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Abstract  

Achieving fault tolerance via parity checking is attractive 
due to low overhead in storage and interconnect. However, 
nonpreservation of parity during arithmetic operations 
makes it necessary to strip the parity bit before, and to 
restore it after, such operations. This either leaves the 
arithmetic part unprotected or else requires complex code 
conversions. We show that some redundant representations, 
which are often used for high performance anyway, support 
a way of designing low-overhead, fault-tolerant arithmetic 
hardware circuits. An added benefit is localized fault effects 
due to carry-free arithmetic. Our proposed fault tolerance 
strategy consists of a way of converting parity-encoded 
input values to even-parity redundant representations, 
performing arithmetic with redundant operands in such a 
way that parity is preserved, and, finally, converting any 
redundant result to standard parity-encoded output. 

1. Introduction 

Parity checking was the first error detection method used in 
digital computers [Bloc48], [Garn58]. Recently, the use of 
parity checks in conjunction with other hardware schemes 
such as checkpointing, and software techniques like retry, 
has gained new momentum [Paul02]. Unfortunately, 
however, nonpreservation of parity during arithmetic 
operations makes it necessary to strip the parity bit before, 
and to restore it after, such operations. This either leaves 
the arithmetic part unprotected or else necessitates using 
complex, self-checking code converters [Rao74], [Fuji85], 
[Parh00], [Lala01] (see Fig. la). An alternative is to use a 
parity prediction circuit (Fig. l b) which may be quite 
complex, except in the case of certain simple arithmetic 
operations such as addition [Hsia63], Fuji81], [Nico93]. 

Redundant intermediate representations help render parity- 
checked arithmetic feasible and cost-effective [Parh02]. 
We thus consider a three-step methodology for checking of 
arithmetic operations on parity-encoded data (Fig. l c): 

1. Converting even-parity 2's-complement input numbers 
to intermediate even-parity redundant representations. 

2. Performing arithmetic operations on redundant operands 
in such a way that the even parities are preserved. 

3. Converting the even-parity redundant final results to 
even-parity standard 2' s-complement output numbers. 

To the extent possible, each step is carried out via local 
transformations [Thor97]. This is important not only for 
fault isolation, and hence greater fault tolerance, but also 
for high performance through parallel processing. 

In this paper, we review theoretical results that enable us to 
perform the aforementioned steps, illustrate how each step 
might be implemented in hardware, and demonstrate some 
applications in the design parity-checked adder/subtractors 
and multipliers. We then briefly discuss how our method 
can be extended to checking of more complex, arithmetic 
operations, how checksums can be used in lieu of single 
parity bits, and how parity checking can be combined with 
other redundancy methods in hybrid arrangements for 
greater fault tolerance. 
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2. Even-Parity BSD Encoding 
Low-overhead parity checking for arithmetic circuits is 
made possible by the observation that certain redundant 
representations possess enough redundancy to allow the 
generation of the output results with specified parities. 
Thornton [Thor97] exploited this property to derive a BSD 
adder design that always produces an even-parity output. 
This is made possible by a special encoding of the radix-2 
BSD digit set {-1, 0, 1 }, where 0 is assigned two codes with 
odd and even parities (Table 1). This encoding allows 
contiguous BSD digits, comprising radix-4 digits in [-3, 3], 
to be represented in 4 bits with even parity. In other words, 
the BSD adder can be designed to produce pairs of output 
digits by means of the encoding of Table 2. 

Table 1. Two-bit encoding of BSD digits. 

BSD digit: xt 2-bit code: y~z~ 
-1 1 1 

0 10 or 00 
1 01 

Table 2. Even-parity code for radix-4 digits. 

