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Abstract

In this paper, we formulate the array robustness theo-
rems (ARTs) for efficient computation and communication
on faulty arrays. No hardware redundancy is required and
no assumption is made about the availability of a complete
submesh or subtorus. Based on ARTs, a very wide vari-
ety of problems, including sorting, FFT, total exchange,
permutation, and some matrix operations, can be solved
with a slowdown factor of 1+ o(1). The number of faults

tolerated by ARTs ranges from o(min(n1� 1
d ; n

d ;
n
h)) for n-

ary d-cubes with worst-case faults to as large as o(N)
for most N-node 2-D meshes or tori with random faults,
where h is the number of data items per processor. The
resultant running times are the best results reported thus
far for solving many problems on faulty arrays. Based
on ARTs and several other components such as robust li-
braries, the priority emulation discipline, and X 0Y 0 routing,
we introduce the robust adaptation interface layer (RAIL)
as a middleware between ordinary algorithms/programs
(that are originally developed for fault-free arrays) and the
faulty network/hardware. In effect, RAIL provides a vir-
tual fault-free network to higher layers, while ordinary algo-
rithms/programs are transformed through RAIL into corre-
sponding robust algorithms/programs that can run on faulty
networks.

1. Introduction

A d-dimensional mesh consists of n1n2 � � �nd nodes
of degree 2d arranged in an n1 � n2 � �� � � nd grid.
When wraparound links are used for all dimensions, a d-
dimensional torus results. The scalability, compact layout,
constant/small node-degree, desirable algorithmic proper-
ties, and many other advantages have made meshes, tori, and
n-ary d-cubes the most popular topologies for the intercon-
nection of parallel processors. A very large variety of algo-
rithms have been proposed for these networks [3, 10, 11, 13,
16, 15, 17]. These algorithms usually assume that a fault-
free mesh or torus is available, and most of them cannot be
applied to faulty meshes or tori directly, even in the presence
of only a small number of faulty elements.

To utilize in faulty arrays the very large body of ordinary
algorithms originally developed for fault-free arrays with-
out redesigning or modifying them one by one, we add the
robust adaptation interface layer (RAIL) as a middleware
between ordinary algorithms/programs and the faulty hard-
ware/network (i.e., faulty meshes, tori, or n-ary d-cubes).
In RAIL, no hardware redundancy (e.g., spare processors
or links) is necessary and the availability of a complete
(fault-free) submesh or subtorus is not required. RAIL
can be envisioned as an MPI-like middleware, where the
details for tolerating faults are transparent to applications
and hidden from the programmers. As a result, from the
algorithm/program point of view, the adaptation layer lo-
cated on top of the hardware layer hides the faulty pro-
cessors and/or links from the algorithms, so that a virtual
fault-free network is provided to higher layers and ordi-
nary algorithms/programs can be executed on such a plat-
form without modifications; from the hardware/network
point of view, the adaptation layer in effect incorporates
fault tolerance into the design of algorithms so that ordi-
nary algorithms/programs are transformed into robust algo-
rithms/programs that can run on faulty networks. In addition
to using RAIL as a middleware, the proposed techniques can
also lead to robust algorithms/functions that may be imple-
mented in a library, which can be invoked by programmers
and/or the operating system so that the applications have the
flexibility to efficiently utilize the fault tolerance features.

Based on RAIL, we formulate the array robustness the-
orems (ARTs), which show that a wide variety of impor-
tant problems, such as sorting, permutation routing, unicast,
broadcast, total exchange, reduction (e.g., semigroup com-
putation), prefix computation, selection, fast Fourier trans-
form (FFT), matrix multiplication, and ascend/descend al-
gorithms can be executed on faulty arrays (i.e., meshes,
tori, or n-ary d-cubes) with a factor of 1 + o(1) slow-
down relative to a fault-free array of the same type. ARTs
classify computing and communication problems into cat-
egorizes that can be efficiently supported by RAIL, asso-
ciate them with the required RAIL techniques and pro-
cedures systematically, and quantify the resultant perfor-
mance. Conventional wisdom is that low-degree networks
are less robust than high-degree networks. But our results
indicate that low-dimensional meshes and tori are very ro-
bust in that an array with a large number of faulty proces-

Proceedings of the International Conference on Parallel Processing (ICPP’02) 
0-7695-1677-7/02 $17.00 © 2002 IEEE 



sors and links has, for a large variety of problems, com-
putation and communication powers similar to those of a
fault-free array. For example, an N-node 2-D mesh with
N1=3 faults can execute many algorithms, such as sorting,
permutation routing, reduction (e.g., semigroup computa-
tion), prefix computation, FFT, matrix multiplication, uni-
cast, broadcast, total-exchange, multinode broadcast, ran-
dom routing, and dynamic broadcast, almost as fast as a
slightly smaller fault-free mesh. Dally [8] and Agarwal [1]
have shown that lower-dimensional networks achieve bet-
ter performance than high-dimensional networks under var-
ious constraints, such as constant bisection bandwidth, fixed
channel width, and fixed node size. Our robustness results
for meshes, tori, and n-ary d-cubes, combined with their pre-
viously established cost/performance benefits [1, 8], make
the case for low-dimensional architectures even stronger.

2. The robust adaptation interface layer

In this section we present several components for the ro-
bust adaptation interface layer (RAIL).

2.1. Basic components of RAIL

Various algorithms have been developed for mesh-con-
nected computers and their variants, such as tori and n-ary
d-cubes, based on the assumption that a fault-free mesh (or
torus, n-ary d-cube) is available [3, 10, 11, 13, 16, 15, 17].
Since fault tolerance is very important to parallel process-
ing, a variety of techniques for adaptive fault-tolerant rout-
ing or reconfiguring faulty arrays have also been proposed
[5, 6, 12, 18, 19, 23]. In particular, we propose in [23]
X 0Y 0 routing for deadlock-free wormhole routing faulty ar-
rays. Combination of ordinary algorithms and appropriate
adaptive or fault-tolerant routing schemes constitutes the
first component for RAIL. However, such combined algo-
rithms in general do not guarantee optimal performance, and
the resultant performance is highly dependent on the fault
patterns, which may lead to very poor performance in the
worst case (e.g., degraded by a large nonconstant factor);
while the reconfiguration techniques either use redundant
links and nodes to restore a complete mesh or require a com-
plete submesh/subtorus for performing parallel algorithms,
which may be expensive to build or unavailable.

