
Approach to the Design of Parity-Checked Arithmetic Circuits

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami @ ece.uc sb.edu

Abstract

Achieving fault tolerance via parity checking is attractive
due to low overhead in storage and interconnect. However,
nonpreservation of parity during arithmetic operations
makes it necessary to strip the parity bit before, and to
restore it after, such operations. This either leaves the
arithmetic part unprotected or else requires complex code
conversions. We show that some redundant representations,
which are often used for high performance anyway, support
a way of designing low-overhead, fault-tolerant arithmetic
hardware circuits. An added benefit is localized fault effects
due to carry-free arithmetic. Our proposed fault tolerance
strategy consists of a way of converting parity-encoded
input values to even-parity redundant representations,
performing arithmetic with redundant operands in such a
way that parity is preserved, and, finally, converting any
redundant result to standard parity-encoded output.

1. Introduction

Parity checking was the first error detection method used in
digital computers [Bloc48], [Garn58]. Recently, the use of
parity checks in conjunction with other hardware schemes
such as checkpointing, and software techniques like retry,
has gained new momentum [Paul02]. Unfortunately,
however, nonpreservation of parity during arithmetic
operations makes it necessary to strip the parity bit before,
and to restore it after, such operations. This either leaves
the arithmetic part unprotected or else necessitates using
complex, self-checking code converters [Rao74], [Fuji85],
[Parh00], [Lala01] (see Fig. la). An alternative is to use a
parity prediction circuit (Fig. l b) which may be quite
complex, except in the case of certain simple arithmetic
operations such as addition [Hsia63], Fuji81], [Nico93].

Redundant intermediate representations help render parity-
checked arithmetic feasible and cost-effective [Parh02].
We thus consider a three-step methodology for checking of
arithmetic operations on parity-encoded data (Fig. l c):

1. Converting even-parity 2's-complement input numbers
to intermediate even-parity redundant representations.

2. Performing arithmetic operations on redundant operands
in such a way that the even parities are preserved.

3. Converting the even-parity redundant final results to
even-parity standard 2' s-complement output numbers.

To the extent possible, each step is carried out via local
transformations [Thor97]. This is important not only for
fault isolation, and hence greater fault tolerance, but also
for high performance through parallel processing.

In this paper, we review theoretical results that enable us to
perform the aforementioned steps, illustrate how each step
might be implemented in hardware, and demonstrate some
applications in the design parity-checked adder/subtractors
and multipliers. We then briefly discuss how our method
can be extended to checking of more complex, arithmetic
operations, how checksums can be used in lieu of single
parity bits, and how parity checking can be combined with
other redundancy methods in hybrid arrangements for
greater fault tolerance.

I P/RI
k

Parity-
encoded
i n ~

......... P/R I
k

~ ~ 1 ~ Parity-
P/A encoded > out0 t Parity-

encoded ALU A/P

inp_uts ..I I k + g,..I " J k

k v ALU with error-coded operands

(a) Parity/arithmetic and arithmetic/parity code conversion

,, ["""'..~ I Parity I ~ Parity-
generator , ; k ":- i F1 ~ 1 .] , encoded

L I ~ ~, output Parity- ~ I L. ~ ~
encoded I predic'to r I • " ~ ALU, w '~ / j-"
inputs ~ I r / " | : k

', ', ; Error
/ " i ~ " ~ r d / n a r y ALU ,.) '~,~. ,.~..

(b) Parity prediction

k + h Parity-
/ encoded

output

Redundant parity-preserving ALU

(c) Parity/redundant and redundant/parity code conversion

Fig. 1. Arithmetic with parity-checked data.

2. Even-Parity BSD Encoding
Low-overhead parity checking for arithmetic circuits is
made possible by the observation that certain redundant
representations possess enough redundancy to allow the
generation of the output results with specified parities.
Thornton [Thor97] exploited this property to derive a BSD
adder design that always produces an even-parity output.
This is made possible by a special encoding of the radix-2
BSD digit set {-1, 0, 1 }, where 0 is assigned two codes with
odd and even parities (Table 1). This encoding allows
contiguous BSD digits, comprising radix-4 digits in [-3, 3],
to be represented in 4 bits with even parity. In other words,
the BSD adder can be designed to produce pairs of output
digits by means of the encoding of Table 2.

