete
graphs, which will then be used to derive optimal layout ar-
eas for star graphs, HCNs, and HFNs.

Lemma 2.1 An N-node complete graph can be laid out in

N*/16 + o(N*) area under the Thompson model, or under
the extended grid model where a node occupies a rectangle

of sides that may range from ["17 to o(N'3).

Proof: We first present the collinear layout of an m-node
complete graph K, by placing the m nodes, labeled 1
through m, along a row. Let a link be fype-i if it connects
two nodes whose addresses differ by i. Then the m(m—1)/2
links in K, can be classified into types 1,2,3,...,m — 1, and
there are m — i type-i links. To lay out K,,,, we place all the
type-1 links in one track, all the type-2 links in two tracks,
where links connecting nodes with odd addresses are put in
one track and links connecting nodes with even addresses in
the other, and then all the type-i links in min(i,m — i) tracks
for i = 3,4,5,...,m — 1. More precisely, type-i links are
placed in i tracks if i < m/2, where links are put in the same
track if the remainders of their node-addresses modulo i are
the same, and each of the m — i type-i links is placed in a dif-
ferent track if i > m/2, It can be seen that such an arrange-
ment will not result in overlapped links within a track. More
details concerning the collinear layout of complete graphs
found in [27, 31].

The total number of tracks in the layout described above
is equal to

m—1 [m/2] m—1

Y min(i,m—i)= Y i+

i=1 i=1

(m—1i)
i=|m/2|+1

[m/2] [m/2]-1
=X i+ X i=lm/4l.
i=1 i=1
Since the bisection width of K, is equal to m? /4 when m is

even and (m? — 1)/4 when m is odd, this layout is strictly
optimal in terms of the number of tracks for collinear layout
of complete graphs. This upper bound is 25% smaller than
the one given in [11]. The above number of tracks leads to
an area of m(m — 1) |[m?/4| ~ m* /4.

Although the preceding method leads to the smallest pos-
sible number of tracks for the collinear layout of a com-
plete graph, a smaller area can be achieved using 2-D lay-
outs. Based on the collinear layout, we first derive an area-
efficient layout for directed complete graphs, where each
pair of nodes are connected by two directed edges. Without
loss of generality, we assume that m = m; x m, for some pair
of integers my,my = O(y/m).

To obtain an area-optimal layout, we place the m nodes
of the complete graph, which we can label as (i, j) for i =
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Figure 1. A 2-D layout for an undirected com-
plete graph Kj.

1,2,...,my, j = 1,2,...,my, on an m; X my grid. Two
neighboring rows are separated by 2m; |m3 /4] tracks, while
two neighboring columns are separated by 2m,|m? /4]
tracks. We call a link connecting source node (i1, j; ) to des-
tination node (iy, jo) a type-(iy, j1,j» — j1) link. If iy = i,
or j; = jp, we can route the link as in the collinear lay-
out. Otherwise, we first route it from the source node to
the vicinity of the upper right corner of the turning node
(i1, j») along a horizontal track, and from there to the des-
tination node (i, j) along a vertical track. Recall that we
need min(k,m, — k) tracks for all the my — k type-k links in
the collinear layout of an undirected K,,,. Since m; links
go from node (i1, j;) to the vicinity of node (i, j,), which
serves as the turning or destination node, and an equal num-
ber of links go in the reverse direction, we can replace each
track in the collinear layout of a K, with 2m; tracks to
accommodate the horizontal segments of the 2m; directed
links, leading to a total of 2m; |m3 /4| tracks that have to be
placed above each row of nodes.