Since it is impractical to redesign all algorithms for faulty
meshes and tori one by one and guaranteed optimal or sat-
isfactory performance is important for some applications
or computing environments, several systematic methods
for transforming ordinary algorithms to obtain robust al-
gorithms that can run on faulty arrays have been proposed
[7, 14, 23]. One general fault tolerance scheme along this
line, called the multi-scale self-simulation scheme, was de-
vised by Cole, Maggs, and Sitaraman [7], who showed that
an n�n mesh can be emulated with constant slowdown on
an n� n mesh that has n1�ε faulty processors for any fixed
ε > 0. Due to the robustness of the scheme, we incorporate
it into RAIL as another component.

However, the multi-scale self-simulation scheme is rel-
atively complicated, leading to difficult implementation is-

sues, and comes with huge performance penalties in prac-
tice, given the significant increase in the leading con-
stants of the running times. In [23], we proposed the ro-
bust algorithm-configured emulation (RACE) scheme as a
software-based fault tolerance scheme for the systematic
transformation of ordinary algorithms to obtain correspond-
ing robust algorithms that are fast and easy to implement. In
[23], RACE was used to incorporate fault tolerance into the
design of algorithms, and is applicable to many computation
and communication problems to obtain robust algorithms
that have slowdown factors 1+ o(1) relative to the best al-
gorithms for fault-free arrays. As a comparison, the multi-
scale self-simulation scheme [7] is applicable to almost any
problems, while RACE is only applicable to a (large) sub-
set of them. However, RACE is also a general emulation
scheme and is applicable to most important computation and
communication problems in parallel computation. More-
over, when RACE is applicable to a certain application, it
is usually preferable to use RACE instead of the multi-scale
self-simulation scheme, since the former usually achieves
considerably better performance (by a moderate to large
constant factor) and is easier to implement. In this paper,
we propose to use RACE to generate important robust algo-
rithms that can be used as library routines. Such robust lo-
braries constitute another component of RAIL. Note that al-
gorithms in robust lobraries can be further optimized. They
can also be derived/transformed using techniques other than
RACE or redesigned from scratch.

In addition to generating robust algorithms, we propose
in this paper to use RACE in a way different from [23], by
implementing it as a robust middleware between ordinary
algorithms/programs and the faulty network/hardware. A
difference between RAIL and RACE alone is that RAIL is
more versatile and is applicable to any computation or com-
munication problems. In Subsection 2.2 we define in the
following subsections the notion of virtual subarrays (VSA)
in faulty arrays (with or without wraparound) that can uti-
lize the RAIL middleware for efficient computing and com-
munication on faulty arrays without relying on hardware re-
dundancy. Based on VSA, RACE, and several related tech-
niques, we formulate, the array robustness theorems (ARTs)
for solving a wide variety of problems on faulty arrays with
negligible overhead. RACE and the associated ARTs be-
come an important component of RAIL. More details can be
found in Subsection 2.3 and [23] for RACE and Sections 3,
4, and 5 for ARTs.

The priority emulation discipline is a heuristic strategy
that can be used in priority-based schemes for emulating or-
dinary algorithms with low cost and improved performance
(or performance that can be guaranteed probabilisticly). It is
another component of RAIL and will be introduced in Sub-
section 2.4. Other techniques can also be incorporated into
RAIL at a later time and will be reported in the future.

Figure 1 illustrates the relationship between RAIL,
robust algorithms, hardware-based fault tolerance layer, and
their interfacing with algorithm/program and network/
hardware layers. VSA denotes virtual subarrays to be de-
fined in Subsection 2.2. SET and CET are the stepwise emu-
lation technique and the compaction/expansion technique to
be introduced in Subsections 2.3 and 4, respectively, for per-
forming RACE. Algorithms/programs that conform to ar-
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Figure 1. The robust adaptation interface layer (RAIL),
associated components, and its interface with related lay-
ers. RAIL is represented as shaded areas (including dark and
light ones). The dark area is representing the RACE scheme,
a component of RAIL.

ray robustness theorem I (ART-I) or condition A of ART-
III can use SET; while algorithms/programs that conform to
ART-II or condition B of ART-III can use CET. More details
concerning how the various components of RAIL should be
used will be presented in Subsection 2.5.

Note that the execution of ordinary algorithms on RAIL
usually has negligible degradation compared to fault-free
systems (e.g., a factor of 1+o(1) slowdown), and are rela-
tively easy to implement after reconfiguration is performed,
which only needs to be done once after a fault occurs or is
recovered from. Note also that when the number of faults
is small, reconfiguration for RAIL can be performed in a
short time, and possible configurations may be precomputed
and stored, if so desired, in a distributed manner and broad-
cast when needed. Moreover, as indicated in Fig. 1, RAIL
can also work in combination with previous hardware-based
fault tolerance schemes. This can be done by executing ordi-
nary algorithms when the number of faults has not exceeded
the limit of the hardware fault tolerance scheme, while ac-
tivating an appropriate component of RAIL otherwise. In
effect, RAIL transform any ordinary algorithms to robust
ones, including a very wide variety of important problems
at high speed, and converting the faulty array into a virtual
fault-free array, even for faulty meshes and tori whose rows
and columns are (almost) all incomplete and those without
any complete submesh or subtorus.

2.2. Virtual subarrays (VSAs) as a basis for RAIL

A virtual subarray (VSA) of a d-dimensional faulty array
(with or without wraparound) is obtained by embedding a
smaller d-dimensional array in it, where the embedded rows
of the same dimension do not overlap and the embedded
nodes and links are mapped onto healthy nodes and paths
(See Fig. 2a). More precisely, each node of this smaller ar-
ray is mapped onto a different healthy node of the faulty ar-
ray; each link of this smaller array is mapped onto a healthy
path of the faulty array. The embedded rows (or columns)
of a certain dimension i, i = 1;2; :::;d, do not overlap with
each other, and are called dimension-i virtual rows (or vir-

1 2 3

4

5 6 7 8

9 10 11

12

(a) (b) (c)

Figure 2. (a) A 3-by-4 VSM in a faulty 6-by-7 mesh with
9 faults. (b) Virtual rows of the VSM. (c) Virtual columns
of the VSM.

tual columns) of the virtual subarray. Figures 2b and 2c
show the virtual rows and virtual columns of a 3�4 virtual
subarray.