Radix-4 digit BSD equivalent 4-bit code 
-3 -1 -1 1111 

-2 -1 0 1100 
-1 -1 1 or 0-1 0011 
0 0 0 1010 or 0000 
1 1-1 or 0 1 1001 

2 1 0 0110 
3 1 1 0101 

The encodings shown in Tables 1 and 2 are actually bitwise 
complements of the ones used by Thornton. We prefer 
these variants because they correspond to ordinary signed- 
magnitude interpretation: y is the sign and z is the 
magnitude, with the two codes for 0 corresponding to +0. 
We had originally hoped to be able to assign a weighted 
bit-set interpretation [Jabe02] to our code, thus allowing the 
use of standard operations and components in arithmetic 
circuits; however, this goal does not seem possible, given 
that the two encodings for 0 differ in one bit, which must 
thus be zero-weight. Note that the complemented encoding 
of Table 1 still allows us to use Thornton's adder design 
with trivial modifications. Other redundant number 
representations [Aviz61], [Parh90] could be used with the 
same even-parity encoding provision, but we limit our 
attention to the BSD representation here. 

Based on Table 1, we have devised [Parh02] a three-step 
process for parity-checked numerical computation: input 
conversion, arithmetic operations, and output reconversion. 
A schematic of the proposed approach appears in Fig. l c. 
We begin by converting 2' s-complement inputs to even- 
parity BSD format, perform required arithmetic operations 
on the redundant operands, obtaining all partial results in 

each stage of the computation with known or easily 
predictable parities, and, finally, reconvert the output 
results from BSD to even-parity 2's-complement format. 
Our method does not imply any additional representational 
redundancy beyond that needed for BSD operands. 

Comparing Figs. l c and l a, which are superficially similar, 
we note that self-checking blocks for parity to arithmetic- 
code conversion in Fig. l a are hard to design, slow, and 
quite complex; by contrast, parity to redundant conversion 
in Fig. l c involves only local transformations performed 
with a handful of gates per digit position, at 2-3 gate delays. 
Relative ALU costs depend on the arithmetic code used, 
operations performed, and extent of fault tolerance built in. 
In general, the ALU of Fig. la is likely to be significantly 
slower, both due to the overhead of error coding and as a 
result of nonredundant arithmetic. At the final stage, the 
converters have comparable complexities and delays. Note 
that when redundant arithmetic is used in the ALU for 
performance reasons, independent of fault tolerance issues, 
the added complexity and delay due to format conversion at 
the last stage of Fig. lc is insignificant. 

3. Input Conversion 
We begin by showing how a 2's-complement input number 
x = (Xk_~Xk_2...X~Xo)2. s .... p,, of even width k, can be converted to 
BSD format with the same parity. That is, if an even/odd 
number of the input bits x; are 1 s, then an even/odd number 
of the Yi and zi bits, resulting from encoding the equivalent 
BSD number according to Table 1, will be ls. Dividing the 
number into k /2  radix-4 digits, we can encode the resulting 
radix-4 digits separately, as shown in Fig. 2. For our input 
conversion process, we use Table 3 to encode the 2 MSBs 
of the 2' s-complement number, one of which is negatively 
weighted, and Table 4 for all other positions. 
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Fig. 2. Converting a 2's-complement input into 
BSD number with same parity, per the 
encoding defined in Table 1. 

Table 3. Same-parity encoding of 2 MSBs. 

Xk-1 Xk-2 yk-1 Zk-1 Yk-2 Zk-2 

o o  d~ 0 d L 0 
d ~ d , l  0 1 0 

1 0 1 1 1 0 

1 1 0 0 1 1 



Table 4. Same-parity encoding of bit pairs. 