We next show that the vertical segments of all the links to
the immediate right of a column can be placed in 2m; | m? /4]
tracks. We present a possible arrangement as follows. We
place all the type-(x,y,z) links within the bundle (j,,k), if
y = ji and z = £k for some positive integers j; and k, for
all integers x = 1,2,3,...,m;. In other words, links are put
within the same bundle if their source nodes belong to the
same column j; and the difference between the source and
destination row numbers is the same (i.e., equal to k or —k).
There are m;(m; — 1) bundles between two columns. Bun-
dle (j;,k) can be laid out using 2 min(k,m; — k) successive
tracks, which is similar to the layout for two groups of type-
k links in the collinear layout of a Kj,,,. More precisely, a
link of type (i1, ji,k) is placed in the first half of the bun-
dle to which it belongs if | (i; — 1) /k] is even, and placed in
the second half otherwise. Within the same half of the bun-
dle, a link is placed in the /'" track if iy mod k = I. Note that
we place the vertical segments of links of types (x, ji,—k),
(xajlak)v ()C+2k,j1,—k), (‘x+2k7j17k)7 and (x+4kaj17 _k)»
... along a vertical track when k < m; /2 to avoid overlap-
ping. By arranging links according to the above rules, the
vertical segments of the 2m;(m; — k) links of type (x,y,k)
and type (x,y,—k), x=1,2,3,...,m;,y = 1,2,3,...,my, can

be placed in 2m, min(k,m; — k) tracks. As a result, the num-
ber of vertical tracks required is equal to 2m, times the num-

ber |m? /4] of tracks required for the collinear layout of a

Ko, , for a total of 2mj |m? /4] links.
Since a node occupies a square of side mm, — 1, the area
required for the 2-D layout of the directed K, is given by

my (2my Lm%/4] +mymy — 1) X my(2my Lm%/4j +mymy —1)

=m*[4+0(m?).

For an undirected K,,,, where each pair of nodes are con-
nected by a single edge, the required area can be reduced to

m*/16 + O(m3?) by properly removing half of the tracks
in both the horizontal and vertical directions. A possible
method is to remove the links within the second half of each
of the bundles (and their horizontal segments) as well as half
of the links whose sources and destinations have the same
row or column numbers. Figure 1 shows the resultant 2-
D layout for an undirected Ky. Note that there were origi-
nally 12 tracks between 2 neighboring rows or columns in
the layout of a directed Ko, but after the removal of the sec-
ond halves of bundles, there are only 6 vertical tracks left
between neighboring columns, and only 10, 2, and 6 hori-
zontal tracks left above the 1st, 2nd, and 3rd rows, respec-
tively. O

As will be shown in Section 3, this layout area is larger
than the lower bounds by a factor of 1+ o(1) and is thus
quite close to being strictly optimal.

2.3. Optimal layouts for star graphs

An n-dimensional star graph, n-star, is a symmetric graph
that has N = n! nodes of degree n — 1 [2, 3]. Each node in an
n-star is assigned a label, which is a distinct permutation of
the set of n symbols {1,2,3,...,n}. Two nodes are connected
by a dimension-i link, 2 < i < n, if and only if the label of
one node can be obtained from the other by interchanging
the first symbol and the i symbol.

Lemma 2.2 An n-dimensional star graph, with N = n!
nodes, can be laid out in N*/16 + o(N?) area under the
Thompson model, or under the extended grid model where
a node occupies a rectangle of sides that may range from

|'”T_1] to o(\/ﬁ).

Proof: An n-star contains n disjoint (n — 1)-stars as sub-
graphs, each pair of which are connected by (n — 2)! links.
We can view an (n — 1)-star as a supernode, and then the n-
star becomes an n-supernode complete graph with multiple
edges. Top-level views for a 6-star and its 5-star supernodes
and the complete structures of a 4-star and a 3-star are illus-
trated in Fig. 2.

To lay out an n-star, we first place nodes belonging to the
same (n — 1)-star subgraph within a block. We refer to these
blocks as level-n blocks, and the segments of dimension-n
links outside these level-n blocks as level-n inter-block links.
We can then lay out these level-n inter-block links using the
preceding layout for a complete graph with multiple edges.
We will eventually connect each of the level-n inter-block
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Figure 2. Structure of a (a) 3-star, (b) 4-star,
and (c) top view of a 6-star and one of its
5-star subgraphs. Each pair of the 5-star sub-
graphs within the 6-star is connected by 4!
dimension-6 links.