Node (x1;x2; :::;xd) of the virtual subarray (called a VSA
node) is located at the intersection of virtual row x1 of di-
mension 1, virtual row x2 of dimension 2, ... , and virtual
row xd of dimension d. Note that the virtual rows of dif-
ferent dimensions are allowed to have more than one node
in common, in which case we select one of the nodes at the
intersection either arbitrarily or according to certain criteria
(e.g., minimizing the dilation of the resultant embedding).
Then, VSA nodes (x1; :::;xi�1;xi;xi+1; :::;xd) for certain x j ,
j 6= i, and all xi = 1;2; :::;mi form a dimension-i row of the
virtual subarray that has length equal to mi and is called a
VSA row. The nodes of a VSA row form a subset of the cor-
responding dimension-i virtual row. Figure 2a shows a 3�4
virtual subarray in an array with 9 faults and the associated
VSA nodes.

A virtual submesh (VSM) is a virtual subarray without
wraparound; a virtual subtorus (VST) is a virtual subarray
with wraparound. A congestion-free virtual subarray is a
virtual subarray embedded in a faulty array with load and
congestion both equal to 1 [11]. All the embedded links
of a congestion-free virtual subarray correspond to a set of
nonoverlapping paths in the faulty array. In other words, a
dimension-i virtual row intersects with a dimension- j virtual
row at exactly one node if i 6= j, while a virtual row does
not intersect with another virtual row of the same dimen-
sion i. Many important problems can be solved efficiently
on congestion-free virtual subarrays. More details concern-
ing VSAs can be found in [23].

2.3. The RACE scheme as a component of RAIL

In RACE, we assume that a preprocessing stage has iden-
tified a virtual subarray to be used (perhaps at reconfigura-
tion time using the simple method presented in Subsection
2.2 or a more complicated method). We can then redistribute
the data on a faulty network to a virtual subgraph and then
uses the virtual subgraph to emulate algorithms developed
for a fault-free network. The proposed RACE scheme have
three basic stages:

Basic Stages for Robust Emulation
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� Stage 1: The data items to be processed are redis-
tributed evenly to the processors on the virtual subarray
such that a VSA processor has at most a items. On the
virtual subarray, a processor that has fewer than a items
may pad its list with suitable “dummy item(s)” (e.g., ∞
for sorting).

� Stage 2: The virtual subarray emulates a corresponding
algorithm on an m1�m2��� ��md array, each proces-
sor of which has at most a items.

� Stage 3: The results are redistributed back to healthy
processors of the original n1�n2��� ��nd faulty array.

More details concerning RACE can be found in [23].
Stage 2 of the RACE scheme can be implemented us-

ing various techniques such as SET or CET. In the stepwise
emulation technique (SET) we directly emulate a transmis-
sion over the dimension-i link of a processor by sending the
data item along the dimension-i virtual row to which the pro-
cessor belongs. If the virtual subarray is a complete array,
(that is, no faulty processor exists within it and the embed-
ded smaller array has dilation 1), no degradation is caused by
Stage 2 using this naive method. On the other hand, under
wormhole or cut-through routing, or packet-switching with
a large load, the overhead caused by Stage 2, when imple-
mented with SET, is negligible even when the array is faulty.
Also, many algorithms, such as semigroup and prefix com-
putations [14], can be emulated using SET with small over-
head even if packet-switching is employed and the load is
1. Moreover, SET will be used is used to formulate the ar-
ray robustness theorem I (ART-I) for fault-tolerant comput-
ing on congestion-free virtual subarrays in Section 3.

We can also use other techniques to implement Stage 2 of
the RACE scheme. For example, the compaction/expansion
technique leads to the array robustness theorem II (ART-II),
presented in Section 4. Moreover, efficient implementation
of Stages 1 and 3 extends ARTs I and II to the array ro-
bustness theorem III (ART-III), as presented in Section 5. A
wide variety of important problems can then be solved effi-
ciently in faulty arrays based on these ARTs.

2.4. The priority emulation discipline for RAIL

In this subsection we propose a heuristic strategy, called
the priority emulation discipline, for effective implemen-
tation of robust algorithms based on RAIL in case where
computation-free routing (i.e., routing without any compu-
tation steps) is performed or when an average of S or more
routing steps separate consecutive computation steps. Our
goal is to perform these routing tasks or algorithms on a vir-
tual subarray of the faulty array with small slowdown rela-
tive to a fault-free m1�m2��� ��md array of the same type,
when there exists a congestion-free m1�m2��� ��md vir-
tual subarray with small width overhead (e.g., o(S=b)) and
the routing path for any packet makes at most a small num-
ber b of turns (i.e., a routing path changes its dimensions at
most b times). The discipline is also applicable to configura-
tions different from virtual subarrays in RACE, but no guar-
anteed results are described here for such applications.

We first look at several problems that may occur when us-
ing naive methods to implement such algorithms on a virtual
subarray and then propose strategies to improve the perfor-
mance. The first problem is that when a packet X is delayed
by o(S) steps when it arrives at node V (for example, due
to dilation along its routing path), there can be up to o(dS)
other packets at node V which are routed after packet X in
the original algorithm for fault-free array but arrive at node
V before packet X in the faulty array. If the network nodes
of the faulty array use a first-come first-serve (FCFS) disci-
pline, then packet X will be delayed by o(dS) steps at node
V and the resultant algorithm is suboptimal when d is not
a constant. What makes the situation worse is that packet X
may then be delayed by o(d2S) steps at the next node, o(d3S)
steps at the following node, and so on. Since some packets
may be severely delayed, the performance of the algorithms
may degrade considerably when using such a naive method.
One may argue that the preceding problem will not occur if
the packets of the emulated algorithm are scheduled to ar-
rive at a node right before they can be transmitted. However,
this will give rise to accumulated delays of different types:
when a packet X is delayed by o(S) steps when it arrives at
node V , there can be up to o(S) packets at node V which are
routed after packet X in the original algorithm for fault-free
array but arrive at nodeV before packet X in the faulty array.
Therefore, packet X will be delayed by o(S) steps at node V ,
and may be delayed by another o(S) steps at the next node,
and so on.