Table 1. Two-bit encoding of BSD digits.

BSD digit: xt 2-bit code: y~z~
-1 1 1

0 10 or 00
1 01

Table 2. Even-parity code for radix-4 digits.

Radix-4 digit BSD equivalent 4-bit code
-3 -1 -1 1111

-2 -1 0 1100
-1 -1 1 or 0-1 0011
0 0 0 1010 or 0000
1 1-1 or 0 1 1001

2 1 0 0110
3 1 1 0101

The encodings shown in Tables 1 and 2 are actually bitwise
complements of the ones used by Thornton. We prefer
these variants because they correspond to ordinary signed-
magnitude interpretation: y is the sign and z is the
magnitude, with the two codes for 0 corresponding to +0.
We had originally hoped to be able to assign a weighted
bit-set interpretation [Jabe02] to our code, thus allowing the
use of standard operations and components in arithmetic
circuits; however, this goal does not seem possible, given
that the two encodings for 0 differ in one bit, which must
thus be zero-weight. Note that the complemented encoding
of Table 1 still allows us to use Thornton's adder design
with trivial modifications. Other redundant number
representations [Aviz61], [Parh90] could be used with the
same even-parity encoding provision, but we limit our
attention to the BSD representation here.

Based on Table 1, we have devised [Parh02] a three-step
process for parity-checked numerical computation: input
conversion, arithmetic operations, and output reconversion.
A schematic of the proposed approach appears in Fig. l c.
We begin by converting 2' s-complement inputs to even-
parity BSD format, perform required arithmetic operations
on the redundant operands, obtaining all partial results in

each stage of the computation with known or easily
predictable parities, and, finally, reconvert the output
results from BSD to even-parity 2's-complement format.
Our method does not imply any additional representational
redundancy beyond that needed for BSD operands.

Comparing Figs. l c and l a, which are superficially similar,
we note that self-checking blocks for parity to arithmetic-
code conversion in Fig. l a are hard to design, slow, and
quite complex; by contrast, parity to redundant conversion
in Fig. l c involves only local transformations performed
with a handful of gates per digit position, at 2-3 gate delays.
Relative ALU costs depend on the arithmetic code used,
operations performed, and extent of fault tolerance built in.
In general, the ALU of Fig. la is likely to be significantly
slower, both due to the overhead of error coding and as a
result of nonredundant arithmetic. At the final stage, the
converters have comparable complexities and delays. Note
that when redundant arithmetic is used in the ALU for
performance reasons, independent of fault tolerance issues,
the added complexity and delay due to format conversion at
the last stage of Fig. lc is insignificant.

3. Input Conversion
We begin by showing how a 2's-complement input number
x = (Xk_~Xk_2...X~Xo)2. s p,, of even width k, can be converted to
BSD format with the same parity. That is, if an even/odd
number of the input bits x; are 1 s, then an even/odd number
of the Yi and zi bits, resulting from encoding the equivalent
BSD number according to Table 1, will be ls. Dividing the
number into k /2 radix-4 digits, we can encode the resulting
radix-4 digits separately, as shown in Fig. 2. For our input
conversion process, we use Table 3 to encode the 2 MSBs
of the 2' s-complement number, one of which is negatively
weighted, and Table 4 for all other positions.

liiiiiiiiiii%ii!ilill I i

1 0

Fig. 2. Converting a 2's-complement input into
BSD number with same parity, per the
encoding defined in Table 1.

Table 3. Same-parity encoding of 2 MSBs.

Xk-1 Xk-2 yk-1 Zk-1 Yk-2 Zk-2

o o d~ 0 d L 0
d ~ d , l 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

Table 4. Same-parity encoding of bit pairs.