links to a certain node within the block, in order to lay out
the corresponding dimension-n link completely. We con-
tinue to lay out the (n — 1)-star within each of the level-n
blocks We place nodes belonging to the same (n — 2)-star
subgraph within a level-(n — 1) block, and lay out level-
(n — 1) inter-block links (i.e., the segments of dimension-
(n— 1) links outside level-(n — 1) blocks) using a complete
graph layout with multiple edges. We will eventually con-
nect each of the links incident to the level-(n — 1) block (in-
cluding dimension-n links and dimension-(n — 1) links) to
a certain node within the level-(n — 1) block. This process
can be done recursively until the number of nodes within a
block to be laid out is small. Then we use any viable method
to lay out these small substars.

Letn; = [\/n] andny = [n/n;]. Tolay outall the level-n
inter-block links, N> /16 + o(N?) area will be required based
on the layout of a K, ,, with (n —2)! edges between each
pair of nodes, calculated as follows. Recall that the grid lay-
out for a K, », with 2 edges between each pair of nodes re-
quires n*/4 4+ o(n*) area. As a result, a K, with (n — 2)!
edges between each pair of nodes can be laid out in (n?(n —
2)12/16+0(n*(n—2)!)*> = N>/16 4+ o(N?) area, which can
be easily done be expanding each side-(2n — 2) node into a
side-(n — 1)! node and replicating each link into (n —2)!/2
links.

To lay outalevel-iblock,i=n—1,n—2,n—3,...,1, we
first connect the wires outside the block to appropriate level-
(i — 1) blocks within it, and then lay out the level-i inter-
block links of the i-star within the level-i block using the
layout for K; ;,, where i} = [V/i] and i = [i/i;]. Note that
i1ip — i out of the iyi, level-i blocks can be removed since
there are only i (i — 1)-stars within a block. The number /
can be any integer smaller than n and greater than 3. In what
follows, we assume [ = O(1). The area for a level-/ block is

O(n?) since there are only O(1) nodes in it and O(n) links
incident to it.

The segments of dimension-# links inside a level-n block
and all the dimension-i links, i =n —1,n—2,...,1, inside
the block require a square of side O(N/n) for wiring them.
Since the network nodes are arranged as a 2-D grid, the side
of a level-n block will be o(N), which does not increase the
leading constant of the total area, as long as a node occu-

pies a rectangle of side o(v/N). As a result, the layout area
for an n-star is N2/ 16 +o(N?), which is mainly occupied by
dimension-# links. g

This layout area is smaller than the one given in [22] by a
factor of 72 and is optimal within a factor of 1+o0(1), as will
be seen from the lower bound derived in Section 3. Similar
results can be obtained for pancake graphs and bubble-sort
graphs [3].

2.4. Multilayer layout for star graphs

In the multilayer 2-D grid model [31, 30], a network is
viewed as a graph whose nodes correspond to processing el-
ements and edges correspond to communication links. The
nodes and edges of the graph are then embedded in a 3-D
grid, where edges have unit width, can run along grid lines,
but cannot cross or overlap with each other (i.e., the paths
for embedding these edges must be edge- and node-disjoint).
The nodes of the graph are embedded in the 2-D grid of the
first layer (i.e., z = 1). As in the extended grid model, the
range of actual node sizes must be specified explicitly in this
model. As an example, a node that occupies a square of
side w = o(y/N/logN) and depth & = 2 will be mapped to
w?h = o(N/logN) neighboring grid points at the first two
layers. The sectional area for the cuboid occupied by a node
is wh =o0(y/N/logN).

The area A of a layout is defined as the area of the small-
est uprightrectangle along the x-y directions that contains all
the nodes and links. The volume of a layout is equal to the
number L of layers times its area A. A network with area A’
under the Thompson model or the extended grid model can
always be laid out with area A < A" under the multilayer 2-D
grid model with L = 2 layers, so the former can be viewed as
a special case of the latter. Note, however, that if we derive
layouts directly for the two-layer 2-D grid model, we may be
able to obtain layouts with area smaller than the best possi-
ble layout derived for the Thompson model or the extended
grid model. The cost of a layout under the multilayer 2-D
grid model is a function of A and L as well as other parame-
ters.