In what follows we present a strategy, called the prior-
ity emulation discipline, which is easy to implement and can
solve the above problems. The central idea of this strategy
is that if a packet X1 should be transmitted before another
packet X2 at a node (and over a link) according to the sched-
ule of the algorithm on the fault-free array being emulated,
then packet X1 has higher priority for transmission over that
link in the faulty array. Moreover, when there is at least one
packet requiring transmission over a link, that link will not
be idle so that the network resources are effectively utilized.
An intuitive reason that the priority emulation discipline can
improve the performance is that the more a packet is de-
layed, the higher its priority becomes in its future transmis-
sions so that it is usually not further delayed at (temporarily)
congested nodes/links. Therefore, the delay of a packet does
not accumulate along its routing path and its slowdown is
primarily due to the dilated paths between VSA nodes along
its routing path.

Implementation of the priority emulation discipline is
simple: all packets are still routed along the same paths
as those in the emulated algorithm, and each packet begins
its routing at the same time as in the emulated algorithm
(though it may be queued at the starting node). We first
consider the case where in the emulated algorithm pack-
ets arrive at a node right before their transmissions (with-
out queueing). Each packet X begins with a tag that holds
the starting timestamp TX . Whenever packet X is transmit-
ted through a VSA node, the timestamp TX is increased by
one. When there are multiple packets contending a node (or
a link under the multi-port communication model), a packet
Y that has the smallest timestamp TY is transmitted, since
TY is the time that packet Y should have been transmitted
over that node or link if the array were fault-free. Note that
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there cannot be multiple packets with the same tag at a node
(and over a certain link under the multi-port communication
model), since TY is the time for packet Y to be transmitted
over that link in the emulated algorithm and there can be
only one packet transmitted over that link at the same time in
the emulated fault-free array. In a more general case where
packets of the emulated algorithm may arrive at a node be-
fore their transmissions and are queued there, we simply set
TX to be the time for packet X to be transmitted at the corre-
sponding node in the emulated fault-free array. Note that the
virtual subarray is congestion free, so once we resolve the
order for transmissions at a VSA node, packets never com-
pete for links again along the path between two VSA nodes
(i.e., along an embedded link).

2.5. Typical operations of RAIL

RAIL is a layer inserted between ordinary algorithms/
programs and the faulty hardware/network (i.e., the faulty
array). We can envision RAIL as an MPI-like middleware,
where the details for tolerating faults are transparent to the
program developers, similar to the way the details for im-
plementing collective communications are hidden from par-
allel programmers using MPI. In addition to ease of pro-
gramming, such characteristics also improve the portability
of parallel programs across platforms.

RAIL is located on top of the layer corresponding to
a faulty array, and below the layer corresponding to ordi-
nary algorithms and programs designed for fault-free arrays.
RAIL hides the faulty elements from the algorithms and pro-
grams, so that a virtual fault-free network is provided to the
algorithm/program layer; RAIL also transforms ordinary al-
gorithms and programs into robust algorithms/programsthat
can run on the faulty array. Figure 1 illustrates the rela-
tionship between RAIL and the algorithm/program and net-
work/hardware layers.

As presented in Subsection 2.1, RAIL consists of var-
ious components, including the RACE scheme presented
in Subsection 2.3, the priority emulation discipline pro-
posed in Subsection 2.4, as well as other fault tolerance
schemes such as adaptive fault-tolerant routing [18, 23] and
the multi-scale self-simulation scheme proposed by Cole,
Maggs, and Sitaraman [7]. When a new fault occurs, RAIL
first checks whether there are spare processors and/or links
that can tolerate the fault and resume a complete array. If
not, RAIL may estimate and/or measure the performance by
using adaptive fault-tolerant routing and/or the priority em-
ulation discipline to get around the fault, before the recon-
figuration phase of RACE is completed. If the expected or
measured performance is poor, RAIL will switch to RACE,
which guarantees an optimal slowdown (within a factor of
1+o(1)) for most important computation and communica-
tion problems when the total number of faults are not very
large. RAIL will select the appropriate techniques, such
as SET or CET, to perform the required emulation, accord-
ing to the switching technique used, the number of items
per node, and the categories for the problems being exe-
cuted. In the unusual case where RACE is not applicable to
the problems or perform poorly, RAIL will consider switch-
ing to other schemes such as the multi-scale self-simulation

scheme that is applicable to most problems. RAIL can, of
course, test these options in a different order according to
the specific characteristics of the applications and the par-
allel system, as well as the information available. We ex-
pect that more fault tolerance schemes will be developed and
added to RAIL due to the importance of fault tolerance in fu-
ture parallel and distributed systems. We will report further
developments in the future.

3. Fault-tolerant communication and computa-
tion on congestion-free virtual subarrays

Recall that a congestion-free virtual subarray is a virtual
subarray embedded in a faulty array with congestion 1. In
this section, we show that many important problems can be
solved efficiently on congestion-free virtual subarrays based
on RAIL.

3.1 ART-I for congestion-free virtual subarrays

In this subsection, we focus on a specific class of algo-
rithms, which perform an average of S consecutive routing
steps along each of the dimensions without any computation
step in between. We propose the phase synchronization dis-
cipline and show that these algorithms can be emulated on
congestion-free virtual subarrays with negligible slowdown
under this discipline using the RACE scheme.