Xi+ l Xi Yi+ l Zi. l yi Zi 

O 0  
0 1  
1 0  

d~ 0 d~ 0 
O d4 d 4 1  
0 1 0 0 

1 1 0 1 0 1 

Table 5. Same-parity encoding of 2 MSBs 
along with the parity bit p. 

p Xk-1 Xk-2 yk-1 Zk-1 yk-2 Zk-2 

0 0 0  
0 0 1  
0 1 0  

d~ O d~ O 
0 d ~ d o l  
1 1 1 0 

O 1 1  0 0 1 1 

1 0 0  
1 0 1  

d 7 0 d 7' 0 
1 0 0 1 

1 1 0  1 1 0 0 
1 1 1  1 d~ d~' 1 

The entries d~ in Tables 3 and 4 are coupled don't-cares; 
i.e., both occurrences of each d, must be assigned the same 
binary value. For Table 3, choosing d 1 = d 2 = 1 yields the 
simplest circuit realization because it results in Yk-1 = xk-2' 
and Yk-2 = 1. However, this would not be a good choice in 
the context of fault tolerance because y~_z-Stuck-at-1 fault 
will go undetected, raising the risk of fault accumulation. 
Choosing d~ = d 2 = 0 is somewhat better but may lead to 
missing a short-circuit between Yk-~ and z~_~. Both of the 
remaining choices are acceptable, but d~ = 1 and d 2 = 0 
leads to a simpler circuit. Similar arguments rule out ~ = 0 
as well as d 3 = 1, d 4 = 0 in Table 4, leaving d 3 = d 4 = 1 as the 
only viable option. Note that in Tables 3 and 4, parity of the 
bit pair in column 1 is the same as that for the 4 bits in 
column 2 of each row, leading to parity preservation. 

If the 2' s-complement input x comes with the parity bit p, 
we can accommodate p in the encoding of the two MSBs 
(Fig. 3). Table 5 shows the encoding of xk_ 1 and x~_~ so that 
the parity of the 4 bits Yk-~ Z~_l Y~-2 zk_2 is the same as that of 
the 3 bits p x~_ 1 x~_ 2. In this case, there are four coupled 
don't-care entries and 16 possibilities; d e = d 6 = d 7 = d 8 = 1 
leads to the simplest circuit implementation which is also 
acceptable in light of fault tolerance considerations. 
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Fig. 3. Converting a 2's-complement input, 
with parity bit attached, into a BSD 
number having the same parity. 

4. Output Conversion 
Consider a k-digit BSD number (k even), with its digits in 
positions 2i and 2i + 1 encoded per Table 2; i.e., with even 
parity for each 4-bit group in the 2k-bit encoding. A simple 
way of converting a BSD number to 2 's-complement is 
through separating the positive and negative components of 
the operand and performing subtraction. 

So, conversion from BSD to 2's complement can be 
performed via parity-checked addition [Fuji81], [Nico93], 
provided that both the positive and negative components 
are generated with associated even-parity bits. These parity 
bits, pe(x +) and Pe(X-), are derivable from the 2k-bit BSD 
representation of x by noting that x ÷ has a 1 in positions 
where Yi'Zg = 1, while (x-)' has a 1 wherever y;' v z;' = 1. 
Because k is assumed to be even, the parity of the number 
of 0s in x ÷ and x- can be determined instead. This strategy 
makes the inputs supplied to the parity generation trees 
complements of those used in forming x + and x-, thus 
improving fault tolerance by avoiding single-point failures 
and making it less likely that unidirectional multiple errors 
produce compensating bit inversions. 

Parity prediction for an adder's sum output is based on the 
fact that each carry c i = 1 inverts the parity of the sum bit s; 
which in the absence of a carry, would have the same parity 
as (x+)i @ (x-ft. If Pe is the even-parity function, we have: 

p~(s) = Pe(X ÷) ~ pe((X-)') 0 C o 0 C 1 G . . .  G Ck_ l 

Note that we cannot use the carries formed in the adder 
itself to predict the parity of s; doing so would lead to any 
fault-induced error in c; inverting both the actual and 
predicted parities, rendering the error undetectable. This, 
however, does not imply that the entire carry network, 
which is responsible for much of the complexity of a fast 
adder, must be duplicated. Design options with much lower 
costs are available [Hsia63], [Nico93]. 