Recall that there are (n —2)! dimension-# links between
any pair of level-n blocks. We partition these links into
L/2 groups, each having at most [2(n — 2)!/L] links. To
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lay out these links using L layers, we simply assign each
group to a particular pair of layers and then simply lay out
these dimension- links based on the layout of a K, ,, with
[2(n—2)!/L] edges between each pair of nodes (for the seg-
ments outside level-n blocks). Similarly, dimension-(n— 1)
links that are confined within level-n blocks can be laid out
by first partitioning them in L/2 groups and then laying out
each of the groups using a pair of neighboring wiring lay-
ers based on the layout of an (n — 1)-node complete graph
with [2(n—3)!/L] edges between each pair of nodes (for the
segments outside level-(n — 1) blocks); dimension-i links
that are confined within level-(i — 1) blocks, i =n—2,n —
3,...,1+ 1,1 = O(1), can also be laid out based on the lay-
out of an i-node complete graph with [2(i —2)!/L] edges
between each pair of nodes (for the segments outside level-
i blocks). The segments of dimension-i links inside level-i
blocks, i = n,n—1,n—2,...,1, are laid out using the same
pair of wiring layers that are used to lay out the segments
outside level-i blocks, and only require negligible area as in
the layout under the Thompson model.

Similar to the star layout under the Thompson model, the
dimension-# links dominate the layout area when L is not
very large. The preceding layout method can be easily gen-
eralized to odd L using the technique in [31, 30], leading to
the following lemma.

NZ

. . 2
Lemma 2.3 An n-star can be laid out in Te (%) area

for even L orin 4(52’—271) +o (IZ—;) area for odd L under the
multilayer 2-D grid model, where N = n!, a node occupies
VN

a rectangle of sides ranging from |—"T_1] to o (T) with any
depth h < L, and the number L of wiring layers satisfies 2 <

L=o ().

n

The preceding technique for laying out star graphs can be
applied to various other networks as long as the network can
be partitioned into clusters with multiple links connecting a
pair of neighboring clusters. More details will be reported
in the near future.

2.5. Optimal layouts for HCNs and HFNs

A hierarchical cubic network (HCN) [15] is a 2-level net-
work consisting of v/N (log, N/2)-dimensional hypercube
clusters, each having an inter-cluster link connecting it to
each of the other hypercube clusters. In addition to these
links, the i hypercube cluster has a diameter link connect-
ing it to the (\/IT/— i+ 1)-th hypercube, for i = 1,2, ..., VN.
The top view for a 64-node HCN is seen in Fig. 3a. A hier-
archical folded-hypercube network (HFN) [13] is a 2-level

network consisting of v/N (log, N/2)-dimensional folded
hypercubes, each having an inter-cluster link connecting it
to each of the other folded hypercubes. The top view for a
64-node HFN is seen in Fig. 3b. Since clusters in an HCN
or HEN are connected as a complete graph, they can be laid
out using a method similar to that used for star graphs.

Lemma 2.4 An N-node HCN or HFN can be laid out us-
ing N> /16 + o(N?) area under the Thompson model, or un-
der the extended grid model where a node occupies a rect-
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Figure 3. The 64-node (a) HCN and (b) HFN.
The hypercube or folded-hypercube clusters
are inter-connected as a complete graph.

angle of sides that may range from fk’gz#] to o(v/N) for
the HCN or from f%] to o(\/N) for the HFN.

Proof: Let m; = [N'/4] and m, = [v/N/m;]. To lay out
an HFN, we first place nodes belonging to the same folded-
hypercube cluster within a block of side v/N — 1, and lay
out the inter-cluster links based on the previous layout for an

undirected Ky, , . Note that the last mmy — /N blocks and
their associated links are not needed and can be removed.
We will then lay out the folded hypercube within each of the
blocks and connect each of the links incident to the block
to a certain node within the block. These blocks will sub-
sequently be expanded to an area larger than (v/N — 1)? in
order to accommodate the routing of the intra-cluster links
within a folded-hypercube cluster.