When using the phase synchronization discipline, all
nodes simply synchronize at the end of a phase (which
may perform certain computation steps). If there exists a
congestion-free m1 �m2��� ��md virtual subarray whose
width overhead is o(S), then the average slowdown factor
for each phase is 1+o(1) relative to a fault-free m1�m2�
�� � � md array of the same type. This is because routing
along a dimension of a congestion-free virtual subarray is
only delayed by o(S) steps additively. Moreover, if we syn-
chronize each phase, the interaction between delayed pack-
ets will never cause excessive accumulation of delay on cer-
tain packets, since the delay of one phase has no effect on
the next phase. The RACE scheme under the phase synchro-
nization discipline is very easy to implement and is powerful
in that many important robust communication and computa-
tion algorithms can be performed with a factor of 1+ o(1)
slowdown, as indicated in the following theorem and corol-
laries.

Theorem 3.1 (Array Robustness Theorem I (ART-I)) If
an algorithm for an array (i.e., mesh or torus) performs an
average of S consecutive routing steps along each of the di-
mensions (at the same time) without any computation step in
between, and there exists a congestion-free m1�m2��� ��
md virtual subarray whose width overhead is o(S), then the
slowdown factor for performing the algorithm on a virtual
subarray of the faulty array is 1+o(1) relative to a fault-free
m1�m2��� ��md array of the same type.

When the number of faulty processors and/or links in an
n1 � n2 � �� � � nd
is o(nmin), where nmin = min(n1;n2; :::;nd), it is guaranteed
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that at least an (n1 � o(nmin))� (n2 � o(nmin))� �� �(nd �
o(nmin)) congestion-free virtual subarray with width over-
head o(nmin) exists and is easy to find, leading to the follow-
ing corollary.

Corollary 3.2 If an algorithm for an array (i.e., mesh or
torus) performs an average of S consecutive routing steps
along each of the dimensions (at the same time) without any
computation step in between, and there are o(min(S;nmin))
faulty processors in an n1�n2��� �nd array, then the slow-
down factor for performing the algorithm on a virtual sub-
array of the faulty array is 1+ o(1) relative to a fault-free
(n1�o(nmin))� (n2�o(nmin))��� �(nd �o(nmin)) array of
the same type.

Note that the number of faulty processors and links
whose tolerance is indicated by ART-I and Corollary 3.2 is
not small for low-dimensional arrays (i.e., small d). For ex-
ample, these results apply to an N-node 2-D mesh/torus with
Θ(
p

N= logN) faults for which the size of the virtual subar-
ray is 1� o(1) that of the entire array. Communication al-
gorithms, such as unicast (node-to-node routing), broadcast,
total-exchange, and multinode broadcast, are at the heart of
many applications [3]. Based on ART-I and Corollary 3.2,
we can show that these algorithms as well as a variety of
other important algorithms can be executed on congestion-
free virtual subarrays with a factor of 1 + o(1) slowdown
relative to a fault-free array. Since optimal algorithms for
total exchange are among the most complicated communi-
cation algorithms, we describe, in the following subsection,
an asymptotically optimal algorithm for performing total-
exchange in faulty n-ary d-cubes as an example of applica-
tions of ART-I.

Various other computation or communication problems
can also be executed efficiently on top of RAIL over a
(possibly) faulty array. In particular, many applications,
such as FFT, bitonic sort, matrix multiplication, convolu-
tion, and permutation can be formulated as ascend/descend
algorithms [11] and performed efficiently based on ART-
I [23]. Execution of these and other algorithms based on
ART-I will be reported in the near future.

3.2. Total exchange on faulty n-ary d-cubes

In what follows we propose a generally applicable al-
gorithm for executing g total exchange tasks in any fault-
free vertex- and edge-symmetric network, where g is the
degree of the network. We show that (N � 1)Dave com-
munication time is sufficient in an N-node network and is
strictly optimal, where Dave is the average internode dis-
tance of the network. We label the nodes of the network as
0;1;2; :::;N�1 and let dimensions ri;1;ri;2; :::;ri;qi be the di-
mensions of links in the order encountered along a shortest
path between node 0 and node i, i= 1;2;3; :::;N�1. We first
present an algorithm A1 for executing a TE task under the
single-dimension communication (SDC) model [21], where
only links of the same dimension can be used at the same
time for the entire network. At stage i of the algorithm A1,
i = 1;2;3; :::;N� 1, each node successively sends a packet
through links of dimensions ri;1;ri;2; :::;ri;qi . Since the net-
work is vertex-symmetric, all the N packets sent by differ-

ent nodes during stage i have different destinations (which
is equivalent to a permutation task), and a node sends pack-
ets to different destinations during different stages (which is
equivalent to a single-node scatter task [3]). Collectively,
the network performs a TE task during the N�1 stages, un-
der the SDC model. Since all the packets are sent via short-
est paths, the total time required is equal to (N�1)Dave.

To optimally perform g TE tasks under the all-port com-
munication model, we will execute all of them at the same
time, each under the SDC model. However, contention over
links will occur if we directly apply algorithm A1 for all the g
tasks. In what follows, we show how contention can be com-
pletely avoided. We define algorithm Ai, i = 2;3;4; :::;g, as
the algorithm where packets are sent over links of dimension
(( j+ i�2) mod d)+1 during a step if, at the same step of
algorithm A1, packets are sent through links of dimension
j, j 2 f1;2;3; : : : ;gg (along the same direction in networks
like n-ary d-cubes). Clearly, algorithms A1;A2;A3; : : :Ag
are guaranteed to use links of different dimensions at any
given step, and all of them can be simultaneously completed
in (N�1)Dave time.

Since the network is vertex and edge symmetric, the N
packets sent during stage i of a certain algorithm A j have
different destinations, and a node sends packets to different
destinations during different stages. As a result, each algo-
rithm A j, j = 1;2;3; : : :g, performs a TE during the N� 1
stages. Therefore, we can perform g TE tasks in (N�1)Dave
time under the all-port communication model.

If we allow packets to be split into mini-packets that
can be routed independently without any overhead, then the
time required to perform a single TE task becomes (N �
1)Dave=g. Many papers have proposed algorithms for ex-
ecuting TE tasks in several popular topologies under sev-
eral communication models. The result given above ap-
plies to general symmetric topologies, and gives optimal
execution times for several important topologies, includ-
ing hypercubes, n-ary d-cubes, generalized hypercubes [4],
and star graphs [2]. The preceding algorithm for the all-
port communication model is essentially based on finding
an algorithm for executing total exchange under the single-
dimension communication model and then rotating the di-
mensions of the single-dimension algorithm by i dimensions
for all i = 1;2; :::;2d� 1 in order to find an algorithm that
fully utilizes all dimensions concurrently. This strategy is
useful in many routing problems and will be referred to as
the Single-To-All Rotation (STAR) technique in this paper.
The resultant algorithm for performing TE is called a STAR
TE algorithm.