Xi+ l Xi Yi+ l Zi. l yi Zi

O 0
0 1
1 0

d~ 0 d~ 0
O d4 d 4 1
0 1 0 0

1 1 0 1 0 1

Table 5. Same-parity encoding of 2 MSBs
along with the parity bit p.

p Xk-1 Xk-2 yk-1 Zk-1 yk-2 Zk-2

0 0 0
0 0 1
0 1 0

d~ O d~ O
0 d ~ d o l
1 1 1 0

O 1 1 0 0 1 1

1 0 0
1 0 1

d 7 0 d 7' 0
1 0 0 1

1 1 0 1 1 0 0
1 1 1 1 d~ d~' 1

The entries d~ in Tables 3 and 4 are coupled don't-cares;
i.e., both occurrences of each d, must be assigned the same
binary value. For Table 3, choosing d 1 = d 2 = 1 yields the
simplest circuit realization because it results in Yk-1 = xk-2'
and Yk-2 = 1. However, this would not be a good choice in
the context of fault tolerance because y~_z-Stuck-at-1 fault
will go undetected, raising the risk of fault accumulation.
Choosing d~ = d 2 = 0 is somewhat better but may lead to
missing a short-circuit between Yk-~ and z~_~. Both of the
remaining choices are acceptable, but d~ = 1 and d 2 = 0
leads to a simpler circuit. Similar arguments rule out ~ = 0
as well as d 3 = 1, d 4 = 0 in Table 4, leaving d 3 = d 4 = 1 as the
only viable option. Note that in Tables 3 and 4, parity of the
bit pair in column 1 is the same as that for the 4 bits in
column 2 of each row, leading to parity preservation.

If the 2' s-complement input x comes with the parity bit p,
we can accommodate p in the encoding of the two MSBs
(Fig. 3). Table 5 shows the encoding of xk_ 1 and x~_~ so that
the parity of the 4 bits Yk-~ Z~_l Y~-2 zk_2 is the same as that of
the 3 bits p x~_ 1 x~_ 2. In this case, there are four coupled
don't-care entries and 16 possibilities; d e = d 6 = d 7 = d 8 = 1
leads to the simplest circuit implementation which is also
acceptable in light of fault tolerance considerations.

. 1 4:!

1 0

Fig. 3. Converting a 2's-complement input,
with parity bit attached, into a BSD
number having the same parity.

4. Output Conversion
Consider a k-digit BSD number (k even), with its digits in
positions 2i and 2i + 1 encoded per Table 2; i.e., with even
parity for each 4-bit group in the 2k-bit encoding. A simple
way of converting a BSD number to 2 's-complement is
through separating the positive and negative components of
the operand and performing subtraction.

So, conversion from BSD to 2's complement can be
performed via parity-checked addition [Fuji81], [Nico93],
provided that both the positive and negative components
are generated with associated even-parity bits. These parity
bits, pe(x +) and Pe(X-), are derivable from the 2k-bit BSD
representation of x by noting that x ÷ has a 1 in positions
where Yi'Zg = 1, while (x-)' has a 1 wherever y;' v z;' = 1.
Because k is assumed to be even, the parity of the number
of 0s in x ÷ and x- can be determined instead. This strategy
makes the inputs supplied to the parity generation trees
complements of those used in forming x + and x-, thus
improving fault tolerance by avoiding single-point failures
and making it less likely that unidirectional multiple errors
produce compensating bit inversions.

Parity prediction for an adder's sum output is based on the
fact that each carry c i = 1 inverts the parity of the sum bit s;
which in the absence of a carry, would have the same parity
as (x+)i @ (x-ft. If Pe is the even-parity function, we have:

p~(s) = Pe(X ÷) ~ pe((X-)') 0 C o 0 C 1 G . . . G Ck_ l

Note that we cannot use the carries formed in the adder
itself to predict the parity of s; doing so would lead to any
fault-induced error in c; inverting both the actual and
predicted parities, rendering the error undetectable. This,
however, does not imply that the entire carry network,
which is responsible for much of the complexity of a fast
adder, must be duplicated. Design options with much lower
costs are available [Hsia63], [Nico93].

Figure 4 depicts the structure of the converter. Note that the
bulk of extra complexity over a standard converter from
redundant to 2 's-complement lies in the output parity
predictor. All other blocks are simple sets or trees of gates.

Input x
in BSD
format .._y._..

2k

--~ ~ 11 I Parity } Parity"
x+generat°r " ' " ' 1 ge ator encoded

n~r i output

k

I ~ (x-)' generat°r l~ Output !