We can lay out an HCN almost identically to the previous
method for HFNs. The only difference is that an HCN has
V/N/2 additional diameter links, and the subgraph within a
block is a hypercube.

We need area (v/N)*/16 + o(v/N)* = N> /16 + o(N?) to
route the inter-cluster links of an HCN or an HFN. Since a
v/N-node hypercube or a folded hypercube can be laid out
in a square of side 0(\/]T7) [27, 28], the expanded area will
not affect the leading constant for the layout area. The result
then follows, given that the diameter links for the HCN only

imply O(N+v/N) additional area. a

As will be shown in Section 3, the above layouts for
HCNs and HFNs are optimal within a factor of 1+ o(1).
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3. Tight bounds on layout areas

In this section we introduce several lower-bound tech-
niques and show that all the VLSI layouts derived in the pre-
vious section are optimal within a factor of 1+ o(1).

3.1. Lower bounds based on BATT

A basic communication task that arises often in applica-
tions is the total exchange (TE) task [8, 17] (also called all-
to-all personalized communication), where each node has to
send a different (personalized) packet to every other node of
the network. In this subsection we propose to use the best
achievable TE throughput (BATT) as a convenient and pow-
erful tool for deriving lower bounds on VLSI layout areas of
interconnection networks.

In [23, 24], Thompson has shown that the layout area of
a graph is at least B> under the Thompson model, where a
node occupies a square of side d, B is the bisection width of
the graph, and d is the degree of the node. The same lower
bound can be obtained for the extended grid model.

Theorem 3.1 The layout area of a network is at least B> un-
der the extended grid model if a node occupies a rectangle of
sides at least d, where B is the bisection width of the graph.

Theorem 3.2 Assume that f(N) TE tasks can be executed in
S(N)Trg communication steps in an N-node interconnection
network for some integer function f(N), under the all-port
communication model. Then the layout area of the network
is at least

[N/2)* x [N/2]> N

T2, T 16T,

under the Thompson model, or the extended grid model if a
node occupies a rectangle of sides at least d.

Most interconnection networks of interest can be laid out
efficiently using multilayer X-Y layouts, a class of layouts
under the multilayer grid models, where odd-numbered lay-
ers implement the segments of links that are in the horizontal
(X) direction and even-numbered layers implement the seg-
ments of links that are in the vertical (¥) direction. A layout
under the Thompson model can always be transformed into
a two-layer X-Y layout [24]. We can derive the following
lower bound for X-Y layouts under the multilayer grid mod-
els.

Theorem 3.3 The area for any X-Y layout of a network is
at least

48>

12

4B2

21

under the multilayer grid models, with L > 2 wiring layers, if
a node occupies a cuboid with sectional area at least 2d for

even depth h or 2d + % for odd h, where B is the bisection
width of the graph.

foreven L, or
forodd L

Theorem 3.4 Assume that f(N) TE tasks can be executed in
S(N)Trg communication steps in an N-node interconnection
network for some integer function f(N), under the all-port

communication model. Then the area of any X-Y layout for
the network with L > 2 wiring layers is at least

AN2Px N/ N

foreven L, or

L2T2, e
AN2PX[N2? N
EE TRy forodd L

under the multilayer grid model if a node occupies a cuboid
with sectional area at least 2d for even depth h or 2d + %
for odd h.

Note that a node in Theorems 3.1, 3.2, 3.3, and 3.4 is al-
lowed to be very large (e.g., as large as a square with side
V/N/log, N), without reducing the lower bound. Also, in
performing the TE tasks, we assume that links are bidirec-
tional and that nodes can have infinitely large routing tables
and buffer space and perform infinitely many computation
steps if required. (Links are still assumed to have unit width
in the layout.)