To apply the STAR TE algorithm to a faulty n-ary d-cube,
we first identify a congestion-freevirtual m-ary d-subcube in
it, which is a virtual subtorus (VST) with the same length m
along each VST row. From the notion provided by ART-I,
we know that the number of turns in a routing path should
be minimized in order to improve the performance and in-
crease the number of faults tolerated without affecting the
leading constant of the running time. Therefore, we use a
special case of the STAR TE algorithm where links of the
same dimension in a shortest path must be a connected sub-
graph of that path (i.e., they form a unique VSA subrow
for that dimension). The resultant path between each of the
source-destination pairs has at most d�1 turns and, thus, the
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length of a path can be increased by at most dWoverhead hops,
where Woverhead is the width overhead. From ART-I, when
Woverhead = o(Dave=d) = o(m), the slowdown factor for ex-
ecuting g = 2d TE tasks on the virtual m-ary d-subcube is
only 1+ o(1) compared to a fault-free m-ary d-cube, lead-
ing to the following corollary.

Corollary 3.3 We can execute 2d instances of a TE task
in an n-ary d-cube that has an arbitrary pattern of o(n=d)
faulty processors and/or links in (N � 1)Dave = dnN=4+
o(dnN) communication time, which is optimal within a fac-
tor of 1+o(1), where Dave is the average distance of a fault-
free (n� o(n=d))-ary d-cube, N = nd � o(nd) is the size of
the virtual (n� o(n=d))-ary d-subcube, and data items are
input/output to/from the virtual (n�o(n=d))-ary d-subcube.

4. Fault-tolerant computation on general vir-
tual subarrays

In this section, we introduce the compaction/expansion
technique (CET), derive the array robustness theorem II
(ART-II) based on CET, and then present its applications to
robust sorting and permutation routing.

4.1. ART-II for general virtual subarrays

Fault-tolerant computing in a virtual submesh using CET
is based on the following 4 phases:

The Compaction/Expansion Technique (CET):

� Phase 0 (precalculation): Each dimension-i virtual row
performs semigroup and prefix computation to deter-
mine the total number t of processors in the virtual row
that are not VSM nodes and for each VSM node, the
number l of processors to its left that are not VSM
nodes.

� Phase 1 (compaction): The items in each VSM node
are shifted to the left by l � dt=2e positions if l �
dt=2e > 0 and the items are shifted to the right by
dt=2e� l positions if l�dt=2e< 0.

� Phase 2: The consecutive operations (e.g., routing and
computation) along rows of the dimension are per-
formed within each compacted row (i.e., the virtual
subrow composed of the mi neighboring nodes cur-
rently holding the data).

� Phase 3 (expansion): The data items in each of the mi-
node compacted rows are shifted back to VSM nodes;
this is the inverse of Phase 1.

Phase 0 can be completed in O(mi+ tmax) time using al-
gorithms for semigroup and prefix computation on a virtual
row [14]. This precalculation phase only needs to be exe-
cuted once after each new processor or link failure. Phases 1
and 3 can each be performed in adt=2e time. The integer t is
usually small, and is guaranteed to be smaller than fB and the
length of the virtual row. Clearly, Phase 2 can be performed
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Figure 3. (a) A 3-by-4 VSM. (b) Compacted
rows of the VSM. (c) Compacted columns of
the VSM.

without any slowdown compared to operations along fault-
free mi-node rows.

Many important problems such as sorting require com-
putation between every few routing steps and thus cannot
be solved efficiently in faulty meshes using ART-I. Based
on CET, we can solve this class of problems efficiently on
a mesh which may contain significantly more faults. Fig-
ure 3 provides an example for sorting on compacted rows
and columns of a virtual submesh based on CET. The shaded
circles in Fig. 3a represent a 3�4 virtual submesh within a
6� 7 mesh with 9 faulty processors. The shaded circles in
Fig. 3b represent the positions of data items for performing
CET row sort upon completion of Phase 1. The processors
that hold the data items from a VSM row upon completion of
Phase 1 are collectively called a compacted row. The num-
ber X in a circle represents the position for the data item that
was initially held by processor X of the virtual submesh. The
shaded circles in Fig. 3c represent the positions of data items
for performing CET sort along columns. The processors that
hold the data items from a VSM column form a compacted
column.

The following theorem provides the conditions and char-
acterizes the class of problems that can be solved efficiently
based on CET.

Theorem 4.1 (Array Robustness Theorem II (ART-II))
If an algorithm for a mesh performs S consecutive routing
and computation steps along the same dimension on the av-
erage, and there exists an m1 �m2 � �� � �md virtual sub-
mesh whose width overhead is o(S), then the slowdown fac-
tor for performing the algorithm on a virtual submesh of the
faulty mesh is 1+o(1) relative to a fault-free m1�m2��� ��
md mesh.

In addition to the different requirements for the under-
lying communication patterns, another important difference
of ART-II compared to ART-I is that ART-II can potentially
tolerate a significantly larger number of faults with negli-
gible slowdown. For example, it can be shown that, using
techniques similar to those used in [9], an N-node 2-D ar-
ray with o(N) random faults or a p-faulty array with faulty
rate p = o(1) contains (N � o(N))-node virtual subarrays
with probability 1� o(1); such an faulty array, however, is
not likely to contain a congestion-free virtual subarray with
comparable size, making ART-I inapplicable. (We conjec-
ture that the preceding results can be extended to arrays of
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higher dimensions d � 3.) When a congestion-free virtual
subarray is available, we can execute d copies of such an al-
gorithm concurrently, leading to the following corollary.