Figure 4 depicts the structure of the converter. Note that the 
bulk of extra complexity over a standard converter from 
redundant to 2 's-complement lies in the output parity 
predictor. All other blocks are simple sets or trees of gates. 
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5. Two-Operand Addition 
Even though Thornton's adder design, discussed earlier, 
was offered as an even-parity output adder, it is clear that 
the adder is in fact a parity-preserving arithmetic block if 
supplied with even-parity inputs. Both Thornton's original 
encoding and the complemented one used here also allow 
for checking of subtraction, given that negation of a BSD 
number through inverting bit y in the encoding of Table 1 
preserves an operand's parity. 

For completeness, we present an overview of the parity- 
preserving BSD adder. In general, restricting transfers to 
adjacent digit positions leads to a three-stage hardware 
circuit for BSD addition [Parh00], the result being that the 
sum digit s, is formed as a function of three pairs of input 
operand digits u,_ 2, v,_ 2, Ui_l, Vi_l,/-~i, vi (Fig. 5). The number of 
signal lines between blocks and the internal block designs 
vary according to the addition algorithm chosen, leading to 
tradeoffs between interconnection and circuit complexities. 
To preserve parity, pairs of adjacent blocks in stage 3 must 
be merged in view of the coupled generation of output digit 
pairs with desired parity. Thus, excessive complexity and 
delay are avoided if we minimize the number of signal lines 
between stages 2 and 3. The particular algorithm chosen by 
Thornton satisfies this requirement. 

Conceptually, the addition algorithm outlined above might 
be described in terms of two stages of radix-4 operations 
proceeding from a position sum in [-6, 6], through interim 
sum in [-2, 2] and transfer digit value in [-1, 1], to the final 
sum digit in [-3, 3]. The radix-2 algorithm is simply one 
particular implementation of the radix-4 version [Jabe02]. 
This implementation is rather efficient because it relies on 
weighted posibits, having values in {0, 1 }, and negabits, 
with values in { 0 , - 1 } ,  as well as a small number of 
variables at each stage. 
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Fig. 5. Parity-preserving BSD adder. 

6. Multioperand Addition 
Multioperand addition can be performed by repeated use of 
the two-operand adder discussed in Section 5, provided that 
the parities of output digit pairs are checked after each 
addition step, or a small number of steps, to ensure that 
fault effects remain localized. The parallel (combinational) 
version of the scheme above consists of a binary tree of 
two-operand adders, reducing the number of operands by a 
factor of 2 at each level (Fig. 6). It is also possible to design 

parallel compressors [Parh00], similar to those for standard 
binary numbers, to reduce the number of operands to two 
before adding them in a parity-preserving adder. It is easily 
seen that three BSD digits cannot be compressed to two 
BSD digits in a parity-preserving manner. So, compression- 
based approaches must involve more than three inputs. 

In binary multioperand addition, a 2-bit slice of five 
numbers can be reduced to a 4-bit number via a circuit 
known as (5, 5; 4)-counter. Figure 7a shows the function of 
such a unit in dot notation [Parh00]. Figure 7b depicts the 
BSD counterpart to Fig. 7a. Here, each black-and-white 
"dot" represents a BSD digit with range of values [-1, 1]. 
The sum of the five 2-digit BSD numbers, each of which 
has even parity by assumption, can be represented by two 
pairs of BSD digits, with each pair having even parity. 
Thus, the even parity of input data is preserved. One way to 
realize the (5, 5; 4)-counter of Fig. 7b is to use two copies 
of the counter in Fig. 7a, one for the positive and another 
for the negative digit components. The outputs of these two 
counters are then supplied to a special encoding circuit that 
ensures even parities for output digit pairs. 