Similar to BAR? technique, we can also use the best
achievable unicast throughput (BAUT) to derive area lower
bounds, which yields the highest possible injection rate for
unicast routing with uniformly distributed sources and des-
tinations after balancing the traffic over all network nodes
and links. The proposed BATT and BAUT techniques are
both following the idea of the lower-bound technique pro-
posed by Thompson that derives area lower bounds based on
the time complexity for performing fast Fourier transform
(FFT) [23]. However, BATT and BAUT are different in that
more than one instance of the communication tasks are exe-
cuted at the same time to simplify the derivation of the best
achievable throughput or even to improve the throughput to
a degree that cannot be achieved by using a single (possi-
bly pipelined) instance. Also, we found that the TE tasks
and unicast routing are more convenient and/or achieve bet-
ter bounds compared to FFT and other communication tasks
such as sorting; these communication tasks have not been
previously used for this purpose or in this form. The BATT
and BAUT techniques are closely related to the method that
derives area lower bounds by embedding multiple complete
graphs, in contrast to embedding a single complete graph as
in most previous papers.

3.2. Minimal layout areas of the complete graph,
star graph, HCN, and HFN

The minimal layout of a network is the layout(s) of the
network that requires the smallest possible area. Except
when a strictly optimal layout has been obtained, we spec-
ify the range for the possible minimal layout area of a net-
work by giving the best-known lower bound on any pos-
sible layouts of the network and the the best-known area
for the network (i.e., either the area of a layout with ex-
plicit construction or the area of a layout whose existence
has been proven). This range is useful in indicating the cost-
performance of the network. Our goal is to find optimal lay-
outs for interconnection networks of interest, where an op-
timal layout is a layout of the network whose area has the
same leading constant as its minimal layout. A layout whose
area has the same order as its minimal layout is referred to as
an asymptotically optimal layout. Based on the lower-bound
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techniques proposed in Subsection 3.1, we will show that all
the VLSI layouts presented in Section 2 are optimal.

Theorem 3.5 The area of the minimal layout of an N-node
complete graph is N*/16 + o(N*) under the Thompson
model, or under the extended grid model if a node occupies a
rectangle of sides that may range from N — 1 to o(N'*). The
number of tracks required for the minimal collinear layout

of an N-node complete graph is |[N*/4].

In [14], it is shown that TE can be performed on an N-
node star graph in 2N + o(N) time under the all port com-
munication model. This is the fastest algorithm for the TE
task reported in the literature thus far. By simply using this
TE execution time and Theorem 3.2, we can easily obtain
an area lower bound that is 12.25 times better than the one
given in [22].

From Theorem 3.2, however, we know that the through-
put for executing TE tasks, rather than the completion time
for a single TE task, is what counts for the lower bound on
VLSI layout area. This greatly simplifies the problem and
allow us to further improve the lower bound on the star-
graph area by another factor of 4.

Lemma 3.6 [27] (n— 1) TE tasks can be executed in nN +
o(nN) communication time in an n-star under the all-port
communication model.

By combining this result with Theorem 3.2, we can now
obtain the minimal area for star graphs.

Theorem 3.7 The area of the minimal layout of an n-
dimensional star graph with N = n! nodes is equal to
N?/16+ 0(N?) under the Thompson model, or under the ex-
tended grid model if a node occupies a rectangle of sides that
may range from n — 1 to o(v/N).

The ratio of the upper bound over the lower bound for the
layout area of a star graph under the Thompson model is sig-
nificantly reduced from 3528 in [22] to 1 + o(1).

Theorem 3.8 The area of the minimal X-Y layout of an N-
node star graph is equal to

N? N?
m“(rz)

N? N?
m‘i—o(?) fOVOddL

for even L, or

under the multilayer 2-D grid model, if a node occupies a
cuboid with sectional area at least 2d for even depth h or

2d + % for odd h and rectangle sides o(/N), where the
number L of wiring layers satisfies 2 < L = o (@)

These are the first bounds thus far for the area of multi-
layer star layouts, and are optimal within a factor of 1 +o(1).

Lemma 3.9 [27] The throughput for executing TE tasks
can be arbitrarily close to 1[N in an N-node HCN or HFN
under the all-port communication model.

By combining Lemma 3.9 with Theorem 3.2, we can
prove that the layouts presented in Subsection 2.5 are also
close to being strictly optimal.