Corollary 4.2 If an algorithm for a mesh performs S con-
secutive routing and computation steps along the same di-
mension on the average, and there are o(min(S;nmin)) faulty
processors in an n1 � n2 � �� �nd array, then the slowdown
factor for performing (up to) d copies of the algorithm on
a virtual subarray of the faulty array is 1 + o(1) relative
to performing a copy of the algorithm on a fault-free (n1�
o(nmin))� (n2 � o(nmin))� �� � (nd � o(nmin)) array of the
same type.

A wide variety of algorithms, such as reduction (e.g.,
semigroup computation), prefix computation [15], FFT [11],
sorting (e.g. the algorithms proposed in [10]), and matrix
multiplication, have S=O(n), and thus can run with a slow-
down factor of 1+o(1) in a mesh with an arbitrary pattern of
o(n) faults or in 100�o(1) out of 100 N-node 2-D meshes
with o(N) random faults. In what follows, we present ro-
bust sorting in faulty meshes and n-ary d-cubes as examples
of how ART-II can be applied.

4.2. Sorting in faulty meshes and n-ary d-cubes

In [22], we have shown that 1-1 sorting in an n�n mesh
with o(n) faults can be performed in 2:5n+ o(n) commu-
nication time using the FOE-snake order [22], a variant of
the blockwise snakelike order (see Fig. 4). The robust sort-
ing algorithm proposed in [22] is actually a special case of
ART-II since we emulate the sorting algorithm proposed in
[10], which performs Θ(n) operations along a dimension on
the average. In [14], we have shown that 1-1 sorting in an
n� n bypass mesh with o(n1=4) faults can be performed in
2:5n+o(n) communication time using row order or snake-
like order by emulating the Schnorr/Shamir sorting algo-
rithm [11, 13, 17]). The average number of steps along a
dimension in the Schnorr/Shamir sorting algorithm is only
Θ(n1=4), so the number of faults that can be tolerated with-
out increasing the leading constant of the running time is
only o(n1=4) when direct emulation is used. In [20, 24], we
have also shown that 1-1 sorting in an n�n mesh with o(n)
faults can be performed in 3n+ o(n) communication time
using row order or snakelike order by emulating a variant
of the Schnorr/Shamir sorting algorithm [11, 13, 17]). We
increase the number of faults tolerated to o(n) by modify-
ing the Schnorr/Shamir sorting algorithm so that the average
number of steps along a dimension is increased to o(n). All
the aforementioned sorting algorithms can be viewed as the
applications of ART-II to 1-1 sorting in 2-D faulty meshes.

Resorting to ART-II, we can easily extend the results
given in these papers from 1-1 sorting to h-h sorting and
from 2-D meshes to d-D faulty meshes and tori. These gen-
eralizations can be achieved by emulating the sorting algo-
rithm for fault-free meshes and n-ary d-cubes given in [10],
which performs Θ(n) steps along a dimension on the av-
erage. In summary, if an m1 �m2 � �� � �md virtual sub-
mesh with width overhead o(mmin) exists, h-h sorting on the
virtual submesh can be performed in hm1=2+ 2d h

4e(m2 +

m3 + � � �+md)+ o(hdmmin) communication steps (exclud-
ing precalculation time), where d =O(1), mi =Θ(mj), and
mmin = min(m1;m2; :::;md).

When h = 1, we can fold the data items to the middle of
the virtual submesh and use 2-2 sorting of preceding method
as the algorithms given in [10, 13, 20, 22, 24], leading to the
following result: If an m1 �m2 ��� ��md virtual submesh
with width overhead o(mmin) exists, 1-1 sorting on the vir-
tual submesh can be performed in m1=2+2(m2+m3+ � � �+
md)+ o(dmmin) communication steps (excluding precalcu-
lation time), where d = O(1) and mi = Θ(mj) for all i and
j. The algorithm we proposed in [22] represents a special
case of the preceding results with d = 2. The h-h sorting al-
gorithm for fault-free n-ary d-cubes given in [10] requires
d h

4e(d�1)n+o(hdn) communication steps that can be em-
ulated using SET with a slowdown factor of 1+o(1), in ad-
dition to d h

4en+o(hn) communication steps and hn+o(hn)
computation steps, which can be emulated using CET with a
slowdown factor of 1+o(1). These results also lead to effi-
cient permutation routing and the details are omitted in this
paper.

5. Fault-tolerant computing in the entire faulty
array

Up to now, we have assumed that data items are in-
put/output to/from a virtual subarray. In this section, we for-
mulate the array robustness theorem III (ART-III) for fault-
tolerant computing and communication on the entire faulty
array (in contrast to computing on a virtual subarray, as re-
quired by ART-I and ART-II).

An important feature of RAIL, based on ART-III, is that
all healthy and connected nodes, rather than only nodes be-
longing to a virtual subarray, can be used for computation.
Thus, computing resources are not wasted unnecessarily,
which is particularly important to computation-bound prob-
lems. As for communication-bound problems, utilizing all
healthy nodes to execute a task does not necessarily increase
the performance, since the bisection bandwidth is not in-
creased and a certain amount of communication overhead
is required to distribute data items to nodes that do not be-
long to the virtual subarray. Therefore, ART-I and ART-II,
which only use nodes on a virtual subarray for computation
in order to facilitate simpler and more efficient communi-
cations, may be more suitable for solving communication-
bound problems. Note that even when ART-I and ART-
II are applied to the execution of communication-intensive
subtasks within an application, no healthy node is disabled;
rather, all such nodes are kept alive and running at all times.
A load balancing policy may improve the system perfor-
mance by appropriately distributing the subtasks among all
healthy nodes.

5.1. ART-III for the entire faulty array

If we map healthy and connected processors in a faulty
array to a virtual subarray in row-major order, then the time
required for data redistribution is Ω(n) in usually case, since
there usually exists a worst-case scenario where a healthy
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Figure 4. An example of blockwise snakelike order in an
array with 36 blocks. A processor in block i is ranked before
a processor in block j if i < j.

processor near the beginning of a row is mapped to a VSA
node near the end of a VSA row. If a different mapping from
the faulty array to its virtual subarray can be used, such as
mapping Θ(n1� 1

d )� �� � �Θ(n1� 1
d ) blocks of healthy pro-

cessors in a faulty array to Θ(n1� 1
d )��� ��Θ(n1� 1

d ) blocks
in a virtual subarray in blockwise snakelike order (see Fig.
4), we can show that the time required for data redistribution
can be reduced to o(dn). In [22], we have introduced algo-
rithm data redistribution (DR) on 2-D arrays and analyze its
performance. The algorithm can be extended to d-D arrays
with d � 3 and the details are omitted.