.

I ~ x+ predictor }.,.~ey..._)~nty./ parity
. predictor

--~ x-predictor" " "}Pe-~.~x-~)~ Error
signal

Fig. 4. Parity preserving converter from BSD
to 2's complement.

5. Two-Operand Addition
Even though Thornton's adder design, discussed earlier,
was offered as an even-parity output adder, it is clear that
the adder is in fact a parity-preserving arithmetic block if
supplied with even-parity inputs. Both Thornton's original
encoding and the complemented one used here also allow
for checking of subtraction, given that negation of a BSD
number through inverting bit y in the encoding of Table 1
preserves an operand's parity.

For completeness, we present an overview of the parity-
preserving BSD adder. In general, restricting transfers to
adjacent digit positions leads to a three-stage hardware
circuit for BSD addition [Parh00], the result being that the
sum digit s, is formed as a function of three pairs of input
operand digits u,_ 2, v,_ 2, Ui_l, Vi_l,/-~i, vi (Fig. 5). The number of
signal lines between blocks and the internal block designs
vary according to the addition algorithm chosen, leading to
tradeoffs between interconnection and circuit complexities.
To preserve parity, pairs of adjacent blocks in stage 3 must
be merged in view of the coupled generation of output digit
pairs with desired parity. Thus, excessive complexity and
delay are avoided if we minimize the number of signal lines
between stages 2 and 3. The particular algorithm chosen by
Thornton satisfies this requirement.

Conceptually, the addition algorithm outlined above might
be described in terms of two stages of radix-4 operations
proceeding from a position sum in [-6, 6], through interim
sum in [-2, 2] and transfer digit value in [-1, 1], to the final
sum digit in [-3, 3]. The radix-2 algorithm is simply one
particular implementation of the radix-4 version [Jabe02].
This implementation is rather efficient because it relies on
weighted posibits, having values in {0, 1 }, and negabits,
with values in { 0 , - 1 } , as well as a small number of
variables at each stage.

u i-3 ~; ~ Stage1 ~ Stage2 [. ~,]- Stage3 2/ ~ s i_3
vi-3 " 'q r - . . . I r - / ' I

2,,,j ",~ 2
ui-2 2 ' , ~ Stage 1 ~ Stage 2 ~ ~'. Stage 3 1 2 ~ si_2
Vi-2 ' I'1 r - . . . I r - . . . / ,

2 / "J "" 2

v~-I ' " 1 r-.._ u r - . / " ~

v; L.
U ~', ~ Stage1 Stage2"- Stage3 " 2 S ,

Fig. 5. Parity-preserving BSD adder.

6. Multioperand Addition
Multioperand addition can be performed by repeated use of
the two-operand adder discussed in Section 5, provided that
the parities of output digit pairs are checked after each
addition step, or a small number of steps, to ensure that
fault effects remain localized. The parallel (combinational)
version of the scheme above consists of a binary tree of
two-operand adders, reducing the number of operands by a
factor of 2 at each level (Fig. 6). It is also possible to design

parallel compressors [Parh00], similar to those for standard
binary numbers, to reduce the number of operands to two
before adding them in a parity-preserving adder. It is easily
seen that three BSD digits cannot be compressed to two
BSD digits in a parity-preserving manner. So, compression-
based approaches must involve more than three inputs.

In binary multioperand addition, a 2-bit slice of five
numbers can be reduced to a 4-bit number via a circuit
known as (5, 5; 4)-counter. Figure 7a shows the function of
such a unit in dot notation [Parh00]. Figure 7b depicts the
BSD counterpart to Fig. 7a. Here, each black-and-white
"dot" represents a BSD digit with range of values [-1, 1].
The sum of the five 2-digit BSD numbers, each of which
has even parity by assumption, can be represented by two
pairs of BSD digits, with each pair having even parity.
Thus, the even parity of input data is preserved. One way to
realize the (5, 5; 4)-counter of Fig. 7b is to use two copies
of the counter in Fig. 7a, one for the positive and another
for the negative digit components. The outputs of these two
counters are then supplied to a special encoding circuit that
ensures even parities for output digit pairs.