Theorem 3.10 The area of the minimal layout of an N-node
HCN or HFN is equal to N* /16 + o(N?) under the Thomp-
son model, or under the extended grid model if a node occu-
pies a rectangle of sides that may range from logy N 41 to

o(V/N) for the HCN and logy N +2 to o(/N) for the HFN.

4. Bisection widths of the star graph and HCN

The bisection width of a network is the minimum num-
ber of links that have to be removed to partition the network
into two (disjoint) halves. It is an important topological pa-
rameter for interconnection networks and is crucial to their
cost and performance. However, this parameter is quite dif-
ficult to obtain for many networks. In what follows, we will
show that tight bounds on the bisection width for star graphs,
HCNSs, and HFNSs can be obtained from the upper bounds on
their TE throughput and VLSI areas.

Theorem 4.1 The bisection width of an N-node star graph
is equal to N/4+ o(N).

Proof: If the bisection width is N/4 + &N for some positive
constant €, then any layout for a star graph would have area
at least (1/16 4 2&)N?, which conflicts with Lemma 2.2. If
the bisection width is N/4 — eN for some positive constant
€, then Trg must be at least N/(1 —4€), which conflicts with
Lemma 3.6. So the bisection width of an N-node star graph
must be N/4 £ o(N). Note that when 7 is odd, we cannot
obtain the preceding upper bound by partitioning the n-star
based oniits (n— 1)-star clusters (e.g., [rn/2] (n—1)-substars
on one side and |n/2]| (n— 1)-substars on the other), while
partitioning it based on its (n — 2)-star clusters will involve
dimension-(n — 1) links. a

In the following theorem we derive the exact bisection
width for HCNs and HFNs.

Theorem 4.2 The bisection width of an N-node HCN or
HFN is equal to N/4.

Proof: We first derive a lower bound on the bisection width
of an HCN or HFN based on the average throughput for per-
forming a set of TE tasks in it. The total time for executing
f(N) = 10N TE tasks is at most 10N> 42N (see Lemma 3.9
and [27]). Since

g s L2 XN/

)
Trg

the bisection width B of an HFN must satisfy

N? N 0.04 N
B> ovaw = 7~ 00t 5503 > 7 005
10N

From the definition of HCNs and HFNs, we know that the
size N of an HCN or HFN is a multiple of 4 since the size of
a hypercube or folded-hypercube cluster is an even integer
V/N. Since the bisection width B must be an integer, we have
B>[N/4-0.05]=N/4.

By separating the hypercube (or folded-hypercube) clus-
ters in an HCN (or HEN, respectively) into two equal parts,
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each having VN /2 clusters, there will be exactly N/4 inter-
cluster links connecting these two parts. This leads to an up-
per bound B < N/4 on the bisection width of an HFN. Thus,
the bisection width of an N-node HFN is exactly N/4. If one

of the two parts has clusters 0, 1,2, ..., \/]V/4 — 1 and clusters

3v/N/4,3v/N/4+1,...,/N— 1, then all diameter links in an
N-node HCN will be confined within the same side. There-
fore, the bisection width of an HCN is also upper bounded
by N/4, which is the exact bisection width. O

Bisection width is often used for obtaining lower bounds
on the VLSI layout area for graphs and the lower bounds on
various communication tasks [24]. We have essentially re-
versed this process, using upper bounds on the VLSI area
and TE throughput, which are actually easier to find for these
networks, to obtain exact values or tight bounds on their bi-
section widths.

5. Conclusion

We completely resolved an open question posed by Ak-
ers and Krishnamurthy [1, 3] by showing that a star graph
does indeed have a more compact layout than a similar-size

hypercube, while only by a constant factor of 7.1. We pre-
sented layouts for star graphs, complete graphs, HCNs, and
HFNs that are optimal within a factor of 1+ o(1). We also
derived the exact bisection widths of HCNs and HFNs, and
tight bounds on the bisection width of star graphs. The tech-
niques proposed in this paper can be applied to a wide vari-
ety of other interconnection networks [27].
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