Lemma 5.1 Data redistribution from a d-D n��� �n array

with o(n1� 1
d ) faulty processors onto an appropriate virtual

subarray, or its reverse process, can be performed in o(hdn)
steps, where h is the number of data items per healthy pro-
cessor.

Algorithm DR and its extensions for higher-dimensional
arrays are generally-applicable methods for data redistribu-
tion to/from virtual subarrays, and is guaranteed to run in
negligible time (e.g., o(nmin) time) when the number f of

faults is small (e.g., f = o(n
1� 1

d
min )). In practice, compara-

ble performance may also be achieved for much larger f ,
since worst-case scenarios are unlikely. Moreover, since al-
gorithm DR will be invoked frequently if most problems are
computed using all healthy and connected processors of an
array, it is usually worth the effort to improve and optimize
this process, even if only lower order terms of the total exe-
cution time can be improved. When data redistribution can
be performed in negligible time, we have the following the-
orem for fault-tolerant computing in the entire faulty array.

Theorem 5.2 (Array Robustness Theorem III (ART-III))
Let T be the total time required for performing the algorithm
on the fault-free array. If there exists an m1�m2��� ��md
virtual subarray whose width overhead is o(S), data redis-
tribution and its inverse process can be performed in o(T)
time, and

(A) an algorithm for an array (i.e., mesh or torus) performs
an average of S consecutive routing steps along each
of the dimensions (at the same time) without any com-
putation step in between and the virtual subarray is
congestion-free, or

(B) an algorithm for a mesh performs S consecutive rout-
ing and computation steps along the same dimension
on the average,

then the slowdown factor for performing the algorithm on
the entire faulty array, each healthy and connected proces-
sor of which has at most h data items, is 1+o(1) relative to
a fault-free m1 �m2��� ��md array of the same type with
load at most dh(∏d

i=1 ni� f )=∏d
i=1 mie.

When the number of faults is small and data items are
mapped to blocks of appropriate size nearby, it is guaranteed
that data redistribution can be performed in negligible time
and that a congestion-free virtual subarray exists, leading to
the following corollary.

Corollary 5.3 Let T be the total time required for perform-
ing the algorithm on the fault-free array. If there are f
faulty processors in an n1 � n2 � �� �nd array with f = o

(min(S;T
1� 1

d
min ; nmin

hd )) (or f = o(min(S;T
1� 1

d
min ; nmin

d ))), block-
wise snakelike mapping from all healthy processors to the
virtual subarray is allowed in the emulation, and

(A) an algorithm for an array (i.e., mesh or torus) performs
an average of S consecutive routing steps along each
of the dimensions (at the same time) without any com-
putation step in between and the virtual subarray is
congestion-free, or

(B) an algorithm for a mesh performs S consecutive rout-
ing and computation steps along the same dimension
on the average,

then the slowdown factor for performing the algorithm on
the entire faulty array, each healthy and connected proces-
sor of which has at most h data items, is 1+o(1) relative to a
fault-free (n1�o( nmin

hd ))�(n2�o( nmin
hd ))��� � (nd�o( nmin

hd ))
array of the same type with load at most h+1 (or h+o(h),
respectively).

In what follows, we present results for performing total
exchange in faulty meshes, tori, and n-ary d-cubes, as ex-
amples of how ART-III can be applied.

5.2. Solving problems based on ART-III

Since mappings similar to blockwise snakelike order [10]
are usually allowed for the emulation of communication al-
gorithms, we have the following corollary based on ART-III
and Corollary 3.3.

Corollary 5.4 A total of 2d�1 (or 2d�o(d)) TE tasks can
be executed in an n-ary d-cube that has an arbitrary pattern
of f faulty processors and/or links in dnN=4+o(dnN) com-
munication time, which is optimal within a factor of 1+o(1)

when d is not a constant, where f = o(min(n1� 1
d ;n=d2))

(or f = o(min(n1� 1
d ;n=d)), respectively), N = nd � f is

the number of healthy processors, and data items are in-
put/output to/from each of the healthy and connected pro-
cessors in the entire faulty n-ary d-cube.
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If we allow a packet to be split into 2d � o(d) mini-
packets, the time required to perform a single TE task be-
comes nN=8+ o(nN) communication time when d is not a
constant and a mini-packet requires 1=(2d�o(d)) time for
transmission. This time complexity is also optimal within
a factor of 1+ o(1) for both fault-free and faulty n-ary d-
cubes.

Similar results can also be obtained for sorting and per-
mutation routing in the entire faulty array. More details will
be reported in the near future.

6. Conclusion

In this paper, we have proposed to add a RAIL mid-
dleware for interfacing the large body of ordinary algo-
rithms/programs designed for fault-free arrays with a pos-
sibly faulty network/hardware. Based on RAIL, we formu-
lated three array robustness theorems (ARTs), which lead to
the fastest known solutions for a variety of important prob-
lems such as sorting, permutation routing, total-exchange,
and ascend/descend algorithms on faulty arrays. ARTs clas-
sify computation and communication problems into several
categories, each of which indicates the required RAIL tech-
niques and quantifies the resultant performance according
the available parameters such as the total number of faults.

An important implication of our results is that low-
dimensional meshes, tori, and k-ary n-cubes are robust in
that they can solve many problems with negligible slow-
down in the presence of a (relatively) large number of faults.
Thus, if low-dimensional meshes, tori, and k-ary n-cubes
have comparable or even better performance than hyper-
cubes and high-dimensional k-ary n-cubes (as indicated in
[8] under certain assumptions), then the superiority of low-
dimensional networks will be even more pronounced when
the network/hardware may be faulty. The approach and
techniques proposed in this paper can also be applied to a
variety of other important problems as well as other network
topologies. The details will be reported in the near future.
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