It is natural to ask whether larger counters might be
applicable here. Unfortunately, the next larger counters of
the type shown in Fig. 7b, that is, with parity preservation
feature, are impractically large and complex: (85, 85; 8)
and (17, 17, 17, 17; 8). These are also hard to design in a
way that single faults always lead to isolated output errors.
Thus, we advocate the use of (5, 5; 4) parity-preserving
counters in multiple levels for reducing larger dot matrices;
2two levels for 11, three levels for 26, and four levels for
65 inputs. It is also possible to reduce 7 BSD digits in the
same column to a 3-digit BSD number, as shown in Fig. 5c,
while preserving the input parity. However, this method is
inferior to that based on Fig. 7b [Parh02].

~-- - - - - I~

Fig. 6. Binary-tree multioperand addition.

i ° : i " • (!1 (i l i Even liD.
5-~ • • ~, 5 (~ (m },. parity (I

' • • I ~ (~i In each
row (D

L o o.) ~ ~..~

• • o o , (~ , , ~ (D , (m
.............. ~ "~en "~"en (m

4 parity parity (D (]D (D

(a) (5, 5; 4)-counter, binary (b) (5, 5; 4)-counter, BSD (c) (7; 3)-counter, BSD

Fig. 7. Parity-preserving compression of BSD
operands into 2 or 3 operands.

7. Multiplication
A BSD multiplier can be designed based on sequential
shift-add algorithm or parallel tree reduction. In the case of
the shift-add scheme, parity preservation is simpler if we
perform the multiplication in radix 4, using the following
standard recurrence for partial products:

s ~÷l~ - (s ~ + yj x 4m)4 -1 with s ~°~ - 0 and s ~/2~ = product

Radix-4 shifting of BSD numbers encoded as in Table 2
preserves the even parity of digit pairs. The only additional
complication over a standard radix-4 multiplier architecture
is in the need for a parity-preserving doubling circuit to
accommodate 2x and 3x multiples; as usual, 3x is formed as
2x + x at the outset or else avoided via digit recoding. The
doubling circuit is a highly simplified carry-free BSD
adder. Referring to Fig. 5, we note that possible position
sum values are in {-2, 0, 2 }, thus reducing the adder to its
stage 3, with both bit-inputs at digit position i coming from
position i - 1. Note that doubling is a form of recoding to
preserve the even parity of 4-bit groups after a one-position
left shift. With radix-2 multiplication, a doubling or halving
scheme must be used in lieu of simple left- or right-shifting
of the cumulative partial product.

An alternative to standard radix-4 multiplier architecture
outlined above is using the compression scheme of Fig. 7b
to combine the cumulative partial product and four other
values, two of which are from the set { 0, x} and the other
two from { 0 , -x} . This will accommodate the five multiples
0, _+_x, and _+2x, thus implying the need for a recoding circuit
to avoid +3x. For tree or partial-tree multiplication, a binary
tree of limited-carry adders [Parh90] or circuits based on
the compression scheme depicted in Fig. 7b can be used.
Array multipliers are not as attractive for BSD operands as
they are in binary arithmetic, given that the advantages of
structural regularity and ease of pipelining are already
provided by the much faster tree-based reduction scheme
with limited-carry BSD adders.

8. Other Arithmetic Operations
More complex operations can be synthesized from adder
and multiplier blocks or else handled directly by producing
a number of component terms and combining them using
multioperand addition. However, in our case, the relative
benefit of merged implementation for complex operations
is much less compared to its use with binary arithmetic,
given the use of redundant, limited-carry arithmetic.

Arithmetic in a wide array of signal processing applications
is dominated by addition and multiplication. Hence,
techniques discussed in the preceding sections are adequate
for designing parity-checked circuits for many applications.
Radix-4 division, square-rooting, and CORDIC algorithms
can be added to our list of operations with moderate effort.
Modifications to conventional radix-2 or radix-4 division,
square-rooting, and other function-evaluation architectures
parallel those of multiplication discussed in Section 7.