It is natural to ask whether larger counters might be 
applicable here. Unfortunately, the next larger counters of 
the type shown in Fig. 7b, that is, with parity preservation 
feature, are impractically large and complex: (85, 85; 8) 
and (17, 17, 17, 17; 8). These are also hard to design in a 
way that single faults always lead to isolated output errors. 
Thus, we advocate the use of (5, 5; 4) parity-preserving 
counters in multiple levels for reducing larger dot matrices; 
2two levels for 11, three levels for 26, and four levels for 
65 inputs. It is also possible to reduce 7 BSD digits in the 
same column to a 3-digit BSD number, as shown in Fig. 5c, 
while preserving the input parity. However, this method is 
inferior to that based on Fig. 7b [Parh02]. 
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7. Multiplication 
A BSD multiplier can be designed based on sequential 
shift-add algorithm or parallel tree reduction. In the case of 
the shift-add scheme, parity preservation is simpler if we 
perform the multiplication in radix 4, using the following 
standard recurrence for partial products: 

s ~÷l~ - (s ~ + yj x 4m)4 -1 with s ~°~ - 0 and s ~/2~ = product 

Radix-4 shifting of BSD numbers encoded as in Table 2 
preserves the even parity of digit pairs. The only additional 
complication over a standard radix-4 multiplier architecture 
is in the need for a parity-preserving doubling circuit to 
accommodate 2x and 3x multiples; as usual, 3x is formed as 
2x + x at the outset or else avoided via digit recoding. The 
doubling circuit is a highly simplified carry-free BSD 
adder. Referring to Fig. 5, we note that possible position 
sum values are in {-2, 0, 2 }, thus reducing the adder to its 
stage 3, with both bit-inputs at digit position i coming from 
position i - 1. Note that doubling is a form of recoding to 
preserve the even parity of 4-bit groups after a one-position 
left shift. With radix-2 multiplication, a doubling or halving 
scheme must be used in lieu of simple left- or right-shifting 
of the cumulative partial product. 

An alternative to standard radix-4 multiplier architecture 
outlined above is using the compression scheme of Fig. 7b 
to combine the cumulative partial product and four other 
values, two of which are from the set { 0, x} and the other 
two from { 0 , -x} .  This will accommodate the five multiples 
0, _+_x, and _+2x, thus implying the need for a recoding circuit 
to avoid +3x. For tree or partial-tree multiplication, a binary 
tree of limited-carry adders [Parh90] or circuits based on 
the compression scheme depicted in Fig. 7b can be used. 
Array multipliers are not as attractive for BSD operands as 
they are in binary arithmetic, given that the advantages of 
structural regularity and ease of pipelining are already 
provided by the much faster tree-based reduction scheme 
with limited-carry BSD adders. 

8. Other Arithmetic Operations 
More complex operations can be synthesized from adder 
and multiplier blocks or else handled directly by producing 
a number of component  terms and combining them using 
multioperand addition. However,  in our case, the relative 
benefit of merged implementation for complex operations 
is much less compared to its use with binary arithmetic, 
given the use of redundant, limited-carry arithmetic. 

Arithmetic in a wide array of signal processing applications 
is dominated by addition and multiplication. Hence, 
techniques discussed in the preceding sections are adequate 
for designing parity-checked circuits for many applications. 
Radix-4 division, square-rooting, and CORDIC algorithms 
can be added to our list of operations with moderate effort. 
Modifications to conventional radix-2 or radix-4 division, 
square-rooting, and other function-evaluation architectures 
parallel those of multiplication discussed in Section 7. 

9. Conclusion 
Through redundant BSD representation with inherently 
even parity, arithmetic operations can be checked against 
fault induced errors with low circuit redundancy and 
virtually no added latency, except in the final conversion to 
nonredundant format. In case redundant representation is 
used for performance reasons anyway, even the latter 
overhead becomes insignificant. A similar parity scheme is 
applicable to carry-save numbers, thus providing an 
alternative to borrow-save (BSD) representation used in 
this paper. Whether this alternative leads to any speed-up or 
simplification remains to be established. The following 
extensions to this work are currently under investigation: 
(1) Possible advatanges of carry-save over BSD encoding; 
(2) Use of checksums, also known as generalized parity; 
(3) Combination of parity, residue, and other check types; 
(4) Parity preservation with nonredundant representation. 
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