9. Conclusion
Through redundant BSD representation with inherently
even parity, arithmetic operations can be checked against
fault induced errors with low circuit redundancy and
virtually no added latency, except in the final conversion to
nonredundant format. In case redundant representation is
used for performance reasons anyway, even the latter
overhead becomes insignificant. A similar parity scheme is
applicable to carry-save numbers, thus providing an
alternative to borrow-save (BSD) representation used in
this paper. Whether this alternative leads to any speed-up or
simplification remains to be established. The following
extensions to this work are currently under investigation:
(1) Possible advatanges of carry-save over BSD encoding;
(2) Use of checksums, also known as generalized parity;
(3) Combination of parity, residue, and other check types;
(4) Parity preservation with nonredundant representation.

References
[Aviz61] Avizienis, A., "Signed-Digit Number Representations for Fast

Parallel Arithmetic," IRE Trans. Electronic Computers,
Vol. 10, pp. 389-400, Sep. 1961.

[Bloc48] Block, R.M. et al, "The Logical Design of the Raytheon
Computer," Math. Tables and Aids to Comp., Vol. 3, pp. 286-
296, 317-323, Oct. 1948. Also, US Patent No. 2,634,052.

[Ferg99] Ferguson, M.I. and M.D. Ercegovac, "A Multiplier with
Redundant Operands," Proc. 33rd Asilomar Conf. Signals
Systems and Computers, Oct. 1999, pp. 1322-1326.

[Fuji81] Fujiwara, E. and K. Haruta, "Fault-tolerant arithmetic logic
unit using parity based codes," Trans. IECE, Vol. E64, 1981.

[Fuji85] Fujiwara, H., Logic Testing and Design for Testability, MIT
Press, 1985.

[Garn58] Garner, H.L., "Generalized Parity Checking," IEEE Trans.
Electronic Computers, Vol. 7, pp. 207-213, Sep. 1958.

[Hsia63] Hsiao, M.Y. and F.F. Sellers, Jr., "The Carry-Dependent Sum
Adder," IEEE Trans. Electronic Computers, Vol. 12,
pp. 265-268, June 1963.

[Jabe02] Jaberipur, G., B. Parhami, and M. Ghodsi, "Weighted Bit-Set
Encodings for Redundant Digit Sets: Theory and
Applications," Proc. 36th Asilomar Conf. Signals Systems and
Computers, Nov. 2002, to appear.

[Lala01] Lala, P.K., Self-Checking and Fault-Tolerant Digital Design,
Morgan Kaufmann, 2001.

[Nico93] Nicolaidis, M., "Efficient implementations of self-checking
adders and ALUs," Proc. 23 rd lnt'l Symp. Fault-Tolerant
Computing, pp. 586-595, IEEE Computer Society, 1993.

[Parh78] Parhami, B. and A. Avizienis, "Detection of storage errors in
mass memories using arithmetic error codes," IEEE Trans.
Computers, Vol. 27, pp. 302-308, 1978.

[Parh90] Parhami, B., "Generalized Signed-Digit Number Systems:
A Unifying Framework for Redundant Number Representa-
tions," IEEE Trans. Computers, Vol. 39, pp. 89-98, Jan. 1990.

[Parh00] Parhami, B., Computer Arithmetic: Algorithms and Hardware
Designs, Oxford, 2000.

[Parh02] Parhami, B., "Parity-Preserving Transformations in Computer
Arithmetic," in Advanced Signal Processing Algorithms,
Architectures, and Implementations XII, July 2002, to appear.

[Paul02] Paulson, L.D., "Computer System, Heal Thyself," IEEE
Computer, pp. 20-23, Aug. 2002.

[Rao74] Rao, T.R.N. Error Codes for Arithmetic Processors, Academic
Press, 1974.

[Rao89] Rao, T.R.N. and E. Fujiwara, Error-Control Coding for
Computer Systems, Prentice-Hall, 1989.

[Thor97] Thornton, M.A., "Signed binary addition circuitry with
inherent even parity output," IEEE Trans. Computers, Vol. 46,
pp. 811-816, 1997.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	copyright: 0-7803-7576-9/02$17.00 © 2002 IEEE
	01: 1084
	02: 1085
	03: 1086
	04: 1087
	05: 1088

